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It is shown that classical spaces with geometries emerge on boundaries of randomly connected tensor
networks with appropriately chosen tensors in the thermodynamic limit. With variation of the tensors the
dimensions of the spaces can be freely chosen, and the geometries—which are curved in general—can be
varied. We give the explicit solvable examples of emergent flat tori in arbitrary dimensions, and the
correspondence from the tensors to the geometries for general curved cases. The perturbative dynamics in
the emergent space is shown to be described by an effective action which is invariant under the spatial
diffeomorphism due to the underlying orthogonal group symmetry of the randomly connected tensor
network. It is also shown that there are various phase transitions among spaces, including extended and
point-like ones, under continuous change of the tensors.
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I. INTRODUCTION

The construction of quantum gravity is one of the most
fundamental problems in theoretical physics. Attempts to
solve this problem so far suggest that the classical notion of
spacetime described by general relativity should somehow
be replaced with a new one suitable for quantization. The
classical notion—namely, the continuous entity of space-
time with geometries—should appear as an infrared effec-
tive description of the new picture. The main subject of this
paper is to explicitly show that the classical notion of
spaces with geometries appears as an emergent phenome-
non from the dynamics of the randomly connected tensor
network. Here, the randomly connected tensor network is
defined as a random summation of tensor networks: tensors
are treated as controllable external variables, while con-
nections of tensors are randomly summed over. We will
show that spaces with geometries appear on boundaries of
randomly connected tensor networks, if tensors are appro-
priately chosen. By varying the tensors, one can freely
choose the dimensions of the spaces, and can also vary the
geometries. We will explicitly give the correspondence
from the tensors to the geometries for general curved cases.
The background motivation for this work comes from the

fact that the randomly connected tensor network is tightly
related to a tensor model in the Hamilton formalism. Tensor
models [1–3] have originally been introduced to describe
D > 2 simplicial quantum gravity as extensions of the
matrix models which successfully describe the D ¼ 2

simplicial quantum gravity.1 Though the original tensor
models suffer from some difficulties, the colored tensor
models [6], which appeared later with improvements, have
been extensively analyzed [7]. However, the analyses so
far have shown that the dominant configurations do not
generate realistic structures comparable to our actual
spacetime: branched polymers, for example, dominate
[7–9] in the simplest settings. On the other hand, the
numerical analyses of D > 2 simplicial quantum gravity
have shown that the Lorentzian models called causal
dynamical triangulations (CDT) successfully generate
de-Sitter-like spacetimes like our actual Universe [10],
while the Euclidean ones do not.2 This success of CDT
motivated one of the present authors to formulate a tensor
model in the Hamilton formalism [13,14], which we call
the canonical tensor model (CTM). CTM has been shown
to have various interesting properties. It is unique under
reasonable assumptions [14], and has tight connections
with general relativity [15,16]. In addition, it has connec-
tions to the randomly connected tensor network [17,18]: the
Hamiltonian of CTM generates a sort of a renormalization
group flow of the randomly connected tensor network
[19,20]. The randomly connected tensor network is also
useful in constructing the exact physical states of the
quantized version of CTM [21,22].
So far, a number of network-based models for emergent

space or spacetime have been proposed, e.g., spin
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1Interestingly, a matrix-model-like approach to D ¼ 3
simplicial quantum gravity has recently appeared [4,5].

2When coupling many U(1) fields, the authors of Ref. [11]
found the promise of a phase transition higher than first order,
which however is in conflict with the result in Ref. [12].
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networks [23], loop quantum gravity (see, e.g., Ref. [24]),
causal sets [25,26], energetic causal sets [27,28], quantum
graphity [29–31], the information-bits model by
Trugenberger [32,33], Wolfram’s evolving networks
[34], D’Ariano-Tosini causal networks [35], structurally
dynamic cellular networks (see, e.g., Ref. [36]), lumpy
networks (see, e.g., Ref. [37]), a complex quantum
network manifold [38,39], and network geometry with
flavor [40]. All the above constructions capture aspects of
geometry from the entire parts of networks. In contrast, in
our model it is not the bulk, but rather the boundaries of
networks that provide classical geometries.
This paper is organized as follows. In Sec. II, we define

the randomly connected tensor network, and explain our
method to analyze it, which has been developed in
Refs. [18–20]. In Sec. III, we explain some difficulties in
viewing the randomly connected tensor network itself as a
space, and argue that its boundary is more qualified. In
Sec. IV, we explicitly give such tensors that generate flat
spaces of arbitrary dimensions on the boundaries of the
randomly connected tensor networks. In Sec. V, we consider
variations of the tensors from those of the flat spaces to
generate curved spaces. We explicitly give the correspon-
dence from the tensors to the geometries of the spaces. In
Sec. VI, we study phase transitions in which the flat spaces
break down to point-like spaces and others. The final section
is devoted to the summary and discussions. In the Appendix,
we describe a covariant structure under the spatial diffeo-
morphism in the continuum description of the randomly
connected tensor network, which is used in Sec. V.

II. RANDOMLY CONNECTED
TENSOR NETWORK

We consider a real symmetric rank-three tensor, Pabc,
where a; b; c ¼ 1; 2;…; N. As a tensor product of Pabc ’s
we introduce the following rank-3n tensor:

Wa1a2���a3nðPÞ ¼ Pa1a2a3Pa4a5a6 � � �Pa3n−2a3n−1a3n ; ð1Þ

where n is an even integer. Contracting all indices in
Eq. (1) in pairs by 3

2
n delta functions δaiaj , we construct

OðNÞ-invariant quantities. We denote such OðNÞ-invariant
quantities by WgðPÞ where g specifies one way of con-
tracting all indices in pairs. In fact, one can consider g as a
regular network consisting of n three-vertices. Namely, we
introduce n trivalent vertices and assign Pabc to each vertex
in such a way that three lines emerging from a single
trivalent vertex carry the indices, a, b, and c, respectively,
and connect them by lines if the indices are contracted. In
this way, one can construct a regular network g allowing
self-contractions. The self-contraction means that two of
the three lines originating from a single vertex are con-
nected by a line. See Fig. 1 for an example of the networks.
With this understanding, we define the partition function as
a sum over all networks g:

ZnðPÞ ¼
X
g

1

jAutðgÞjWgðPÞ; ð2Þ

where jAutðgÞj is the order of the automorphism group of g.
We call the model defined by the partition function (2)
randomly connected tensor networks, and the randomness
comes from the sum over all networks with the tensor
assigned to each vertex. In fact, one can choose Pabc so that
the partition function (2) describes a statistical system on
random networks [17–19], such as the Ising model on
random networks.
For convenience, we rewrite the partition function (2) in

terms of the real integral [18–20]

ZnðPÞ ¼
1

n!

