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We present new spherically symmetric, dyonic soliton and black hole solutions of the suðNÞ Einstein-
Yang-Mills equations in four-dimensional asymptotically anti–de Sitter spacetime. The gauge field has
nontrivial electric and magnetic components and is described by N − 1 magnetic gauge field functions and
N − 1 electric gauge field functions. We explore the phase space of solutions in detail for suð2Þ and suð3Þ
gauge groups. Combinations of the electric gauge field functions are monotonic and have no zeros; in
general the magnetic gauge field functions may have zeros. The phase space of solutions is extremely rich,
and we find solutions in which the magnetic gauge field functions have more than fifty zeros. Of particular
interest are solutions for which the magnetic gauge field functions have no zeros, which exist when the
negative cosmological constant has sufficiently large magnitude. We conjecture that at least some of these
nodeless solutions may be stable under linear, spherically symmetric, perturbations.
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I. INTRODUCTION

The study of soliton and black hole solutions of the
Einstein-Yang-Mills (EYM) equations has been an active
subject for some twenty-five years, triggered by the
discovery of regular, static, spherically symmetric, solitons
[1] and “colored” black holes [2] in suð2Þ EYM in four-
dimensional asymptotically flat spacetime. In these con-
figurations, the non-Abelian gauge field is purely magnetic
[3] and described by a single function ω1ðrÞ of the radial
coordinate r. Numerical investigations [1,2] show that
ω1ðrÞ must have at least one zero, and this has also been
proven analytically [4]. Both the particlelike and black hole
solutions arise at discrete points in the phase space of
parameters, and can be indexed by n, the number of zeros
of ω1ðrÞ. The suð2Þ solitons and black holes have no
magnetic charge at infinity. The black holes, in particular,
are indistinguishable from a Schwarzschild black hole at
infinity, and therefore present counterexamples to the “no-
hair” conjecture [5]. However, both the black hole and
soliton solutions are unstable under linear, spherically
symmetric, perturbations of the gauge field and metric
[6]. As a consequence of this, Bizon postulated a modified
no-hair conjecture [7], heuristically stated as follows: “a
stable black hole is uniquely characterized by global
charges.” The colored black holes do not contradict this
conjecture due to their instability.
Notwithstanding the instability of the suð2Þ EYM

solitons and black holes in asymptotically flat spacetime,
their discovery sparked extensive research into soliton
and black hole solutions of more general matter models
involving non-Abelian gauge fields (see [8] for a review).

In four-dimensional asymptotically flat spacetime, enlarg-
ing the gauge group to suðNÞ, a richer phase space arises
[9], but solutions still occur at discrete points in the phase
space. Furthermore, there is a very general result that all
purely magnetic, asymptotically flat, soliton or black hole
solutions of the suðNÞ EYM equations in four-dimensional
spacetime are unstable [10].
The situation is very different if one considers EYM

with a negative cosmological constant Λ < 0, so that the
spacetime is asymptotically anti–de Sitter (adS) rather than
asymptotically flat. Four-dimensional, purely magnetic,
black hole [11,12] and soliton [12,13] solutions of the
suð2Þ EYM equations in adS are found in continuous
regions of parameter space rather than at discrete points
as in the asymptotically flat case. Furthermore, if jΛj is
sufficiently large, there are solutions for which the single
magnetic gauge field function ω1ðrÞ has no zeros. These
nodeless solutions have no analogue in asymptotically flat
spacetime and at least some of them are stable under linear,
spherically symmetric perturbations [11,12]. The proof of
stability can be extended to general linear perturbations of
the metric and gauge field providing jΛj is sufficiently
large [14].
For the larger suðNÞ gauge group, purely magnetic

