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We obtain the Maxwell-Jüttner distribution function at first order in the post-Newtonian approximation
within the framework of general relativity. Taking into account the aforesaid distribution function, we
compute the particle four-flow and energy-momentum tensor. We focus on the search of static solutions for
the gravitational potentials with spherical symmetry. In doing so, we obtain the density, pressure and
gravitational potential energy profiles in terms of dimensionless radial coordinate by solving the aforesaid
equations numerically. In particular, we find the parametric profile for the equation of state p=ρ in terms of
the dimensionless radial coordinate. Due to its physical relevance, we also find the galaxy rotation curves
using the post-Newtonian approximation. We join two different kinds of static solutions in order to account
for the linear regime near the center and the typical flatten behavior at large radii as well.
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I. INTRODUCTION

Galaxies are composed of many different kinds of
astrophysical objects such as stars, interstellar gas, dust,
and dark matter amongst other things. Such system holds
together due to gravitational interaction amongst their
constituents. In fact, they can be organized in bigger
astrophysical structures called clusters or super-clusters
[1]. It is generally believed that the amount of dark matter in
a cluster is ten times bigger than the total amount of gas and
stars [2]. However, the recent analysis based on both optical
and radio data in spiral galaxies reveals that the amount of
dark matter is even less than previously thought [3]; where
the gravitational field associated with spiral galaxies (such
as NGC 7793, 1365, 6946 and UGC 6446) is assumed to
follow a global disklike profile rather than a spheroidal one
[3]. If the physical scale of interest is much bigger than the
size of these objects then the latter ones can be considered
as pointlike particles interacting among them, the gravity
being the most relevant interaction. Hence, one possible
route to study this system may be to solve its dynamical
equation and find the trajectories of each one of the
“particles.” Nevertheless, the number of particles involved
in these systems is enormously big so the aforesaid
approach becomes unsuitable. An alternate view of galaxies
is as a system of particles in six dimensional phase space.
The galaxies are then instantaneously described in terms of
a distribution function fðx; pÞ over the phase space, where
x represents the position vector and p stands for the
momentum. In this way, galaxies can be described in terms

of ensemble of particles along with a distribution function
which satisfies a kinetic equation [4]. If one obtains the
distribution function associated with the kinetic equation
then one can extract the main traits of the system under
consideration, for instance, one can be able to reconstruct
the average square velocity and several other moments of
the distribution function [4].
If the collision between two particles is a very rare event

then the collision operator of the Boltzmann equation can
be neglected. In the latter case, one can work with the
collisionless Boltzmann equation (sometimes this is also
known as Vlasov equation) whose solution turns out to be
an equilibrium distribution function [4]. As an example,
one thinks in a gas with a Boltzmann distribution at
equilibrium whose gravity center follows a circular geo-
desic in Schwarzschild field [5]. Or the case of dark matter
halos, dark matter only interacts gravitationally and there
are hardly any encounters, so that one can describe the dark
matter as a collisionless system and use the Vlasov
equation in order to describe its evolution [6]. Besides, a
self-consistent rederivation of collisionless Boltzmann
equation for self-gravitating gases with post-Newtonian
corrections [7] was obtained recently; the case of post-
Newtonian polytropes solutions was examined numeri-
cally, focusing in the role played by the relativistic
correction to the rotation curves [7].
As is well known the equations of general relativity

reduce to those of Newtonian gravity in the limit of slow
motions along with weak gravitational fields. Newton’s
theory of gravity is good enough to describe all the physics
in the solar system, but it is incomplete and requires some
corrections to properly account for the shift in the peri-
helion of Mercury [8]. In order to describe physical
phenomena like the latter one it becomes essential to
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include post-Newtonian (PN) corrections to the standard
gravitational physics. A straightforward manner to include
all the relativistic corrections to Newtonian gravity is by
means of post-Newtonian formalism. The post-Newtonian
method relies on the idea that one perturbs around a
Minkowski background. In doing so, one considers that
the perturbations of the metric tensor along with those
corresponding to the energy-momentum tensor are both
small fluctuations, which can be expanded in power of v=c,
being v a typical velocity in a system associated with matter
and c is the speed of light [8]. One of the main reasons to
examine relativistic corrections in galactic dynamics con-
cerns to the issue of the rotation curves predicted by
Newtonian theory. In Newtonian theory, rotation curves
typically increase linearly near the origin up to a maximum
and then vanish for large radii, while the measured circular
velocity curve for the galaxies leads to small value near the
center, increases linearly, then exhibits a small cusp and
tends to a finite nonzero value at large radii. One can clearly
recognize the contribution of the dark matter halo in order
to generate the flat circular velocity curve [6]. Indeed, some
authors pointed out that the inclusion of post-Newtonian
corrections in astrophysical models can really help to
reduce the amount of dark matter needed to explain rotation
curves which flatten at large radii [9]. Of course, these
corrections by their own cannot overcome the whole
problem of generating flat rotation curves, however, can
reduce the amount of dark matter in relation with the
Newtonian models.
For the reasons mentioned above, the study of relativistic

corrections within the context of kinetic theory seems to be
a very promising route. Bearing this in mind, many authors
devoted some efforts to apply kinetic theory plus post-
Newtonian method to describe astrophysical models. They
explored the kinetic theory of self-gravitating gases with
axial symmetry within the framework of post-Newtonian
formalism applied to the case of razor thin disks, focusing
on axially symmetric galaxy models [10]. In particular, they
obtained the rotation curves and mass profiles for the post-
Newtonian version of Morgan-Morgan disks and derived
the virial theorem in 1PN approximation as well [10].
Continuing with this line of research, Nguyen and Pedraza
studied a self-gravitating system with polytropic equation
of state in the PN approximation of general relativity, the
physical motivation is that such equation can be used to
describe many astrophysical models such as white dwarfs,
neutron stars, galactic halos, and globular clusters amongst
others. By solving the Einstein-Vlasov system of equations,
they found a family of star clusters with anisotropic in
velocity space within PN scheme. In addition, they ana-
lyzed the stability of circular orbits for radial perturba-
tions [11].
Here, we are going to use the relativistic collisionless

