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Recently it was pointed out that in shift-symmetric scalar-tensor theories a black hole can have nontrivial
scalar hair which depends linearly on time. We develop black hole perturbation theory for such solutions and
compute the quadratic action of odd parity perturbations. We show that around all the solutions known so far
with such time-dependent scalar hair the perturbations trigger instabilities or are presumably strongly coupled.
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I. INTRODUCTION

Black holes are intriguing objects for many reasons. From
a theoretical viewpoint, black holes have a richmathematical
structure with regard to their uniqueness [1,2] in and beyond
general relativity in four spacetime dimensions. The stability
of black holes is also of great interest. Black holes carry
entropy and comply with the laws of thermodynamics [3,4],
which is expected to shed light onquantumaspects of gravity.
Froman astrophysical viewpoint, it is strongly suggested that
there is a black hole at the center of our Galaxy [5]. Not only
such supermassive black holes but also smaller astrophysical
ones are considered to be promising sources of gravitational
waves, the future detection of which would provide us with
unique information concerning astrophysics and gravita-
tional physics. Among those various aspects, in this paper,
we focus on the question as to whether black holes can have
nontrivial hair and whether they are stable in scalar-tensor
theories of gravity.
The discovery of the accelerated expansion of the

Universe [6,7] gives rise to a growing motivation for
studying gravitational theories with a scalar field, as it
could be caused by a dynamical scalar field called dark
energy [8]. Alternatively, it is also argued that cosmic
acceleration may be caused by a modification of gravity
[9]. Modified gravity can be described at least effectively
by adding a scalar degree of freedom to the gravitational
action. Thus, theories composed of a metric and a scalar
field are ubiquitous, and it is important to explore aspects of
scalar-tensor theories.
In many scalar-tensor theories, it has been shown that

black holes cannot support nontrivial scalar hair. This was
first pointed out in the context of the Brans-Dicke theory
[10], and later the theorem was extended to more general
scalar-tensor theories [11] including k-essence [12,13]. It
was also proven that a Galileon cannot develop a nontrivial

configuration around a static and spherically symmetric
black hole [14]. The proof relies essentially on the
symmetry under a constant shift of the scalar field,
ϕ → ϕþ c, and hence the same conclusion would hold
true in general shift-symmetric scalar-tensor theories. See
[15] for a review.
The underlying assumption of the no-hair proof of [14] is

that the scalar field is static. However, it was noticed that
the scalar field can be linearly dependent on time while the
metric remains static in the shift-symmetric theories [16].1

Utilizing this fact, the authors of [16] have worked out
several exact black hole solutions dressed with nontrivial
scalar hair in the theory with the derivative coupling to the
Einstein tensor. Later, those solutions were generalized [22]
in a certain shift-symmetric subclass of the Horndeski
theory [23–25]. See [26] for a biscalar extension of the
hairy solutions and [27] for a charged generalization.
The purpose of the present work is to study the stability

of the hairy black hole solutions of [16,22]. To do so we
compute the action rather than the equations of motion for
metric perturbations. The action approach was taken also in
[28–30] to show the appearance of ghosts in some modified
gravity theories. Black hole perturbation theory in the
action approach has been formulated in the context of the
Horndeski theory [31,32], giving the useful stability con-
ditions in terms of the arbitrary functions in the Horndeski
action (see also [33]). The results of [31,32] cannot,
however, be applied to the black hole solutions with
time-dependent scalar hair, as the background scalar field
is assumed to be static in [31,32]. We therefore extend the
formulation of [31,32] to allow for the linear time depend-
ence of the background scalar within the shift-symmetric
subclass of the Horndeski theory.
The organization of this paper is as follows. In Sec. II, we

review the black hole solutions with time-dependent scalar
hair in the Horndeski theory, following [22]. In Sec. III, we
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1By relaxing the asymptotic conditions, one can construct
hairy solutions with a static scalar field [17–19]. See [20,21] for
yet another loophole.
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compute the quadratic action for odd parity perturbations
and give the stability conditions. In Sec. IV, we apply the
stability conditions to the hairy black holes and draw our
conclusions on their stability.

