
Rapidly rotating neutron stars in dilatonic Einstein-Gauss-Bonnet theory

Burkhard Kleihaus,1 Jutta Kunz,1 Sindy Mojica,1 and Marco Zagermann2
1Institut für Physik, Universität Oldenburg, D-26111 Oldenburg, Germany

2Institut für Theoretische Physik, Leibniz Universität Hannover, D-30176 Hannover, Germany
(Received 27 January 2016; published 30 March 2016)

We construct sequences of rapidly rotating neutron stars in dilatonic Einstein-Gauss-Bonnet theory,
employing two equations of state for the nuclear matter. We analyze the dependence of the physical
properties of these neutron stars on the Gauss-Bonnet coupling strength. For a given equation of state we
determine the physically relevant domain of rapidly rotating neutron stars, which is delimited by the set of
neutron stars rotating at the Kepler limit, the set of neutron stars along the secular instability line, and the set
of static neutron stars. As compared to Einstein gravity, the presence of the Gauss-Bonnet term decreases
this domain, leading to lower values for the maximum mass as well as to smaller central densities. The
quadrupole moment is decreased by the Gauss-Bonnet term for rapidly rotating neutron stars, while it is
increased for slowly rotating neutron stars. The universal relation between the quadrupole moment and the
moment of inertia found in general relativity appears to extend to dilatonic Einstein-Gauss-Bonnet theory
with very little dependence on the coupling strength of the Gauss-Bonnet term. The neutron stars carry a
small dilaton charge.
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I. INTRODUCTION

Neutron stars represent the compact remains of massive
stars after their supernova explosion and collapse.
Consisting largely of neutron matter, neutron stars form
highly compact astrophysical objects. Therefore it is
essential to take into account the curvature of space-time
induced by the large concentration of mass. Coupling the
nuclear matter to gravity as described by general relativity
(GR) or generalized theories of gravity then leads to a
consistent theoretical approach to study neutron stars and
their properties.
A current major unknown in such studies is the proper

treatment of nuclear matter under extreme conditions as
encountered inside a neutron star. Here numerous equations
of state (EOSs) for the nuclear matter have been proposed
and employed (see e.g. [1]). The choice of the EOS
determines the size of the neutrons stars and the maximal
value of the mass. The observations of neutron stars with
masses of M ≈ 2M⊙ [2,3] therefore provide a strong
constraint for the physically viable EOSs.
While the physical properties of neutron stars typically

depend strongly on the chosen EOS, in recent years the
study of EOS independent—or almost independent—
neutron star characteristics came into the focus. Notably,
the I-Love Q relations for neutron stars represent universal
relations that hold between the scaled moment of inertia,
the Love number, and the scaled quadrupole moment in
Einstein gravity [4–6]. Also for quasinormal modes
(QNMs) of neutron stars universal relations concerning
frequency and damping time have been found [7–10].
Whereas most studies of neutron star properties have

been performed within GR, generalized models of gravity

have also been considered (for a recent review see [11]). In
fact, neutron stars represent an excellent testing ground for
such generalized models of gravity. While scalar-tensor
theories (STTs), for instance, can lead to results very close
to those of GR, certain STTs also allow for the phenome-
non of spontaneous scalarization, yielding neutron stars
with considerably larger masses in the presence of a
nontrivial scalar field [12,13].
Here we consider neutron stars in dilatonic Einstein-

Gauss-Bonnet (dEGB) theory. This theory is motivated
from string theory, a leading candidate for a quantum
theory of gravity and a unified description of the funda-
mental interactions of Nature. String theory predicts the
presence of higher curvature terms in the action as well as
further fields. In particular, the low energy effective action
obtained from heterotic string theory contains as basic
ingredients a Gauss-Bonnet (GB) term and a dilaton field
[14,15]. As an attractive feature of dEGB theory the
quadratic curvature terms in the action still lead to only
second order equations of motion.
Properties of static neutron stars in dEGB theory were

first considered in [16]. Studying neutron stars for three
EOSs it was shown, that the maximum mass of the neutron
stars decreases as the GB coupling constant is increased.
Interestingly, the sequences of static neutron stars cannot
be extended beyond a critical value of the central density,
which depends on the GB coupling strength and on the
EOS. Here a vanishing radicant is encountered in
the expansion of the dilaton field at the origin [17]. This
behavior therefore leads to EOS dependent constraints on
the GB coupling [16].
In the case of slow rotation a perturbative study allows

for the extraction of the moment of inertia of neutron stars.
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Generalizing the corresponding GR derivation [22], the
moment of inertia was calculated in dEGB theory in [16].
There it was shown that the moment of inertia decreases
with increasing GB coupling. Recently, also QNMs of
neutron stars were studied in dEGB theory [23], showing
that the frequency of the modes is increased by the presence
of the GB term.
Rapidly rotating neutron stars have been studied exten-

sively in GR (see e.g. [24–26]). However, in generalized
theories of gravity the investigation of rapidly rotating
neutron stars has only begun recently (see e.g. [11]), where
much progress was achieved in STTs [13] and first results
were obtained in dEGB theory [27]. The physically relevant
domain of neutron stars is delimited by the set of static
neutron stars, by the set of neutron stars along the secular
instability line, which possess maximum mass for fixed
angular momentum, and by the set of neutron stars rotating
at the Kepler limit.
Here we construct for the first time the full physically

relevant domain for rapidly rotating neutron stars in dEGB
theory, employing two well-known EOSs [28–30]. We
discuss the dependence of the mass on the radius and on the
central density. We consider the compactness, the angular
momentum, the rotation period and the dilaton charge. We
extract the moment of inertia and the quadrupole moment
of these neutron stars, and analyze the corresponding
universal relation. Finally we discuss the deformation of
the rapidly rotation neutron stars. For all these physical
properties we analyze the dependence on the GB coupling
strength.
The paper is organized as follows: In Sec. II we exhibit

the action, the field equations, the Ansätze, the boundary
conditions and the definitions of the physical quantities,
while we present our main results on rapidly rotating
neutron stars in dEGB theory in Sec. III. Section IV gives
our conclusions and outlook. The Appendix sketches our
derivation of the quadrupole moment for neutron stars.

II. EINSTEIN-GAUSS-BONNET-DILATON
THEORY

Here we first motivate and recall the action of dEGB
theory. We exhibit the equations of motion for the metric
and the dilaton field as well as the constraint equations for
the stress energy tensor. Subsequently, we present the
stationary axially symmetric Ansatz for the metric. For the
neutron star matter we assume a perfect fluid in uniform
rotation, described by a polytropic EOS. Since we work
with dimensionless coordinates we discuss our choice
of the dimensionful scales to obtain the corresponding
physical values of the observables. We recall how to
extract the global charges and the quadrupole moment
from the asymptotic expansions of the functions, and we
describe how we analyze the size and the shape of the
neutron stars.

