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We study a model for quantum lightcone fluctuations in which vacuum fluctuations of the electric field
and of the squared electric field in a nonlinear dielectric material produce variations in the flight times of
probe pulses. When this material has a nonzero third order polarizability, the flight time variations arise
from squared electric field fluctuations, and are analogous to effects expected when the stress tensor of a
quantized field drives passive spacetime geometry fluctuations. We also discuss the dependence of the
squared electric field fluctuations upon the geometry of the material, which in turn determines a sampling
function for averaging the squared electric field along the path of the pulse. This allows us to estimate the
probability of especially large fluctuations, which is a measure of the probability distribution for quantum
stress tensor fluctuations.

DOI: 10.1103/PhysRevD.93.064067

I. INTRODUCTION

Light propagation in a nonlinear dielectric may be
used to model various subtle effects involving quantum
theory and gravity. These include lightcone fluctuations
[1,2] and the effects of quantum stress tensor expect-
ation values in semiclassical gravity [3]. A fluctuating
electric field in a nonlinear material causes fluctuations
of the effective speed of light of probe pulses, and is
analogous to the effects of spacetime geometry fluctua-
tions on light propagation. This analogy was developed
in Ref. [1], where the source of the fluctuations was a
squeezed state of the electromagnetic field, and in
Ref. [2], where the effects of vacuum fluctuations of
the electric field were investigated. In both cases, linear
fluctuations of the electric field were treated, which
models the lightcone fluctuations produced by active
gravitational field fluctuations. These are the fluctua-
tions of the dynamical degrees of freedom of gravity
itself, as opposed to the passive fluctuations of gravity,
driven by quantum stress tensor fluctuations. One of the
purposes of the present paper will be to develop a model
for passive spacetime geometry fluctuations. This will
involve a study of the fluctuations of the time averaged
squared electric field, which is of interest in its
own right.
A second purpose of this paper will be a further

study of switched fluctuations of quantum fields. The
vacuum fluctuations of quantum field operators are only

meaningful if the operators have been averaged in time
or in spacetime with a smooth sampling function. In the
case of linear fields, such as the electric field, the
associated probability distribution is Gaussian. Some
effects of the time averaged electric field were dis-
cussed in Refs. [2,4]. In the latter paper, it was shown
that simple arguments may be used to estimate the one
loop QED corrections to potential scattering by elec-
trons. The fluctuations of quadratic field operators, such
as the stress tensor or the squared electric field, are
more subtle, and are associated with non-Gaussian
probability distributions [5–7]. These distributions typ-
ically fall more slowly than a Gaussian function,
increasing the probability of large fluctuations, and
depend sensitively upon the choice of sampling func-
tion. It was argued in Ref. [2] that the sampling
function for vacuum fluctuations in a dielectric can
depend upon the geometry of the material. This idea
will be further developed here, where we will consider
a broader class of functions than the Lorentzian
function used in Ref. [2].
The outline of this paper is as follows: Sec. II will

first briefly review classical light propagation in a
nonlinear material, and then address the effects of
switched vacuum fluctuations of the electric field and
the squared electric field. A convenient choice of
switching function will be introduced in Sec. III.
Some numerical estimates of the magnitude of the flight
time fluctuations will be given in Sec. IV. The prob-
ability distribution for the flight time fluctuations will be
discussed in Sec. V. Our results will be summarized and
discussed Sec. VI. Throughout this paper we use
Lorentz-Heaviside units with c ¼ ℏ ¼ 1.
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II. FLIGHT TIME IN A NONLINEAR OPTICAL
MATERIAL

A. Classical propagation speed

A nonlinear dielectric material is one where the electric
polarization vector is a nonlinear function of the electric
field, and can be written as [8]