Boltzmann equation along with the Maxwell-Jüttner
distribution function to derive the Maxwell-Jüttner

distribution function in the 1PN approximation. In doing
so, we introduce a peculiar velocity associated with the
particle velocity in the gas frame, use the Tolman’s law and
integrate over the peculiar velocity space. We calculate the
particle flow at 1PN order while energy–momentum tensor
components are derived at different PN orders, for instance,
the diagonal temporal part is calculated at 1PN order but the
diagonal spatial components are reported at 2PN order. In
this way, we derive the macroscopic energy momentum
tensor from the Maxwell-Jüttner distribution function at
1PN order. Our result coincides with the one obtained from
fluids description [8]. We numerically solve the non-linear
equation associated to the gravitational potential fields. Our
analysis differs from the one reported for post-Newtonian
polytropes in diverse manners [7]. We contrast the
Newtonian with the PN profiles of matter density, circular
velocity and gravitational potential energy. As was
expected, the pressure profile only includes PN corrections.
For certain value radius, say rc, the gravitational fields
become complex and therefore we must match the latter
solution with a physical one. We show the procedure to
obtain physical gravitational potentials by joining with
other solutions at rc. In addition, we notice that such
method leads to circular velocity profiles that flatten at
large radii.
Our paper is outlined as follows. In Sec. II, we give the

general derivation of the Maxwell-Jüttner distribution
function at 1PN order. We devote Sec. III to obtain the
particle four-flow and energy-momentum tensor within the
PN approximation from the Maxwell-Jüttner distribution
function at 1PN order. We seek static solution for the
gravitational potentials associated with nonlinear Poisson-
like equations in Sec. IV. In Sec. V, we solve numerically
the aforesaid equations, present the density, pressure and
circular velocity profiles. In Sec. VI, we finally reexamine
the issue of generating flat rotation curves by gluing two
different solutions at certain radius. In Sec. VII the
conclusions are stated. Throughout the article we adopt
the metric signature ð−;þ;þ;þÞ and we do not set the
speed of light c equal to the unity for practical reasons.

II. THE MAXWELL-JÜTTNER DISTRIBUTION
FUNCTION IN THE 1PN APPROXIMATION

The kinetic theory of relativistic gases in the presence of
gravitational fields is based in the Boltzmann equation (see
e.g. [4] and [12–15])

pμ ∂f
∂xμ − Γi

μνpμpν ∂f
∂pi ¼ Cðf; fÞ: ð1Þ

Here f ≡ fðx;p; tÞ is the one-particle distribution function
in the phase space spanned by the space x and three-
momentum p coordinates, Γi

μν are Christoffel symbols and
Cðf; fÞ is the collision operator of the Boltzmann equation
which takes into account the product of the two distribution
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functions of the colliding particles. In the above expression
the mass-shell condition pμpμ ¼ −m2c2—where m is the
particle rest mass—was taken into account.
Equilibrium is characterized by a vanishing collision

term Cðf; fÞ and this implies that the distribution function
is the Maxwell-Jüttner distribution function

f ¼ n
4πm2ckTK2ðζÞ

exp

�
pμUμ

kT

�
: ð2Þ

Above k is the Boltzmann constant and n, T, Uμ are the
particle number density, the temperature and the four-
velocity of the gas, respectively. Furthermore, ζ ¼ mc2=kT
represents the ratio of the rest energy of a particle mc2 and
the thermal energy of the gas kT and K2ðζÞ denotes the
modified Bessel function of second kind. The ultrarelativ-
istic regime of the gas is attained at high temperatures
where ζ ≪ 1, while the nonrelativistic one occurs at low
temperatures where ζ ≫ 1. Another expression for the
Maxwell-Jüttner distribution function is given in terms
of the chemical potential μ—the Gibbs function per
particle—namely,

f ¼ exp

�
μ

kT
− 1þ pμUμ

kT

�
: ð3Þ

If we insert the equilibrium distribution function into the
left-hand side of the Boltzmann equation (1) we obtain the
following restrictions for the temperature and chemical
potential fields (see [5])

T
ffiffiffiffiffiffiffiffiffiffi
−g00

p ¼ T0 ¼ constant; ð4Þ

μ
ffiffiffiffiffiffiffiffiffiffi
−g00

p ¼ μ0 ¼ constant: ð5Þ

The first equation above is known as Tolman’s law [16,17]
while the second one as Klein’s law [18] and both were
introduced within the framework of phenomenological
theories.
From the two expressions for the Maxwell-Jüttner

distribution function (2) and (3) we get

n
4πm2ckTK2ðζÞ

¼ exp

�
μ

kT
− 1

�
¼ exp

�
μ0
kT0

− 1

�
; ð6Þ

where the last equality follows from Tolman (4) and Klein
(5) laws. Hence we may write the left-hand side of (6) in
terms of n0 and T0, namely,

n
4πm2ckTK2ðζÞ

¼ n0
4πm2ckT0K2ðζ0Þ

: ð7Þ

Let us calculate the Maxwell-Jüttner distribution func-
tion (2) in the first post-Newtonian approximation (1PN
approximation).