A. Action and field equations

Today string theory represents a promising approach
toward quantum gravity and a unified description of the
fundamental interactions. In string theory modifications of
GR arise, which can be incorporated into an effective low
energy action. In particular, in heterotic string theory a
Gauss-Bonnet term arises, which is coupled to a modulus
field, the dilaton [14,15]. Moreover, Lorentz-Chern-Simons
terms and Kalb-Ramond axions are present. (For more
recent discussions on the low energy effective action and its
maximally symmetric solutions see e.g. [31–36].)
The low energy effective action has received much

attention in connection with black holes. Based on the
inclusion of various parts of the effective action, numerous
static and slowly rotating black hole solutions have been
found (see e.g. [37–48]), as well as rapidly rotating ones
(see e.g. [49–53]). Also string theory corrections of further
compact objects have been considered (see e.g. [11]).
Motivated by the low-energy heterotic string theory

action [14,15], we here employ a certain simplified
action, which has been considered previously for black
holes [18–20,45,54–62] and wormholes [21]. In particular,
this action retains only the dilaton and the GB term in
addition to the Einstein-Hilbert action, while it neglects the
Lorentz-Chern-Simons and axion terms (as well as gauge
fields and possible matter-dilaton couplings) and treats
spacetime as effectively four-dimensional, assuming no
light compactification moduli. Thus the action reads

S ¼ c4

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p �
R −

1

2
∂μϕ∂μϕþ αe−γϕR2

GB

�

þ Smatter; ð1Þ

where ϕ denotes the dilaton field with coupling constant γ,
α is a positive coefficient given in terms of the Regge
slope parameter, α0, as α ¼ α0=8 and R2

GB ¼ RμνρσRμνρσ −
4RμνRμν þ R2 represents the GB term. With Smatter we
indicate the action of the nuclear matter, although we here
construct the neutron stars by assuming a perfect fluid with
a given EOS. We should also note that even though our
approach is string inspired, we would like to be as general
as possible and do not assume any a priori restriction on
the parameter α (e.g. from connecting string theory with
elementary particle physics data) other than direct empirical
constraints from astronomical observations that we will
recall at the beginning of Sec. III.
Variation of the action then leads to a coupled set of

equations, to be solved subject to certain boundary con-
ditions and constraints. The dilaton and the generalized
Einstein equations are given by

∇2ϕ ¼ αγe−γϕR2
GB ð2Þ
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Gμν ¼
1

2

�
∇μϕ∇νϕ −

1

2
gμν∇λϕ∇λϕ

�

− αe−γϕ½Hμν þ 4ðγ2∇ρϕ∇σϕ − γ∇ρ∇σϕÞPμρνσ�
þ 8πβTμν ð3Þ

with

Hμν ¼ 2½RRμν − 2RμρR
ρ
ν − 2RμρνσRρσ þ RμρσλR

ρσλ
ν �

−
1

2
gμνR2

GB; ð4Þ

Pμνρσ ¼ Rμνρσ þ 2gμ½σRρ�ν þ 2gν½ρRσ�μ þ Rgμ½ρgσ�ν; ð5Þ

and coupling constant β ¼ G=c4.
Here we have introduced on the right-hand side of the

generalized Einstein equations the stress energy tensor of
the neutron star matter in the form of a perfect fluid

Tμν ¼
1

c2
ðϵþ PÞUμUν þ Pgμν; ð6Þ

where ϵ and P denote the energy density and the pressure of
the neutron star fluid, respectively, and Uμ represents the
four velocity of the fluid. The equation for hydrostatic
equilibirum results from the condition that the stress energy
tensor is covariantly conserved

∇μTμν ¼ 0: ð7Þ

B. Ansätze for the metric and the fluid

To obtain rotating neutron stars we employ the Lewis-
Papapetrou line element [63] for a stationary, axially
symmetric spacetime with two Killing vector fields
ξ ¼ ∂t, η ¼ ∂φ. In terms of the spherical coordinates r
and θ, the quasi-isotropic metric then reads [64]

ds2 ¼ gμνdxμdxν

¼ −c2e2ν0dt2 þ e2ðν1−ν0Þðe2ν2 ½dr2 þ r2dθ2�
þ r2sin2θðdφ − ωdtÞ2Þ: ð8Þ

The metric functions ν0, ν1, ν2 and ω as well as the dilaton
function ϕ depend on the coordinates r and θ, only.
We here consider uniform rotation of the neutron star

fluid, an assumption well justified for most neutron stars
[26]. In this case the four velocity has the form

Uμ ¼ ðu; 0; 0;ΩuÞ; ð9Þ

where Ω denotes the constant angular velocity of the star.
Before proceeding further, let us introduce the dimen-

sionless quantities

r̂¼ r
r0
; t̂¼ tc

r0
; ω̂¼ωr0

c
; Ω̂¼Ωr0

c
; ð10Þ

and

ϵ̂ ¼ ϵ

ϵ0
; P̂ ¼ P

ϵ0
; T̂μν ¼

Tμν

ϵ0
; ð11Þ

with r0 representing a length scale and ϵ0 an energy density.
Substitution of these expressions in Eqs. (2) and (3) then
suggests the introduction of the following dimensionless
coupling constants

α̂ ¼ α

r20
; β̂ ¼ r20ϵ0β ¼ Gr20ϵ0

c4
: ð12Þ

To fix the scales let us begin by considering the
asymptotic behavior of the function ν0

ν0 ≈
GM
c2r

¼ GM
c2r0r̂

¼ M
M0r̂

¼ M̂
r̂
; ð13Þ

where M̂ is the dimensionless mass. Thus the mass scale
M0 is related to the length scale r0 by M0 ¼ r0c2=G.
Subsequently we choose the dimensionless coupling con-
stant β̂ ¼ 1. This then relates the energy density scale to the
length scale by ϵ0 ¼ c4=ðGr20Þ. With the choice M0 ¼ M⊙
we obtain r0¼1.476902km, ϵ0=c2¼617.394×1015g=cm3.
Finally, we rename the dimensionless quantities omitting
the hat.
Let us now address the neutron star matter once more.

Employing the normalization condition for the four veloc-
ity of the fluid UμUμ ¼ −1, the velocity function u can be
expressed in terms of the metric functions ν0, ν1 and ω and
the constant angular velocity Ω,

u2 ¼ e−2ν0

1 − ðΩ − ωÞ2r2sin2θe2ν1−4ν0 : ð14Þ

The constraints ∇μTμν ¼ 0 yield the differential equa-
tions for the pressure P and the energy density ϵ

∂rP
ϵþ P

¼ ∂ru
u

;
∂θP
ϵþ P

¼ ∂θu
u

: ð15Þ

These equations have to be supplemented by an EOS,
ϵ ¼ ϵðPÞ (or P ¼ PðϵÞ).
A polytropic EOS relates the pressure P to the baryon

mass density ρ according to [26]

P ¼ KρΓ; Γ ¼ 1þ 1

N
ð16Þ

with polytropic constant K, polytropic exponent Γ, and
polytropic index N, while the energy density ϵ of a
polytrope is given by
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ϵ ¼ NPþ ρ: ð17Þ
It is common practice to parametrize the pressure and the
energy density by the function Θ,

P ¼ P0ΘNþ1; ϵ ¼ ðNPþ ρ0ΘNÞ; ð18Þ
where P0 and ρ0 are dimensionless constants. Substitution
of these expressions into Eq. (15) yields

Θ ¼ c0u −
ρ0

P0ðN þ 1Þ ; ð19Þ

where c0 is an integration constant, which we express in
terms of another constant σ via c0 ¼ ρ0=σP0ðN þ 1Þ, to
obtain the more convenient expression

Θ ¼ ρ0
σP0ðN þ 1Þ ðu − σÞ: ð20Þ

A convenient choice for the constant ρ0 is given by
ρ0 ¼ 10−3. The constant P0 follows from Eq. (16),
P0 ¼ KρΓ0 .