Pi ¼ χð1Þij Ej þ χð2ÞijkEjEk þ χð3ÞijklEjEkEl þ…: ð1Þ

Here repeated indices are summed upon, and χð1Þij , χ
ð2Þ
ijk , and

χð3Þijkl are the first, second, and third order susceptibility
tensors, respectively. The second and higher order suscep-
tibilities lead to a nonlinear wave equation for the electric
field. We wish to investigate the flight time of a probe pulse
propagating through a slab of optical material when second
and third order coefficients of the susceptibility tensor are
included. These nonlinearities of the medium couple to an
external applied electric field E0

i ðx; tÞ, here called the
background field. The electric field associated with the
probe pulse is denoted by the vector E1, which we choose
to be polarized in the z-direction and propagating in the
x-direction, i.e., E1 ¼ E1ðx; tÞẑ. Furthermore, we assume
that the probe field is smaller in magnitude than the
background field, but more rapidly varying. That is,

jE1j ≪ jE0j; ð2Þ

but

j∇E0=E0j ≪ j∇E1=E1j: ð3Þ

In this case, E1 obeys a linearized wave equation [1],

∂2E1

∂x2 −
1

v2ph

∂2E1

∂t2 ¼ 0: ð4Þ

Here vph is the phase velocity of the wave, which is given
by

v2ph ¼
1

np2
½1þ 2γiE0

i þ 3γijE0
i E

0
j �−1; ð5Þ

where np ¼ ð1þ χð1Þzz Þ1=2 is the refractive index of the
medium measured by the probe pulse when only linear
effects take place, and we define the coefficients

γi ¼
1

n2p

�
χð2Þzzi þ χð2Þziz

2

�
; ð6Þ

γij ¼
1

n2p

�
χð3Þzzij þ χð3Þzizj þ χð3Þzijz

3

�
: ð7Þ

Equation (5) shows that the background field couples to the
nonlinearities of the medium, affecting the velocity of the
waves propagating through it.
We will assume that dispersion can be ignored, so that

the group velocity of a wave packet is approximately equal
to the phase velocity. In this case, the flight time of a
probe pulse traveling a distance d in the x-direction will be
given by

td ¼ np

Z
d

0

½1þ γiE0
i ðx; tÞ þ μijE0

i ðx; tÞE0
jðx; tÞ�dx; ð8Þ

with

μij ¼
1

2
ð3γðijÞ − γiγjÞ: ð9Þ

Here the parenthesis enclosing two indices denotes sym-
metrization, i.e., 2γðijÞ ¼ γij þ γji. In writing Eq. (8), we
have assumed that the nonlinear effects are small, so that
we may Taylor expand 1=vph from Eq. (5) to first order in
γðijÞ and second order in γi. In addition, we take the
integrand in Eq. (8) to be evaluated at t ¼ npx, which is the
worldline of a pulse traveling at speed 1=np, that deter-
mined by the linear susceptibility.

B. Vacuum fluctuations and switching

In this paper, we will follow Ref. [2] and study the effects
of vacuum electric field fluctuations as the background
field. In this case, E0 becomes the quantized electric field
operator, and td defined in Eq. (8) becomes an operator,
where the term quadratic in E0 is understood to be normal
ordered, E0

i ðx; tÞE0
jðx; tÞ → ∶E0

i ðx; tÞE0
jðx; tÞ∶. This leads

to a finite mean flight time, which in the vacuum state is, to
leading order,

htdi ¼ npd: ð10Þ
Our primary interest in this paper will be in the variance of
the flight time,

ðΔtdÞ2 ¼ htd2i − htdi2: ð11Þ
Note that this quantity is independent of the choice of
vacuum state with respect to which normal ordering is
performed. A change in the state has the effect of adding a
c-number, C, to the operator td, so that td → td þ C. It is
easily verified that the right-hand side of Eq. (11) is
unchanged. A change of vacuum state can slightly change
the mean time delay, htdi, but does not change the variance
of the flight time, which is our primary concern.
However, this quantity is only finite if the field operators

have been averaged with a test function. In the present
context, the density profile of the slab of dielectric naturally
defines a suitable function. Let FðxÞ be a profile function
satisfying
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1