Z
∞

−∞

dNφ

ð2πÞN=2

�
1

3!
Pφ3

�
n
e−

1
2
φ2

; ð3Þ

where φaða ¼ 1; 2;…; NÞ are real integration variables,
and we have used the shorthand notations given by

Pφ3 ≔ Pabcφaφbφc; φ2 ≔ φaφa; dNφ ≔
YN
a¼1

dφa:

ð4Þ

Here, the repeated indices are assumed to be summed
over, and hereafter we will use this convention for the
sum. Applying Wick’s theorem, one can confirm that the
partition functions, (2) and (3) coincide. The partition
function (3) is invariant under the OðNÞ transformation of P,

P0
abc ¼ La

a0Lb
b0Lc

c0Pa0b0c0 ; L ∈ OðNÞ: ð5Þ

Let us consider the thermodynamic limit of the randomly
connected tensor network, in which the size of the networks
grows to infinity, n → ∞. It can be shown that the partition
function (3) in this limit can be exactly computed by a
mean-field method [17–19]. To see this, we implement the
rescaling φa → φ0

a ¼
ffiffiffiffiffiffi
2n

p
ϕa, and correspondingly the

partition function (3) becomes

ZnðPÞ ¼ Cn

Z
∞

−∞
dNϕe−nfðP;ϕÞ; ð6Þ

where

FIG. 1. An example of a tensor network with n ¼ 6.
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Cn ¼
ð2nÞ3n2
n!ð3!Þn

�
n
π

�N
2

; ð7Þ

fðP;ϕÞ ¼ ϕ2 −
1

2
log ½AðϕÞ2�; with AðϕÞ ¼ Pϕ3: ð8Þ

From Eq. (6), in the thermodynamic limit n → ∞ the
steepest descent method3 can be applied, and the partition
function is determined by the neighborhood of the mini-
mum of fðP;ϕÞ as a function of ϕ. Thus the free energy per
vertex in the thermodynamic limit can be defined as

fðPÞ ≔ − lim
n→∞

1

n
ln

�
ZnðPÞ
Cn

�
¼ min

ϕ
fðP;ϕÞ ¼ fðP;ϕminÞ:

ð9Þ

In the expression above we have removed the numerical
factor Cn from the definition of the free energy, since this
simply gives a P-independent shift of the free energy.
The minimum ϕ ¼ ϕmin is one of the solutions ϕ ¼ ϕ̄ to the
stationary condition,

∂fðP;ϕÞ
∂ϕa

����
ϕ¼ϕ̄

¼ 2ϕ̄a −
3ðPϕ̄2Þa
Aðϕ̄Þ ¼ 0; ð10Þ

where we have used the following shorthand notation:

ðPϕ2Þa ≔ Pabcϕbϕc: ð11Þ

Multiplying Eq. (10) by ϕ̄, one obtains

ϕ̄2 ¼ 3

2
: ð12Þ

When simplifying expressions, Eq. (10) is useful in the
form

ðPϕ̄2Þa ¼
2

3
Aðϕ̄Þϕ̄a: ð13Þ

Note that ϕ̄ and ϕmin are generally dependent on P, but we
suppress the argument for notational simplicity.
In general, in the vicinities of first-order phase tran-

sition surfaces, not only the absolute minimum of the free
energy but also the stable local minima are physically
relevant. The local stability of each stationary point can
be checked by evaluating the positivity of the Hessian,
i.e., the matrix of the second-order derivatives of
fðP;ϕÞ with respect to ϕ evaluated at ϕ ¼ ϕ̄. Using
Eq. (13) to simplify the expression, the Hessian is
obtained as

fð2Þab ≔
∂2fðP;ϕÞ
∂ϕa∂ϕb

����
ϕ¼ϕ̄

¼ 2

�
δab þ 2ϕ̄aϕ̄b −

3ðPϕ̄Þab
Aðϕ̄Þ

�
:

ð14Þ

One of its eigenvectors is ϕ̄ with eigenvalue 4:

fð2Þab ϕ̄b ¼ 2

�
ϕ̄a þ 2ϕ̄2ϕ̄a −

3ðPϕ̄2Þa
Aðϕ̄Þ

�
¼ 4ϕ̄a; ð15Þ

where we have used Eqs. (12), (13), and (14).

III. BOUNDARIES OF RANDOM NETWORKS
AS SPACES

It is not an easy question how random networks can
be regarded as spaces. The most naive manner of
identification would be to regard vertices as points forming
a space and connecting lines as representations of local
structures of their neighborhoods. In fact, this is the
common perspective used in lattice theories. However, this
lattice-like way of viewing random networks as spaces
seems to have at least the following difficulties.

(i) Difference of structures between random networks
and our space: Random networks do not seem to have
similar structures as our actual space, which is smooth,
respects locality, and has three dimensions. In fact, it is
known that in the thermodynamic limit random net-
works with a fixed degree of vertices effectively
approach the Bethe lattice, which is tree-like [17].
This is far from the actual structure of our space.

(ii) Finitecorrelationlengths:TheIsingmodelonrandom
networks with a finite degree of vertices has a finite
correlation length even on the second-order phase
transitionpoint in the thermodynamic limit [17].Since
this seems tobeanoutcomeof the tree-likestructureof
the Bethe lattice in the thermodynamic limit, the
finiteness of correlation lengths will generally hold
in the other statistical systems on random networks.4

This means that it is not possible to get any modes
which propagate infinitely far. Therefore, it is not
plausible to obtain physically sensible theories for the
actual space from such a framework.

(iii) Difficulty in labeling positions in random networks5:
In our framework, each vertex is just a representation
of a tensor P. Therefore, the vertices are basically all
the same and cannot be distinguished from each other

3In real-valued cases like that considered here, the method is
also called the Laplace method.

4Correlation lengths are also finite in random complex
networks with uncorrelated degree distributions. See Sec. VI.
C. 4 of Ref. [17] for further details. Thus, it seems a nontrivial
issue how infinite correlation lengths can be realized in complex
networks.

5N.S. would like to thank N. Kawamoto for stressing this
difficulty in our framework at a workshop, “Discrete approaches
to dynamics of fields and spacetime,” held in Okayama, Japan in
September, 2015.
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in a well-defined way in the random sum over
networks. This difficulty in labeling the vertices would
be an obstacle in obtaining any classical geometries.