C. Expansions, boundary conditions, global charges

Having solved the equations for the neutron star matter
in terms of the metric functions, as given by Eq. (20), next
the PDEs for the metric functions and the dilaton function
need to be considered. We therefore expand these equations
at the origin to obtain regularity conditions for the
functions. The expansion at the neutron star center reads

νi ¼ νic þ νi2
r2

2
þOðr3Þ; i ¼ 0; 1; 2;

ω ¼ ωc þ ω2

r2

2
þOðr3Þ;

ϕ ¼ ϕc þ ϕ2

r2

2
þOðr3Þ: ð21Þ

We therefore require at the center the boundary conditions

∂rνijr¼0;θ ¼ 0; i ¼ 0; 1; 2;

∂rωjr¼0;θ ¼ 0; ∂rϕjr¼0;θ ¼ 0: ð22Þ
Note, that the central density and the central pressure of

the neutron star matter are determined by the integration
constant σ in Eq. (20) and by the value of metric function ν0
at the origin. At the surface of the neutron star the pressure
and thus the function Θ vanishes. However, we do not
impose this outer boundary. It follows from the integration.
We only scan during the integration procedure where Θ
vanishes (see the discussion below).
Since we are looking for asymptotically flat solutions,

we require, that the metric approaches the Minkowski
metric in the asymptotic region. Here the metric functions
and the dilaton function possess the expansion

ν0 ¼ −
M
2r

þD1M
3r3

−
M2

r3
P2ðcos θÞ þOðr−4Þ; ð23Þ

ν1 ¼
D1

r2
þOðr−3Þ; ð24Þ

ν2 ¼ −
4M2 þ 16D1 þ q2

8r2
sin2θ þOðr−3Þ; ð25Þ

ω ¼ 2J
r3

þOðr−4Þ; ð26Þ

ϕ ¼ q
r
þOðr−2Þ; ð27Þ

where P2ðcos θÞ is the second Legendre polynomial.
From this expansion we can read off the global charges

of the neutron star. M is the mass, J is the angular
momentum, and q is the dilaton charge. The additional
expansion constants D1 and M2 enter together with the
massM and the dilaton charge q into the expression for the
quadrupole moment Q of the neutron star [27]

Q ¼ −M2 þ
4

3

�
1

4
þ D1

M2
þ q2

16M2

�
M3: ð28Þ

(In Appendix Awe give a brief derivation of the quadrupole
moment.)
The boundary conditions in the asymptotic region follow

from the expansion Eqs. (23)–(27),

νi → 0; i ¼ 0; 1; 2; ω → 0; ϕ → 0: ð29Þ

Requiring regularity along the rotation axis (θ ¼ 0, π)
yields the boundary conditions

∂θνijθ¼0;π ¼ 0; i ¼ 0; 1; ν2jθ¼0;π ¼ 0;

∂θωjθ¼0;π ¼ 0; ∂θϕjθ¼0;π ¼ 0: ð30Þ

We also impose reflection symmetry with respect to the
equatorial plane (θ ¼ π=2). The corresponding boundary
conditions are given by

∂θνijθ¼π
2
¼ 0; i ¼ 0; 1; 2;

∂θωjθ¼π
2
¼ 0; ∂θϕjθ¼π

2
¼ 0: ð31Þ

D. Center and surface of the star

The central pressure and the central energy density are
obtained from Eqs. (18) together with Eqs. (20) and (14),
evaluated at the center,
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Pc ¼ P0ΘNþ1
c ;

ϵc ¼ NPc þ ρ0ΘN
c ; with

Θc ¼
ρ0

σP0ðN þ 1Þ ðe
−ν0c − σÞ; ð32Þ

where the value of σ is a free parameter.
The boundary of the star is defined as the surface where

the pressure vanishes, or equivalently as noted above,
where the function Θðr; θÞ vanishes. Let us parametrize
the boundary by coordinates ðrbðθÞ; θ;φÞ. Then the metric
at the boundary (at fixed time) reads

ds2b ¼ e2ðν1b−ν0bÞðe2ν2b ½ð∂θrbÞ2 þ r2b�dθ2 þ r2bsin
2θdφ2Þ;

ð33Þ

where νib ¼ νiðrbðθÞ; θÞ.
We use this metric to define the area Ab, the equatorial

radius Re and the polar radius Rp of the neutron star

Ab ¼
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðgbÞ
p

dθdφ

¼ 4π

Z
π=2

0

rbe2ðν1b−ν0bÞþν2b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð∂θrbÞ2 þ r2b

q
sin θdθ;

ð34Þ

Re ¼
1

2π

Z ffiffiffiffiffiffiffiffiffi
gbφφ

p
dφ ¼ ðeðν1b−ν0bÞrbÞθ¼π=2; ð35Þ

Rp ¼ 1

π

Z
π

0

ffiffiffiffiffiffiffiffi
gbθθ

p
dθ

¼ 2

π

Z
π=2

0

eν1b−ν0bþν2b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð∂θrbÞ2 þ r2b

q
dθ: ð36Þ

Let us finally address the Kepler limit of a neutron star.
This limit is reached when the neutron star rotates so
rapidly, that the angular velocity Ω of the fluid reaches the
angular velocity Ωp of a free particle on the equator of the
boundary. Then a fluid element on the surface of the star at
the equator is no longer bound and the star starts to
dissolve. Hence the Kepler limit is also called mass-
shedding limit and forms a part of the boundary of the
physically relevant domain of neutron stars.
The Kepler angular velocity ΩK is found by considering

the circular orbit of a massive particle at the equator of the
star [26]. The geodesic equation yields for the angular
velocity Ωp of the particle

ðΩp − ωbÞ2 − 2apðΩp − ωbÞ þ bp ¼ 0; ð37Þ

where ωb ¼ ωðrb; π=2Þ and ap, bp are expressions in the
metric functions and their derivatives at ðrb; π=2Þ,

ap ¼ r∂rω

2ð1 − r∂rðν0 − ν1ÞÞ
����
rb;π=2

;

bp ¼ −
e4ν0−2ν1r∂rν0

r2ð1 − r∂rðν0 − ν1ÞÞ
����
rb;π=2

: ð38Þ

Solving for Ωp one finds

Ωp ¼ ωb þ ap þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2p − bp

q
: ð39Þ

The Kepler angular velocity ΩK is reached for
ΩK ¼ Ω ¼ Ωp, since for Ω > Ωp the star would start
losing mass.
Note, that the rotational period T of the neutron star is

related to the angular velocity Ω by T½s� ¼ 0.03952=Ω for
our choice of units.

III. NEUTRON STARS IN EINSTEIN-GAUSS-
BONNET-DILATON THEORY

Let us now turn to the presentation of our numerical
results. Note, throughout this work we have set the dilaton
coupling parameter γ to one, thus employing the value from
heterotic string theory (in our conventions). The depend-
ence on γ was studied previously in [16] for static and
slowly rotating neutron stars, showing that it is basically
only the product αγ of the two coupling constants, which
determines the neutron star properties.
For a fixed EOS and a fixed value of the GB coupling α,

the solutions for the rotating neutron stars then depend on
two parameters. One parameter is the angular velocity of
the neutron star fluid Ω, while the second parameter
determines the central energy density ϵc and the central
pressure Pc of the neutron star fluid. As seen from
Eqs. (32), both depend on the integration constant σ, which
we therefore employ as the second parameter to be varied in
the calculations. Although the physical meaning of σ is not
obvious, Eq. (20) shows that σ is the time component of the
four velocity of the fluid at the boundary of the star, where
Θ vanishes.
Concerning the GB coupling constant αwe here consider

the following three values for the dimensionless quantity as
defined in (12): α ¼ 0 (GR limit), α ¼ 1 and α ¼ 2. Thus
we stay below the upper bound obtained from low mass
x-ray binaries [65], which would correspond to α ¼ 12
when converted to our dimensionless α. (Note, that in [65]
the bound is given in units of length as

ffiffiffiffiffiffiffiffiffiffiffiffijαmax
Y jp ¼

1.9 × 105 cm and α ¼ αY
ffiffiffiffiffiffiffiffi
16π

p
=ð1.477 kmÞ2.) The (EOS

dependent) bound extracted in [16], as obtained by
requiring the existence of sequences of static neutron stars
solutions up to a maximum mass, on the other hand, would
correspond to α ¼ 3.36. [In the dimensionful units of [16]
it is given as αmax

P ¼ 23.8M2⊙, with α ¼ αP=ð
ffiffiffiffiffiffiffiffi
16π

p
M2⊙Þ.]