II. HAIRY BLACK HOLES IN SHIFT-SYMMETRIC
SCALAR-TENSOR THEORIES

A. Shift (and reflection) symmetric
scalar-tensor theories

The Horndeski theory is the most general scalar-tensor
theory with second-order field equations in four dimen-
sions [23]. We work in the subclass of the Horndeski theory
having symmetries under ϕ → ϕþ c and ϕ → −ϕ. The
action we consider is thus given by

S ¼
Z

d4x
ffiffiffiffiffiffi−gp ðL2 þ L4Þ; ð1Þ

where

L2 ¼ G2ðXÞ; ð2Þ

L4 ¼ G4ðXÞRþG4X½ð□ϕÞ2 − ð∇μ∇νϕÞ2�: ð3Þ

Here, G2 and G4 are arbitrary functions of X ≔ −ð∂ϕÞ2=2,
R is the Ricci scalar, and we use the notation
G4X ≔ ∂G4=∂X. This is the most general second-order
scalar-tensor theory having shift and reflection symmetries.
The shift symmetry is essential for black holes to have
time-dependent scalar hair. However, the reflection sym-
metry is rather thought of as a simplifying assumption used
to remove the so-called L3 and L5 terms from the theory.
The theory with a nonminimal derivative coupling to the

Einstein tensor,

S ¼
Z

d4x
ffiffiffiffiffiffi−gp ½ζR − ηð∂ϕÞ2 þ βGμν∂μϕ∂νϕ − 2Λ�; ð4Þ

with ζ, η, β, and Λ being constants, is often considered in
the literature (see, e.g., [17,19,34,35]). This theory is a
specific case of the general theory (1), as is confirmed by
taking

G2 ¼ −2Λþ 2ηX; G4 ¼ ζ þ βX; ð5Þ

and performing integration by parts.

B. Black holes with time-dependent scalar hair

We consider a static and spherically symmetric metric as
a background solution. The background metric gμν is
therefore of the form

gμνdxμdxν ¼ −AðrÞdt2 þ dr2

BðrÞ þ r2dΩ2; ð6Þ

where dΩ2 ¼ dθ2 þ sin2 θdφ2. The scalar field can, how-
ever, be dependent linearly on time as a consequence of the
shift symmetry,

ϕðr; tÞ ¼ qtþ ψðrÞ; ð7Þ
where q is a constant, and nonvanishing q is crucial for a
hairy solution [16].
Several exact hairy black hole solutions have been

obtained in the theories with the specific action (4) and
the general one (1). To study the stability of those solutions,
we formulate the black hole perturbation theory with time-
dependent scalar hair in the theory (1). To do so, we do not
rely on the concrete form of the solution known so far but
only use the assumption that the metric and the scalar field
are of the form (6) and (7) and satisfy the background field
equations.
The background field equations can be derived as

follows. We substitute the metric

gμνdxμdxν ¼ −AðrÞdt2 þ dr2

BðrÞ þ 2CðrÞdtdr

þDðrÞr2dΩ2; ð8Þ
and the scalar field (7) to the action (1). Varying the action
with respect to A, B, C, and D and then setting C ¼ 0 and
D ¼ 1, we obtain the gravitational field equations. We
write the corresponding equations as

EA ¼ 0; EB ¼ 0; EC ¼ 0; ED¼ 0; ð9Þ

the explicit forms of which are found in Appendix A. One
can also derive the scalar-field equation of motion by
varying the action with respect to ψ . In formulating black
hole perturbation theory below, use of those equations is
crucial to simplify the second-order action. For this
purpose, it is useful to know that not all of the equations
are independent. Actually, thanks to the Bianchi identities,
ED ¼ 0 and the scalar-field equation are automatically
satisfied once the other equations are assumed.
Let us now summarize the hairy black hole solutions

obtained so far in the literature. The solutions can be
classified into several groups. The key equation for the
classification is

d
dr

½XHðXÞð1 − r2FðXÞÞ� ¼ 0; ð10Þ

which can be derived by combining the gravitational field
equations (9) under the assumption that q ≠ 0 [22]. Here
we defined, for convenience,

HðXÞ ≔ 2ðG4 − 2XG4XÞ; ð11Þ

FðXÞ ≔ ∂XðG2HÞ
8XðG2

4X þG4G4XXÞ
: ð12Þ
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Equation (10) can be integrated to give an algebraic
equation for X:

XHð1 − r2FÞ ¼ const: ð13Þ

From this equation, one can determine X ¼ XðrÞ, which, in
general, depends on the concrete form of G2 and G4, and
also on the integration constant in the right-hand side. One
can then use the other components of the gravitational field
equations to fix A ¼ AðrÞ and B ¼ BðrÞ. Note, however,
that the procedure to find exact solutions goes almost
independently of the concrete form of G2 and G4 if one
focuses on the special cases where FðXÞ ¼ 0 or HðXÞ ¼ 0
is fulfilled. Accordingly, X ¼ const for such solutions.
Actually, it turns out that all the known solutions satisfy
either FðXÞ ¼ 0 or HðXÞ ¼ 0 as displayed below.

