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Hořava gravity theory possesses global Lifshitz space as a solution and has been conjectured to provide
a natural framework for Lifshitz holography. We derive the conditions on the two-derivative Hořava
gravity Lagrangian that are necessary for static, asymptotically Lifshitz spacetimes with flat transverse
dimensions to contain a universal horizon, which plays a similar thermodynamic role as the Killing horizon
in general relativity. Specializing to z ¼ 2 in 1þ 2 dimensions, we then numerically construct such regular
solutions over the whole spacetime. We calculate the mass for these solutions and show that, unlike the
asymptotically anti–de Sitter case, the first law applied to the universal horizon is straightforwardly
compatible with a thermodynamic interpretation.
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I. INTRODUCTION

Construction of holographic duals for Lifshitz field
theories is an important and active line of research. Such
duals release holographic approaches from the straitjacket
of relativistic conformal field theory and thereby tremen-
dously expand the types of systems holographic methods
can be applied to. Any gravitational dual to a Lifshitz field
theory must possess solutions that exhibit Lifshitz sym-
metry somewhere in the spacetime. Lifshitz geometry is not
a solution of the vacuum Einstein equations, however, and
so gravitational duals of Lifshitz field theories generally
either possess extra tensor fields or otherwise modify the
Einstein-Hilbert action of general relativity. For example,
spacetimes with Lifshitz geometry somewhere in the bulk
can be solutions of general relativity with extra gauge fields
[1], Einstein-Maxwell-dilaton theory [2] and Einstein-
Proca theory [3].
Lifshitz symmetry either asymptotically or in the bulk is

not an inherent feature of any of the above theories, but
merely a class of solutions. There is one gravitational
theory, however, where Lifshitz symmetry is in fact
intimately related to the structure of the theory: Hořava-
Lifshitz theory, or Hořava gravity for short [4]. Hořava
gravity is a modified theory of gravity with a preferred
foliation. The preferred foliation on the spacetime permits a

splitting of spacetime into space and time in a preferred
manner, thereby allowing for the imposition of a Lifshitz
symmetry on the theory at high energies. This in
turn renders the theory power-counting renormalizable
without introducing ghosts, unlike what happens in
higher-curvature relativistic gravity [4,5].1 Hořava gravity
therefore serves as a well-behaved candidate theory of
quantum gravity.
Our interest is in using Hořava gravity as a gravitational

dual to nongravitational Lifshitz field theories. Typically a
holographic construction first requires a duality between a
zero-temperature field theory on the boundary and a bulk
solution. Indeed, it has been argued that Hořava gravity
on a globally Lifshitz background provides a better
gravitational dual for zero-temperature Lifshitz field the-
ories, as certain quantities not reproduced in a relativistic
gravitational dual naturally fall out from Hořava gravity
when considering a global Lifshitz solution [7].
In the usual constructions, one extends a zero-temperature

field theory duality to finite temperature by considering
gravitational solutions containing a black hole in the bulk,
with the Hawking temperature of the black hole correspond-
ing to the temperature of the dual theory. In the Hořava case,
however, this identification becomes immediately problem-
atic as black hole thermodynamics in Hořava gravity is
poorly understood. Due to the nonrelativistic Lifshitz sym-
metry in the UV, high-energy excitations in Hořava gravity*sbasu@pacific.edu
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1In fact, projectable Hořava gravity is perturbatively renor-
malizable [6].
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can typically propagate faster than light. Excitations propa-
gate towards the future relative to the preferred foliation, and
hence there is a well-defined notion of causality [8], but UV
excitations can escape from inside a Killing horizon of a
static black hole solution in Hořava gravity. Therefore the
usual Killing horizons familiar from general relativity (and
extensions such as apparent horizons appropriate to more
dynamic settings) no longer play the role of causal bounda-
ries.As a consequence, there is nogeneric first law associated
with Killing horizons [9] and hence no horizon thermody-
namics. Hence it is unclear how to extend any duality
between the global Lifshitz solution and a zero-temperature
Lifshitz field theory on the boundary to finite temperature.
A possible prescription for establishing a finite-

temperature duality is provided by analyzing the physics
of universal horizons. Universal horizons are the true causal
boundaries of bounded bulk regions in nonprojectable
Hořava gravity [10,11]. While the notion of the universal
horizon can be formalized beyond any symmetries [8], for
our present purpose it suffices to present them within the
context of spherically symmetric black hole spacetimes
with flat or anti–de Sitter (AdS) asymptotics. If we label the
leaves of the preferred foliation by a scalar function T and
denote one such leaf by ΣT then each ΣT can bend in such a
way as to still create an event horizon even for arbitrarily
fast excitations, as shown in Fig. 1. Any excitation trapped
inside the universal horizon (dotted region in Fig. 1) has to

move “backward in time” with respect to the preferred
foliation in order to escape to infinity, and thereby
violate causality. Universal horizons have been found in
D ¼ 1þ 2-dimensional Hořava gravity, in analogy to
Bañados-Teitelboim-Zanelli (BTZ) black holes [12], in
spherical symmetry with AdS, and flat asymptotics in
four dimensions [10,11,13], and for the slowly rotating
asymptotically flat case in four dimensions [14].
Universal horizons do obey a first law [15,16]. Tunneling

and discontinuity calculations using eternal universal
horizon geometries indicate that they do radiate thermally
[17,18], although calculations in collapsing geometries
give a different picture [19]. Obviously for a complete
holographic construction a full thermodynamics of univer-
sal horizons must be built. In this paper we take a more
modest goal: if a holographic construction for finite-
temperature Lifshitz field theories using Hořava gravity
is to be constructed, we need to, at the very least, find static
solutions that are asymptotically Lifshitz and contain
universal (and Killing) horizons in Hořava gravity. These
solutions, which we construct numerically, are the focus of
this paper. For earlier attempts in this direction see, e.g.
Refs. [20,21].
In order to minimize the algebraic complexity of the field

equations we reduce to 1þ 2 dimensions, although our
approach is easily adaptable to higher dimensions as long
as one assumes transverse planar, rather than spherical,
symmetry. The reduction to D ¼ 1þ 2 is not a hindrance
for eventual holographic uses; for example AdS3=CFT2

duality is one of the best understood implementations of
holography.
The paper is organized as follows. In Sec. II, we introduce

Hořava gravity, the reduced action, and the relevant equa-
tions of motion. In Sec. III we review the global Lifshitz
solution in D ¼ 1þ 2 dimensions and detail how the
choice of Lifshitz asymptotics restricts the coefficients in
the Lagrangian. We also discuss the consequence of the
so-called “spin-0 regularity” in this section. In Sec. IV we
describe our numeric procedure and give some example
solutions. The corresponding Smarr formulas and first laws
are presented in Sec. V. Finally, we summarize in Sec. VI.
Throughout the paper we use metric signature ð−;þ;þÞ.