Note that the constraints from the solar system are much
weaker [59,65,66].
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Since the calculations for the rapidly rotating neutron
stars and, in particular, the extraction of the Kepler limit
have proven to be very time consuming, we have consid-
ered only two EOSs here, FPS [29,30] and DI-II [28], as
discussed below. Moreover, we have restricted the calcu-
lations to solutions with masses M ≥ M⊙ for the EOS FPS
and M ≥ 1.4M⊙ for the EOS DI-II.
In the following we briefly address the numerical method

and the EOS. We then present our results for the mass-
radius relation and the mass-central density relation. In
particular we exhibit the physically relevant domain for
rotating neutron stars. Subsequently, we consider the
compactness, the angular momentum, the rotation period
and the dilaton charge. We then extract the moment of
inertia and the quadrupole moment, and consider their
universal relation. Finally, we address the shape and
deformation of the rapidly rotation neutron stars.

A. Numerical method

Let us now turn to the numerical method employed in the
construction of the rapidly rotating neutron star solutions.
Before starting the numerical procedure we introduce the
compactified coordinate x via

r ¼ r̂0
x

1 − x
; 0 ≤ x ≤ 1; ð40Þ

thus mapping the (semi)infinite interval of the coordinate r
to the unit interval. A convenient choice for the constant is
r̂0 ¼ 10. Then the domain of integration ½0; 1� × ½0; π=2� is
subdivided into Nx subintervals is x direction and Nθ

subintervals in θ direction. Typical mesh sizes are
Nx ¼ 260, Nθ ¼ 60.
We then employ the CADSOL package [67] based on the

Newton-Raphson method. The partial derivatives are dis-
cretized with sixth order of consistency. We need to apply a
special treatment at the boundary of the star. When
evaluating the PDEs and their Jacobian we check for each
θ and x, whether the function Θ is positive or negative. If
Θ < 0 the meshpoint is outside the star. In this case the
parameter β (12) is set to zero. Otherwise β is set to one.
In the static limit the Einstein and field equations reduce

to ordinary differential equations. In this case we mainly
use the COLSYS package [68] to compute the neutron star
solutions. For vanishing α we obtain neutron stars in GR.
Here we employ the rns code [26], except for large values
of the central density, where the rns code does not
converge. Employing these different methods allows us
to compare with the respective results obtained with
CADSOL. In all cases we find excellent agreement.

B. Equations of state

For the rapidly rotating neutron stars in dEGB theory we
here consider two EOSs. Both have the advantage of being
relatively simple, while they have the disadvantage that the

maximum mass of their static sequence is below 2M⊙.
Thus they cannot describe (slowly rotating) high mass
neutron stars [2,3].
The first EOS corresponds to a polytropic EOS, as

described by Eq. (16), with N ¼ 0.7463 and K ¼ 1186.0
(with our choice of units). This EOS is denoted by DI-II
and taken from [28]. It has been widely used in neutron star
physics in GR as well as in scalar-tensor theory [12,13].
The second EOS represents an approximation to the FPS

EOS from [29], where the analytical fit [30] to the FPS EOS
is approximated by a fit to a polytropic EOS with N ¼
0.6104 and K ¼ 5392.0 [30]. Note, that in [23] a set of
eight realistic EOSs was employed to obtain sequences of
static neutron stars in dEGB theory and to study the effect
of the dilaton and the GB term.
The pressure-energy density relation for the two EOSs is

shown in Fig. 1.

C. Physical domain of neutron star solutions

Let us now address the sequences of neutron star
solution, which delimit the physically relevant domain.
This domain is exhibited for the mass-radius relation in
Fig. 2 for the two EOSs employed, the EOS FPS and the
EOS DI-II, respectively, and the values of the dimension-
less GB coupling constant α ¼ 0, 1 and 2. This domain is
delimited by (i) the set of neutron stars rotating at the
Kepler limit, (ii) the set of neutron stars along the secular
instability line, formed by the set of neutron stars with
maximum mass at fixed angular momentum, and (iii) the
set of static neutron stars. In the following we address these
limiting curves in more detail.
For a given α the left boundary curve of this domain for

the mass-radius relation represents the sequence of static
solutions (Ω ¼ 0), where the mass increases monotonically
with decreasing radius until the maximal value of the mass
of a static neutron star is reached. The FPS EOS is a rather
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FIG. 1. The pressure-energy density relation for the two EOSs,
FPS and DI-II, employed for the neutron stars. The pressure P is
given in units of dyn=cm2, the energy density ϵ in units of
c2g=cm3.
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soft EOS, therefore this maximal value of the mass is rather
low already in GR. As the GB term is coupled, the mass is
decreased monotonically with increasing GB coupling α.
When continuing beyond the maximum mass the set of
neutron stars would no longer be stable but exhibit a first
radially unstable mode. These static solutions are spheri-
cally symmetric, thus the equatorial radius Re agrees with
the polar radius Rp.
As shown in [16] α cannot increase arbitrarily, while still

giving a complete sequence of static neutron stars. Instead,
beyond a critical value of α the sequence no longer reaches a
maximum but ends in a critical configuration, when a certain
radicand in the expansion of the dilaton field vanishes.
(Note, that the occurrence of such critical values was noted
first for black holes in dEGB theory [18].) This observation
has been used in [16] to obtain an in principle EOS
dependent bound for α. The maximal value of α chosen
here is still below this bound (see the discussion above).
The right boundary curve of this domain for the mass-

radius relation represents the sequence of neutron stars
rotating at the Kepler limit (Ω ¼ ΩK). When the neutron
star is rotating at the Kepler limit, its fluid elements at the
neutron star boundary at the equator are no longer bound.
At a slightly faster rotation rate they would be shed, and the
neutron star would no longer be stable. In order to obtain
the Kepler limit with high precision we compute sequences
of solutions for a fixed parameter σ and increasing values of
Ω, while monitoring the quantity δ ¼ 1 −Ωp=Ω. For small
δ we then consider the physical quantities mass, angular
momentum, equatorial radius, etc. as functions of δ and
extrapolate to δ ¼ 0.
Both boundary curves are connected by the secular

instability line, which forms the remaining upper part of
the boundary of the physically relevant domain, and
extends from the maximum of the static sequence to the

Kepler sequence. Here, analogous to the static sequence,
the neutron stars become unstable at the maximal value of
the mass for a fixed value of the angular momentum [69].
In Fig. 2, where the mass-radius relation is shown for

these three boundary curves, the dots represent the calcu-
lated values for rotating dEGB neutron stars with maximum
mass along the secular instability line and at the Kepler
limit. The solid curves for α ¼ 1 and 2 interpolate between
these points and also include the static sequence. We recall,
that for α ¼ 0 we used the more efficient rns code.
The mass-radius dependence on the boundary is then as

follows: (i) For the static neutron stars the mass increases
with decreasing radius up to the stability limit. (ii) Along
the secular instability line the mass increases with increas-
ing radius until (at the global maximum of the mass in this
domain) the Kepler limit is reached. (iii) For the neutron
stars at the Kepler limit, the mass then decreases with
increasing radius.
This qualitative behavior is common to neutron stars in

GR and in dEGB theory. We observe as a general feature
of the dEGB neutron stars that their physically relevant
domain decreases as the GB coupling α increases. Thus, the
maximum masses are smaller for larger values of α while
the minimum radii are larger. For small masses and large
radii the Kepler limit is (almost) independent of α (as long
as it exists).
Comparing these domains for the two EOSs we conclude

that analogous to GR also for dEGB theory neutron stars are
larger and more massive for EOS DI-II than for EOS FPS.