soliton and black hole solutions of EYM in adS exist in
continuous regions of the parameter space [15]. In this case
the purely magnetic gauge field is described by N − 1
functions ωjðrÞ, j ¼ 1;…N − 1, of the radial coordinate r.
There exist both soliton and black hole solutions for which
all the ωjðrÞ have no zeros provided jΛj is sufficiently large
[16]. These solutions are of particular interest because it
can be proven that at least some of them are stable under
linear, spherically symmetric, perturbations of the metric*E.Winstanley@sheffield.ac.uk
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and gauge field [17]. Although these stable black holes are
coupled to potentially unlimited amounts of gauge field
hair, they can nonetheless be characterized by global
charges defined far from the black hole [18], in accordance
with the modified no-hair conjecture [7] (see also the
reviews [19]).
Returning to suð2Þ EYM in adS, the space of solutions

revealed another surprise [12]. In asymptotically flat
spacetime, all nontrivial (that is, not corresponding to
embedded Schwarzschild or Abelian Reissner-Nordström
configurations) suð2Þ solitons and black holes must have
gauge fields with vanishing electric parts [3]. This is not the
case in asymptotically adS spacetime, with dyonic solitons
and black holes existing, for which the gauge field has
nontrivial electric and magnetic components [12]. For
suð2Þ gauge group, the electric part is described by a
single function h1ðrÞ and the magnetic part by a single
function ω1ðrÞ, where r is the radial coordinate. The
electric gauge field function h1ðrÞ is monotonic and has
no zeros; there exist solitons and black holes for which the
magnetic gauge field function ω1ðrÞ also has no zeros
[12,20]. Although these solutions were found numerically
fifteen years ago [12], it was only recently that it was shown
that at least some of the solutions for which ω1ðrÞ is
nodeless are stable under linear, spherically symmetric
perturbations [21].
In this paper we explore the phase space of dyonic EYM

solitons and black holes in adS when the gauge group is
enlarged to suðNÞ. In the purely magnetic case, with the
larger gauge group the phase space has a very rich structure
[15] and we anticipate that the same will be true for dyonic
solutions. Dyonic solutions of suðNÞ EYM will be
described by N − 1 electric gauge field functions hjðrÞ,
j ¼ 1;…; N − 1, and N − 1magnetic gauge field functions
ωjðrÞ, j ¼ 1;…; N − 1. Recently the existence of soliton
and black hole solutions (when jΛj is sufficiently large) for
which all the ωj functions have no zeros was proven [22].
These nodeless solutions are of particular interest because,
in the light of results in the purely magnetic sector [17] and
for suð2Þ dyonic solutions [21], it is anticipated that at least
some of them will be stable under linear, spherically
symmetric perturbations. In this paper we present the first
numerical dyonic solutions of the suðNÞ EYM equations in
adS, focusing not just on the nodeless solutions whose
existence is proven in [22], but also more generally on the
rich features of the phase space of solutions.
The outline of this paper is as follows. In Sec. II we

introduce the suðNÞ EYM model and field equations,
and describe our static, spherically symmetric Ansatz for
the metric and gauge field potential. We also discuss the
boundary conditions at the origin (for regular solitons),
event horizon (for black holes) and at infinity. Solutions of
the field equations are discussed in detail in Sec. III. We
describe our numerical method, and explore the phase
space of dyonic soliton and black hole solutions with the

suð2Þ and suð3Þ gauge group. Our conclusions are
presented in Sec. IV.

II. suðNÞ EINSTEIN-YANG-MILLS THEORY
IN ANTI–DE SITTER SPACETIME

In this section we describe our gauge field and metric
Ansatz, the field equations and the boundary conditions for
static, spherically symmetric dyon and dyonic black hole
solutions of suðNÞ EYM in adS.