In view of these difficulties, the naive picture of
identifying randomly connected tensor networks as spaces
may not be the right approach. In particular, the last
difficulty above suggests that we should more seriously
consider what are the appropriate quantities to observe in
randomly connected tensor networks. The natural physi-
cally relevant quantities of the system defined by the
partition function (3) are the correlation functions of φ:

hφa1φa2 � � �φaki ¼
1

Zn

Z
∞

−∞

dNφ

ð2πÞN=2 φa1φa2 � � �φak

1

n!

×

�
1

3!
Pφ3

�
n
e−

1
2
φ2

: ð16Þ

Applying Wick’s theorem as before, the correlation func-
tion above corresponds to the summation over tensor
networks with external lines having fixed indices (see
Fig. 2). In other words, this is the random summation
over tensor networks with fixed configurations on their
boundaries. So, we are pursuing the possibility of regarding
boundaries of random networks as spaces rather than
networks themselves, or, in other words, the possibility
that “points” labeled by the index set on the boundaries
form a space. Note that, due to the random summation over
networks, the local structure of neighborhoods on such
boundaries may be significantly different from that of
networks themselves. This difference may solve the geo-
metrical difficulties mentioned in the first and second items
of the list above. In the rest of this paper, we will show that,
by appropriate choices of the tensor P, the correlation
functions behave as if φ is a field in spaces with regular
properties, i.e., the spaces are smooth, respect locality,6 and
have certain dimensions.
To compute the correlation function (16) in the thermo-

dynamic limit, we investigate the partition function.

To begin, we implement the rescaling φ → φ0 ¼ ffiffiffiffiffiffi
2n

p
ϕ

as before, and perturb ϕ around one of the local minima ϕ̄
defined by Eq. (10) as

ϕa ¼ ϕ̄a þ
vaffiffiffi
n

p : ð17Þ

Using Eq. (17), the partition function (6) for large n can be
expressed as

Cnn−
N
2e−nfðP;ϕ̄Þ

Z
∞

−∞
dNve−

1
2
fð2Þab vavbþOðv3ffiffi

n
p Þþ���: ð18Þ

From Eq. (18) one can see that, in the thermodynamic
limit, the system is described by a free theory of v. For
instance, the connected part of the two-point correlation
function of φ is given by

hφaφbicon ¼ hφaφbi − hφaihφbi
¼ 2hvavbicon
¼ 2fð2Þ−1ab þOðn−1Þ; ð19Þ

where fð2Þ−1 is the inverse matrix of fð2Þ. Here we have also
used that, from Eq. (18), the one-point function is sub-
dominant, hvai ∼Oðn−1=2Þ. Higher-order correlation func-
tions behave similarly as a free theory in the leading order.
Thus, the challenge is whether we can find appropriate

P’s so that the correlation function (19) behaves in the
same manner as that in a regular space. This task contains
the dynamical complexity that the minimum solution ϕ̄
depends nontrivially on P. In Sec. IV we will give exactly
solvable cases representing flat D-dimensional tori, and
in Sec. V we will treat spaces with general metrics. The
dynamical complexity concerning the stability of the spaces
will be discussed in Sec. VI.

IV. FLAT SPACES

In this section, we explicitly give P’s which realize
arbitrary dimensional flat spaces. The criterion for the
emergence is whether the correlation function (19) is
similar to that in a flat space. This is equivalent to showing
that the eigenvalues and eigenvectors of fð2Þ are similar to
those in a flat space. We will first discuss the one-dimen-
sional case—circles—and then consider D-dimensional
flat tori.

A. Circles

We parametrize Pabc as

Pabc ¼ PL
abc þ ξðPL

addδbc þ PL
bddδca þ PL

cddδabÞ; ð20Þ

where ξ is a real parameter, and PL
abc is a local part of the

tensor. The components of the local part are given by

FIG. 2. The graphical representation of the correlation function
hφa1φa2 � � �φaki.

6However, as we will show later, there exists one nonlocal
condition that a single mode of φ (the zero mode in a rough sense)
becomes supermassive. All the other modes are not conditioned.
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PL
i;i;i ¼ 1; PL

i;iþ1;iþ1 ¼ PL
i;i;iþ1 ¼ κ; i ¼ 1; 2;…; N:

ð21Þ

Here we use latin indices i, j, k to express each component
of a tensor, and the repetition of them does not imply a sum.
These indices are identified in modulo N, namely N ∼ 0, to
consider a circle composed of N “points.” κ is a real
parameter. Then,

Piii ¼ 1þ 3γN;

Pijj ¼
�
κ þ γN i ∼ j;

γN otherwise;

Pijk ¼ 0; ð22Þ

where i, j, k are always supposed to be different from each
other, and γN ¼ ξ

P
jP

L
ijj ¼ ξð1þ 2κÞ. The symbol i ∼ j

denotes a relationship of i being j’s neighbor, which, in this
case, means i ¼ j� 1 (modulo N). As can be seen in
Eq. (22), the term proportional to ξ in Eq. (20) generates a
nonlocal part of P.
Because of the discrete translational symmetry in P, a

solution to the stationary condition (10) is given by

ϕ̄�
a ¼ �

ffiffiffiffiffiffiffi
3

2N

r
: ð23Þ

This solution is stable as a local minimum, when the spectra
being obtained below are all positive. On the other hand,
whether this is an absolute minimum or not is a complex
problem, and will be studied in Sec. VI.
For the solution (23), it is not hard to calculate that

Aðϕ̄�Þ ¼ �N−1=2
�
3

2

�
3=2

ð1þ 6κ þ 3γÞ; ð24Þ

where γ ¼ NγN .
For the convenience of our future discussion, we

introduce two symbols. ~δab equals 1 when a ∼ b, and
vanishes otherwise. 1ab constantly equals unity. Using
these symbols, we get

Pabcϕ̄
�
c ¼ �N−1=2

�
3

2

�
1=2

×

�
ð1þ 2κ þ γÞδab þ 2κ ~δab þ

2γ

N
1ab

�
: ð25Þ

Let us introduce

p ¼ 1þ 2κ þ γ

1þ 6κ þ 3γ
; q ¼ 4κ

1þ 6κ þ 3γ
;

r ¼ 2γ

1þ 6κ þ 3γ
: ð26Þ

They satisfy pþ qþ r ¼ 1. Then the Hessian (14) can be
computed as

fð2Þab ¼ ð2 − 4pÞδab − 2q~δab þ
6 − 4r
N

1ab: ð27Þ

Now, let us consider discrete analogues of plane waves,
ψ ðlÞ
a ¼ ei

2πl
N a. We find that they are the eigenvectors of fð2Þ:

fð2Þab ψ
ðlÞ
b ¼

�
2 − 4p − 4q cos

2πl
N

�
ψ ðlÞ
a ;

for l ¼ 1; 2;…; N − 1; ð28Þ

and fð2Þab ψ
ð0Þ
b ¼ fð2Þab 1b ¼ 4 · 1a. Thus, naming

Λ ¼
�
λl ¼ 2 − 4p − 4q cos

2πl
N

����l ¼ 1; 2;…; N − 1

	
;