First we follow [8] and write the line element

ds2 ¼ −c2dτ2 ¼ g00ðdx0Þ2 þ 2g0idx0dxi þ gijdxidxj;

ð8Þ
up to 1=c4 order as

c2dτ2 ¼
�
1þ 2ϕ

c2
þ 2ðϕ2 þ ψÞ

c4

�
ðdx0Þ2

− 2
ξi
c3

dx0dxi −
�
1 −

2ϕ

c2

�
δijdxidxj; ð9Þ

thanks to the expressions of the metric tensor components
(A1)–(A5) given in the Appendix A. Next by introducing
the four-velocity of the gas particles uμ ¼ ðu0; u0vi=cÞ it
follows from (9) that up to 1=c4 order we have

u0

c
¼ 1þ 1

c2

�
v2

2
− ϕ

�

þ 1

c4

�
3v4

8
−
5v2ϕ
2

þ ϕ2

2
− ψ þ ξivi

�
: ð10Þ

The above expression is also valid for the components of
the fluid four-velocity Uμ ¼ ðU0; U0Vi=cÞ by replacing u0

and vi by U0 and Vi, respectively.
If we introduce the peculiar velocity W ¼ v − V—

which is the particle velocity in the gas frame—and
by considering Tolman’s law (4) we get the following
relationship

gμνpμUν

kT
¼ −

mc2

kT0

�
1þ W2

2c2
þ ϕ

c2
þ 1

c4

�
3W4

8

−
3W2ϕ

2
þ ðV ·WÞ2

2
þ V2W2

2

þðV ·WÞW2 þ ϕ2

2
þ ψ

��
: ð11Þ

Furthermore, up to 1=c2 order the modified Bessel function
of second kind reads

1

K2ðζ0Þ
¼

ffiffiffiffiffiffiffiffiffiffiffi
2mc2

πkT0

s
e
mc2
kT0

�
1 −

15kT0

8mc2
þ � � �

�
: ð12Þ

Hence the Maxwell-Jüttner distribution function (2) in the
1PN approximation becomes

f ¼ n0
ð2πmkT0Þ32

e−
mW2

2kT0
−mϕ
kT0

�
1 −

15kT0

8mc2

−
m

kT0c2

�
3W4

8
−
3W2ϕ

2
þ ðV ·WÞ2

2
þ V2W2

2

þ ðV ·WÞW2 þ ϕ2

2
þ ψ

��
; ð13Þ
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thanks to (10), (11) and (12) and by considering the terms
with the factor 1=c2 of small order.

III. MACROSCOPIC DESCRIPTION

In kinetic theory of relativistic gases the particle four-
flow Nμ and the energy-momentum tensor Tμν are given in
terms of the distribution function by (see [4])

Nμ ¼ m3c
Z

uμf
ffiffiffiffiffiffi−gp

d3u

−u0
; ð14Þ

Tμν ¼ m4c
Z

uμuνf
ffiffiffiffiffiffi−gp

d3u

−u0
: ð15Þ

Note that we have written the energy-momentum tensor in
terms of the particle four-velocities uμ instead of the
particle four-momentum pμ ¼ muμ. Here we follow
[4,12–15] and considered that the element of integration
is the invariant

ffiffiffiffiffiffi−gp
d3p=ð−p0Þ with the covariant com-

ponent p0, which is different from
ffiffiffiffiffiffi−gp

d3p=ðp0Þ in the
1PN approximation, which was adopted by [7].
In the 1PN approximation the differential element d3u in

terms of the peculiar velocity W up to the 1=c2 order is
given by

d3u ¼
�
1þ 1

c2

�
5ðV2 þ 2ðW · VÞ þW2Þ

2
− 3ϕ

��
d3W:

ð16Þ

Furthermore, up to the 1=c2 order we can build the relation

− ðg00u0 þ g0iuiÞ ¼ −g00u0
�
1þ g0iui

g00u0

�

≈ u0
�
1þ 2

ϕ

c2

�
; ð17Þ

thanks to the expressions of the metric tensor given in the
Appendix A. Next up to the 1=c2 order we have the
following relationship

ffiffiffiffiffiffi−gp
d3u

−ðg00u0 þ g0iuiÞ
¼

�
1þ 1

c2

�
5ðV2 þ 2ðW · VÞ þW2Þ

2

− 7ϕ

��
d3W
u0

: ð18Þ

Once we know the distribution function in the 1PN
approximation we can calculate the particle four-flow and
the energy-momentum tensor in this approximation. The

particle four-flow Nμ ¼ P
n N

μ
n

and the energy-momentum

tensor Tμν ¼ P
n T

μν
n

are split in different orders of the ratio
ðv̄=cÞn (see [8]) where v̄ can be identified with the thermal
velocity of a particle v̄ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kT0=m
p

.

First from (14) together with (13) and (18) we get
through integration of the resulting equation that the time
component of the particle four-flow becomes

N0 ¼ nU0 ¼ N0
0

þ N0
2

¼ n0ce
−mϕ
kT0

×

�
1þ 1

c2

�
V2

2
−
5ϕ

2
−

m
kT0

�
ϕ2

2
þ ψ

���
: ð19Þ

From the above equation and from the expression for U0 it
is easy to obtain that the particle number density is given by

n ¼ n0e
−mϕ
kT0

�
1 −

1

c2

�
3ϕ

2
þ m
kT0

�
ϕ2

2
þ ψ

���
: ð20Þ

Hence we can write (19) as

N0
0

þ N0
2

¼ nc

�
1þ 1

c2

�
V2

2
− ϕ

��
: ð21Þ

Following the same methodology the space components of
the particle number density read

Ni
1

þ Ni
3

¼ ðN0
0

þ N0
2

ÞV
i

c
¼ nVi

�
1þ 1

c2

�
V2

2
− ϕ

��
:

ð22Þ
The components of the energy-momentum tensor (15)

are obtained in the same manner, yielding

T00
0

þ T00
2

¼ ε

�
1þ 1

c2
ðV2 − 2ϕÞ

�
; ð23Þ

T0i
1

þ T0i
3

¼ Vi

c

�
εþ pþ ε

c2
ðV2 − 2ϕÞ

�
; ð24Þ

Tij
2

þ Tij
4

¼ p
�
1þ 2ϕ

c2

�
δij

þ
�
εþ pþ ε

c2
ðV2 − 2ϕÞ

�
ViVj

c2
: ð25Þ

In order to derive the above expressions (23)–(25), we have
used several nontrivial indetities related with the integration
of different moments for a Gaussian distribution, see
Appendix B for further details. Here the energy density
ε ¼ ρc2—where ρ is the mass density—and the pressure p
are given by

ε ¼ ρc2 ¼ mnc2
�
1þ 3kT

2mc2

�
; p ¼ nkT: ð26Þ

The expressions (23)–(25) are the same as those which are
obtained from the representation of the energy-momentum
tensor
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Tμν ¼ pgμν þ ðεþ pÞU
μUν

c2
; ð27Þ

by considering the metric tensor and the four-velocity in the
PN approach up to the fourth order (cf. [8]).

IV. THE SEARCH FOR STATIC SOLUTIONS

In this section we search for static solutions of Einstein’s
field equations, which in the 1PN approximation reduces to
the following equations for the gravitational potentials (see
e.g. [8])

∇2ϕ ¼ 4πG
c2

T00
0

; ∇2ψ ¼ 4πGðT00
2

þ Tii
2

Þ: ð28Þ

We follow [7] and integrate the components of the energy-
momentum tensor (15) in the range ½0; ve�, where ve is the
escape velocity. The escape velocity is calculated from the
expression for the energy in the 1PN approximation [7]

E ¼ m

�
v2

2
þ ϕþ 3v4

8c2
−
3v2ϕ
2c2

þ ϕ2

2c2
þ ψ

c2

�
; ð29Þ

by considering that a gas particle attains its maximum value
at E ¼ 0, so that the gas particle is unable to leave the
distribution of matter. According to [7] to be consistent with
the 1PN approximation the escape velocity must given by
ve ¼

ffiffiffiffiffiffiffiffiffi
−2ϕ

p
. Now by considering a vanishing gas velocity

V ¼ 0 we can perform the integrations and get the following
results for the components of the energy-momentum tensor
in the different orders of the ratio ðv̄=cÞn:

T00
0

¼ −ρ0c2
�
2

ffiffiffiffiffiffiffiffiffi
−
ϕ�
π

r
− e−ϕ�erfð

ffiffiffiffiffiffiffiffiffi
−ϕ�

p
Þ
�
; ð30Þ

T00
2

¼ −
ρ0kT0

m

��
3 −

23

2
ϕ� − 10ϕ2� − 2ψ�

� ffiffiffiffiffiffiffiffiffi
−
ϕ�
π

r

−
�
3

2
−
7

2
ϕ� −

1

2
ϕ2� − ψ�

�
e−ϕ�erfð

ffiffiffiffiffiffiffiffiffi
−ϕ�

p
Þ
�
; ð31Þ

Tii
2

¼ −
ρ0kT0

m

�
ð6 − 4ϕ�Þ

ffiffiffiffiffiffiffiffiffi
−
ϕ�
π

r
− 3e−ϕ�erfð

ffiffiffiffiffiffiffiffiffi
−ϕ�

p
Þ
�
:

ð32Þ

In the above equations we have introduced the dimensionless
quantities

ϕ� ¼
m
kT0

ϕ; ψ� ¼
�

m
kT0

�
2

ψ : ð33Þ

Furthermore, erfð ffiffiffiffiffiffiffiffiffi
−ϕ�

p Þ is the error function and Tii
2

refers

to the trace of Tij
2

. We identify T00
0

with the energy density

ρ0c2, while T00
2

and Tii
2

with the pressure ρ0kT0=m.

We insert (30)–(32) into (28) and get the following
coupled system of equations for the gravitational potentials

∇2ϕ� ¼ −k2J

�
2

ffiffiffiffiffiffiffiffiffi
−
ϕ�
π

r
− e−ϕ�erfð

ffiffiffiffiffiffiffiffiffi
−ϕ�

p
Þ
�
; ð34Þ

∇2ψ� ¼ −k2J

��
9 −

31

2
ϕ� − 10ϕ2� − 2ψ�

� ffiffiffiffiffiffiffiffiffi
−
ϕ�
π

r

−
�
9

2
−
7

2
ϕ� −

1

2
ϕ2� − ψ�

�
e−ϕ�erfð

ffiffiffiffiffiffiffiffiffi
−ϕ�

p
Þ
�
;

ð35Þ

where kJ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4πGρ0

p
=v̄ can be identified as the Jeans wave

number.
The gravitational potentials are only functions of the

radial coordinate r so that system of equations (34) and (35)
in spherical coordinates can be written as

1

~r2
d
d~r

�
~r2
d ~ϕ
d~r

�
¼

"
2

ffiffiffiffi
~ϕ

π

s
− e ~ϕerf

	 ffiffiffiffi
~ϕ

q 
#
; ð36Þ

1

~r2
d
d~r

�
~r2
d ~ψ
d~r

�
¼

"�
9þ 31

2
~ϕ − 10 ~ϕ2 þ 2 ~ψ

� ffiffiffiffi
~ϕ

π

s

−
�
9

2
þ 7

2
~ϕ −

1

2
~ϕ2 þ ~ψ

�
e ~ϕerf

	 ffiffiffiffi
~ϕ

q 
#
:

ð37Þ

Here the new dimensionless quantities are ~r ¼ rkJ, ~ϕ ¼
−ϕ� and ~ψ ¼ −ψ�.
The system of equations (36) and (37) can be solved

numerically by specifying appropriate boundary condi-
tions. Here we follow [7] and assume that at the center of
the configuration the boundary conditions for the gravita-
tional potentials are

~ϕð0Þ ¼ ~ψð0Þ ¼ 1;
d ~ϕ
d~r

����
~r¼0

¼ d ~ψ
d~r

����
~r¼0

¼ 0: ð38Þ

V. ANALYSIS OF SOME FIELDS IN THE
NEWTONIAN AND 1PN APPROXIMATIONS

As in the work [7] we shall analyze in this section the
profiles of the mass density, velocity of test particles in
circular motion and potential energy as functions of the
radial distance.
The mass density can be read from (30) and (31) and

written as a sum of a Newtonian ~ρN and a post-Newtonian
~ρPN contribution as
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~ρ ¼ ρ

ρ0
¼ ~ρN þ ~ρPN; where ð39Þ

~ρN ¼ e ~ϕerf
	 ffiffiffiffi

~ϕ
q 


− 2

ffiffiffiffi
~ϕ

π

s
ð40Þ

~ρPN ¼ 1

ζ0

"�
3

2
þ 7

2
~ϕ −

1

2
~ϕ2 þ ~ψ

�
e ~ϕerf

	 ffiffiffiffi
~ϕ

q 


−
�
3þ 23

2
~ϕ − 10 ~ϕ2 þ 2 ~ψ

� ffiffiffiffi
~ϕ

π

s #
: ð41Þ

In Fig. 1 it is plotted the dimensionless mass density ~ρ as
function of the dimensionless radial distance ~r for the
Newtonian and post-Newtonian approximations. The post-
Newtonian approximation is a function of ζ0 ¼ mc2=kT0,
the ratio of the rest energy of the gas particles and the
thermal energy of the gas. One can infer from this figure
that the contributions to the mass density becomes larger at
the configuration center by decreasing the value ζ0, i.e., by
increasing the temperature of the gas T0. All mass densities
tend to zero for large values of the radial distance ~r.
Opposed to the case where the distribution function is
characterized by a polytropic function of the energy [7],
here none of the mass densities in the 1PN approximation
become negative. However, the solutions for the potentials
for values larger than ~r ≈ 3.6 become complex.
The determination of post-Newtonian corrections to the

rotation curves is based on the equation for the acceleration
of a free falling particle [7,8], which for static fields reads

dv
dt

¼ −∇
�
ϕþ 2ϕ2 þ ψ

c2

�
þ 4v

c2
v · ∇ϕ −

v2

c2
∇ϕ: ð42Þ

The radial component of the above equation in spherical
coordinates ðr; θ;φÞ for circular orbits of particles in the
equatorial plane where _r ¼ 0, _θ ¼ 0 and θ ¼ π=2
reduces to

r _φ2

�
1 −

r
c2

∂ϕ
∂r

�
¼ ∂ϕ

∂r þ 4ϕ

c2
∂ϕ
∂r þ 1

c2
∂ψ
∂r : ð43Þ

The expression for the circular velocity vφ ¼ r _φ in terms
of the gravitational potentials follows from the above
equation by considering terms up to the 1=c2 order,
yielding

vφ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
∂ϕ
∂r

�
1þ 4ϕ

c2
þ r
c2

∂ϕ
∂r

�
þ r
c2

∂ψ
∂r

s
: ð44Þ

Note that the Newtonian circular velocity is given
by vφ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r∂ϕ=∂rp
.

Now in terms of the tilde variables the circular velocity
becomes

~vφ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~r
∂ ~ϕ
∂ ~r

�
4 ~ϕ

ζ0
þ ~r
ζ0

∂ ~ϕ
∂ ~r − 1

�
−

~r
ζ0

∂ ~ψ
∂ ~r

s
; ð45Þ

where ~vφ ¼ vφ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=kT0

p
denotes the dimensionless circu-

lar velocity.
The dimensionless circular velocity ~vφ as a function of

the dimensionless radial coordinate ~r is plotted in Fig. 2.
The profiles of the circular velocity have the same
behaviors for the Newtonian and post-Newtonian approx-
imations, but for the post-Newtonian approximations the
circular velocities have large values. Furthermore, as the
mass density, the large values of the circular velocity are
attained for smaller values of the parameter ζ0, which
correspond to large values of the temperature T0. The
behavior of the circular velocity for ideal gases differs from
the one where the distribution function is characterized by a
polytropic function of the energy [7], since in the latter case
the values of the circular velocity in the 1PN approximation
are smaller than the corresponding Newtonian approxima-
tion. Here the large values of the circular velocity in the
1PN approximation are due to the fact that the increase of
the temperature of the gas, increases the thermal velocity of
the particles of the gas

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kT0=m

p
.

Another field that can be analyzed is the gravitational
potential energy of a gas particle, which can be obtained
from the expression for the particle energy (29) by taking
v ¼ 0. In terms of dimensionless quantities the Newtonian
~UN and post-Newtonian ~UPN gravitational potential energy
read
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r
~

0
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1

1.5

2

ρ∼

ζ0 = 10

ζ0 = 100

ζ0 = 50
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FIG. 1. Mass density ~ρ as function of the radial distance ~r.
Newtonian: straight line; Post-Newtonian: dotted line ζ0 ¼ 100,
dash-dotted line ζ0 ¼ 50, dashed line ζ0 ¼ 10.
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~U ¼ U
kT0