d

Z
∞

−∞
FðxÞdx ¼ 1: ð12Þ

Now the time delay operator may be written as

td ¼ np

Z
∞

−∞
½1þ γiE0

i ðx; tÞ

þ μij∶ E0
i ðx; tÞE0

jðx; tÞ∶ �FðxÞdx: ð13Þ
The flight time variance now becomes

ðΔtdÞ2 ¼ np2
Z

∞

−∞
dxFðxÞ

×
Z

∞

−∞
dx0Fðx0Þ½γiγjhE0

i ðx; tÞE0
jðx0; t0Þi

þ μijμlmh∶ E0
i ðx; tÞE0

jðx; tÞ∶ ∶ E0
l ðx0; t0Þ

× E0
mðx0; t0Þ∶ i�: ð14Þ

The definition of normal ordering,

∶ E0
i ðx; tÞE0

jðx0; t0Þ≔E0
i ðx; tÞE0

jðx0; t0Þ
− hE0

i ðx; tÞE0
jðx0; t0Þi;

and the use of Wick’s theorem lead to

h∶ E0
i ðx; tÞE0

jðx; tÞ∶ ∶ E0
l ðx0; t0ÞE0

mðx0; t0Þ∶ i
¼ hE0

i ðx; tÞE0
l ðx0; t0ÞihE0

jðx; tÞE0
mðx0; t0Þi

þ hE0
i ðx; tÞE0

mðx0; t0ÞihE0
jðx; tÞE0

l ðx0; t0Þi: ð15Þ

Thus the flight time variance can be expressed as an integral
involving the correlation functions of the electric field. This
double integral is over the spacetime volume of the
worldtube of the probe pulse wave packet. This worldtube
is centered upon the worldline of the middle of the wave
packet, described by x ¼ t=np. We will assume that the
wave packet is sufficiently localized around this worldline
so that integrations over the spatial directions transverse to
the x-direction may be neglected. In this limit, we are
averaging the electric field and the squared electric field
along the worldline of an observer comoving with the probe
pulse. In the rest frame of this observer, the field operators
are being averaged in time alone.
Once we take the coincidence limit in the transverse

spatial directions, the needed electric field correlation
functions for a nondispersive, isotropic material become [2]

hE0
xðx; tÞE0

xðx0; t0Þi ¼
1

π2n3b½ðΔxÞ2 − ðΔtÞ2=n2b�2
; ð16Þ

hE0
yðx; tÞE0

yðx0; t0Þi ¼ hE0
zðx; tÞE0

zðx0; t0Þi

¼ ðΔxÞ2 þ ðΔtÞ2=n2b
π2n3b½ðΔtÞ2=n2b − ðΔxÞ2�3 ; ð17Þ

hE0
i ðx; tÞE0

jðx0; t0Þi ¼ 0; i ≠ j; ð18Þ

whereΔx ¼ x − x0 andΔt ¼ t − t0 − iε, with ε > 0, and nb
is the refractive index measured by the background
field E0

i .

C. Fractional variance in the flight time

Using the above results and recalling that the integrations
in Eq. (14) are performed along the path of the probe pulse,
given by t ¼ npx, we obtain

ðΔtdÞ2 ¼
Z

∞

−∞
dxFðxÞ

Z
∞

−∞
dx0Fðx0Þ

�
α1

ðΔxÞ4 þ
α2

ðΔxÞ8
�
;

ð19Þ

where Δx is understood to have a small negative imaginary
part. Here we have defined the parameters α1 and α2 as

α1 ¼
nbnp2

π2ðnp2 − nb2Þ2
�
γ2x þ ðγ2y þ γ2zÞ

ðnp2 þ nb2Þ
ðnp2 − nb2Þ

�
; ð20Þ

α2 ¼
2nb2np2

π4ðnp2 − nb2Þ4
�
μ2xx þ ðμ2yy þ μ2zz þ 2μ2zyÞ

×
ðnp2 þ nb2Þ2
ðnp2 − nb2Þ2

þ 2ðμ2xy þ μ2xzÞ
ðnp2 þ nb2Þ
ðnp2 − nb2Þ

�
: ð21Þ

This result generalizes previous work [2] by including
the contribution from the third order nonlinear susceptibil-
ity, and by giving an expression for the flight time for a
general profile function FðxÞ.