ð29Þ

the spectra of fð2Þab are represented by the set Λ∪f4g.
An example of the spectra is plotted in Fig. 3.
As can be seen in the example, the spectra of fð2Þ are

similar to those of ∇2 þm2 in one dimension, except that
the zero mode is supermassive and that higher spectra are
deformed. Thus, the minimum of these spectra should be
regarded as the rest mass, and an analogue of ∇2 on the
emergent space can be evaluated by subtracting the mass
from these spectra. Then, one way to understand the
geometric property in general is to compute the spectral
dimension defined by

DðσÞ≡ −2
σ

Σ
∂Σ
∂σ ; ð30Þ

where

Σ ¼ e−ð4−λminÞσ þ
X
λ∈Λ

e−ðλ−λminÞσ; ð31Þ

and λmin ¼ minðinfðΛÞ; 4Þ. For different p and q, we can
show numerical computations as examples, e.g., Fig. 4.

FIG. 3. An example of the spectra (29) for N ¼ 20, p ¼ 0,
q ¼ 1

4
.
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In the fine case of the figure, we certainly obtain DðσÞ ∼ 1
in the large-scale region σ ≫ 1.
From the figure we realize that 4 should not be the

minimum; otherwise, dimensions blow up as N gets bigger.
Noticing that the minimum of the set Λ is given by
2 − 4p − 4jqj when N goes to infinity, one can immedi-
ately rewrite

lim
N→∞

2π

N
Σ ¼ lim

N→∞

XN−1

n¼1

2π

N
· exp

�
−4jqjσ þ 4qσ cos

2πn
N

�

¼ e−4jqjσ
Z

2π

0

dθe4qσ cos θ ¼ 2πe−4jqjσI0ð4jqjσÞ;

ð32Þ

where I0 is the modified Bessel function of the first kind.
Therefore the spectral dimension DðσÞ has an asymptotic
behavior as

D1ðσÞ≡ lim
N→∞

DðσÞ

¼ −
2σ

e−4jqjσI0ð4jqjσÞ
d
dσ

ðe−4jqjσI0ð4jqjσÞÞ

¼ 2τ

�
1 −

I1ðτÞ
I0ðτÞ

�
; ð33Þ

where τ ¼ 4jqjσ. One can check that D1ðσÞ behaves in the
same manner as the example in the left panel of Fig. 4.
The minimum of the spectrum should be no less than

zero for the stability of the solution (23) under small
perturbations. On the other hand, from the previous
discussion, a proper result also requires the minimum be
in the set Λ instead of being 4. Together they give the
restriction of

0 ≤ infðΛÞ ≤ 4: ð34Þ

When N goes to infinity, this becomes

0 ≤ 2 − 4p − 4jqj ≤ 4

⇒ 1 ≥ 2pþ 2jqj ≥ −1; ð35Þ

which obviously depends on the sign of 1þ 6κ þ 3γ.
Define s ¼ sgnð1þ 6κ þ 3γÞ. It is clear that j1þ 6κþ
3γj ¼ sð1þ 6κ þ 3γÞ > 0, and thus s2 ≡ 1. Then Eq. (35)
can be rewritten as

sγ ≥ sfsðκÞ≡ sð1 − 2κÞ þ 8jκj; ð36Þ

sγ ≥ sgsðκÞ≡ −s
�
3

5
þ 2κ

�
−
8

5
jκj; ð37Þ

sγ > shsðκÞ≡ −s
�
1

3
þ 2κ

�
: ð38Þ

We understand the following.
(1) s ¼ þ:

We have fþ > hþ > gþ for any κ, and thus the
restriction is given by γ ≥ fþ.

(2) s ¼ −:
In the area jκj > 1=6, f− < h− < g−; thus, the

restriction is γ ≤ f−. In the area jκj < 1=6,
f− > h− > g−; thus, the restriction is γ ≤ g−. When
jκj ¼ 1=6, f− ¼ g− ¼ h−; however, we know γ
should never be equal to h−. Therefore, the restric-
tion is given by γ < 0 and γ < −2=3 for κ ¼ −1=6
and κ ¼ 1=6, respectively.

Taking the form of γ ¼ Nξð1þ 2κÞ into our final
consideration, and noticing that the sign of 1þ 2κ also
matters, we present Table I and Fig. 5 describing the
restriction in total.

FIG. 4. The behavior of DðσÞ is sensitive to the value of infðΛÞ. In the left panel, 2 − 4p − 4jqj is positive and less than 4, and
everything is fine. In the right panel, 2 − 4p − 4jqj is greater than 4, and it is ill behaved.

HUA CHEN, NAOKI SASAKURA, and YUKI SATO PHYSICAL REVIEW D 93, 064071 (2016)

064071-6



B. Flat D-dimensional tori

For simplicity, we still assume the localized PL is
given by

PL
I;I;I ¼ 1; PL

I;I;Iþej ¼ PL
I;Iþej;Iþej ¼ κD; ð39Þ

where I ¼ ði1; i2;…; iDÞ is a vector from a module defined
on the ring Z=NZ, characterizing a point on the
D-dimensional compact lattice. N D ¼ N describes how
finely the structure is divided. The ej’s are the basis of this
module. In this case, if J ¼ I � ej, we say J is a neighbor
of I. Again, we denote this relation by J ∼ I.
We generate the total tensor Pabc via Eq. (20):

PI;I;I ¼ 1þ 3γD; ð40Þ

PI;J;J ¼
�
κD þ γD J ∼ I;

γD otherwise;
ð41Þ

PI;J;K ¼ 0; ð42Þ

where γD ¼ ξ
P

JP
L
IJJ ¼ ξð1þ 2DκDÞ.