D. Mass-radius relation and mass-energy
density relation

Having determined the limits where the secular
instability and the mass shedding set in, we now discuss
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FIG. 2. (a) The physically relevant domain is shown for the mass-radius relation for α ¼ 0, 1 and 2 for the EOS FPS. For a given α the
left boundary curve represents the sequence of static solutions, while the right boundary curve represents the sequence of neutron stars
rotating at the Kepler limit. Both are connected by the secular instability line. The massM is given in units of the solar massM⊙ and the
equatorial radius Re in units of kilometers. (b) Same as (a) for the EOS DI-II.
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the mass-radius relation in more detail. To this end we
exhibit in Fig. 3, the mass-radius relation of sequences
of neutron stars with fixed angular velocity Ω. We
note, that the values of Ω in the figure are given in

dimensionless units. Ω ¼ 0.01 there corresponds to a
frequency of f ¼ 323 Hz. For comparison we recall that
the fastest rotating pulsar has a frequency of f ¼
716 Hz [70].
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FIG. 3. (a–c) The mass-radius relation of neutron stars in the physically relevant domain for several values of the dimensionless
angular velocityΩ for the EOS FPS. (Ω ¼ 0.01 corresponds to f ¼ 323 Hz.) The massM is given in units of the solar massM⊙ and the
equatorial radius Re in units of kilometers. The GB coupling constant α has the values α ¼ 0, 1 and 2. The solid black line represents the
sequence of static neutron stars, the secular instability line and the sequence of neutron stars at the Kepler limit. (d–f) Same as (a–c) for
the EOS DI-II.
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The mass-radius relation of rotating neutron stars
in GR has been recently readdressed in [71], where besides
the static and the Keplerian sequence also sequences of
neutron stars rotating at fixed angular velocity have
been constructed numerically, varying the frequency from
f ¼ 50 Hz to f ¼ 716 Hz for several EOSs. While the
f ¼ 50 Hz sequence basically agrees with the static
sequence, small deviations start to arise as the frequency
is increased, and the equatorial radius increases slightly with
increasing frequency. This is expected since the rotation then
starts to deform the star. At f ¼ 200 Hz the deviation from
the static sequence is still small, but for larger values of the
frequency the effect of rotation changes the mass-radius
relation considerably [71]. For all values of f considered in
[71] the mass decreases with increasing radius.
We here do not address the small frequencies, where

the mass-radius relation hardly deviates from the static
sequence. Instead, we consider sequences of rapidly rotat-
ing neutron stars. We observe in Fig. 3 the same mono-
tonically decreasing behavior of the mass versus the
equatorial radius for even larger values of the frequency.
In contrast, for very large frequencies the mass increases
with the radius. Figure 3 shows that the mass-radius
sequences for fixed Ω show an analogous behavior inde-
pendent of the value of the GB coupling employed and
independent of the EOS.
As an alternative representation of our results we exhibit

in Fig. 4 the mass M versus the central energy density ϵc.
For a better comparison and extraction of the influence of
the GB coupling, we here include all sequences for a given
EOS and all considered values of the GB coupling α ¼ 0, 1
and 2 in a single plot. The central energy density is
maximal for static neutron stars in the stability limit and

decreases with increasing angular velocity along the secular
instability line. Concerning the α dependence we note that
the maximum of the central energy density decreases with
increasing α. Close to the Kepler limit the mass-central
energy density relation is almost independent of α.
Comparison of the two EOSs shows that the EOS FPS
yields neutron stars with larger central energy density than
the EOS DI-II.

E. Compactness, angular momentum,
rotation period and dilaton charge

The compactness of neutron stars is another quantity of
considerable physical interest. Let us define the compact-
nessC of rotating neutron stars as the ratio of the massM to
the equatorial radius Re

C ¼ 2GM
Rec2

; ð41Þ

normalized such that for black holes with mass M and
horizon radius Re the compactness would correspond to
C ¼ 1. (Note, that Kerr black holes have C ¼ 1 indepen-
dent of the angular velocity of the horizon.)
We exhibit the compactness C as a function of the mass

in Fig. 5 for several sequences of neutron stars with fixed
angular velocity Ω. The most compact neutrons stars are
the static ones with maximum mass. As the stars rotate,
they can get more massive, but at the same time their
equatorial radius increases more rapidly, so that the
compactness decreases. Considering the dependence on
the GB coupling constant α, we observe that the compact-
ness of the neutron stars decreases with increasing α.
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FIG. 4. (a) The mass-central energy density relation of neutron stars in the physically relevant domain for several values of the
dimensionless angular velocity Ω for the EOS FPS. (Ω ¼ 0.01 corresponds to f ¼ 323 Hz.) The mass M is given in units of the solar
massM⊙ and the central value of the energy density ϵc=c2 in units of 1015 g=cm3. The GB coupling constant α has the values α ¼ 0, 1
and 2. The solid black lines represent the sequences of static neutron stars, the secular instability lines and the sequences of neutron stars
at the Kepler limit. The dotted curves represent extrapolations indicating the expected behavior. (b) Same as (a) for the EOS DI-II.
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Generically, the EOS DI-II yields less compact neutron
stars than the EOS FPS.
Let us next address the angular momentum J of rotating

neutron stars. We exhibit in Fig. 6 the mass M in units of
the solar mass M⊙ versus the angular momentum in units
of GM2⊙=c for the set of GB coupling constants α ¼ 0, 1
and 2. Here the secular instability lines form the upper limit
for the mass while the lower limit is given by the Keplerian
sequences. The figures reveal an almost linear relation
between the mass and the angular momentum for the
Keplerian sequences, which is basically independent of α.
Let us now compare with the angular momentum of

black holes. For Kerr black holes the reduced dimension-
less angular momentum a=M

a
M

¼ cJ
GM2

ð42Þ

is limited by its value at maximum rotation amax=M ¼ 1,
attained only by extremal black holes. Interestingly, for
dEGB black holes, this Kerr bound can be slightly
exceeded [19,20].
In [71] the reduced dimensionless angular momentum

a=M has been extracted for the Keplerian sequence of
eleven EOSs, including the EOS FPS. For all EOSs
considered the maximal value reached for a=M is about
0.7, i.e., distinctly below the Kerr value. Moreover, except
for large values of the mass, the reduced dimensionless
angular momentum a=M varies only little with the mass.
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FIG. 5. (a) The compactness C, Eq. (41), of neutron stars versus the mass in the physically relevant domain for several values of the
dimensionless angular velocity Ω for the EOS FPS. (Ω ¼ 0.01 corresponds to f ¼ 323 Hz.) The mass M is given in units of the solar
mass M⊙. The GB coupling constant α has the values α ¼ 0, 1 and 2. The solid black lines represent the static sequences, the secular
instability lines and the Keplerian sequences. (b) Same as (a) for the EOS DI-II.
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For the EOS employed here, we observe a somewhat
different behavior, which may arise from their polytropic
character [72,73].
The rotation periods T of the known pulsars lie within

the interval 1.4 ms ≤ T ≤ 8.5 s, i.e., the rotation period of
the fastest known pulsar corresponds to only 1.4 ms. We
show the rotation period

T ¼ 1

f
¼ 2π

Ω
ð43Þ

in units of milliseconds versus the mass of neutron stars in
Fig. 7. Interestingly, close to the maximummass, the period
of neutron stars along the Keplerian sequence is larger than
the period along the secular instability line. Therefore the
boundary line exhibits a loop close to the maximum mass.