III. A CHOICE FOR THE SWITCHING
FUNCTION

We wish to choose a suitable smooth switching function
that represents the transitions which occur as the probe
pulse enters and exits the medium. It will be useful to have
two parameters, one (d) which describes the width of the
slab and another (b < d) which describes the effective
length over which the nonlinearity changes smoothly as the
pulse enters and exits. There are several choices for such a
function. Here we use a function Fb;d defined by

Fb;dðxÞ ¼
1

π

�
arctan

�
x
b

�
þ arctan

�
d − x
b

��
: ð22Þ

The derivative of this function with respect to x is a sum of
two Lorentzian functions. Figure 1 presents some plots of
Fb;d for a few values of the ratio b=d. The parameter b
describes the distance over which Fb;dðxÞ changes from its
minimum to its maximum values, and vice versa. Note that
when b → 0 we recover a step function, as expected.
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The integrals appearing in Eq. (19) may be evaluated by
contour integration, with Δx ¼ x − x0 − iε, where ε > 0.
The results, and their asymptotic forms when b ≪ d, are

Z
∞

−∞

Z
∞

−∞
dxdx0Fd;bðxÞFd;bðx0Þ

1

Δx4
¼ d2ðd2 þ 12b2Þ

12b2ðd2 þ 4b2Þ2

∼
1

12b2
; ð23Þ

Z
∞

−∞

Z
∞

−∞
dxdx0Fd;bðxÞFd;bðx0Þ

1

Δx8

¼ d2ð21504b10 þ 1344b6d4 þ 240b4d6 þ 24b2d8 þ d10Þ
1344b6ð4b2 þ d2Þ6

∼
1

1344b6
: ð24Þ

If we assume b ≪ d, and use the above asymptotic forms,
we obtain

ðΔtdÞ2 ≈
α1

12b2
þ α2
1344b6

: ð25Þ

We define the squared fractional variance in flight time of
the probe field as

δ2 ¼ ðΔtdÞ2
htdi2

≈
α1

12np2d2b2
þ α2
1344np2d2b6

: ð26Þ

The modulus of the Fourier transform of Fb;d is given by

jF̂b;dðkÞj ¼
1

k

ffiffiffi
2

π

r ���� sin kd2
����e−jkjb; ð27Þ

and its behavior is depicted in Fig. 2, where we defined
the dimensionless variable z ¼ kd and function gðzÞ ¼ffiffiffiffiffiffiffiffi
π=2

p jF̂b;dðkÞj=d. Note that limz→0gðzÞ ¼ 1=2 and that
gðzÞ falls exponentially as z increases. The plot was done
with the particular choice b ¼ 0.01d, for which more than
90% of total area under the solid curve occurs in the
range 0 ≤ z ≤ 18π.

Recall that our approximations require (i) Eq. (2), the
dominance of the vacuum field over the probe field,
(ii) Eq. (3), which is equivalent to λp < λb, (iii) a range
of frequencies in which the material can be assumed free of
dispersion, and (iv) a material which is approximately
isotropic, at least for the frequencies which give the primary
contribution to the background field. The rate of decay of
the Fourier transform F̂b;dðkÞ allows us to test approx-
imations (ii) and (iii). The exponentially decreasing behav-
ior of the Fourier transform of this function, depicted in
Fig. 2, suppresses the high energy modes of the back-
ground field.
For the case b ¼ 0.01d, at least 90% of the effect will