II. HOŘAVA GRAVITY AND EQUATIONS
OF MOTION

A. The action and equations of motion

Hořava gravity can be covariantly formulated as a scalar-
tensor theory, where the dynamical scalar field T, called the
khronon, always admits a nonzero timelike gradient every-
where on shell. This allows one to construct a unit timelike
hypersurface orthogonal one-form ua, called the æther,
such that

ua ¼ −N∇aT; gabuaub ¼ −1; ð1Þ

FIG. 1. Bending of the preferred (T ¼ constant) hypersurfaces
(thick brown lines) in ingoing Eddington-Finkelstein-type coor-
dinates in a static and spherically symmetric black hole solution
of Hořava gravity. The Killing vector χa points upward every-
where. The vertical green line is a constant r hypersurface and
denotes the usual Killing horizon defined by gabχaχb ¼ 0.
The universal horizon of a Hořava gravity black hole, denoted
by the vertical blue line, is also a constant r hypersurface (located
at r ¼ rUH) defined by the condition uaχa ¼ 0, where ua is the
unit timelike normal vector to the constant T hypersurfaces. The
dotted region inside the universal horizon (i.e. for r < rUH)
denotes a black hole region even for arbitrary fast excitations; the
constant-T hypersurfaces for this region are not shown to keep
the diagram clean.
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where the function N is solved for via the unit norm
constraint as follows:

N−2 ¼ −gabð∇aTÞð∇bTÞ: ð2Þ
Besides the usual diffeomorphism, Hořava gravity is also
invariant under arbitrary reparametrizations of the khronon:
T ↦ ~T ¼ ~TðTÞ. Under such reparametrizations N is
required to transform as N ↦ ~N ¼ ðd ~T=dTÞ−1N, such that
the æther remains manifestly invariant under the reparamet-
rizations of the khronon. This allows one to express the (two-
derivative truncated/IR limit) action of Hořava gravity in
D ¼ ð1þ 2Þ dimensions in a manifestly covariant and
reparametrization-invariant manner as follows [22]2:

S ¼ 1

16πGæ

Z
d3x

ffiffiffiffiffiffi
−g

p ð−2ΛCC þ Rþ LÞ þ SGHY þ ST;b:

ð3Þ
HereΛCC is the cosmological constant whichwill be taken to
be negative in thiswork,R is the curvature scalar, andL is the
khronon’s Lagrangian given by

L ¼ −Zab
cdð∇aucÞð∇budÞ: ð4Þ

The tensor Zac
cd is given by

Zab
cd¼c1gabgcdþc2δacδbdþc3δadδbc−c4uaubgcd; ð5Þ

where c1, c2, c3, c4 are coupling constants. SGHY is the
standardGibbons-Hawking-York (GHY) boundary term and
ST;b represents any additional boundary terms necessary due
to the presence of the khronon field. We will return to the
boundary terms in Sec. III C when we discuss the total mass
of solutions, but these boundary terms are irrelevant for a
derivation of the bulk equations of motion. The bulk
covariant equations of motion for the metric and khronon
are generated by extremizing the action (3) under variations
of the respective fields, with the assumption that the æther is
derived from the khronon via Eq. (1).
The khronon equation of motion and corresponding

solutions of Hořava gravity are most efficiently analyzed
by leveraging the relation between Hořava gravity and
Einstein-æther theory, as we now explain. The action (3),
with the æther only satisfying the unit norm constraint (i.e.
not hypersurface orthogonality) and being itself treated as
the fundamental field, leads to Einstein-æther theory [23], a
vector-tensor theory of gravity coupled to a unit timelike
vector field. One may subsequently restrict attention to the
hypersurface orthogonal sector of Einstein-æther theory by
imposing the hypersurface orthogonality condition on the
æther (1) at the level of the equations of motion. Neglecting
all boundary terms, the Einstein’s equations generated by

extremizing the action (3) under variations of the metric,
leads to formally identical Einstein’s equations for both
Hořava gravity and the hypersurface orthogonal sector of
Einstein-æther theory [24] (see also Ref. [25] for a more
recent discussion, especially from the perspective of the
initial value problem in both theories). However, the
corresponding bulk æther equation of motion in
Einstein-æther theory is

~Æa ¼ 0; ð6Þ
where ~Æa is the “component” of the functional derivative
of the action (3) with respect to the æther which is

orthogonal to the æther itself (i.e. ua ~Æ
a ¼ 0), while the

khronon’s equation of motion in Hořava gravity reads

∇a½N ~Æa� ¼ 0: ð7Þ
The formal equivalence of the Einstein’s equations, taken
together with the similarities of Eqs. (6) and (7), make it
clear that any solution of the hypersurface orthogonal
sector Einstein-æther theory is also a solution of Hořava
gravity [24], although the converse is generally not true.
In this work, we will restrict ourselves to static solutions

of Hořava theory in D ¼ ð1þ 2Þ with translational sym-
metry in the transverse space (see below). In a similar
setting, the æther in Einstein-æther theory is automatically
hypersurface orthogonal as dictated by the symmetries.
One may then argue along the lines of Ref. [13] to conclude
that solutions of Hořava theory with these symmetries,
and admitting a regular universal horizon in addition,
are also the only solutions of Einstein-æther theory with
these properties (note that the asymptotic behavior of the
solutions is irrelevant in this argument). Therefore, it
suffices to solve the Einstein-æther equations of motion
to obtain the desired solutions in Hořava gravity; this will
be the approach taken in this paper.
Even though the individual couplings c1;…; c4 appear

directly in the action (3), one may argue that owing to the
hypersurface orthogonality of the æther, only the combi-
nations c13 ¼ c1 þ c3, c123 ¼ c2 þ c13 and c14 ¼ c1 þ c4
show up explicitly in all subsequent expressions [10].
Finally, it will be useful to note the following kinematical
quantities: aa ¼ ub∇bua is the acceleration of the æther
congruence, Kab ¼ ∇aub þ uaab is the extrinsic curvature
of the constant khronon hypersurfaces, and K ¼ gabKab is
the corresponding mean curvature.

B. Equations of motion under staticity and transverse
space translation symmetry

It will be convenient to use ingoing Eddington-
Finkelstein-type (EF) coordinates, in which the metric
on a static spacetime, with translational symmetry in the
transverse space, becomes

ds2 ¼ −eðrÞdv2 þ 2fðrÞdvdrþ r2dy2; ð8Þ
2The complete action of Hořava gravity can also be cova-

riantized via such “Stückelbering” procedures [22]. In this work,
however, we only work with the IR limit of the theory.
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where r is the canonical radial coordinate, and y is the
coordinate on the transverse space. Note that y is not a
bounded coordinate; rather −∞ < y < ∞.3 The Killing
vector associated with staticity, denoted by χa, is given by
χa ¼ ∂v in these coordinates, while the Killing vector
associated with the translational symmetry in the transverse
space (i.e. under y → yþ constant) is ∂y.
The æther one-form decomposes in these coordinates as

ua ¼ ðu · χÞdvþ fðrÞdr
ðs · χÞ − ðu · χÞ ; ð9Þ

where ðs · χÞ ¼ saχa, with sa being the unique (“outward
pointing”) spacelike unit vector which is orthogonal to
both the æther and the transverse direction. As already
mentioned, the symmetries of the spacetime make the
æther hypersurface orthogonal as the above expression also
manifestly reveals [the functions ðu · χÞ and ðs · χÞ are
functions of r only], while the unit-norm constraint on the
æther (1) is taken into account via

eðrÞ ¼ ðu · χÞ2 − ðs · χÞ2: ð10Þ

The functions eðrÞ and fðrÞ capture the free metric
components that one needs to solve for from the equations
of motion of Hořava gravity. The (symmetry-reduced)
æther has one additional free component. It will be
algebraically beneficial to write this component via the
variable XðrÞ defined by