Assuming that the field ϕ̄ in Eq. (23) with a uniform
value on every point is the minimum of fðP;ϕÞ, we
have

Pabcϕ̄c ¼ N−1=2

ffiffiffi
3

2

r
½ð1þ 3γD þ 2DðκD þ γDÞ

þ ðN − 2D − 1ÞγDÞδab
þ 2ðκD þ γDÞ~δabþ2γDð1ab − δab − ~δabÞ�

¼ N−1=2

ffiffiffi
3

2

r
½ð1þ 2DκD þ NγDÞδab

þ 2κD ~δab þ 2γD1ab�; ð43Þ

and

Aðϕ̄Þ ¼ N−1=2
�
3

2

�
3=2

ð1þ 6DκD þ 3NγDÞ: ð44Þ

Let us introduce p, q, r in the same form as Eq. (26) with
κ ¼ DκD and γ ¼ NγD. We get

fð2Þab ¼ ð2 − 4pÞδab −
2q
D

~δab þ
6 − 4r
N

1ab: ð45Þ

Now consider the vectors Ψn̂
J ¼ ei

2πn̂
N ·J, where both n̂

and J are D-component vectors. We can calculate that

X
J

fð2ÞIJ ·Ψn̂
J ¼ ð2 − 4pÞei2πn̂N ·I

−
2q
D

XD
j¼1

ðei2πn̂N ·ðIþejÞ þ ei
2πn̂
N ·ðI−ejÞÞ

þ 6 − 4r
N

X
J

ei
2πn̂
N ·J; ð46Þ

where the second term on the right-hand side can be
rewritten as

2q
D

XD
j¼1

ðei2πn̂N ·ðIþejÞ þ ei
2πn̂
N ·ðI−ejÞÞ ¼ 4q

D
ei

2πn̂
N ·I

XD
j¼1

cos
2πnj
N

:

ð47Þ

The third term is

TABLE I. Here, Cu;vðκÞ ¼ uþ v
1þ2κ. The additional star mark means the equivalence to that restriction cannot be

obtained.

κ ð−∞;− 1
2
Þ ð− 1

2
;− 1

6
Þ − 1

6
ð− 1

6
; 0Þ ð0; 1

6
Þ 1

6
ð1
6
;þ∞Þ

Nξ ≥ Cu;vðκÞ u 3 −5 −5 −5 3 3 3
v −2 6 6 6 −2 −2 −2

Nξ ≤ Cu;vðκÞ u −5 3 0� −9=5 −1=5 −1=2� −5
v 6 −2 0 6=5 −2=5 0 6

FIG. 5. The shaded regions represent the allowed region (35).
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X
J

ei
2πn̂
N ·J ¼

X
J

YD
k¼1

ei
2πnk
N Jk

¼
YD
k¼1

XN
j¼1

ei
2πnk
N j

¼
�
N n̂ ¼ 0;

0 otherwise:
ð48Þ

Thus, when n̂ ≠ 0, we get N − 1 eigenvalues given by

fð2ÞabΨ
n̂
b ¼

�
2 − 4p −

4q
D

XD
j¼1

cos
2πnj
N

�
Ψn̂

a: ð49Þ

And when n̂ ¼ 0, we have

fð2ÞabΨ
n̂
b ¼ fð2Þab 1b ¼ 4 · 1a: ð50Þ

Again, we have the spectra described as
ðΛDnf2 − 4p − 4qgÞ∪f4g, where

ΛD ¼
�
2 − 4p −

4q
D

XD
j¼1

cos
2πnj
N

����nj ¼ 0; 1;…;N − 1

	
:

ð51Þ
Following the same process as in the one-dimensional

case, we have 0 ≤ λmin ¼ 2 − 4p − 4jqj ≤ 4. The spectral
dimension is still defined as Eq. (30). Then we have

lim
N→∞

�
2π

N

�
D
Σ¼ lim

N→∞

�
2π

N

�
DX
λ∈ΛD

eðλ−λminÞσ

¼ lim
N→∞

e−4jqjσ
YD
j¼1

X
fnjg

2π

N
exp

�
4q
D

σ cos
2πnj
N

�

¼ e−4jqjσ
YD
j¼1

lim
N→∞

XN−1

n¼0

2π

N
exp

�
4q
D

σ cos
2πn
N

�

¼ e−4jqjσ
�
2πI0

�
4jqj
D

σ

��
D
: ð52Þ

Therefore, in the limit N → ∞, the spectral dimension
behaves as

DðσÞ≡ lim
N→∞

DðσÞ ¼ D ·D1ðσ=DÞ: ð53Þ

Since λmin and p, q, r all take the same form as in the
one-dimensional case, the restriction condition for ξ listed
in Table I still applies with κ ¼ DκD.

V. SPACES WITH GENERAL METRICS

In Sec. IV we have shown that the two-point correlation
function, i.e., fð2Þ−1ab , indicates the emergence of Euclidean

flat spaces on boundaries of networks. Putting the argument
forward, we try to read off metrics for more general
emergent spaces when N is large. To begin, we parametrize
Pabc in the same way as in Eq. (21) with a more general
PL
abc, where P

L
abc is an almost local part of the tensor such

that PL
abc ≠ 0 only for a ∼ b ∼ c. (In this section, the

symbol ∼ is used to represent nearby points as well as
the same point, which is slightly more general than the
usage in Sec. IV.) The strategy is that we will compute the
quadratic term of v in Eq. (18) to extract a metric in an
effective field theory in a formal continuum limit.
To set aside a supermassive mode similar to the zero

mode for the flat case in Sec. IV, we assume perturbations v
around the vacuum ϕ̄ to satisfy the constraint

vaϕ̄a ¼ 0: ð54Þ
This is a nonlocal kind of constraint, since (in the present
general case as well) we expect that ϕ̄a takes nonvanishing
values for the entire range of a. This nonlocal constraint
would not ruin the significance of our model, since it would
be impossible for a local observer to detect the existence of
such a single nonlocal constraint when N is large. Then the
contraction of va with the Hessian (14) is given by

fð2Þab vavb ¼
�
2 −

6ξ

Aðϕ̄ÞP
L
bddϕ̄b

�
vava −

6

Aðϕ̄ÞP
L
abcϕ̄avbvc:

ð55Þ
When N → ∞, we implement the formal continuum

limit:

PL
abc ⇒ PLðx; y; zÞ;
ϕ̄a ⇒ ϕ̄ðxÞ;
va ⇒ vðxÞ;
X
a

⇒
Z

dDx; ð56Þ

where the discrete labels a, b, c have been replaced by
the continuous coordinates x; y; z ∈ RD, respectively.
Although PLðx; y; zÞ is a trilocal function, by definition
PLðx; y; zÞ ¼ 0 unless x ∼ y ∼ z. In other words,
PLðx; y; zÞ can be regarded as a distribution concentrated
around x ∼ y ∼ z, and a moment expansion (which was
introduced in another context in Ref. [16]) will give a good
approximation:

Z
dDydDzPLðx; y; zÞf1ðxÞf2ðyÞf3ðzÞ

≅ αf1f2f3 þ βμf1∂μðf2f3Þ

þ 1

2
γμνf1ðf2∂μ∂νf3 þ f3∂μ∂νf2Þ

þ ~γμνf1∂μf2∂νf3 þ � � � ; ð57Þ
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where f1, f2, and f3 are test functions, α, βμ, γμν, and ~γμν

are the moments, the argument x is suppressed in the last
line for brevity, and the dots represent higher moments that
are neglected in the present analysis. Due to the symmetry
of PLðx; y; zÞ under the exchange of its arguments x, y, z,
the moments are not independent and satisfy [16]

βμ ¼ 1

2
∂νγ

μν; ~γμν ¼ 1

2
γμν: ð58Þ

As has been shown in Ref. [16], the OðNÞ invariance (5)
of the randomly connected tensor network implies that the
formal continuum limit of the system is invariant under the
spatial diffeomorphism. The spatial diffeomorphism is such
that, after the formal replacement a ⇒ x, a vector, say fa,
becomes a scalar half-density fðxÞ. Therefore the test
functions above should be treated as scalar half-densities,
and the moments defined above are not covariant. In order
to make the transformation property transparent, let us
introduce a symmetric two-tensor gμν, which will shortly be
related to the moments, and rewrite the expansion (57) asZ

dDydDzPLðx; y; zÞf1ðxÞf2ðyÞf3ðzÞ

≅ αcf1f2f3 þ βμcf1∇μðf2f3Þ

þ 1

2
γμνc f1ðf2∇μ∇νf3 þ f3∇μ∇νf2Þ

þ ~γμνc f1∇μf2∇νf3 þ � � � ; ð59Þ
where ∇μ is the covariant derivative associated with gμν,
and αc, β

μ
c, and γμνc are the covariant moments. Below, we

will shortly see that gμν actually plays the role of a metric

in an effective action. In parallel with Eq. (58), we also
have

βμc ¼ 1

2
∇νγ

μν
c ; ~γμνc ¼ 1

2
γμνc : ð60Þ

As shown in the Appendix, the covariant moments are just
given by the linear combinations of the moments above up
to the higher-order corrections neglected in the present
analysis, and therefore the two descriptions (57) and (59)
are equivalent up to the order.
By using these covariant properties, it is possible to

rewrite the continuum limit of v, ϕ̄, and the covariant
moments αc, γ

μν
c in the following covariant manner:

v ¼ g1=4σ1; ϕ̄ ¼ g1=4σ2; αc ¼ g−1=4σ3;

γμνc ¼ g−1=4gμνσ2; ð61Þ

where we have introduced scalars σiði ¼ 1; 2; 3Þ, and g is
the determinant of the metric gμν. Here, the vectors v and ϕ̄
are rewritten as scalar half-densities, and the weights of αc
and γc are determined from the invariance of Eq. (59). Note
also that we have related gμν (which was initially arbitrary)
with γμν in a covariant manner, and the arbitrariness of the
Weyl rescaling of gμν has been fixed so that7

1

ϕ̄
γμνc ¼ g−1=2gμν: ð62Þ

Let us apply the formal continuum limit (56) to Eq. (55),
using Eqs. (59) and (61). The second term becomes

PL
abcϕ̄avbvc ⇒

Z
dDxdDydDzPLðx; y; zÞϕ̄ðxÞvðyÞvðzÞ

¼
Z

dDx

�
αcϕ̄v2 þ ϕ̄ð∇νγ

μν
c Þv∇μvþ

1

2
ϕ̄γμνc ð∇μvÞð∇νvÞ þ ϕ̄vγμνc ∇μ∇νvþ � � �

�

¼
Z

dDx

�
αcϕ̄v2 −

1

2
ϕ̄γμνc ∇μv∇νv − vγμνc ∇μv∇νϕ̄þ � � �

�

¼
Z

dDx
ffiffiffi
g

p �
σ1

2σ2σ3 −
1

2
σ1

2gμν∇μσ1∇νσ2 − σ1σ2gμν∇μσ1∇νσ2 þ � � �
�

¼
Z

dDx
ffiffiffi
g

p �
−
1

2
gμν∇μΦ∇νΦþ

�
eλ þ 1

8
gμν∇μρ∇νρ

�
Φ2 þ � � �

�
: ð63Þ

In the last line we have rewritten the scalars as

Φ ≔ g−1=2ϕ̄v ¼ σ1σ2; e−ρ=2 ≔ σ2; eλ ≔
σ3
σ2

: ð64Þ

7In Ref. [16], the Weyl rescaling of the metric was chosen differently with another reasoning in such a way as to satisfy
αcγ

μν
c ¼ g−1=2gμν.
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Taking into account the argument above, the whole part
becomes

fð2Þab vavb ⇒
6

A
Sþ � � � ; ð65Þ

where S is given by

S ¼
Z

dDx
ffiffiffi
g

p �
1

2
gμν∇μΦ∇νΦ

−
�
eλ þ 1

8
gμν∇μρ∇νρ −

�
A
3
− ξBL

�
eρ
	
Φ2

�
; ð66Þ

with A and BL being constants defined by

A ≔
Z

dDxdDydDzPðx; y; zÞϕ̄ðxÞϕ̄ðyÞϕ̄ðzÞ; ð67Þ

BL ≔
Z

dDxdDyPLðx; y; yÞϕ̄ðxÞ: ð68Þ

S is considered to be an effective action for the
perturbation Φ, while ρ, λ, and gμν are the background
fields determined by αc, γc, and ϕ̄. The action is valid when
the spatial dependence of the variations of the fields are
small. The action certainly has a covariant form, which is
an outcome of the underlying OðNÞ invariance of the
system and the consistency of the reparametrization (61).
Last, we stress that the metric originates from the “soft”
nonlocal effects of PL, characterizing the derivative terms
in the action.