¼ ~UN þ ~UPN; where ð46Þ

~UN ¼ − ~ϕ; ~UPN ¼ 1

ζ0

�
~ϕ2

2
− ~ψ

�
: ð47Þ

In Fig. 3 it is shown the graphic representation of the
dimensionless gravitational potential energy ~U as function

of the dimensionless radial distance ~r. We can infer from
this figure that the Newtonian gravitational potential energy
is always negative, while the post-Newtonian gravitational
potential energies change their sign for large values of the
radial distance from the configuration center. The temper-
ature of the gas in the post-Newtonian term ~ϕ2=2ζ0
determines the sign change of the gravitational potential
energy. The gravitational potential energy exhibits the same
behavior as the one which takes into account a polytropic
function of the energy for the distribution function with
polytropic index n ¼ 3 [7].
From the energy-momentum tensor given in (32) one can

obtain the expression for the pressure of the gas through

p ¼ Tii
2

=3. In terms of dimensionless quantities we have

~p ¼ mp
kρ0T0

¼ e ~ϕerf
	 ffiffiffiffi

~ϕ
q 


−
�
2þ 4

3
~ϕ

� ffiffiffiffi
~ϕ

π

s
: ð48Þ

The dimensionless pressure ~p as function of the dimen-
sionless radial coordinate ~r is plotted in Fig. 4. The
behavior of the pressure is the same as the one for the
mass density, its maximum value occurs at the configura-
tion center and it tends to zero for large values of the radial
distance. Note that in the 1PN approximation the pressure
has no contribution which depends on the factor 1=ζ0, since

these contributions will appear in the order of Tii
4

. Figure 5
shows the behavior of the ratio p=ρ in terms of dimension-
less radial coordinate. For small radii, p=ρ goes to a
constant value whereas tends to zero at large radii.
As a final remark we can ask about the influence of the

boundary conditions in the behavior of the analyzed fields.
It was found that the boundary condition that has more
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FIG. 4. Pressure ~p as function of the radial distance ~r.
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FIG. 3. Gravitational potential energy ~U as function of the
radial distance ~r. Newtonian: straight line; Post-Newtonian:
dotted line ζ0 ¼ 100, dash-dotted line ζ0 ¼ 50, dashed line
ζ0 ¼ 10.
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FIG. 2. Circular velocity ~vφ as function of the radial distance ~r.
Newtonian: straight line; Post-Newtonian: dotted line ζ0 ¼ 100,
dash-dotted line ζ0 ¼ 50, dashed line ζ0 ¼ 10.
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influence on the solutions refers to the Newtonian gravi-
tational potential ~ϕ at ~r ¼ 0. However by considering
values of ~ϕð0Þ in the range [0.5, 3] the behavior of the
curves does not change, only the absolute values of the
fields become smaller or larger than the ones obtained
for ~ϕð0Þ ¼ 1.

VI. CIRCULAR ROTATION CURVE

As we mentioned in Sec. I, one of the most challenging
puzzles of current astrophysics is to account for the
gravitational mass associated with large structures such
as galaxies and cluster or super-cluster of galaxies. It is well
known that the rotation curves of galaxies do not follow a
Newtonian profile, which indicates that Newtonian gravity
fails to predict the mass distribution of such objects. One
way to explain such mismatch is by introducing an
unknown component with zero pressure dubbed dark
matter. This component cannot be observed or measured
directly but can be detected through its gravitational effects
with the nearby environment (galaxies), in particular, this
means that dark matter does not interact directly with the
standard matter (at least not with the ones contained in the
standard particle model) [1]. While in the literature there
are lots of particlelike models for dark matter, none of them
seem to be able to properly describe dark matter completely
at galactic scale or cosmological scales, then the only true
physical information about dark matter is how it gravita-
tionally interacts with normal matter (galaxies). Indeed, the
gravitational lensing within a cluster of galaxies, reveals
that the presence of concentrated dark matter in the inner
zone of a cluster. Something that clearly cannot be
predicted with ordinary matter within Newtonian theory
because the mass of the galaxy is related with the circular

rotation velocity V through the Newton’s law, namely the
speed V in a circular orbit at radius r is related to the mass
Mð< rÞ interior to that radius by the exact equation
Mð< rÞ ¼ rV2=G, being G Newton’s constant. One way
to realize about the missing mass fact is by using two well-
known procedures. To be more precise, applying the virial
theorem to a cluster, one can determine the virial mass
of the cluster and summing up all the mass of galaxies
within the cluster one can estimate the baryonic mass. It
turns out that the former one is 20 times bigger than the
latter one, showing in this way the existence of additional
(nonbaryonic) matter in the cluster [1].
So far we have focused on the basic features of self-

gravitating systems of ideal gases in the 1PN approxima-
tion. Now, we devote our attention to the circular rotation
curve due to its physical relevance in modern astrophysics
at theoretical and observational levels, and in particular we
examine the matching of two solutions at a critical radius,
say ~rc. The idea behind such standard procedure is to
reproduce the well-known observational features of the
galaxy rotation curves, namely, a linear regime at small
radii, passes through a cusp, and ends with a flatten shape at
large radii. Let us now show how this shape can be obtained
with the model at hand within the 1PN approximation.
Figure 2 shows that model describes well the inner zone
corresponding to ~r ≤ ~rc because the circular rotation curve
grows linear with the radial distance, then it passes through
small cusp and becomes ill-defined for ~r > ~rc þ ϵ with
ϵ > 0, implying that the gravitational potentials become
complex and therefore the solutions are unphysical. In
order to solve this issue, we match these solutions with
another two gravitational potentials, called ~ϕ2ð~rÞ and
~ψ2ð~rÞ. A somewhat natural question to ask is this one:
which kind of physical equation should satisfy these new
potentials? A quick answer would be that these ones must
fulfill the Laplace equation, namely ∇2 ~ϕ2ð~rÞ ¼ 0 and
∇2 ~ψ2ð~rÞ ¼ 0, and the potentials and theirs first derivatives
must be glued at ~rc in order to have a well-defined
boundary problem. Let us analyze this proposal in detail.
Taking into account that both potentials satisfy the Laplace
equation, they can be recast as ~ϕ2ð~rÞ ¼ α=~rþ β and
~ψ2ð~rÞ ¼ γ=~rþ δ. After imposing the continuity of the
potential and its derivative at ~rc , we arrived at α ¼
−~r2c ~ϕ0