1. FðXÞ ¼ 0

With an appropriate rescaling of the time coordinate, we
obtain the following solution for FðXÞ ¼ 0:

A ¼ B ¼ 1 − μ

r
− Λeff

3
r2; ð14Þ

where μ is an integration constant and

ΛeffðXÞ ≔ − 1

2

G2G4XX þ G2XG4X

G2
4X þ G4G4XX

ð¼ constÞ: ð15Þ

Interestingly, the metric is identical to the Schwarzschild-de
Sitter solution in general relativity, though in this case, the
scalar field exhibits a nontrivial profile. Note that the
effective cosmological constant has nothing to do with
the true cosmological constant. This solution was first
discovered in the theory (4) in [16] and then was gener-
alized in the context of the Horndeski theory (1) in [22].

2. HðXÞ ¼ 0

The solution satisfying HðXÞ ¼ 0 is more complicated
and is given by

A ¼ Λeff

F
þ
�
1 − Λeff

F

�
T ðrÞ − μ

r
; ð16Þ

B ¼ð1 − Fr2ÞA; ð17Þ

with

T ðrÞ ≔
8<
:

1
2
ffiffiffi
F

p
r
ln
��� 1þ ffiffiffi

F
p

r
1− ffiffiffi

F
p

r

��� ðF > 0Þ
arctan ð ffiffiffiffiffi−Fp

rÞffiffiffiffiffi−Fp
r

ðF < 0Þ;
ð18Þ

where μ is an integration constant and an appropriate
rescaling of the time coordinate is understood. The above

solution includes the Schwarzschild black hole in an
Einstein static universe [16] as a special case.

III. PERTURBATIONS OF A BLACK HOLE
WITH TIME-DEPENDENT SCALAR HAIR

We now calculate the quadratic action for metric per-
turbations. Regge and Wheeler [36] and Zerilli [37] were
the first to develop black hole perturbation theory. We
follow their works and decompose the metric perturbations
into odd and even modes according to their transformation
properties under two-dimensional rotation. In this paper,
we only consider the odd parity sector in which the scalar
field does not acquire fluctuations. While Regge, Wheeler,
and Zerilli worked out the equations of motion for the
master variables, we compute the quadratic action for the
perturbations [38]. By taking the action approach, one can
derive stability conditions in a transparent manner. Looking
at the quadratic action is particularly important in modified
gravity theories because one must care about the sign of the
kinetic terms of the dynamical variables and associated
ghost instabilities. In [31,32], the quadratic actions for odd
and even parity perturbations around a static and spheri-
cally symmetric background are derived from the
Horndeski theory, making the underlying assumption that
the background scalar field is also static. We now extend
the work of [31,32] to admit time-dependent scalar hair,
following closely the previous works of [28,29]
and [31,32].

A. Odd parity metric perturbations

The metric perturbations hμν ¼ gμν − gμν in the odd
parity sector can be written using spherical harmonics
Ylmðθ;φÞ as

htt ¼ 0; htr ¼ 0; hrr ¼ 0;

hta ¼
X
l;m

h0;lmðt; rÞEab∂bYlmðθ;φÞ;

hra ¼
X
l;m

h1;lmðt; rÞEab∂bYlmðθ;φÞ;

hab ¼
1

2

X
l;m

h2;lmðt; rÞ½Ea
c∇c∇bYlmðθ;φÞ

þ Eb
c∇c∇aYlmðθ;φÞ�; ð19Þ

where Eab ≔
ffiffiffiffiffiffiffiffiffi
det γ

p
εab with γab being the two-dimen-

sional metric on a unit sphere and εab being the totally
antisymmetric symbol with εθφ ¼ 1.
Not all of the above perturbation variables are physical;

by performing the gauge transformation xa → xa þ ξa,
where

ξa ¼
X
l;m

Λlmðt; rÞEa
b∇bYlm; ð20Þ
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with an appropriate choice of Λlm, one can eliminate h2,
leaving h0 and h1. This is the Regge-Wheeler gauge, which
is always possible for l ≥ 2modes. However, for the dipole
perturbations (l ¼ 1), hab vanishes identically, and the
gauge is not fixed completely. We therefore consider the
dipole mode separately. Note that there are no odd parity
perturbations for l ¼ 0.