XðrÞ ¼ ðs · χÞ − ðu · χÞ: ð11Þ

In what follows, the equations of motion will be solved
for the functions eðrÞ, XðrÞ and fðrÞ for reasons to be
explained below, and the functions ðu · χÞ and ðs · χÞ can
then be determined by inverting Eqs. (10) and (11).
Instead of adapting the fully general covariant equations

of motion to the above symmetries, it is more convenient to
substitute the above symmetry-adapted expressions for the
metric and the æther into the action (3) directly, which
yields the following time-independent action:

S ¼ −
Z

drð4rf2X4Þ−1½−2eXðfðr2ðc123 − c14Þe0X0

− rXðrðc123 þ c14ÞX02 þ c2e0Þ þ c123X3Þ
þ 4rX3f0Þ þ X2ðfð−2r2Xðc123 þ c14Þe0X0

þ r2ðc123 − c14Þe02 þ rX2ðrðc123 − c14ÞX02

− 2ðc2 − 4Þe0 þ 4re00Þ þ c123X4 þ 2c2rX3X0Þ
− 4r2X2e0f0 þ 8ΛCCr2f3X2Þ þ e2fðr2ðc123 − c14ÞX02

þ c123X2 − 2c2rXX0Þ�; ð12Þ
where 0 denotes differentiation with respect to r. The
equations of motion are then generated by extremizing the
above time-independent action with respect to variations
of the three independent free components of the metric
and the æther: eðrÞ, fðrÞ, and XðrÞ. While solutions to
the equations thus obtained are not always guaranteed to be
static solutions of the original covariant equations of
motion, the set of solutions of the equations from
Eq. (12) is guaranteed to include solutions of the full
covariant equations. In other words, being a solution of the
equations from Eq. (12) is a necessary but not sufficient
condition on static solutions of the covariant equations. We
will therefore look for solutions of the equations from
Eq. (12) and then check if they are static solutions of the
covariant equations of motion a posteriori.
The equations for eðrÞ, fðrÞ, and XðrÞ following from

Eq. (12) are rather complicated coupled ordinary differ-
ential equations and are not particularly illuminating, so we
will not reproduce them in full here. However, there are
some important structural aspects that need to be men-
tioned. First, one may note that the time-independent action
(12) does not contain any term that is quadratic in
derivatives of fðrÞ, either via f00ðrÞ or f0ðrÞ2. As a result,
the equation of motion for fðrÞ is an algebraic equation,
which simplifies the system considerably (and is the
primary motivation for choosing XðrÞ as a fundamental
free component). In our subsequent numerical analysis, we
substitute this algebraic expression for fðrÞ back into the
equations of motion for eðrÞ and XðrÞ which yields two
second-order differential equations for e00ðrÞ and X00ðrÞ in
terms of eðrÞ, e0ðrÞ, XðrÞ and X0ðrÞ.
Second, the resulting differential equations for eðrÞ and

XðrÞ both naively have a singularity at a particular value of
the pair eðrÞ and XðrÞ. The source of this singularity is a
feature previously found in studies of black holes in Hořava
gravity known as the spin-0 horizon. In the present setting,
unlike general relativity in D ¼ ð1þ 2Þ, Hořava gravity is
known to contain a propagating scalar or spin-0 mode with
local (low-energy) speed s0 relative to the æther frame
given by the expression [22] (compare with the corre-
sponding expression in D ¼ 1þ 3 [26])

s20 ¼
c123

c14ð1 − c13Þð1þ c13 þ 2c2Þ
: ð13Þ

3Any local analysis of the equations of motion is insensitive to
the global topology of the transverse direction. However, the
asymptotically Lifshitz spacetimes considered in this work (see
Sec. III) are required to be smoothly connected to a regular
globally Lifshitz solution. A compact transverse direction would
imply the existence of conical singularities at r ¼ 0 under the
scale transformations of Eq. (20) in the globally Lifshitz solution.
We therefore restrict ourselves to noncompact transverse direc-
tions so that the Lifshitz symmetry can be imposed smoothly on
the global Lifshitz solution and as an asymptotic symmetry on the
universal horizon solutions.
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The different local speed relative to the æther frame is
equivalently described by stating that the low-energy spin-0
mode propagates on the light cone of an effective spin-0

metric gð0Þab given by

gð0Þab ¼ gab − ðs20 − 1Þuaub: ð14Þ
The low-energy spin-0 mode has a corresponding causal
horizon, known as the spin-0 horizon, and its radial location

is given by the largest root of jχj2s0 ≡ gð0Þab χ
aχb ¼ 0, analo-

gous to the Killing horizon in general relativity. On this
horizon the equations of motion break down (cf. the
discussion in Ref. [27]). In our case, this is reflected in
the equations of motion for eðrÞ and XðrÞ which take the
form

e00ðrÞ ¼ Feðe; e0; X; X0; r; ciÞ
8ð1 − c13c14ð1þ c13 þ 2c2ÞÞr2XðrÞ6jχj2s0

; ð15Þ

X00ðrÞ ¼ FXðe; e0; X; X0; r; ciÞ
8ð1 − c13c14ð1þ c13 þ 2c2ÞÞr2XðrÞ5jχj2s0

: ð16Þ

Fe and FX are complicated and unilluminating functions
and hence their full form will be omitted. On the spin-0
horizon this equation will generally be unstable unless Fe
and FX also vanish. This regularity requirement will
eventually reduce our black hole solutions down to a
one-parameter family. We will return to this issue when
we describe our numerical approach.
The spin-0 horizon has a useful property in that it can be

“moved around” relative to a Killing horizon via a field
redefinition. As noted in Ref. [28], under disformal field
redefinitions, i.e. redefinitions of the form

g0ab ¼ gab − ð1 − σ2Þuaub; ua ¼ σ−1ua; σ > 0; ð17Þ

the action (3) transforms into itself with simply new values
of the ci coefficients. In particular, the coefficients trans-
form as

1 − c013 ¼ σð1 − c13Þ; c0123 ¼ σc123; c014 ¼ c14: ð18Þ

The speed of the spin-0 mode is not invariant under the
disformal redefinitions, and in fact, given an initial set of
coefficients one can always perform a field redefinition
such that the spin-0 speed becomes unity. In other words,
one can always set the Killing horizon and spin-0 horizon
to be co-located without loss of generality. This will
simplify the numerical analysis.
In the present work, we wish to seek solutions of Hořava

gravity with Lifshitz asymptotics and a regular universal
horizon in the bulk. In particular, we need to solve Eq. (15)
with asymptotically Lifshitz boundary conditions on the
metric and æther components. To that end, we need to
derive the appropriate asymptotic behavior of the functions

eðrÞ, XðrÞ and fðrÞ as r → ∞, as well as the conditions
under which the solutions are also regular in the bulk of the
spacetime, especially on their respective spin-0 horizons.
These issues will be taken up in the following section,
which will also pave the way towards the numerical
construction of the sought-after solutions.