occur in the range 0 ≤ z≲ 18π, which means that only
wave lengths such that λb ≳ d=9 will significantly contrib-
ute. For a slab with d ≈ 10μm, the dominant wavelengths of
the background field are those with λb ≳ 1.1μm. Shorter
wavelength modes are naturally suppressed by the time
averaging. Furthermore, the larger contribution occurs
arises from z ≤ 2π, which for b ¼ 0.01d, corresponds to
a wavelength of λb ≈ 10μm. Thus if the material is
relatively free of dispersion when λb ≳ 1.1μm, then our
assumption that nb is independent of frequency is justified.
We may choose λp ≲ 1μm to satisfy Eq. (3).
We may also justify the assumption of the dominance of

the vacuum field over the probe field, Eq. (2), using
essentially the same argument as was given in Sec. III.2
of Ref. [2]. The only difference is that in Ref. [2], E2

0 ∝
1=τ4 ∝ 1=d4 is the expectation value of the square of the
averaged electric field. Here it is the square root of the
expectation value of the square of the averaged squared
electric field, which can be obtained from Eq. (24) divided
by d2, and is proportional to 1=ðb3dÞ for b≲ d. Thus, if
b ≈ d, the two quantities are of the same order, and we
obtain Eq. (30) of Ref. [2] as the condition that the vacuum
field dominate the probe field. If b < d, then the vacuum
field is enhanced by the shorter switch-on and switch-off
times, and it becomes easier to satisfy Eq. (2). The physical

exp 0.01 z

z

g z

2 4 6 8 10 12 14 16 18
z

0.1

0.2

0.3

0.4

0.5

0.6

FIG. 2. Modulus of the Fourier transform of Fb;dðxÞ is
illustrated. Specifically, the function gðzÞ ¼ ffiffiffiffiffiffiffiffi

π=2
p jF̂b;dðkÞj=d

is plotted as a function of z ¼ kd for the case b ¼ 0.01.

d

b d
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FIG. 1. The switching function Fb;dðxÞ.
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reason for vacuum dominance is that many more modes
contribute to the vacuum field than to the probe field.

IV. ESTIMATES

The first example we wish to study is the crystal of
cadmium selenide (CdSe), which is a hexagonal one, point
group 6 mm. This system was already investigated [2] in
the case of a Lorentzian sampling function. CdSe is an
optical medium with nonzero second order nonlinear
dielectric susceptibilities and satisfies the conditions dis-
cussed at the end of the last section. This crystal has an
index of refraction nb ¼ 2.43 and a second order coef-

ficient χð2Þzzz ≈ 1.1 × 10−10 mV−1 at a wavelength λb ¼
10.6μm [9,10]. Now setting the wavelength of the probe
field as λp ¼ 1.06μm, for which np ¼ 2.54, and setting the
parameter b ¼ 0.01d, we obtain from Eq. (25) a fractional
variance of the flight time,

δ ≈ 1.3 × 10−6
�
10μm
d

�
2

: ð28Þ

Compared to the model where an idealized Lorentzian
distribution [2] is used, this result shows that in the situation
described by Fb;d, with b ¼ 0.01d, the predicted effect is
about 100 times stronger. This enhancement arises because
the contribution to δ due to linear electric field fluctuations
is proportional to 1=ðbdÞ, as may be seen from the first term
on the right-hand side of Eq. (26).
Now we investigate a third order nonlinear optical

material. Silicon (Si) is a centrosymmetric crystal (point
group m3m), which means that the second order nonlinear
dielectric susceptibilities are identically zero. This crystal
has a third order coefficient χð3Þzzzz ≈ 2.80 × 10−19 m2V−2 at
a wavelength λb ¼ 11.8μm [11,12], and an index of
refraction nb ¼ 3.418 at the same wavelength [13].
Suppose the probe wave packet has a peak wavelength
of λp ¼ 1.4μm, for which np ¼ 3.484 [14]. As before,
using b ¼ 0.01d, we find the dominant contribution to the
fractional variance of the flight time,