1ð~rcÞ along with β ¼ ~ϕ1ð~rcÞ þ ~rc ~ϕ
0
1ð~rcÞ. The same

thing holds for the other potential by replacing α → γ,
β → δ along with ~ϕ1 → ~ψ1, where ~ϕ1 and ~ψ1 are the
gravitational potentials which satisfy the Poisson
equations (36)–(37) in the inner zone (~r ≤ ~rc). With this
proposal at hand, we can extend physically our first
solution beyond the critical radius, ~rc, however, we can
prove that the aforesaid gravitational potentials do not
reproduce the desired property of a flatten circular rotation
curve in the outer zone. Replacing both potentials ~ϕ2ð~rÞ
and ~ψ2ð~rÞ into (45), one can check that the circular rotation
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FIG. 5. Pressure-density ratio as function of the radial distance
~r for different values of ζ0.
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curve goes to zero in the limit of large radii. Therefore, we
need to introduce another type of potentials to do the job. In
order to do so, we propose that ~ϕ2ð~rÞ satisfies the Laplace’s
equation whereas ~ψ2ð~rÞ fulfills a Poisson’s equation with
the same boundary condition mentioned above. The latter
potential can be parametrized as

~ψ2ð~rÞ ¼ γ
e−k~r

~r
þ δ ln ~r: ð49Þ

Here k is a parameter of the Yukawa term while γ and δ are
integration constants. The latter ones are obtained by
solving the following linear system

�
~ψ2ð~rcÞ
~ψ 0
2ð~rcÞ

�
¼

" e−k~rc
~rc

ln ~rc

−k e−k~rc
~rc

− e−k~rc
~r2c

1
~rc

#
×

�
γ

δ

�
: ð50Þ

Using ~ψ2ð~rcÞ ¼ ~ψ1ð~rcÞ and ~ψ 0
2ð~rcÞ ¼ ~ψ 0

1ð~rcÞ we find the
value of the integration constants numerically at
~rc ≃ 3.4001, namely γ ≃ −29.7253 δ≃ −2.6906. It should
be pointed that the aforesaid procedure is not dependent of
the value taken by ζ0, however, the circular rotation curve
is. As can be seen from Fig. 6, we find that the circular
rotation curves flatten at very large radii for different values
of ζ0. It is easy to understand how this proposal reproduces
the flat shape by replacing the Coulomb potential ~ϕ2ð~rÞ
along with ~ψ2ð~rÞ into (45). The Coulomb and Yukawa
terms fade away for large radii but the logarithm contri-
bution introduces a constant in the circular velocity which
dominates for large radii. In this way, we could include a
Coulomb term in ~ψ2ð~rÞ instead of the Yukawa term and it
will also lead us to the right flatten curve, however, the
Yukawa term is better because it behaves smoother than the

Coulomb potential for large radii. We end this section by
mentioning some physical outcomes of our previous
proposal. For ~r ≥ ~rc the Newtonian density is given by
~ρmass ¼ −∇2 ~ϕ2 ¼ α=~r2 which clearly goes to zero for large
radius. In this zone, the post-Newtonian density and
pressure are entangled provided we only know ~ψ2, that
is, ~ρPN þ ~pPN ¼ −∇2 ~ψ2 ¼ −γe−~r=~r − δ=~r2, where we
have taken k ¼ 1 without loss of generality, then ~ρPN þ
~pPN also vanishes in this limit. Notice that ~ρPN þ ~pPN is
always positive because γ < 0 and δ < 0. All in all, we
showed that rotation curves with a flatten profile can be
obtained within the post-Newtonian approximation, start-
ing from the Maxwell-Jüttner distribution function at 1PN
and solving the corresponding gravitational potential at
1PN order. As a final remark, we should emphasize that in
our approach the ergodic function used differs substantially
from the polytrope profile explored in [7].

VII. CONCLUSIONS

We have built an astrophysical model based on the
Maxwell-Jüttner distribution function within the frame-
work of general relativity which is described using post-
Newtonian formalism. In order to obtain this expression,
we have integrated over the peculiar velocity 3D space,
keeping only the relevant terms up to 1PN order. With this
ergodic distribution at hand, we have obtained the general
form of Newtonian density along with the post-Newtonian
density and pressure terms which enter in the energy-
momentum tensor by using several Gaussian integrals (cf.
Appendix B). This allowed us to demonstrate that our
general expression coincides with the one reported by
Weinberg [8], validating our procedure. As an example of
how to apply this procedure, we considered the case of
particle four-flow and calculated its temporal and spatial
components.
From the energy density and pressure terms at 1PN, we

looked for static solution by analyzing the boundary value
problem. We found that the energy density, pressure and
gravitational potentials profiles in terms of dimensionless
radial coordinate by solving the aforesaid equations
numerically. In particular, we found the energy density
vanishes for large radii but approaches to a constant value at
the origin, further, such value becomes larger for smaller
values of ζ0 [see Fig. 1]. Contrary to the case of polytropic
ergodic distribution explored in [7], the energy density
remains always positive at 1PN order. As part of the process
of evaluating the circular velocity profiles, we obtained that
post-Newtonian curves reach larger values in relation with
the Newtonian case. In both cases, we have found that these
curves exhibit a linear behavior near the center and then
pass through a cusp [see Fig. 2]. Interestingly enough, we
have found the behavior of the circular velocity for ideal
gases differs from the one where the distribution function is
characterized by a polytropic function of the energy [7],
since in the latter case the values of the circular velocity in
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FIG. 6. Circular velocity rotation curves in terms of the
dimensionless radial coordinate for different values of ζ0.
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the 1PN approximation are smaller than the correspond-
ing Newtonian approximation. In our case, the large
values of the circular velocity in the 1PN approximation
are due to the fact that the increase of the temperature of
the gas, increases the thermal velocity of the particles of
the gas