III. ASYMPTOTICALLY LIFSHITZ SPACETIMES

A. The global Lifshitz solution

Before we can properly discuss asymptotically Lifshitz
spacetimes we first must discuss the global background
Lifshitz solution which plays the same role global AdS
space does for asymptotically AdS spacetimes. In D ¼
1þ 2 dimensions in the canonical (Schwarzschild-type) t, r
and y coordinates (y being the transverse coordinate),
the global Lifshitz spacetime introduced in Ref. [1] is
an obvious generalization of AdS3 spacetime, but with
inhomogeneous scale invariance between space and time.
In its standard/canonical form, the metric of the global
Lifshitz spacetime in D ¼ 1þ 2 is

ds2 ¼ −ðr=lLÞ2zdt2 þ ðr=lLÞ−2dr2 þ ðr=lLÞ2dy2; ð19Þ

where the constant z ≧ 1 is the (Lifshitz) scaling exponent
and the fixed length scale lL is the Lifshitz scale. For z ¼ 1,
the metric (19) describes AdS3.
The metric (19) is manifestly isometric under constant

translations of the time coordinate t, under t ↦ −t, as well
as under constant translations of the transverse space
coordinate y. More interestingly, the metric (19) is also
isometric under scale transformations of the form

t ↦ λzt; y ↦ λy; r ↦ λ−1r: ð20Þ
Clearly for z > 1, the scale invariance between t and y is
inhomogeneous.
We are eventually interested in constructing black hole

solutions which are only asymptotically Lifshitz, and for
that purpose it will be useful to switch to ingoing EF
coordinates (8). In particular, the metric (19) of the global
Lifshitz spacetime takes the following form in EF coor-
dinates [compare with Eq. (8)]:

ds2 ¼ −ðr=lLÞ2zdv2 þ 2ðr=lLÞz−1dvdrþ ðr=lLÞ2dy2:
ð21Þ

The scale transformations analogous to Eq. (20) leaving the
metric (21) invariant are4

v ↦ λzv; y ↦ λy; r ↦ λ−1r: ð22Þ
As discovered in Ref. [7], the global Lifshitz metric (21) is
a solution to the Hořava gravity equations of motion, along

4This follows from the definition of the v coordinate:
dv ¼ dtþ ðr=lLÞ−ðzþ1Þdr.
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with the following profile for the æther [compare with
Eq. (9)]:

ua ¼ −ðr=lLÞzdvþ ðr=lLÞ−1dr: ð23Þ
In particular, the æther satisfies (as per requirement) all
the above symmetries including that under Eq. (22) and
is aligned with the Killing vector χa everywhere.5 The
solution parameters z and lL are fully determined by the
parameters ΛCC and c14 by the following relations:

ΛCC ¼ −
zðzþ 1Þ
2l2

L
; c14 ¼

z − 1

z
: ð24Þ

The second relation means, in particular, that the Lifshitz
exponent is uniquely determined by the coupling c14.
Notice that the global solution is independent of the values
of the couplings c13 and c2.

B. Asymptotic expansion

Moving on to static, asymptotically Lifshitz spacetimes,
it is not immediately clear under what conditions the
various metric and æther coefficients admit a well-defined
power series in r−1; this is a concern especially when z is
noninteger. We must therefore construct a useful para-
metrization of the asymptotic forms of the various metric
and æther coefficients around r ¼ ∞.
While in the global Lifshitz solution the æther is globally

aligned with the Killing vector χa, in an asymptotically
Lifshitz case this will not be the case everywhere in the
spacetime. Rather, we merely require an asymptotic align-
ment between the æther and χa. The additional measure for
the “misalignment” between theæther and χa is conveniently
captured through the quantity ðs · χÞ≡ saχa, where sa, as
introduced previously is the unique outward-pointing unit
spacelike vector orthogonal to the æther and the transverse
directions everywhere. Intuitively, we wish to define an
asymptotically Lifshitz spacetime in the present context as a
spacetimewhere the æther becomes aligned with the Killing
vector and the metric approaches the global Lifshitz solution
as r → ∞. These conditions can be properly implemented in
the present coordinates by requiring

lim
r→∞

ðu · χÞffiffiffiffiffiffiffiffiffiffiffiffi−χ · χp ¼ −1;

lim
r→∞

ðs · χÞffiffiffiffiffiffiffiffiffiffiffiffi−χ · χp ¼ 0;

lim
r→∞

fðrÞ
rz−1

¼ 1: ð25Þ

Since we wish for our solutions to smoothly approach the
global solution upon tuning some parameters (e.g. the mass)

we can factor out the appropriate global Lifshitz behaviors
from ðu · χÞ, eðrÞ≡ −ðχ · χÞ, and fðrÞ and write

eðrÞ ¼ ðr=lLÞ2zE0ðrÞ;
ðu · χÞ ¼ −ðr=lLÞzU0ðrÞ;
fðrÞ ¼ ðr=lLÞz−1F0ðrÞ; ð26Þ

such that the conditions (25) become equivalent to

lim
r→∞

E0ðrÞ ¼ 1; lim
r→∞

U0ðrÞ ¼ 1; lim
r→∞

F0ðrÞ ¼ 1: ð27Þ

Asymptotically Lifshitz spacetimes are not, of course,
necessarily solutions of the Hořava gravity equations of
motion. Rather, for asymptotically Lifshitz solutions, the
functions U0ðrÞ, E0ðrÞ and F0ðrÞ not only must have well-
defined limits to r ¼ ∞ but also must satisfy an asymptotic
expansion of the equations of motion. As we shall see, the
asymptotic equations of motions yield a significant restric-
tion on the choice of the ci coefficients.
In order to compute the asymptotic equations of motion

we need some convenient parametrization of the falloffs of
these functions as r → ∞. To that end, we will assume that
given some z, there exists a number ν⋆ > 0 such that the
functions U0ðrÞ, E0ðrÞ, and F0ðrÞ are analytic at r ¼ ∞ in
r−ν⋆ , i.e., they all admit well-defined power series (albeit
asymptotic) expansions in powers of r−ν⋆ as follows:

E0ðrÞ ¼ 1þ e1ðzþ 1Þlν⋆
L

rν⋆
þ e2ðzþ 1Þ2l2ν⋆

L

r2ν⋆
þOðr−3ν⋆Þ;

U0ðrÞ ¼ 1þ u1ðzþ 1Þlν⋆
L

rν⋆
þ u2ðzþ 1Þ2l2ν⋆

L

r2ν⋆
þOðr−3ν⋆Þ;

F0ðrÞ ¼ 1þ f1ðzþ 1Þlν⋆
L

rν⋆
þ f2ðzþ 1Þ2l2ν⋆

L

r2ν⋆
þOðr−3ν⋆Þ:

ð28Þ

In particular, the Oðr−nν⋆Þ coefficient for some integer
n ≧ 1 has been defined with an explicit factor of ðzþ 1Þn
for convenience with the asymptotic analysis, and a factor
of lnν⋆

L has been included to make the coefficients
dimensionless.
The above expansions yield analogous expansions for

ðs · χÞ and XðrÞ via Eqs. (10) and (11). For the expansion
of ðs · χÞ in particular, we may start with the following
expression:

ðs · χÞ2 ¼ ðr=lLÞ2z½U0ðrÞ2 − E0ðrÞ�;

which follows from Eq. (10). If we plug in the ansatz (28)
above, we end up with the following asymptotic behavior
for ðs · χÞ:

ðs · χÞ2 ¼ ðr=lLÞ2zOðr−nsν⋆Þ;
5It can be easily proved that in a globally Lifshitz solution, the

equations of motion of Hořava gravity force the æther to be
globally aligned with the Killing vector χa.
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which encompasses the possibility that, for some integer
ns ≧ 1, the first (ns − 1) terms in the series for U0ðrÞ2 −
E0ðrÞ are zero. In other words, ðs · χÞ may have the
following asymptotic behavior:

ðs · χÞ ¼ ðr=lLÞz−
nsν⋆
2 S0ðrÞ; ð29Þ

along with

S0ðrÞ ¼ cæ þ s1ðzþ 1Þlν⋆
L

rν⋆
þ s2ðzþ 1Þ2l2ν⋆

L

r2ν⋆
þOðr−3ν⋆Þ;

ð30Þ
such that for a given ns, cæ ≠ 0 is a constant which captures
the leading-order behavior of S0ðrÞ. In particular, the
case ns ¼ 0 is not allowed on account of the presumed
asymptotically Lifshitz behavior; indeed, for all ns ≧ 1
one finds that the second condition in the definition of
asymptotic Lifshitz-ness proposed in Eq. (25) is also met.
This expansion for ðs · χÞ also generates an asymptotic
expansion for XðrÞ via Eq. (11).

C. Boundaries, mass and determination of ν⋆
To proceed in the expansion we need to determine ν⋆,

which can be done by requiring a nonzero but finite mass
for the black hole solutions. Unlike the local equations of
motion, the total mass does depend on the boundary terms
present in the action (3). Therefore, the first step is to deal
with the additional possible boundary term ST;b.
Boundary terms are introduced into actions so that the

variational principle is well defined. The variation of the
GHY term, for example, explicitly cancels the boundary
term generated when varying the Einstein-Hilbert term and
imposing Dirichlet boundary conditions on the metric.
Since Hořava gravity has the Einstein-Hilbert term in the
bulk action (3), the GHY term is necessary if we maintain
Dirichlet boundary conditions for the metric. We must
check, however, if (a) the other terms in the Hořava gravity
action are compatible with Dirichlet metric conditions,
(b) what type of boundary conditions are appropriate for the
khronon, and (c) if additional boundary terms are generated
from the khronon variation.
The variation of the bulk Hořava gravity action (3) yields

the following additional boundary variations:

δSb ¼
Z
∂V

d2x
ffiffiffi
h

p
½ncBabcδgab þ ncBcδT þ ncBa

cð ~∇aδTÞ�;

ð31Þ
where na is the normal to the boundary ∂V, hab is the

induced metric on the boundary, ~∇a is the projected spatial
covariant derivative on the preferred foliation, and Babc,
Ba

b and Ba are tensors built out of gab, hab, ua and their
derivatives. We immediately see that with Dirichlet boun-
dary conditions for the metric the first term vanishes and
hence the boundary analysis for the metric proceeds exactly

as it does in general relativity: addition of the GHY term
and Dirichlet boundary conditions for the metric makes
the variational principle well defined for metric variations.
Therefore the particular (complicated) expression for Babc
is irrelevant for our subsequent discussions and we will
omit it.
The khronon variation is more subtle, as we have

boundary variations in Eq. (31) that involve both direct
variations of the khronon and also derivatives of the
variations. Insight can be gained by examining what
constitutes the boundary ∂V, as well as the structure of
Ba and Ba

b, which are given by

Ba ¼ −2N ~Æa; Bc
a ¼ 2NZab

cd∇bud; ð32Þ
where Zab

cd is defined in Eq. (5). In the simplest setting
with a spacetime without any horizons and/or singularities,
∂V consists of the boundary at (spatial) infinity to be
denoted by I in what follows,6 as well as the boundaries at
infinite past and future. Since we need to adapt to the
preferred foliation, the boundaries at infinite past and future
are also slices of the preferred foliation. Therefore, given
the form of Ba (32), the contribution of the second term in
Eq. (31) vanishes on the boundaries at infinite past and
future, since na ¼ ua on these surfaces. On the other hand,
the field configuration on I is that of the corresponding
global solution, here Lifshitz, which satisfies the Einstein-
æther theory equations of motion. Hence the asymptotic

(Lifshitz) boundary condition implies ~Æa ¼ 0 rather than

∇aðN ~ÆaÞ ¼ 0. Consequently, there is never a boundary
contribution from the second term in Eq. (31) for the
present choice of ∂V.
The lack of a boundary term proportional to δT matches

the intuition gained by considering the fundamental rep-
arametrization invariance of Hořava gravity. On the boun-
dary, such variations can always be absorbed by leveraging
the reparametrization invariance. Consequently, setting
Dirichlet boundary conditions on the khronon is inappro-
priate. Rather, the Neumann boundary condition is the
appropriate type of boundary condition for the khronon. We
are requiring our spacetimes to be asymptotically Lifshitz,
which in turn puts a condition on ua at infinity; namely, it
aligns with the asymptotic Killing vector that generates
stationarity on I . Since ua is related to the gradient of T (1),
such Dirichlet conditions on ua correspond to Neumann
conditions on the khronon. The appropriate condition to
maintain ua orientation at infinity (i.e. on I) is, in fact,
precisely that the spatial gradient of the khronon variation
vanishes, as nonzero spatial gradients are exactly what
would “tilt” ua. Therefore, we impose Neumann conditions

on the khronon, in particular requiring ~∇aδT ¼ 0 on I ,

6Due to the modified causal structure of spacetimes in Hořava
gravity, the boundary at spatial infinity is the only relevant
boundary at infinity; see Ref. [8] for further details.
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which kills the third boundary term in Eq. (31). In
summary, at least for the kind of boundaries we have
considered so far, the only boundary term necessary in our
construction is the usual GHY term since the appropriate
physical boundary conditions are Dirichlet for the metric
variations and Neumann for the khronon variations.
Things are more subtle if the spacetime admits a

universal horizon. In this case, imposing the Dirichlet
boundary condition on the metric and the Neumann
boundary condition on the khronon on every boundary
surface still suffices to kill the first and the last terms in
Eq. (31), thereby saving us from introducing additional
boundary terms in the action. However, the universal
horizon raises the possibility of additional “inner bounda-
ries” in the spacetime on which the contribution from the
middle term in Eq. (31) is not necessarily zero at first sight.
To resolve this, let us take a closer look at universal
horizons in asymptotically Lifshitz spacetimes.
In a stationary spacetime with flat asymptotics, the

universal horizon is a leaf of the preferred foliation that
barely fails to reach the boundary at infinity [8]. Any
preferred slice that reaches spatial infinity never crosses the
universal horizon, but instead asymptotes to it. The causal
structure is intuitively much more accessible in spherically
symmetric spacetimes, where the high degree of symmetry
allows one to appeal to e.g. Fig. 1 and conclude that the
universal horizon has to be a leaf of the preferred foliation
which is simultaneously a constant-r hypersurface and
therefore orthogonal to the Killing vector of stationarity χa.
In other words, the universal horizon is locally character-
ized by the condition

ðu · χÞUH ¼ 0; ð33Þ
whose radial location will be denoted by rUH.