In contrast to neutron stars in GR, neutron stars in dEGB
theory possess a scalar charge due to the presence of the
dilaton field. This dilaton charge q has been defined in
Eq. (27). The presence of a scalar charge was addressed
before in [74], where it was shown, that neutron stars do not
possess a scalar charge in dEGB theory, when the dilaton is
coupled only linearly to the GB term. In contrast, for the
exponential coupling employed here a small dilaton charge
arises for neutron stars. (See also [66] for neutron stars with
dilaton charge.)
In Fig. 8 we show the dilaton charge q as a function of

the mass M for GB coupling constants α ¼ 1 and 2. For
neutron stars of small masses the magnitude of the scalar
charge remains small. It assumes its maximal value for
static neutron stars in the stability limit. As expected the
magnitude of the scalar charge is strongly related to the
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FIG. 7. (a) The rotation period T is shown versus the mass M for neutron stars in the physically relevant domain for several values of
the dimensionless angular velocityΩ for the EOS FPS. The period T is given in milliseconds, the massM in units of the solar massM⊙.
(T ¼ 1.4 ms corresponds to f ¼ 716 Hz.) The GB coupling constant α has the values α ¼ 0, 1 and 2. (b) Same as (a) for the EOS DI-II.
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coupling parameter α. For neutron stars obtained with the
EOS FPS the magnitude of the scalar charge reaches larger
values than for neutron stars obtained with the EOS DI-II.

F. Moment of inertia and quadrupole moment

We now turn to the moment of inertia I of the rotating
neutron stars which is a very important physical quantity in
the analysis of pulsars. It can be obtained from the ratio of
the angular momentum J and the angular velocity Ω

I ¼ J
Ω
: ð44Þ

In Fig. 9 we exhibit the moment of inertia I of neutron stars.
Note, that we do not give the moment of inertia obtained
for slow rotation, since we did not redo the perturbative
calculations of [16]. The figure therefore contains only the
rapidly rotating sequences including the Keplerian
sequence and the secular instability line.
The quadrupole moment Q can be extracted from

the asymptotic expansions of the metric and the dilaton
field, as given in Eq. (28) (see Appendix A for a brief
derivation). The static neutron stars are spherically sym-
metric, so their quadrupole moment vanishes. For the
sequences at fixed angular velocity Ω the quadrupole
moment increases monotonically from the secular
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FIG. 9. (a) The moment of inertia I is shown versus the massM for neutron stars in the physically relevant domain for several values of
the dimensionless angular velocity Ω for the EOS FPS. (Ω ¼ 0.01 corresponds to f ¼ 323 Hz.) The moment of inertia is given in units
of 1045 g cm2, the massM in units of the solar massM⊙. The GB coupling constant α has the values α ¼ 1, and 2. The solid black lines
represent the secular instability lines and the Keplerian sequences. (b) Same as (a) for the EOS DI-II.
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FIG. 10. (a) The quadrupole moment Q is shown versus the mass M for neutron stars in the physically relevant domain for several
values of the dimensionless angular velocity Ω for the EOS FPS. (Ω ¼ 0.01 corresponds to f ¼ 323 Hz.) The quadrupole moment is
given in units of the solar mass times square kilometers,M⊙ km2, the massM in units of the solar massM⊙. The GB coupling constant
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the EOS DI-II.
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instability line to the Keplerian limit, where the star is
maximally deformed.
The quadrupole moment Q is shown as a function of the

massM in Fig. 10 for α ¼ 1 and 2. Note, that the version of
the rns code, which we have used, does not extract the
necessary expression for the quadrupole moment. We have
therefore omitted the comparison of the quadrupolemoment
with the GR values in the figure, where the quadrupole
moment is given in units ofM⊙ km2 and themassM in units
ofM⊙. We observe that there is little dependence on α along
most of the Keplerian sequence, while along the secular
instability line the quadrupole moment is larger for larger
values of α, when compared at the same mass.

Let us now consider the quadrupole moment for a
different set of sequences of neutron stars, where we fix
the reduced dimensionless angular momentum a=M,
Eq. (42), and vary the angular velocity Ω. We exhibit
the quadrupole moment in units of M⊙ · km2 as a function
of the angular velocity in units of Hz in Fig. 11(a) for the
fixed value of a=M ¼ 0.4 and the values of the GB
coupling constant α ¼ 0, 1 and 2 for both EOSs employed,
FPS and DI-II and FPS [27]. Obviously, the different EOSs
give rise to rather different values for the quadrupole
moment Q for the same values of the angular velocity
Ω. We also observe a pronounced dependence on α for the
larger angular velocities.
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coupling constant α has the values α ¼ 1, and 2. Employed are EOS DI-II and EOS FPS. (b) The scaled moment of inertia Î Eq. (45)
versus the scaled quadrupole moment Q̂ Eq. (46) for the same set of solutions.
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FIG. 12. (a) The ratio of the polar to the equatorial radius, Rp=Re, is shown versus the mass M for neutron stars in the physically
relevant domain for several values of the dimensionless angular velocity Ω for the EOS FPS. (Ω ¼ 0.01 corresponds to f ¼ 323 Hz.)
The mass M is given in units of the solar mass M⊙. The GB coupling constant α has the values α ¼ 1, and 2. The solid black lines
represent the secular instability lines and the Keplerian sequences. (b) Same as (a) for the EOS DI-II.
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FIG. 13. (a) Isometric embedding of the surface of a star close to the secular instability line with mass M ¼ 1.93M⊙ and equatorial
radius Re ¼ 10.4 km and of a star close to the Kepler limit with mass M ¼ 1.00M⊙ and equatorial radius Re ¼ 15.9 km for the EOS
FPS and GB coupling constant α ¼ 1. (b) Analogous to (a) for stars with mass M ¼ 2.08M⊙ and equatorial radius Re ¼ 12.3 km and
mass M ¼ 1.40M⊙ and equatorial radius Re ¼ 19.8 km for the EOS DI-II.
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FIG. 14. (a) Isosurfaces of constant energy density ϵ=c2 in units of 1015 g=cm3 for the large mass star of Fig. 13(a). (b) Same as (a) for
the large mass star of Fig. 13(b). (c) Same as (a) for the lower mass star of Fig. 13(a). (d) Same as (a) for the lower mass star of Fig. 13(b).
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Clearly, the physical properties of neutron stars possess
typically a pronounced dependence on the chosen EOS.
However, in recent years much effort has concentrated on
the study of quantities, which are independent of the EOS,
or better, almost independent of the EOS. A prominent
example is the so-called I-Love Q relations for neutron
stars which represent universal relations holding between
the scaled moment of inertia, the Love number, and the
scaled quadrupole moment in Einstein gravity [4–6].
These relations have been considered first for the slowly

rotating case [4–6]. For instance, the I-Q relation between
the scaled moment of inertia Î

Î ¼ J
ΩM3

c4

G2
ð45Þ

and the scaled quadrupole moment Q̂

Q̂ ¼ QM
J2

c2 ð46Þ

has yielded a mean square fit for the function ÎðQ̂Þ, from
which the values of any of the large number of different
EOSs employed differ by less than one percent [4].
For the generalization to rapidly rotating neutron stars, it

has turned out, that one needs to consider the relation ÎðQ̂Þ
at fixed values of the reduced dimensionless angular
momentum a=M in order to obtain near EOS independence
[75–77]. This is the reason that we have considered the
fixed a=M sequences in Fig. 11.
Let us now address the I-Q relation for dEGB theory. To

this end we exhibit the scaled moment of inertia Î versus the
scaled quadrupole moment Q̂ in Fig. 11(b) for a fixed value
of a=M ¼ 0.4 both for the EOS DI-II and the EOS FPS
[27]. Clearly, the dependence of the Î-Q̂ relation on the
equation of state (for fixed α) is very weak, although it
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increases slightly with increasing α. Thus the dEGB theory
possesses basically the same universal I-Q relation as GR.
Similar findings were obtained in STT [78] (see also [11]
and [79]).