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kT0=m

p
. We have examined the behavior of the

dimensionless gravitational potential energy ~U. So we
have found that the Newtonian gravitational potential
energy is always negative, while the post-Newtonian
gravitational potential energies change their sign for
large values of the radial distance from the configuration
center [see Fig. 3]. The temperature of the gas in the
post-Newtonian term ~ϕ2=2ζ0 determines the sign change
of the gravitational potential energy. The gravitational
potential energy exhibits the same behavior that the one
associated with a polytropic distribution function with
polytropic index n ¼ 3. In addition, we found a para-
metric profile of the equation of state pðρÞ in terms of
the dimensionless radial coordinate, see Fig. 5. At small
radii, the ratio pressure-density becomes almost con-
stant; increasing ζ0 the constant reaches larger values or
equivalently the thermal energy of the ideal gas
decreases considerably. The situation is reversed at large
radii.
We have patched together two different kinds of gravi-

tational potentials at a critical radius, called ~rc, in order to
have a well-defined boundary problem, provided the
potentials became complex beyond this radius. The physi-
cal motivation in dealing with this issue was to select
gravitational potentials which reproduce a flatten behavior
in the rotation curve at large radii, provided the linear and
the cusp zones were already described by those potentials
obtained by integrating numerically the energy density and
pressure coming from the Maxwell-Jüttner distribution
function at 1PN. In doing so, we have shown that one
of the potentials has a Coulomb form while the other one
presents two kinds of terms, a Yukawa contribution plus a
logarithmic term. Indeed, the term responsible for the
constant circular velocity at large radii turned out to be
the logarithmic term. Regarding the changes introduced by
these solutions, we have found that the Coulomb potential
led to an inverse square power law for the Newtonian
density, as one could expect. However, we could not
disentangle the post-Newtonian density from the post-
Newtonian pressure, thus we found ~ρPN þ ~pPN ¼
−γe−~r=~r − δ=~r2 which leads to a positive quantity, vanish-
ing for large radii only.
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APPENDIX A: SEVERAL QUANTITIES AT 1PN

Up to the 1PN fourth order the components of the metric
tensor are given by [8]

g00 ¼ −1þ g
2

00 þ g
4

00 þ… ðA1Þ

gij ¼ δij þ g
2

ij þ g
4

ij þ… ðA2Þ

g0i ¼ g
3

0i þ g
5

0i þ… ðA3Þ

g
2

00 ¼ −2
ϕ

c2
; g

4

00 ¼ −
2

c4
ðϕ2 þ ψÞ; ðA4Þ

g
2

ij ¼ −2δij
ϕ

c2
; g

3

0i ¼
ξi
c3

; ðA5Þ

ffiffiffiffiffiffi
−g

p ¼ 1 −
2ϕ

c2
−
ϕ2 − ψ

c4
: ðA6Þ

Here ϕ is the Newtonian gravitational potential, and ψ and
ξi are gravitational potentials in the 1PN approximation.
These gravitational potentials are connected with the
energy-momentum tensor by Einstein’s field equations.

APPENDIX B: GAUSSIAN INTEGRALS

Let us summarize the most interesting cases that we have
employed within this article. Just to make things more
familiar, let us consider integration over a 3D space
associated to the peculiar velocity space defined as
W� ¼ fðw�; θ;ϕÞ∶0 ≤ w� ≤ ∞; 0 ≤ θ ≤ 2π; 0 ≤ ϕ ≤ πg,
where w� is a dimensionless peculiar velocity and the
volume element is given by d3W� ¼ w�2dw�dΩ2 with dΩ2

the 2-dimensional element of solid angle. Let us consider
the Gaussian distribution Fðw�Þ ¼ e−w

�2=2 so the following
expressions can be obtained:

I0 ¼
Z

e−
w�2
2 d3W� ¼ 4π

ffiffiffi
π

2

r
; ðB1Þ

I2 ¼
Z

w�2e−w�2
2 d3W� ¼ 12π

ffiffiffi
π

2

r
; ðB2Þ

I4 ¼
Z

w�4e−w�2
2 d3W� ¼ 60π

ffiffiffi
π

2

r
; ðB3Þ

I6 ¼
Z

w�6e−w�2
2 d3W� ¼ 420π

ffiffiffi
π

2

r
: ðB4Þ

Using (B2), (B3), and (B4) we can prove that the following
expressions hold (see e.g. [19]):
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Z
Fðw�Þw�

i w
�
jd

3W� ¼ I2
3
δij; ðB5Þ

Z
Fðw�Þw�

i w
�
jw

�
kw

�
l d

3W�

¼ I4
15

½δijδkl þ δikδjl þ δilδjk�; ðB6Þ

Z
Fðw�Þw�

i w
�
jw

�
kw

�
l w

�
mw�

nd3W�

¼ I6
105

½δijδklδmn þ δijδkmδln þ δijδknδlm

þ δikδjlδmn þ δikδjmδln þ δikδjnδlm þ δilδjkδmn

þ δilδjmδkn þ δilδjnδkm þ δimδjkδln þ δimδjlδkn

þ δimδjnδkl þ δinδjkδlm þ δinδjlδkm þ δinδjmδkl�: ðB7Þ
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