7 The above
argument can be made more rigorous, and the condition
(33) still suffices as a local characterization of the universal
horizon in the most general stationary spacetimes, as long
as the quantity ða · χÞ ≠ 0 on the said surface [8].
In spacetimes with Lifshitz asymptotics, since the

Killing vector χa is timelike asymptotically, we have the
desired asymptotic behavior of the spacetime to utilize
the settings of Ref. [8]. Additionally, the quantity
ða · χÞ ≠ 0 on the universal horizon (see Fig. 4). Hence,
condition (33) also provides the suitable local characteri-
zation of the universal horizon here, and the causal
structure of the spacetimes we are dealing with is still
qualitatively as captured in Fig. 1.
In an asymptotically Lifshitz spacetime with a universal

horizon (just as in the corresponding case of an asymp-
totically flat spacetime), one may divide up the spacetime
into two (causally) disjoint regions, namely the “outside
region”which is the part of the spacetime that is continuously

connected to the boundary at infinity I and where
ðu · χÞ < 0 holds everywhere, and the “inside region”which
is the complement of the “outside region.” The boundary of
the “outside region” then consists of the boundary at infinity
I , the boundaries at infinite past and future (for the “outside
region”), and the universal horizon denoting an inner
boundary for the “outside region.” One may invoke our
previous logic to conclude that Eq. (31) vanishes on the
boundary at infinity, as well as the boundaries at infinite past
and future, if Dirichlet and Neumann boundary conditions
are imposed on the metric and the khronon, respectively.
More importantly, the (future) universal horizon coincides
with the boundary at infinite future, as can be inferred e.g.
from Fig. 1, and hence Eq. (31) vanishes here as well. For the
“inner region,” at least in the present setting, onemay at most
have a sequence of “inner horizons” which are themselves
leaves of the preferred foliation characterized by the con-
dition ðu · χÞ ¼ 0 (neither of which are universal horizons
however). Since these surfaces are leaves of the preferred
foliation themselves, i.e. na ¼ ua on each of them, the
boundary variation (31) vanishes on every possible inner
boundary as well. Therefore, even for the case of interest, the
only boundary term necessary in our construction is the usual
GHY term with the Dirichlet boundary condition on the
metric variations and the Neumann boundary condition for
the khronon variations.
Now that the question of boundary terms has been

settled, we can proceed with calculating the mass. Since
the GHY term is the only term, the total mass M of a
Lifshitz black hole solution using the preferred foliation is
given by the familiar Hawking-Horowitz formula [29],

M ¼ −
1

8πGæ

Z
B
½Nk̂ − Napabnb� −MGL; ð34Þ

where B is the suitable “one-boundary”—cross sections of
the boundary ∂V—on which the “surface terms” in the
Hamiltonian (here generated purely from the GHY term)
contribute, Na is the shift vector, pab is the conjugate
momentum of the induced metric on the preferred foliation,
k̂ is the trace of the extrinsic curvature of B, andMGL is the
mass of the background Lifshitz solution (to be explained
in more detail below).
To compute the integral (34) for the asymptotically

Lifshitz solutions considered in this work, we may begin
by choosing the time translation vector along the Killing
vector χa, for which the shift vector becomes the projection
of χa on the leaves of the preferred foliation. Furthermore,
by construction, there is no intersection of the “one-
boundary” B with any part of ∂V which itself is a leaf
of the preferred foliation (since na ¼ ua on such surfaces).
In particular, this kills any possible contribution from the
boundaries at past and future infinity. For all possible
“inner boundaries” including the universal horizon (33),
which are all characterized by the condition ðu · χÞ ¼ 0 as
previously discussed, the vanishing of the integrand in

7In a spacetime with multiple (disconnected) surfaces satisfy-
ing ðu · χÞ ¼ 0, the outermost one is the universal horizon.
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Eq. (34) can, in fact, be seen explicitly as follows: for the
present choice of the time translation vector, a straightfor-

ward computation yields N ¼ −ðu · χÞ [8] and k̂ ¼ ~∇asa ∝
ðu · χÞ and hence Nk̂ ¼ 0 on any ðu · χÞ ¼ 0 hypersurface;
in particular the vanishing of k̂ can be appreciated from the
fact that sa ∝ χa on any ðu · χÞ ¼ 0 hypersurface, so that by

Killing’s equation ~∇asa vanishes here. The second term in
the integrand Napabnb vanishes simply because pab is a
linear combination of the induced metric and the extrinsic
curvature of the leaves of the preferred foliation while
na ¼ ua. Therefore, any contribution to Eq. (34) comes
only from the part of B which “resides within” the
boundary at infinity I, and this is given by the line
generated by the intersection of any preferred slice with I .
Moreover, due to the asymptotic alignment of ua with χa,
the term containing the shift drops out, so that Eq. (34) for
our solutions reduces to

M ¼ −
1

8πGæ
lim
r→∞

Z
∞

−∞
dy

r
lL

Nk̂ −MGL:

As mentioned previously, MGL is the mass of the back-
ground Lifshitz solution, and its relevance can be explained
as follows: the above expression without the MGL piece,
when evaluated on the globally Lifshitz solutions, yields an
infinity, whose origin is ultimately the omnipresent vacuum
energy. The quantity MGL is precisely this “infinite mass”
ascribable to the globally Lifshitz background that needs to
be subtracted to make the above expression, applied to an
asymptotically Lifshitz solution, meaningful.
The total mass M as given above is still infinite, even

with background subtraction, since B is a noncompact
infinite line. As a remedy, we need to regulate the above
expression and work with a mass per unit length M of the
black hole solutions. To that end, we may modify the above
expression as

M ¼ −
1

8πGæ
lim
r→∞

lim
L→∞

1

L

Z
L=2

−L=2
dy

r
lL

Nk̂ −MGL

where L is a “regulating length” and all the M’s now stand
for mass per unit length. The integral over the transverse
space is now trivial and allows us to cancel out the
appearance of the regulating factor L. Using the appropriate
asymptotic expressions from Eq. (28), we then end up with

M¼− lim
r→∞

ðr=lLÞðzþ1Þ

8πGæ

×
�
1

lL
þð2u1−f1Þðzþ1Þlν⋆−1

L

rν⋆
þOðr−2ν⋆Þ

�
−MGL:

The leading term proportional to l−1
L is the source of the

divergent part in the mass due to the nonzero vacuum
energy density as just noted, andMGL is chosen to precisely
cancel this term. Once this is taken care of, the spacetime
mass per unit length is simply given by

M ¼ − lim
r→∞

ðr=lLÞðzþ1Þ

8πGæ

ð2u1 − f1Þðzþ 1Þlν⋆−1
L

rν⋆
:

This above quantity goes as rðzþ1Þ−ν⋆ . Therefore in the limit
r → ∞, the expression for the mass per unit length diverges
for ν⋆ < ðzþ 1Þ while it goes to zero for ν⋆ > ðzþ 1Þ but
is finite and nonzero (in general) only for the choice of

ν⋆ ¼ ðzþ 1Þ: ð35Þ
We therefore fix ν⋆ by requiring that the class of solutions
we are studying admits a well-defined, nonzero notion of
mass after the appropriate background subtraction. The
expression (35) also is consistent with the standard results
for Lifshitz black branes (see e.g. Ref. [3]). Once this value
of ν⋆ is used, the mass per unit length of an asymptotically
Lifshitz solution is given by

M ¼ ðzþ 1Þð−2u1 þ f1Þ
8πGælL

; ð36Þ

where we have expressed everything in terms of canonical
quantities z and lL. We will further massage this expression
in the next section after we solve the equations of motion
for large r and determine the values of u1 and f1.