VI. BREAKDOWN OF THE FLAT SPACE

In Sec. IV, the Pwhich realizes the flat space contained a
nonlocal part proportional to ξ. Generally speaking, such a
nonlocal part would cause trouble by breaking the locality
of a system, and would make the system unrealistic. In the
present case, however, the spectra of the perturbations
around the background agree with those of a usual scalar
field theory in a flat space, except for the zero mode. This
single anomalous behaviour of the zero mode will be
ignorable for a local observer in the large-N limit, and
therefore our model can be considered realistic. In fact, the
nonlocal part of P is indispensable for the stability of
the flat space: as can be checked easily in Eq. (51), if ξ ¼ 0,
the Hessian matrix contains negative eigenvalues, and the
flat space is not a stable local minimum. Thus, if we start
from a locally stable flat space with a sufficiently large jξj,
and reduce it continuously, the flat space will eventually
become unstable and decay into a new configuration. This
is a breakdown of the flat space. If this picture of the
transition being triggered by the appearance of negative
eigenvalues is right, this process will be a second-order
phase transition. However, this is not always true. In fact, in
a certain parameter region of κ, ξ, there exists a distinct

stable configuration which has a free energy lower than that
of the flat space. In this region, the flat space is not a global
minimum, and decays to it generally with a first-order
phase transition. As we will see shortly, this new configu-
ration describes a point-like space.
For simplicity, we will restrict the following discussions

to the one-dimensional case—the circles—though similar
phenomena can also be expected for theD-dimensional tori
and the curved cases. Let us first show, by a qualitative
estimation, that such a point-like profile of ϕ̄ can actually
have a free energy lower than that of the flat space. Let us
consider the two configurations described by

ϕ̄flat
a ¼

ffiffiffiffiffiffiffi
3

2N

r
;

ϕ̄point
a ¼

ffiffiffi
3

2

r
δa1: ð69Þ

The former describes the flat space in Sec. IV, and the latter
describes a point-like space, as it has a nonvanishing
component only at, say, a ¼ 1. The normalization is taken
so that they satisfy (12). Note that the latter configuration
does not have to satisfy the stationary equation, because we
are just interested in whether there exists a profile of ϕ̄ with
a lower free energy than that of the flat space. Because of
the normalization ϕ̄2 ¼ 3

2
, the free energy can be compared

by the values of jAðϕ̄Þj, as can be seen in Eq. (8). By
substituting Eq. (69) into Aðϕ̄Þ, one obtains

Aðϕ̄flatÞ ¼
�
3

2

�3
2

�
1þ 6κffiffiffiffi

N
p þ 3

ffiffiffiffi
N

p
ð1þ 2κÞξ

�
;

Aðϕ̄pointÞ ¼
�
3

2

�3
2ð1þ 3ð1þ 2κÞξÞ: ð70Þ

When N ≫ 1, which is the case of our main interest,
jAðϕ̄flatÞj < jAðϕ̄pointÞj for jξj ≲ 1ffiffiffi

N
p , and hence ϕ̄point has a

lower free energy. Therefore, the flat space is globally
stable only at jξj≳ 1ffiffiffi

N
p . On the other hand, the second-order

phase transitions triggered by negative eigenvalues should
occur at jξj ∼ 1

N, because the eigenvalues are functions of
γ ∼ Nξ as can be seen in Eq. (29). Since the estimated
location jξj ∼ 1

N is outside the globally stable region of the
flat space, the transition between the flat and a point-like
space is more likely to occur than the second-order phase
transition. Since the two configurations in Eq. (69) are
largely different from each other, the phase transition
between the flat and the point-like spaces should be first
order in general.
The following numerical results support the qualitative

discussion above. In fact, the actual phase structure is more
complex than that. We have considered some fixed values
of N and κ and have gone through discrete values of ξ with
small intervals. For every ξ, a numerical search for the
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global minimum of the free energy has been performed, and
the minimum value is plotted. The result for N ¼ 20, κ ¼ 1
is shown in the left panel of Fig. 6. We also evaluate the first
derivative of the free energy with respect to ξ by taking the
finite differentials of these data, and the result is plotted in
the right panel of Fig. 6. On the other hand, the free energy
of the flat space can be computed analytically by using the
results in Sec. IV, and is plotted by the dotted lines for the
comparison. If a data point is not on the dotted lines, it is in
a different phase than the flat space. From these figures, we
can see that there seem to exist four phases, and we label
them by their regions: (i) ξ≳ 0.12, (ii) −0.1≲ ξ≲ 0.12,
(iii)−0.14≲ ξ≲ −0.1, (iv) ξ≲ −0.14. From the right
panel, one can see that the phase transitions between (i)
and (ii) and between (ii) and (iii) are first order (the former
is much weaker), while that between (iii) and (iv) is
second order.
In phases (i) and (iv), ϕ̄ takes the constant value

ffiffiffiffiffi
3
2N

q
,

and they represent the flat space in Sec. IV. They are
certainly in the regions with large jξj, which is consistent
with the qualitative discussion above. As can be seen in the
left panel of Fig. 7, in the phase (ii), ϕ̄ takes nonzero values
only around a certain point (a ∼ 10 in the figure). This is

5 10 15 20
a

0.2

0.4

0.6

0.8

1.0
phi

5 10 15 20
a

–0.1

0.1

0.2

0.3

0.4

0.5
phi

FIG. 7. The configurations of ϕ̄ in the phases (ii) (ξ ¼ 0) and (iii) (ξ ¼ −0.12) for N ¼ 20, κ ¼ 1 are plotted in the left and right
panels, respectively. The vertical and horizontal axes represent the values of ϕ̄a and the index a, respectively.

FIG. 6. Left: The free energy for N ¼ 20, κ ¼ 1. The horizontal and vertical axes represent ξ and the free energy, respectively. Right:
The first derivative of the free energy obtained by taking the finite differentials of the data in the left panel. In the two panels, the dotted
lines represent the free energy and its first derivative of the flat space.

FIG. 8. The contour plot of the connected two-point function
hφaφbicon for N ¼ 20, κ ¼ 1, ξ ¼ 0, corresponding to the case
with ϕ̄ in the left panel of Fig. 7. The white and black regions
represent positive and negative values, respectively, while the
gray region represents vanishing values. Thus, in the point-like
space, the nonvanishing values of the correlation function are
concentrated only around a; b ∼ 10, namely the nonvanishing
region of ϕ̄.
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the phase of a point-like space discussed above. Because P
is invariant under the discrete translation a → aþ lmodN
with arbitrary integers l, the location of the central point is
arbitrary. This is a phase where the discrete translation
symmetry is entirely broken, since ϕ̄a ≠ ϕ̄aþlmodN . On the
other hand, the right panel of Fig. 7 shows that, in the phase
(iii), ϕ̄ oscillates with period 2. Therefore, ϕ̄ remains
invariant under the even translations, ϕ̄a ¼ ϕ̄aþ2lmodN ,
and this is a phase where the discrete translation symmetry
is only partially broken. The second order of the phase
transition between (iii) and (iv) suggests that the transition
is triggered by a negative eigenvalue. In fact, from the result

of Sec. IV, one can easily get that this is triggered by the
change of the sign of the eigenvalue of the mode with
n ¼ N