B. Quadratic action for odd parity
perturbations with l ≥ 2

Substituting the perturbed metric into the action (1) and
expanding it to second order, we obtain the quadratic action
for the odd parity perturbations. After lengthy but straight-
forward calculations, we arrive at, for a given set of ðl; mÞ,2

Sð2Þ ¼
Z

dtdrLð2Þ; ð21Þ

with

2lþ 1

2π
Lð2Þ ¼ a1h20 þ a2h21 þ a3

�
_h21 − 2h00 _h1

þ h020 þ 4h0 _h1
r

�
þ a4h0h1; ð22Þ

where a dot (a prime) stands for differentiation with respect
to t (r). The coefficients a1, a2, a3, and a4 are given by

a1 ¼
lðlþ 1Þ

r2

�
d
dr

�
r

ffiffiffiffi
B
A

r
H
�
þ ðl − 1Þðlþ 2Þ

2
ffiffiffiffiffiffiffi
AB

p F
�
; ð23Þ

a2 ¼ − ðl − 1Þlðlþ 1Þðlþ 2Þ
2

ffiffiffiffiffiffiffi
AB

p

r2
G; ð24Þ

a3 ¼
lðlþ 1Þ

2

ffiffiffiffi
B
A

r
H; ð25Þ

a4 ¼
ðl − 1Þlðlþ 1Þðlþ 2Þ

r2

ffiffiffiffi
B
A

r
J ; ð26Þ

where we defined

F ¼ 2

�
G4 − q2

A
G4X

�
; ð27Þ

G ¼ 2

�
G4 − 2XG4X þ q2

A
G4X

�
; ð28Þ

H ¼ 2ðG4 − 2XG4XÞ; ð29Þ

J ¼ 2qG4Xψ
0; ð30Þ

and used the background equations (9) to simplify the
expressions. Note here that H is the same as the one
introduced earlier in Eq. (11). We see that q appears in
several places in the coefficients; in particular, the term
a4h0h1 arises due to nonvanishing q and hence is com-
pletely new.
The Lagrangian shows that h1 is dynamical while h0 is

not. Thus, variation with respect to h0 yields a constraint
equation. However, we cannot solve straightforwardly the
constraint for h0 because it contains h00. To remove the
nondynamical degree of freedom from the Lagrangian, we
instead rewrite the Lagrangian by introducing an auxiliary
field χ as [28,29]

2lþ1

2π
Lð2Þ ¼

�
a1−2ðra3Þ0

r2

�
h20þa2h21

þa3

�
−χ2þ2χ

�
_h1−h00þ

2

r
h0

��
þa4h0h1:

ð31Þ

It is easy to verify that Eq. (22) is recovered by eliminating
the auxiliary field χ from (31). Varying the new Lagrangian
(31) with respect to h0 and h1, one obtains the two
equations that can now be solved for h0 and h1, giving

h0 ¼ − 2rf2a2½rðχa3Þ0 þ 2χa3� þ r_χa3a4g
4a2½r2a1 − 2ðra3Þ0� − r2a42

; ð32Þ

h1 ¼
4a3 _χ½r2a1 − 2ðra3Þ0� þ 2ra4½rðχa3Þ0 þ 2a3χ�

4a2½r2a1 − 2ðra3Þ0� − r2a42
: ð33Þ

Substituting Eqs. (32) and (33) back into Eq. (31), we
finally find the quadratic Lagrangian written in terms of
only the dynamical variable χ,