D. Restrictions on ci coefficients

Now that we have fixed ν⋆, we may analyze the
asymptotic equations of motion. Substituting the expan-
sions (28) and (30) into the equations of motion (15) and
expanding to first order yields a relationship on the ci
coefficients in addition to those established by the global
Lifshitz solution (24), namely

c123 ¼
4ð1 − c13Þðz − 1Þ
nsðns − 2Þðzþ 1Þ2 : ð37Þ

Therefore, physically acceptable solutions only exist for

ns ≧ 3 ð38Þ
and, quite remarkably, asymptotically Lifshitz solutions
exist only for “discrete” choices for c123. The squared spin-
0 speed (13) then also becomes “quantized” according to

s20 ¼
4z

ð1− c13Þ½nsðzþ 1Þ− 2ðz− 1Þ�ðnsðzþ 1Þ− 4Þ : ð39Þ

One can then easily show that for ns ≧ 3 (38) and for all
z > 1, the above expression for s20 is strictly positive.
Hence, all these backgrounds are physically acceptable.
The restriction (38) implies that the analysis of the

equations of motion for the next two subleading orders are
completely universal. In particular, at Oðr−ðzþ1ÞÞ, we find

u1 ¼ −
rS
2lL

; f1 ¼ 0; s1 ¼ 0: ð40Þ
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Note that the coefficient u1 is actually left undermined,
allowing us to trade it for a length scale rS analogous to the
“Schwarzschild radius.” If we plug these values in Eq. (36),
the mass per unit length of the solutions takes a cleaner
form

M ¼ ðzþ 1ÞrS
8πGæl2

L
: ð41Þ

Next, at Oðr−2ðzþ1ÞÞ we obtain

u2 ¼ −
r2S
8l2

L
;

f2 ¼
ðz2 − 1Þr2S
8z2l2

L
;

s2 ¼ −
cæðns − 2Þðzþ 1Þðnsðzþ 1Þ − 2ðz − 1ÞÞr2S

32ðns þ 1Þz2l2
L

: ð42Þ

The analysis, for a completely general ns, can only be
carried out until this order, as already observed; to proceed
further one needs to pick an ns. However, the general
features of all such solutions are similar: the solution will
initially depend on two free parameters, namely rS and cæ.
We have already noted that rS is directly related to the mass
of the solution (41). Although one cannot do this analyti-
cally, in principle cæ is fixed by demanding regularity on
the spin-0 horizon, i.e. setting FXjs0 ¼ Fejs0 ¼ 0. This
leaves a one-parameter family of solutions specified by rS.
Furthermore, this analysis makes clear that we must choose
particular values for the ci coefficients in our numerical
evolution or we will not asymptote to a Lifshitz solution.
We now turn to the numerical procedure.

IV. ASYMPTOTICALLY LIFSHITZ BLACKHOLES

The equations (15) do not yield exact solutions
with Lifshitz asymptotics and universal horizons, so we
have to resort to numerics. The basic approach is described
in detail below and closely follows the route taken in
Ref. [10].
To begin with, we need to make choices for the various

couplings and parameters. In this work, we have only
focused on the case of z ¼ 2, although asymptotically
Lifshitz solutions with z > 2 are expected to have quali-
tatively similar features. We will also set lL ¼ 1 without
any loss in generality. Finally, we will apply a field
redefinition and choose the values of ci so that the spin-
0 and Killing horizons are co-located. Since the Lifshitz
exponent z is determined solely by c14 [Eq. (24)], the
disformal field redefinitions (18), which do not change c14,
preserve the Lifshitz exponent z as well, and hence also
preserve lL [Eq. (24)]. However, as mentioned previously,
the location of the spin-0 horizon can be shifted. We use
the field redefinition to co-locate the spin-0 and Killing
horizon, and then choose coefficients that satisfy the

“discreteness” condition on c123 (37). Our numerical results
in this section and Sec. V are for the coefficient choices

c14 ¼
1

2
; c13 ¼

9

10
; c2 ¼ −

161

180
; ð43Þ

and for ns ¼ 4. One may check that for the above choice of
coefficients one gets s0 ¼ 1 from Eq. (39).
With the above choices, our approach for finding

asymptotically Lifshitz solutions is as follows:
(1) Analytically expand the equations of motion about

the spin-0 horizon and solve for eðrÞ and e0ðrÞ in
terms of XðrÞ and X0ðrÞ there so that e00ðrÞ and X00ðrÞ
remain regular.

(2) Evolve outwards and inwards from the spin-0
horizon numerically.

(3) Iterate (à la the “shooting method”) e0ðrÞ and X0ðrÞ
while keeping eðrÞ and XðrÞ fixed at the spin-0
horizon until the solution is asymptotically Lifshitz.

(4) Perform an overall normalization on the solution,
which corresponds to choosing an initial value of
XðrÞ on the spin-0 horizon so that r−4eðrÞ → 1 and
r−2XðrÞ → 1 as r → ∞.

We now address each of these steps and then present some
example numerical results.

A. Analytic near spin-0/Killing horizon expansion

With the above choice of coefficients the singularity in
the equations of motion occurs at the Killing horizon since
the spin-0 horizon is co-located. The spin-0 horizon
location rs0 is a free parameter at this point but will
eventually be related to the mass of the spacetime. At
rs0 , the value of XðrÞ can also be chosen freely as it just
changes the overall scale of the eventual solution, but
eðrs0Þ ¼ 0 by definition of a Killing horizon [recall
eðrÞ ¼ −gabχaχb]. We then analytically expand eðrÞ and
XðrÞ as a power series in (r − rs0) out to fourth order.
Solving the equations of motion analytically order by order
and imposing regularity by requiring that Fe and FX vanish
on the spin-0 horizon relates the coefficients for the near-
horizon expansion of eðrÞ, e0ðrÞ, XðrÞ, and X0ðrÞ. All the
coefficients are fixed other than a dependence on a single
additional, undetermined parameter μ, which exists in
addition to rs0 since we have at this point only imposed
regularity at the spin-0 horizon but have not specified the
asymptotic behavior of the solutions. As mentioned pre-
viously, only by requiring Lifshitz asymptotics and spin-0
horizon regularity are we able to reduce the solutions to a
one-parameter family. We start the evolution at r ¼ rs0ð1�
Oð10−5ÞÞ which yields an initial accuracy in eðrÞ, e0ðrÞ,
XðrÞ and X0ðrÞ vs the exact solution of Oð10−20Þ.