G. Deformation and shape

Let us finally address the deformation and the shape of
rapidly rotating neutron stars. Since the centrifugal forces
deform the neutron stars, their equatorial radius Re
increases and the neutron stars flatten. To give an invariant
account of this deformation we consider the ratio of the
polar radius Rp to the equatorial radius Re, defined in
Eqs. (36) and (35), respectively. In Fig. 12 we show this
ratio versus the mass for α ¼ 1 and 2 for both EOSs
employed. As expected the deformation is strongest along
the Keplerian sequence, when the star gets unstable with
respect to losing mass.
To visualize the geometry of the surface of the neutron

stars we calculate the isotropic embedding of the surface for
several examples. We exhibit the isotropic embedding in
Fig. 13, where we choose for each EOS one star close to the
secular instability line and one star close to the Kepler limit
and the GB coupling α ¼ 1. For the stars rotating close to
the Kepler limit a cusp will develop at the surface in the
equatorial plane, when the limit is reached.
The distribution of the energy density ϵ is another

physical quantity of interest. We therefore exhibit contours
of constant energy density versus the coordinates X ¼
�r sin θ and Z ¼ r cos θ (0 ≤ θ ≤ π) in Fig. 14. For better
comparison, we choose the same neutron star solutions for
the contours of the energy density as for the isotropic
embeddings. The energy density ϵ=c2 contours are shown
in units of 1015 g=cm3. Note the higher central densities for
the stars with the EOS FPS. The GB coupling has the
value α ¼ 1.
The inner structure of these neutron stars is illuminated

further in Fig. 15, where we exhibit color encoded plots for
the energy density for the same set of examples and order of
the figures as in Fig. 14.

IV. CONCLUSIONS

We have considered rapidly rotating neutron stars in
dEGB theory, a generalized model of gravity inspired by
heterotic string theory. Whereas static and slowly rotating
neutron stars have been studied before in this theory, we
have here obtained for the first time the full domain of
physically relevant neutron stars and its dependence on the
GB coupling constant α.
Delimited by the static and Keplerian sequences as well

as by the secular instability line, our results show that this
domain decreases as the GB coupling constant α increases.
Employing dimensionless quantities we have chosen two
values for the dimensionless α [Eq. (12)], α ¼ 1 and 2,
which are below the observational limits. The limit

(α < 12) [65] was derived from the analysis of the black
hole binary A0620-00. Another limit (α < 3.4) was derived
in Ref. [16] from the requirement that the maximal mass of
a neutron star needs to be greater than 1.93M⊙, corre-
sponding to the lower bound of the measured mass of the
millisecond pulsar PSR J1614-2230 [2]. This is related to
the fact that if we were to increase α further, we would soon
encounter a genuine dEGB effect known for black holes,
wormholes and neutron stars [16,18–21]: somewhere along
the sequences of neutron stars the solutions would stop
existing, since the dilaton equation would no longer yield a
real solution, leading to a completely different type of
boundary for the domain of rotating neutron stars and also
to a limit on α [16].
For the EOS of the neutron stars we have selected two

simple examples, the EOS DI-II [28] and an approximation
to the EOS FPS [29,30], both representing polytropic EOSs
widely used before in the calculation of neutron stars. Since
both EOSs do not yield a maximum mass of 2M⊙ in the
static case and for slow rotation, the present studies should
be extended to investigate further EOSs, yielding higher
masses. In the static case, this has already been achieved in
[23] for a set of eight realistic EOSs. For the rapidly
rotating case, however, the current numerical scheme will
need to be revised first in order to achieve higher efficiency.
This also holds for a further increase of the GB coupling
constant α.
Concerning the dependence of the physical properties of

the neutron stars on the GB coupling α we note that the
maximum masses are smaller for larger values of α while
the minimum radii are larger. For the smaller masses and
larger radii the Kepler limit is (almost) independent of α.
The compactness of the neutron stars decreases with
increasing α.
Besides the global charges mass and angular momentum,

neutron stars in dEGB theory carry also a scalar charge,
the dilaton charge. This scalar charge arises only because of
the exponential coupling of the dilaton to the GB term. In
contrast, for a linear coupling the scalar charge would
vanish [74]. For exponential coupling therefore scalar
dipole radiation would arise in a compact binary system
whether or not one of the constituents is a black hole [65].
For the quadrupole moment of neutron stars we have

employed the definition of Geroch and Hansen [80,81],
giving a brief derivation of the quadrupole moment in
Appendix A. The resulting expression corresponds to the
expression for Kerr-Newman black holes, when the electric
charge is replaced by the scalar charge. The quadrupole
moment exhibits a pronounced dependence on the EOS and
on the GB coupling. The same is true for the moment of
inertia.
The moment of inertia and the quadrupole moment are

known to exhibit a universal relation in GR for slowly
rotating neutron stars [4] as well as for rapidly rotating
neutron stars, when the angular momentum is appropriately
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fixed [75]. We have shown, that in dEGB theory neutron
stars satisfy basically the same I-Q relation as in GR,
presenting only a very weak dependence on the GB
coupling α.
Finally, we have addressed the deformation of the

neutron stars which arises because of the rotation. For
neutron stars close to the Kepler limit, one notices the
formation of a cusp at the surface in the equatorial plane.
Here mass shedding would occur when the Kepler limit is
exceeded. Clearly, this phenomenon is independent of the
GB coupling (as long as neutron stars rotating at the Kepler
limit exist in dEGB theory).
Turning now to future extensions of this work, first of

all a more efficient numerical code should be developed,
which should allow the study of rapidly rotating neutron
stars for a larger number of EOSs as well as the determi-
nation of the domain of existence of neutron star solutions
at large GB coupling.
From a string theoretical point of view, it would be very

interesting to include further terms into the action. Here, in
particular, the effects of the Lorentz-Chern-Simons terms
should be considered for rapidly rotating neutron stars as
well as the presence of Kalb-Ramond axions [40].
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APPENDIX: QUADRUPOLE MOMENT

Here we give a brief discussion of the derivation of the
quadrupole moment for neutron stars in order to see
the effect of the dilaton and the GB term. We employ
the definitions of Geroch and Hansen [80,81], and follow
closely the later references [82–84].
Let us start by reviewing the definition of the quadrupole

moment in [82]. Let ξ be a timelike Killing vector field on
the space-time manifold with metric g and λ the squared
norm of ξ. We then define the metric h on a 3-dimensional
space by the projection

h ¼ −λgþ ξ ⊗ ξ: ðA1Þ
A 3-dimensional space ðM; hÞ is called asymptotically flat
if it can be conformally mapped to a manifold ð ~M; ~hÞ with
the properties

(i) ~M ¼ M∪Λ, where Λ ∈ ~M
(ii) ~ΩjΛ ¼ ∇i

~ΩjΛ ¼ 0 and ∇i∇j
~ΩjΛ ¼ ~hijjΛ, where

~hij ¼ ~Ω2hij.
In [82] the complex multipole tensors are defined recur-
sively as follows,