2lþ 1

2π
Lð2Þ ¼ lðlþ 1Þ

2ðl − 1Þðlþ 2Þ

ffiffiffiffi
B
A

r
½b1 _χ2 − b2χ02

þ b3 _χχ0 − lðlþ 1Þb4χ2 − Vχ2�; ð34Þ

where the coefficients bi are given by

b1 ¼
r2FH2

AFGþ BJ 2
; ð35Þ

b2 ¼
r2B2GH2

AFGþ BJ 2
; ð36Þ

b3 ¼
2r2B2H2J
AFGþ BJ 2

; ð37Þ

2Since different ðl; mÞ modes do not mix, one can treat each
single ðl; mÞ separately. Thanks to the spherical symmetry, the
action is independent of m, and hence, one may set m ¼ 0 from
the beginning without loss of generality. We omit the subscripts l,
m when unnecessary.
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b4 ¼ H: ð38Þ

The explicit form of the effective potential V is given in
Appendix B because of its long expression. Once a solution
to the Euler-Lagrange equation for χ is given, one can use
Eqs. (32) and (33) to determine h0 and h1 and thus can fix
all the perturbation variables in the Regge-Wheeler gauge.
A comment is now in order. IfH ¼ 0, all the coefficients

in the Lagrangian (34) vanish. This implies that fluctuations
are strongly coupled around the background solutions
with H ¼ 0.

C. Stability conditions

To simplify the equations, let us suppress the l-depen-
dent factor in Eq. (34), which is unimportant for the
stability, and consider the Lagrangian density,

~L ¼ 1

2

ffiffiffiffi
B
A

r
fb1 _χ2 − b2χ02 þ b3 _χχ0 − ½lðlþ 1Þb4 þ V�χ2g:

ð39Þ

One can define the conjugate momentum as π ¼ ∂ ~L=∂ _χ,
and then the Hamiltonian is given by

H ¼ 1

2

Z
dr

ffiffiffiffi
B
A

r �
1

b1

� ffiffiffiffi
A
B

r
π − 1

2
b3χ0

�2

þ b2χ02 þ ½lðlþ 1Þb4 þ V�χ2
	
: ð40Þ

In order for the first and second terms to be positive, it is
required that

b1 > 0; b2 > 0: ð41Þ

Those ensure the positivity of the kinetic and radial gradient
energies, respectively. To avoid instabilities of large l
modes,

b4 > 0 ð42Þ

is required as well. Those three conditions are equivalent to

F > 0; G > 0; H > 0: ð43Þ

Equation (43) can be used for any black hole solutions with
linearly time-dependent scalar hair in a sufficiently wide
subclass of the Horndeski theory (1) and thus generalizes
the result of [31].

D. Dipole perturbation

The procedure to derive the quadratic action (34) for the
master variable is not well defined for the l ¼ 1 modes
since division by (l − 1) is involved in the intermediate

computations. This necessitates doing the perturbation
analysis for the dipole modes separately, which is the
purpose of this subsection. To this end, we start with the
action (21). This is nothing but the action expanded to
second order in terms of the original perturbation variables
and is valid even for the dipole modes. Plugging l ¼ 1 into
the background-dependent coefficients ai ði ¼ 1;…; 4Þ,
we find a2 and a4 become zero and end up with

3

2π
Lð2Þ ¼ 2

r2
ðra3Þ0h20 þ a3

�
_h21 − 2h00 _h1 þ h020 þ 4h0 _h1

r

�
;

ð44Þ

where a3 ¼ H
ffiffiffiffiffiffiffiffiffi
B=A

p
. As is the case in the higher multipole

modes, the quadratic Lagrangian becomes zero when
H ¼ 0, which signals the strong coupling of the system.
Below, we assumeH ≠ 0. Contrary to the higher multipole
modes, the angular components of the metric perturbation
automatically vanish for the dipole modes, and the above
Lagrangian is valid in any gauge [30]. Indeed, we can
explicitly verify the invariance of the Lagrangian (up to the
total derivative) under the gauge transformation,

h0 → h0 þ _Λ; h1 → h1 þ Λ0 − 2

r
Λ; ð45Þ

where Λðt; rÞ is an arbitrary function specifying the gauge
transformation for the angular coordinates. By using this
gauge degree of freedom, we can always choose a gauge for
which h1 ¼ 0. We impose this gauge condition after we
obtain the Euler-Lagrange equations for h0 and h1. There is
still a gauge degree of freedom for Λ such that Λ ¼ CðtÞr2,
where CðtÞ is an arbitrary function of t. This residual gauge
is used later to eliminate the gauge mode appearing in h0.
The Euler-Lagrange equations for h0 and h1 take the