2
. The mode is an oscillatory mode with period 2, and

the oscillatory profile of ϕ̄ in the phase (iii) is explained by
the condensation of the mode.
Let us explain the reason why the phase (ii) represents a

point-like space. One reason is that ϕ̄ takes nonvanishing
values only in a small point-like region, such as around
a ∼ 10 in the left panel of Fig. 7. A physically more
convincing explanation is that the correlation function
takes nonvanishing values only in the vicinity of the
nonvanishing region of ϕ̄. Figure 8 plots the two-point

FIG. 9. The first (left) and second (right) derivatives of the free energy for N ¼ 20, κ ¼ −1. The horizontal axis represents ξ.
The dotted lines represent the case of the flat space. There seem to exist two first-order phase transitions at similar locations as in the
previous case with κ ¼ 1, while it seems that there are more second-order transitions.
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FIG. 10. The profiles of ϕ̄ for four values of ξ with N ¼ 20, κ ¼ −1. The upper left panel is for ξ ¼ −0.5, the upper right panel is for
ξ ¼ −0.42, the lower left panel is for ξ ¼ −0.2, and the lower right panel is for ξ ¼ 0.1.
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correlation function for the phase (ii) (ξ ¼ 0, N ¼ 20,
κ ¼ 1) for the case of ϕ̄ in the left panel of Fig. 7.
The phase depends on N and κ as well. The dependence

does not seem simple, and some systematic studies seem to
be required to obtain a convincing picture. Here, we just
give another example for N ¼ 20, κ ¼ −1 in Fig. 9. These
figures respectively show the first and second derivatives of
the free energy with respect to ξ, which are obtained by
finite differentiations as in the previous example. There
seem to exist more phases than in the previous case with
κ ¼ 1. In Fig. 10, the profiles of ϕ̄ for four values of ξ are
shown (the flat cases are not shown, since they are just
constant). The lower right panel corresponds to the point-
like space. The ϕ̄ in the first two figures are consistent with
the picture that, as ξ is increased from a large negative
value, two second-order phase transitions triggered by
negative eigenvalues occur successively. The first one is
a condensation of a mode with an oscillation period 2, and
the second one is of another mode with another frequency.

VII. SUMMARY AND DISCUSSIONS

In this paper, we have shown that classical spaces with
geometries (generally curved) in arbitrary dimensions can
be generated on boundaries of randomly connected tensor
networks in the thermodynamic limit by appropriately
choosing the tensors. In particular, we have seen that such
a tensor must contain not only a local part representing
structures of local neighborhoods but also a nonlocal part
which stabilizes the space. The nonlocal part does not cause
problems of nonlocality in the emergent space, since it
affects only a single global mode and cannot be detected by
a local observer in the large-N limit. We have given the
explicit solvable examples of arbitrary dimensional flat tori.
As for the general case, the correspondence from the tensor
to the geometry of the emergent space has been obtained
from an analysis of an effective action. The action has an
invariant form under the spatial diffeomorphism, which is
an outcome of the underlying orthogonal group symmetry
of the randomly connected tensor network. We have also
studied phase transitions among various kinds of spaces
including extended and point-like ones.
In the randomly connected tensor network, the tensor is a

given external variable rather than a dynamical one, and
therefore the emergent space is a static object. This is an
unsatisfactory situation from the perspective of quantum
gravity and even in classical contexts. On the other hand,
the tensor is a dynamical variable in CTM, and its
Hamiltonian generates a flow equation for the tensor of
the randomly connected tensor network, which can be
regarded as a renormalization group flow [19,20]. Then, by
using the result of this paper about the correspondence
from the tensor to the geometry, the dynamical equation of
CTM can be translated to a dynamical equation for the
geometry of the emergent space. The form of the latter
equation would be highly interesting to study, since CTM is

known to have intimate connections to general relativity
[15,16]. It would also be interesting to see whether the
tensors generating extended spaces are dynamically
favored or not, since quantum gravity should provide some
explanations for our actual spacetime.
Interestingly, the nonlocal part of the tensor has precisely

the form which is equivalent to an addition of a negative
cosmological constant in the framework of CTM [21].
Then the two main implications of this paper—emergent
spaces on boundaries and the necessity of negative cos-
mological constants for stability—curiously resemble a
part of the AdS=CFT correspondence [41] in string theory.
It has also been argued that the tensor networks (though not
random) are discrete realizations of the anti–de Sitter (AdS)
spaces [42]. Showing any connections between our frame-
work and the AdS=CFT correspondence is presently far
beyond our scope, but the resemblance would at least
suggest an interesting direction of study: not only bounda-
ries, but random networks themselves may also have
effective geometries, as the bulk geometries of the AdS
spaces. This contradicts the difficulties mentioned in
Sec. III, but there would remain the possibility that such
classical geometries on randomly connected tensor net-
works would appear in certain sophisticated limits of the
parameters, as the bulk geometries of AdS in string theory
have definite meanings only in semiclassical limits.
Obviously,puttingmattersontheemergentspacewouldalso

be an interesting direction of study. This would be possible by
considering tensors that are more complex than those in this
paper, and the super-extension discussed in Ref. [43].
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APPENDIX: NOTES ON COVARIANCE

As mentioned in Sec. V, in this appendix, we will show
the linear relation between the moments and the covariant
moments defined by Eqs. (57) and (59), respectively. This
ensures that the two descriptions are equivalent within the
order we are considering. In order to show this, note that the
test functions f1, f2 and f3 defined in Eqs. (57) and (59)
should transform as scalar half-densities under the spatial
diffeomorphism [16]. Thus we can parametrize the test
functions in terms of scalars s1, s2 and s3 as

f1 ¼ g1=4s1; f2 ¼ g1=4s2; f3 ¼ g1=4s3: ðA1Þ
Plugging Eq. (A1) into Eqs. (57) and (59) and comparing
the coefficients of s1s2s3, s1∂μðs2s3Þ, s1∂μs2∂νs3, and
s1ð∂μ∂νs2Þs3 þ s1s2ð∂μ∂νs3Þ, respectively, we can obtain
the relation between the moments and the covariant
moments as
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αc ¼ αþ 1

2
βμgμ þ

1

4
γμν

�
∂μgν þ

1

4
gμgν

�
þ 1

16
~γμνgμgν þ � � � ; ðA2Þ

βμc −
1

2
γνρc Γμ

νρ ¼ βμ þ 1

4
γμνgν þ

1

4
~γμνgν þ � � � ; ðA3Þ

γμνc ¼ γμν þ � � � ; ðA4Þ

~γμνc ¼ ~γμν þ � � � ; ðA5Þ

where Γμ
νρ is the Christoffel symbol associated with gμν, the dots represent the higher-order corrections neglected in the

analysis, and

gμ ≔ gλτ∂μgλτ: ðA6Þ
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