δ ≈ 4.2 × 10−8
�
10μm
d

�
4

: ð29Þ

The contribution to δ due to quadratic electric field
fluctuations is proportional to 1=ðb3dÞ, as may be seen
from the second term on the right-hand side of Eq. (26).
Note that the estimate given in Eq. (29) is about five orders
of magnitude larger than the rough estimate given in
Eq. (39) of Ref. [2]. This is due to the dependence upon
the parameter b in the sampling function Fb;d, which
provides a more realistic description of rapid switch-on
and switch-off effects than does the Lorentzian function
used in Ref. [2]. As expected, the effect produced by the
third order coefficient tends to be smaller than that related

to second order nonlinearities. It may be possible to
increase the effects of quadratic fluctuations if new materi-
als with larger third order susceptibilities can be found. In
the next section, we will discuss a different type of
enhancement.

V. PROBABILITY OF LARGE FLUCTUATIONS

In the previous sections, we have been concerned with
the variance of the flight time, which is in turn determined
by the variance of the sampled electric field or of the
squared electric field. Here we wish to estimate the
probability of much larger fluctuations than those described
by the variance. In the case of effects produced by the
second order polarizability, this probability will be very
small, as the probability distribution for fluctuations of the
electric field is Gaussian, and hence falls very rapidly.
However, flight time variations due to the third order
polarizability will be associated with a more slowly
decreasing probability distribution. The distributions for
quadratic quantum operators have been discussed in
Refs. [5–7]. In particular, the asymptotic form for the
probability distribution of the Lorentzian average of the
squared electric field was given in Ref. [6]. The sampling
function used in this paper, Eq. (22), is not Lorentzian, but
the magnitude of its Fourier transform, Eq. (27), has the
same exponential decay as in the Lorentzian case.
Furthermore, it was argued in Ref. [7] that the decay rate
of the Fourier transform of the sampling function deter-
mines the asymptotic form for the probability distribution.
Thus it is reasonable to extrapolate the Lorentzian results to
the present case.
Here we briefly summarize the needed results from

Ref. [6]. Let ∶E2∶ be the Lorentzian time average of the
normal ordered squared electric field operator at a given
point in space, or more generally along a timelike world-
line. In our problem, this will be the path of the probe wave
packet. Define the dimensionless variable

x ¼ ð4πτ2Þ2∶ E2∶; ð30Þ
where τ is the characteristic averaging time. Let PðxÞ be the
probability distribution for finding a given value of x in a
measurement in the vacuum state, which is normalized by

Z
∞

−x0
PðxÞdx ¼ 1: ð31Þ

Here −x0 is the lower bound, the smallest value of x which
could ever be observed. Note that this lower bound is
negative, so measurements of ∶E2∶ in the vacuum state can
return negative values, just as expectation values of the
squared electric field in more general states can be negative.
In fact, one expects most measurements in the vacuum to
result in a negative value, but when the outcome is positive,
it is likely to be larger in magnitude. Note that a negative
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value of ∶E2∶ results in a time advance compared to the
mean flight time in the material, just as positive values
result in time delays.
Our primary interest is in the asymptotic form of PðxÞ

when x ≫ 1, which describes the probability of finding
especially large values of the squared electric field. This
asymptotic form is approximately

PðxÞ ∼ c0x−2e−ax
1=3
; ð32Þ

where c0 ≈ 0.955 and a ≈ 0.764. A striking feature of this
result is the one-third power in the exponential, which
causes PðxÞ to fall much more slowly than a Gaussian or an
exponential function. Given PðxÞ, we can define the
cumulative probability distribution by

PðyÞ ¼
Z

∞

y
PðxÞdx; ð33Þ

which gives the probability of finding any value greater
than or equal to y in a given measurement. If y ≫ 1, we can
directly integrate Eq. (32) to find

PðyÞ ≈ 3c0
ay4=3

e−ay
1=3
: ð34Þ

It is shown in Ref. [6] that the second moment of PðxÞ
for the squared electric field is