forms of

_h00 − 2

r
_h0 ¼ 0; ð46Þ

a3h000 þ a03h
0
0 − 2ðra3Þ0

r2
h0 ¼ 0: ð47Þ

Clearly, these equations look exactly the same as those in
the case of the time-independent scalar field (q ¼ 0)
derived in [31]. Dependence of the second equation on
q is only through X contained inH. As a result, the solution
takes exactly the same form as the one given in [31], which
is given as

h0 ¼
3Jr2

4π

Z
r dr
r4H

ffiffiffiffi
A
B

r
þ ~CðtÞr2; ð48Þ

where J is an integration constant, and ~CðtÞ is an arbitrary
function of t. As mentioned before, the second term is a
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gauge mode and can be removed by setting Λ ¼
− R

t ~Cðt0Þdt0r2. The first term cannot be eliminated by
any gauge transformation. Physically, this represents a
metric of the slowly rotating black hole, that is, metric
to first order in its angular momentum J. For a class of
solutions with FðXÞ ¼ 0 discussed in Sec. II B 1, both X
and A=B are independent of r. Then, we have

h0 ¼ − J
4πHðXÞr ; ð49Þ

where X here is a solution of FðXÞ ¼ 0. The metric h0 takes
exactly the same form as the Kerr metric expanded up to
first order in the angular momentum. This result is con-
sistent with a recent study [39] in which it is shown by a
different approach that the metric around a slowly rotating
black hole is identical to that in general relativity for a wide
class of shift-symmetric Horndeski theories.

IV. DISCUSSION AND CONCLUSIONS

In the previous section, we obtained the stability con-
ditions for a black hole dressed with a time-dependent
scalar field. The main conclusion derived from the stability
conditions F > 0 and G > 0 is as follows: for the solutions
with X ¼ const, one has

FG≃−4
�
q2

A
G4X

�
2

< 0 ð50Þ

in the vicinity of the horizon (A ¼ 0), and thus, either F or
G is negative there, indicating that the black hole solutions
with X ¼ const are unstable. This result holds in the
general shift-symmetric theory (1) and can be applied to
the Schwarzschild-de Sitter black hole with time-dependent
scalar hair presented in Sec. II B 1. Since the stability
conditions are independent ofG2, the stealth Schwarzschild
solution found in G2 ¼ 0 theories [16,22] is also unstable.
The same instability occurs in the vicinity of the cosmo-
logical horizon. In particular, this is true even for the special
case of the de Sitter solution (with time-dependent hair).
The instability we found in this paper manifests in the

short-wavelength perturbations localized sufficiently close
to (but not on) the horizon because the stability conditions
are violated in a local domain outside the horizon. This
local nature of the instability implies that it is not a
coordinate artifact (see Appendix C) nor is it due to the
apparent singular behavior of the metric and the scalar field
at the horizon as the instability is developed not on the
horizon, but near the horizon.
Let us give a further discussion to support this con-

clusion in the following. We can express a physically
sensible perturbation as

χðt; r�Þ ¼
X
ω

eiωtχωðr�Þ; ð51Þ

where χωðr�Þ forms a complete set and r� is the tortoise
coordinate defined as r� ¼

R
dr=

ffiffiffiffiffiffiffi
AB

p
. We claim that the

complete set includes the mode whose ω is purely imagi-
nary with a sufficiently large absolute value. To see this,
suppose that one prepares a sufficiently small-size wave
packet

P
ωχωðr�Þ sufficiently near the horizon at the initial

time t ¼ 0. Since it is localized, the square integral can be
made finite, namely

R
dr�jχðr�Þj2 < ∞. Since the size of

the packet is small, we may consider it as a superposition of
plane waves, and the majority of them have sufficiently
large wave numbers. From the Euler-Lagrange equation for
χ, we find that ω corresponding to such a large wave
number k is given by �i

ffiffiffiffiffiffiffiffiffi
A=B

p
k to a good approximation.