~Pð0Þ ¼ ~Φ;

~Pð1Þ
i ¼ ∂i

~Φ;

~Pðnþ1Þ
i1���inþ1

¼ C
�
~∇inþ1

~PðnÞ
i1���in −

1

2
nð2n − 1Þ ~Ri1i2

~Pðn−1Þ
i3���inþ1

�
:

ðA2Þ

Here C denotes the symmetric trace-free part, ~Rij the

Ricci tensor and ~∇i the covariant derivative on ð ~M; ~hÞ.
~Φ ¼ ~Ω−1=2Φ, where Φ is the complex mass potential.
Setting n ¼ 1 we find for the complex quadrupole

~Pð2Þ
ij ¼ C

�
~∇j

~∇i
~Φ −

1

2
~Rij

~Φ

�
: ðA3Þ

Note, that the line element on M in [82] is chosen in
Weyl coordinates,

dh2 ¼ e2γðdρ2 þ dz2Þ þ ρ2dφ2: ðA4Þ

The transformation

ρ̄ ¼ ρ

ρ2 þ z2
; z̄ ¼ z

ρ2 þ z2
ðA5Þ

leads to

dh2 ¼ 1

r̄4
½e2γðdρ̄2 þ dz̄2Þ þ ρ̄2dφ2�; ðA6Þ

with r̄2 ¼ ρ̄2 þ z̄2. Employing the conformal factor ~Ω ¼ r̄2

then leads to the line element on ~M

d ~h2 ¼ ~Ω2dh2 ¼ e2γðdρ̄2 þ dz̄2Þ þ ρ̄2dφ2: ðA7Þ
Let us now turn to the dEGB solutions, which are

obtained with the ansatz for the line element Eq. (8)

ds2 ¼ −e2ν0dt2 þ e2ðν1−ν0Þðe2ν2 ½dr2 þ r2dθ2�
þr2sin2θðdφ − ωdtÞ2Þ ðA8Þ

and consider its asymptotic behavior. In the asymptotic
region the metric and dilaton functions possess the
expansion (23)–(27)

ν0 ¼ −
M
r
þD1M

3r3
−
M2

r3
P2ðcos θÞ þOðr−4Þ; ðA9Þ

ν1 ¼
D1

r2
þOðr−3Þ; ðA10Þ

ν2 ¼ −
4M2 þ 16D1 þ q2

8r2
sin2θ þOðr−3Þ; ðA11Þ

ω ¼ 2J
r3

þOðr−4Þ; ðA12Þ
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ϕ ¼ q
r
þOðr−2Þ: ðA13Þ

We observe that there are no contributions from the Gauss-
Bonnet term at low orders of 1=r. Hence we assume that
the formalism of Geroch and Hansen is still applicable to
compute the low order multipole moments like mass,
angular momentum and quadrupole moment. However,
for the higher multipole moments one would need to
develop a more involved formalism. We note that the
function ω does not contribute to the quadrupole moment
due to its fast decay. Consequently, we will neglect ω in the
following. Comparison of the line elements (A4) and (A8)
then yields λ ¼ e2ν0 and

dh2 ¼ e2γðdρ2 þ dz2Þ þ ρ2dφ2 ðA14Þ

¼ e2ðν2þν1Þðdr2 þ r2dθ2Þ þ e2ν1r2sin2θdφ2

¼ e2ðν2þν1Þðdρ̂2 þ dẑ2Þ þ e2ν1 ρ̂2dφ2; ðA15Þ

where we defined ρ̂ ¼ r sin θ and ẑ ¼ r cos θ.
In the next step we transform to Weyl coordinates in the

asymptotic region. Comparison of (A14) and (A15) yields

ρ ¼ ρ̂eν1 ¼ ρ̂

�
1þD1

r2
þOðr−3Þ

�
; ðA16Þ

0 ¼ ρ;ρ̂ρ;ẑ þ z;ρ̂z;ẑ; ðA17Þ

e2γ ¼ e2ðν2þν1Þ½ρ2;ρ̂ þ z2;ρ̂�−1; ðA18Þ

e2γ ¼ e2ðν2þν1Þ½ρ2;ẑ þ z2;ẑ�−1: ðA19Þ

We solve Eq. (A17) by the ansatz z;ρ̂ ¼ ρ;ẑ z;ẑ ¼ −ρ;ρ̂.
Integration then yields

z ¼ ẑ

�
−1þD1

r2
þOðr−3Þ

�
; ðA20Þ

where the integration constant has been set to zero. Note,
that with this ansatz Eqs. (A18) and (A19) are identical.
Inversion of the above relations yields the coordinates ρ̂,

ẑ as functions of the Weyl coordinates ρ, z,

ρ̂ ¼ ρ

�
1 −

D1

r02
þOðr0−3Þ

�
;

ẑ ¼ z

�
−1 −

D1

r02
þOðr0−3Þ

�
; ðA21Þ

with r02 ¼ ρ2 þ z2. Substitution in the expansion
Eqs. (A9)–(A11) and ½ρ2;ρ̂ þ z2;ρ̂� then yields

γ ¼ −
ρ2ð4M2 þ q2Þ

8r04
þOðr0−4Þ: ðA22Þ

In these coordinates we find for the mass potential Φ

Φ ¼ λ2 − 1

4λ

¼ −
1

r0

�
M þ 2M3

3r02
−
�
M2

2
−
2

3
MD1

�

×
ρ2 − 2z2

r04
þOðr0−3Þ

�
: ðA23Þ

Next we use the conformal mapping

ρ ¼ ρ̄

r̄2
; z ¼ z̄

r̄2
; ðA24Þ

to find γ and the mass potential ~Φ ¼ 1
r̄Φ ¼ r0Φ on the

3-dimensional manifold ~M,

γ ¼ −
ρ̄2ð4M2 þ q2Þ

8
þOðr̄4Þ; ðA25Þ

~Φ¼−
�
Mþ2M3

3
r̄2−

�
M2

2
−
2

3
MD1

�
ðρ̄2−2z̄2ÞþOðr̄3Þ

�
:

ðA26Þ
Since by now everything is expressed in the appropriate

coordinates we can apply Eq. (A3) to compute the z̄ z̄
component of the quadrupole tensor at Λ ¼ 0, i.e., r̄ ¼ 0.
The scalar quadrupole moment Q is then given by Eq. (28)

Q ¼ 1

2
~Pð2Þ
zz ð0Þ ¼ −M2 þ

4

3

�
1

4
þ D1

M2
þ q2

16M2

�
M3:

ðA27Þ
Note, that in the vacuum limit, when the dilaton charge
vanishes, the quadrupole moment Q is the same as in [84]
(up to an overall sign), with b ¼ D1=M2. On the other
hand, in the static limit the solution is spherically sym-
metric. In this case M2 ¼ 0 and 4M2 þ 16D1 þ q2 ¼ 0.
Consequently, the quadrupole moment vanishes in the
static limit.
We further note, that dEGB theory and Einstein-Maxwell

theory have the same expansion as far as the lower order
terms are concerned. First, there is no contribution from
the Gauss-Bonnet term since it decays sufficiently fast.
Second, the dilaton field enters only via the Coulomb-like
term q

r, which coincides with the analogous term in
Einstein-Maxwell theory in the lowest order of the expan-
sion. Therefore, since dEGB theory and Einstein-Maxwell
theory then describe the same spacetime (up to higher order
terms), the expression for the quadrupole moment also
coincides for both theories.
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