μ2 ¼
Z

∞

−x0
x2PðxÞdx ¼ 6; ð35Þ

so the root mean square of x is xrms ¼
ffiffiffi
6

p
. Now we may

use Eq. (34) to find the probability of a result which
exceeds a large multiple of xrms. Some examples are given
in Table I.
The same probabilities apply to the flight time delay

due to vacuum squared electric field fluctuations. Thus
there is a probability of about 4.0 × 10−9 that a given
pulse will suffer a delay which is 1000 times larger than
the root mean square value, given for example by
Eq. (29). Note that our discussion is rather heuristic,
and these are order of magnitude estimates. In particular,
we have not made a clear distinction between the squared
electric field in the rest frame of the probe pulse, and that

in the rest frame of the dielectric material. However, for
np ≈ 3, so vph ≈ 1=3 to leading order, these quantities
will be of the same order.
Another important point is that both the Lorentzian

function and the function Fb;d defined in Eq. (22) have tails
in both directions. A more realistic choice is a function
of compact support, which is strictly zero before the
measurement process begins. Such functions lead to even
slower decrease of the probability distribution for large
arguments [7].

VI. SUMMARY AND DISCUSSION

In this paper, we have extended previous work [1,2] on
analog models for lightcone fluctuations. The earlier work
had been primarily restricted to linear field fluctuations.
Here we have been concerned with vacuum fluctuations,
especially of the squared electric field. Our model studies
the flight time of a probe pulse through a material with a
nonzero third order polarizability. Vacuum fluctuations of
the squared electric field lead to fractional flight time
variation which can be of order 4 × 10−8 in the example
given in Sec. IV. These flight time variations model the
effects of the passive spacetime geometry fluctuations
driven by quantum stress tensor fluctuations.
We have also extended the study of the effects of

temporal switching functions on the fluctuations of
quadratic quantum operators. In Sec. III, we discussed
a specific choice of switching function, which can be
relatively constant over a finite interval, and can model
the density profile of the nonlinear material. The Fourier
transform of this function falls exponentially at a rate
determined by the parameter b, which controls the rate of
rise and fall at the ends of the plateau of this function. As
this parameter is decreased, increasingly higher frequency
modes contribute and increase the fractional flight time
variation. We were able to use the Fourier transform to
estimate the range of vacuum modes which contribute to
the flight time variation and to test our approximation of
ignoring dispersion. The specific switching function,
Eq. (22) allows a more realistic description of rapid
switching than does the Lorentzian function used in
Ref. [2] and leads to larger effects.
In Sec. V, we discussed the probability of especially

large fluctuations in flight time. This analog model pro-
vides a means to study the probability of large stress tensor
fluctuations, which tend to fall more slowly than a Gaussian
function [5–7]. We estimated, for example, a probability of
2 × 10−5 for finding a flight time delay which is at least 100
times the typical delay. This result is of interest for
fundamental quantum field theory, as well as gravity theory
and nonlinear optics.
There are then two distinct signatures of squared electric

field fluctuations. The first is the fractional flight time
variation δ estimated, for example, in Eq. (29). The second
is the pulses which undergo an especially long time delay

TABLE I. Probabilities of large squared electric field fluctua-
tions.

y PðyÞ
10xrms 0.006
100xrms 2.1 × 10−5

103xrms 4.0 × 10−9

104xrms 1.3 × 10−15
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due to a very large squared electric field fluctuation. The
extent to which either can be observed in a realistic
experiment is a topic for future work. One aspect of this
work will be an exploration of finite duration switching,
which is more realistic than functions with tails extending
into the past and the future. Such functions with compact
support were treated in Ref. [7], where it was shown that
quadratic quantum operators averaged in time with such
functions are associated with a probability distribution
which falls more slowly than that for the Lorentzian,

Eq. (32). This raises the possibility that large fluctuations
can be more likely than was estimated in Sec. V.
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