Thus, a sufficiently localized wave packet near the horizon
contains χωðr�Þ with a purely imaginary ω having a very
large absolute value.
This wave packet evolves subject to Eq. (51) and

undergoes rapid exponential growth. As a result, the square
integral

R
dr�jχðt; r�Þj2 also exhibits exponential growth

within a very short time scale. This is the nature of the
ghost/gradient instability arising due to the sign flip in the
coefficients in the quadratic Lagrangian. Based on this
observation, we conclude that the black holes considered in
this paper are classically unstable.
So far, we have made a purely classical argument. We

would like to emphasize that there is another consequence
from the derived quadratic Lagrangian leading to a more
serious problem. Since quantum mechanics describes our
nature, in order for a black hole solution to exist stably, the
solution must be a ground state at least locally in the state
space. As we have found, the Hamiltonian density of the
metric perturbations is not bounded from below in the
vicinity of the horizon. Since gravity is coupled to all matter
fields that have excitations only with positive energy, the
unbounded Hamiltonian inevitably leads to instantaneous
and enormous creation of matter and gravitational excita-
tions near the horizon. This pathological process, yet
abiding by the energy conservation, inevitably takes place
since any allowed process happens in quantum mechanics.
Thus, the black hole cannot be stable quantum mechan-
ically even if we do not allow any types of classical
perturbations including the ones we mention above. In this
sense, the latter pathological instability is more serious than
any classical instabilities. This point is well known in the
field of modified gravity, and a detailed discussion is given,
for instance, in Ref. [40].
Finally, a caveat must be given here. For the solutions

with H ¼ 0 given in Sec. II B 2, the quadratic action
vanishes, which implies that the odd parity perturbations
are strongly coupled on this background. This example
must be investigated carefully but in any case is beyond the
scope of the present paper.
In summary, we have derived the quadratic action for

odd parity perturbations of a black hole dressed with time-
dependent scalar hair in a sufficiently wide subclass of the
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Horndeski theory. Based on the quadratic action, we have
shown that the perturbations of all the hairy black hole
solutions with X ¼ const known so far are either unstable
or presumably strongly coupled.
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APPENDIX A: BACKGROUND EQUATIONS

We define the background equations (9) following
[39]. The gravitational field equations can be divided
into the q-independent part and the terms proportional to
q2 as

Ea ≔ Eð0Þ
a þ q2

A
EðtÞ
a ; ðA1Þ

where a ¼ A, B, C, D.
Explicitly,

Eð0Þ
A ¼ G2 − 2

r

�
B0 þ B − 1

r

�
G4 − 2B2ψ 0

r

�
ψ 0

r
þ 2B0

B
ψ 0 þ 2ψ 00

�
G4X þ 2B3ψ 03

r

�
B0

B
ψ 0 þ 2ψ 00

�
G4XX; ðA2Þ

EðtÞ
A ¼ −G2X þ 2

r2
ð−1þ Bþ rB0ÞG4X − 2B2ψ 0

r

�
ψ 0

r
þ B0

B
ψ 0 þ 2ψ 00

�
G4XX; ðA3Þ

Eð0Þ
B ¼ G2 þ Bψ 02G2X − 2

r

�
A0

A
Bþ B − 1

r

�
G4 − 2Bψ 02

r

�
2A0

A
Bþ 2B − 1

r

�
G4X þ 2B3ψ4

r

�
1

r
þ A0

A

�
G4XX; ðA4Þ

EðtÞ
B ¼ 2B

r
A0

A
G4X − 2B2ψ 02

r
A0

A
G4XX; ðA5Þ

Eð0Þ
C ¼ − 2

r

�
B − 1

r
þ A0

A
B

�
G4X þ 2

r
B2ψ 02

�
A
r
þ A0

A

�
G4X; ðA6Þ

EðtÞ
C ¼ − 2

r
A0

A
BG4XX; ðA7Þ

Eð0Þ
D ¼ G2 −

�
1

r

ffiffiffiffi
B
A

r �
r

ffiffiffiffi
B
A

r
A0
�0

þ B0

r

�
G4 − 1

2
B2ψ 02

�
4

r
B0

B
þ 2ðA0 þ rA00Þ

rA
− A02

A2
þ 2

A0

A
B0

B
þ 4

r
ψ 00

ψ 0 þ 2
A0

A
ψ 00

ψ 0

�
G4X

þ 1

2
B3ψ 04

�
2

r
þ A0

A

��
B0

B
þ 2

ψ 00

ψ 0

�
G4XX; ðA8Þ

EðtÞ
D ¼

�
1

r

ffiffiffiffi
B
A

r �
r

ffiffiffiffi
B
A

r
A0
�0

− B
2

A02

A2

�
G4X þ

�
1

2

A0

A
B2ψ 02

�
2

r
þ A0

A
− B0

B
− 2

ψ 00

ψ

�
− 1

2

A02

A3
Bq2

�
G4XX: ðA9Þ
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APPENDIX B: EFFECTIVE POTENTIAL