B. Numerical evolution and normalization

Given the initial values Xðrs0Þ, rs0 , and μ we evolve
outwards from r ¼ rs0ð1�Oð10−5ÞÞ respectively with
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MATHEMATICA. For generic values of μ the exterior solution
eventually significantly deviates from the Lifshitz geometry
and, in fact, breaks down at some radius rdev. We search in
the μ parameter space, which changes e0ðrs0Þ and X0ðrs0Þ, to
maximize rdev. In principle, by tuning μ arbitrarily finely
we can push rdev out to infinity and land on the “exact”
asymptotically Lifshitz solution. In practice we tune μ until
rdev is at least a factor of 104 larger than rs0 . This gives a
very accurate asymptotic Lifshitz region. It also, as prom-
ised, reduces the solution space to a one-parameter family
controlled by rs0. Evolving inwards with this μ then
determines rUH.
The initial value of XðrÞ controls the overall scaling of

eðrÞ, and XðrÞ in the solution. After each solution with
some initial rs0 has been found, we scale the asymptotic
solution such that the leading-order term in eðrÞ goes
exactly as r4.

C. Example solution

At the end of our procedure we have a full solution over
the entire spacetime for the functions eðrÞ and XðrÞ [and
hence all other functions with can be expressed in terms of
eðrÞ, XðrÞ and their derivatives] that is asymptotically
Lifshitz and possesses a universal horizon. The Lifshitz
normalized coefficients (i.e. dividing the coefficients by
their appropriate scaling in the globally Lifshitz case) for a
typical solution is given in Fig. 2. Note that numerical
evolution inside the universal horizon is possible in this
construction and indeed Fig. 2 shows the behavior of the
free metric and æther components inside but still near the
universal horizon. In principle, solutions can admit multiple
ðu · χÞ ¼ 0 hypersurfaces (cf. Ref. [10]). In such a case, the
outermost ðu · χÞ ¼ 0 hypersurface denotes the universal
horizon, as that is the surface that causally separates
asymptotic infinity from an interior region. Since we are
interested solely in the behavior of the “outside region” of
the spacetime up to the universal horizon, we have not
categorized the interior structure of our solutions in detail.

V. MASS AND THE FIRST LAW

For each numeric solution we fit the numerical solutions
for eðrÞ and XðrÞ by their asymptotic expansions in
Sec. III B out to fifth order in r−ðzþ1Þ. In particular, this
yields the corresponding coefficients f1, u1 and s1 in the
asymptotic solutions (40), and we find s1 and f1 to be zero
within the desired accuracy (thereby providing a consistency
check on the numerical evolutions). Thevalue ofu1 provides
thevalue of the dimensionful parameter rS hence allowing us
to compute the mass per unit length from Eq. (41) for each
one of the numerically constructed solutions.
We evaluate how the mass scales with the radius of the

universal horizon by calculating multiple numerical sol-
utions with different initial values of the spin-0/Killing
horizon and fitting the resulting rS and rUH values. In Fig. 3
we can see that up to a tiny numerical error, rS and hence
the mass per unit length M, homogeneously scale as r3UH.
This relation (i.e.M ∼ r3UH with the appropriate constant of
proportionality to be obtained from the plot of Fig. 3) is
essentially the “Smarr formula” [30,31] for the present
class of solutions.8

Since the mass is a homogeneous function of rUH a first
law of the form δM ¼ qδA, where δA ¼ δrUH and q ∝ r2UH
is guaranteed. Note that the homogeneity ofM with respect
to rUH is a nontrivial result as there is an extra scale, the
Lifshitz scale, involved and therefore there is no guarantee
of homogeneity a priori. Indeed, failure of homogeneity
occurs in asymptotically AdS solutions in D ¼ 1þ 3 [13].
In the D ¼ 1þ 3 case, the first law for the asymptotically
AdS solutions is of the form δM ¼ qδA, but q is a
nonhomogeneous and indeed nonanalytic function of
rUH [see Eq. (58) of Ref. [13]] without any obvious
thermodynamic interpretation. Therefore while one might
have expected that a similar failure of naive thermody-
namics happens in the Lifshitz case as well, since AdS can
be thought of simply as a z ¼ 1 Lifshitz spacetime, this
turns out to be incorrect. Rather, as we shall see below, the
Lifshitz solutions hold the possibility of a much more
natural thermodynamic interpretation.
If a thermodynamic interpretation of the first law for the

above Lifshitz solutions exists, the temperature of the
universal horizon must scale as r2UH. Previous work on
static, spherically symmetric universal horizon solutions
with flat asymptotics indicated that the temperature of the
universal horizon calculated locally using the tunneling
approach [17] is given by T ¼ ða · χÞUH=4π. By consider-
ing the peeling of nonrelativistic high-energy modes (those
with very high group velocity) near the universal horizon
[18], one can define an appropriate notion of surface
gravity, κUH ¼ ða · χÞUH=2, which yields the familiar rela-
tionship T ¼ κUH=2π. Since both constructions are local,

FIG. 2. Normalized metric and æther coefficients for an
asymptotically Lifshitz solution. Here c14 ¼ 1

2
, c13 ¼ 9

10
,

c2 ¼ − 161
180

, units are chosen such that lL ¼ 1, and the radius
of the spin-0/Killing horizon is rs0 ¼ 0.01. The radial location of
the universal horizon is rUH ≈ 0.008 in these units.

8See Ref. [32] for a more rigorous derivation of such relations
for the present class of theories.
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one would expect that they are independent of asymptotics
and the temperature in asymptotically Lifshitz solutions is
also proportional to ða · χÞUH. For the present case, we
therefore need ða · χÞUH ∝ r2UH as only with this scaling is it
possible to construct a first law of the standard form.
We show in Fig. 4 that ða · χÞUH has precisely the correct

scaling with r2UH to construct the first law. Therefore the
first law for asymptotically Lifshitz solutions is at least
compatible with a straightforward thermodynamic inter-
pretation. A full verification of thermodynamics for
Lifshitz solutions would, of course, require a calculation
of the temperature in this case as well. For now we merely
state that the first law of mechanics is compatible with such
a thermodynamic interpretation and that all indications are
that a first law of the form δM ¼ TδS, with T ∝ ða · χÞUH,
holds. We stress again that this is very different from the
asymptotically AdS case. The origin of this discrepancy
remains, at the moment, a mystery.

VI. CONCLUSION

We have analyzed and constructed a new class of
solutions in D ¼ ð1þ 2Þ-dimensional Hořava gravity
and Einstein-æther theory, namely those with universal
horizons and Lifshitz asymptotics. For at least z ¼ 2
asymptotics there is a first law of mechanics that fits nicely
with what is known about universal horizon thermody-
namics. This is in contrast to the D ¼ 1þ 3 asymptotically

AdS case, where the first law does not have a straightfor-
ward thermodynamic interpretation. Of course, one still
needs to calculate a temperature for Lifshitz solutions to
complete a thermodynamical relationship, which we leave
for future work. If such a thermodynamics holds, these
solutions would then provide an interesting playground for
explorations of Lifshitz holography. The structure of both
the asymptotic and near-horizon regions is dramatically
different from what is found in the usual AdS3=CFT2

construction—neither region seemingly has a symmetry
algebra appropriate to a (relativistic) conformal field theory.
Therefore neither the state-counting approaches used at the
boundary in D ¼ 1þ 2 gravity for BTZ black holes nor
near Killing horizons in higher dimensions, which rely on
establishing invariance under a Virasoro algebra, naively
apply. We shall return to this question of calculating the
entropy of a universal horizon using Lifshitz algebras in
future work.
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