The effective potential in Eq. (34) is given by

VðrÞ ¼ H
2ðAFGþ BJ 2Þ2 ð−Bðr

2GHA0ðFGA0 þ J 2B0Þ

þ BJ ð2r2GHA0J 0 þ rJ ðGð−rHA00 þ rA0H0 þ 4HA0Þ − rHA0G0Þ þ 4J 3ÞÞ
− A2ð−rF 0ðrHB0 þ 2BðrH0 þ 2HÞÞ þ F ðrðrHB00 þ 3rB0H0 þ 4HB0Þ þ Bð2r2H00 þ 4rH0 − 4HÞÞ þ 4F 2Þ
þ Aðr2GHB0ðFGA0 þ J 2B0Þ þ BðFGðr2GðHA00 þ A0H0Þ − 8J 2Þ
− r2ðG2HA0F 0 þHJ 2B0G0 þ GJ ðHJB00 þ JB0H0 − 2HB0J 0ÞÞÞ
þ 2B2J ðGðrð2rH0J 0 − J ðrH00 þ 2H0ÞÞ þ 2Hð2rJ 0 þ J ÞÞ − rJG0ðrH0 þ 2HÞÞÞÞ: ðB1Þ

APPENDIX C: ANALYSIS IN THE EDDINGTON-
FINKELSTEIN COORDINATES

To show that the instability we find in the main text is not
a coordinate artifact, we give a stability analysis in a
different coordinate system. Here, we work in the ingoing
Eddington-Finkelstein coordinates ðv; rÞ that are used to
see the regularity of the horizons of the hairy black hole
solutions [16,22].
The null coordinate v is defined as

v ¼ tþ
Z

r dr0ffiffiffiffiffiffiffi
AB

p : ðC1Þ

The metric perturbations are now given by

hμν ¼ htadtdxa þ hradrdxa

¼ htadvdxa þ
�
hra − htaffiffiffiffiffiffiffi

AB
p

�
drdxa ðC2Þ

in the hab ¼ 0 gauge. Let us denote the ðl; mÞ components
of hva ≔ hta and hra;EF ≔ hra − hta=

ffiffiffiffiffiffiffi
AB

p
as ~h0ðv; rÞ and

~h1ðv; rÞ. By an explicit calculation, we obtain the quadratic
action,

Sð2ÞEF ¼
Z

dvdrLð2Þ
EF ; ðC3Þ

with

2lþ 1

2π
Lð2Þ
EF ¼ ~a1 ~h

2
0 þ ~a2 ~h

2
1 þ ~a3

�
_~h
2

1 − 2~h00
_~h1

þ ~h0
02 þ 4~h0

_~h1
r

�
þ ~a4 ~h0 ~h1: ðC4Þ

Here, a dot stands for ∂v. The coefficients are given by

~a1 ≔ a1 þ
a2
AB

þ a4ffiffiffiffiffiffiffi
AB

p ; ~a4 ≔ a4 þ
2a2ffiffiffiffiffiffiffi
AB

p ; ðC5Þ

while a2 and a3 remain the same, ~a2 ¼ a2, ~a3 ¼ a3. The
Lagrangian can also be derived just by substituting
h0 → ~h0, h1 → ~h1 þ ~h0=

ffiffiffiffiffiffiffi
AB

p
, ∂t → ∂v, and ∂r → ∂r þ

ð1= ffiffiffiffiffiffiffi
AB

p Þ∂v in Eq. (22). Thus, the quadratic Lagrangian in
the Eddington-Finkelstein coordinates has the same form as
that in the ðt; rÞ coordinates derived in the main text but
with different coefficients. The shift of the coefficients
presented in (C5) is equivalent to redefining

F → ~F ¼ F − Gþ 2

ffiffiffiffi
B
A

r
J ; ðC6Þ

J → ~J ¼ J −
ffiffiffiffi
A
B

r
G; ðC7Þ

while retaining the same G and H.
Now, in the vicinity of the horizon, A ≪ 1, we have

~F ≃− 2A
q2

X2G4X; G≃þ 2q2

A
G4X; ðC8Þ

showing that the black hole is unstable.
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