A. Ansatz and field equations

1. Metric and gauge potential Ansatz

We consider static, spherically symmetric, four-
dimensional solitons and black holes with metric

ds2 ¼ −σ2μdt2 þ μ−1dr2 þ r2ðdθ2 þ sin2θdϕ2Þ; ð2:1Þ

where the metric functions μ and σ depend only on the
radial coordinate r. We write the metric function μðrÞ in the
form

μðrÞ ¼ 1 −
2mðrÞ

r
−
Λr2

3
; ð2:2Þ

where Λ < 0 is the cosmological constant. In (2.1) and
throughout this paper, the metric has signature ð−;þ;þ;þÞ
and we use units in which 4πG ¼ 1 ¼ c.
For the static, spherically symmetric suðNÞ gauge field

potential A, we use the Ansatz [23]

A ¼ Adtþ Bdrþ 1

2
ðC − CHÞdθ

−
i
2
½ðCþ CHÞ sin θ þD cos θ�dϕ; ð2:3Þ

where we have set the gauge coupling g ¼ 1. In (2.3),A, B,
C and D are N × N matrices which depend only on the
radial coordinate r. The matrices A and B are purely
imaginary, diagonal and traceless. The matrix C (with
Hermitian conjugate CH) is upper triangular, with the only
nonzero entries immediately above the diagonal, which are
written as

Cj;jþ1 ¼ ωjðrÞeiγjðrÞ; j ¼ 1;…; N − 1; ð2:4Þ

where ωjðrÞ and γjðrÞ are real functions. The matrix D is
constant, diagonal and traceless, and given by

D ¼ DiagðN − 1; N − 3;…; 3 − N; 1 − NÞ: ð2:5Þ

The Ansatz (2.3) has some residual gauge freedom which
can be used to set B≡ 0 [23]. It should be emphasized that
the choice of Ansatz (2.3) is not unique [24].
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For purely magnetic solutions [15,16] one makes the
choice A≡ 0. However, in this paper we are interested in
solutions for which the gauge field has nontrivial electric
and magnetic parts. Therefore A will not vanish. We write
A in terms of matrices Hl, which are the diagonal
generators of the Cartan subalgebra of suðNÞ. We define
the Hl in a similar way to Ref. [25], but using a slightly
different normalization. The nonzero entries of the matrix
Hl are

½Hl�j;k ¼ −
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2lðlþ 1Þp
"Xl
p¼1

ðδj;pδk;pÞ − lδj;lþ1δk;lþ1

#
;

ð2:6Þ
where δj;k is the usual Kronecker delta. For suð2Þ EYM,
there is a single generator of the Cartan subalgebra,

H1 ¼ −
i
2

�
1 0

0 −1

�
; ð2:7Þ

while for suð3Þ EYM, there are two H matrices,

H1 ¼ −
i
2

0
B@

1 0 0

0 −1 0

0 0 0

1
CA; H2 ¼ −

i

2
ffiffiffi
3

p

0
B@

1 0 0

0 1 0

0 0 −2

1
CA:

ð2:8Þ

For general N, there are N − 1 matrices Hl (2.6), since
N − 1 is the rank of the suðNÞ Lie algebra. In terms of the
Hl matrices, the electric part of the gauge potential A (2.3)
takes the form

A ¼ −
XN−1

l¼1

hlðrÞHl; ð2:9Þ

in terms of N − 1 real scalar functions hlðrÞ, depending on
the radial coordinate r only.
Our Ansatz (2.9) for the electric part of the gauge

potential at first sight looks rather different from that
conventionally used in the literature [19,22,23], although
it is equivalent. Usually the N diagonal entries of the
traceless matrix A are denoted by iαkðrÞ, k ¼ 1;…N
[where the αkðrÞ are real functions of r], and written in
terms of N − 1 real quantities EjðrÞ as follows [22,23]:

αkðrÞ ¼ −
1

N

Xk−1
l¼1

lElðrÞ þ
XN−1

l¼k

�
1 −

l
N

�
ElðrÞ; ð2:10Þ

so that

EkðrÞ ¼ αkðrÞ − αkþ1ðrÞ: ð2:11Þ

From (2.9), the αkðrÞ can be written in terms of the hlðrÞ as

αkðrÞ ¼ −
ffiffiffiffiffiffiffiffiffiffiffi
k − 1

2k

r
hk−1ðrÞ þ

XN−1

l¼k

hlðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lðlþ 1Þp ; ð2:12Þ

and consequently

EkðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
kþ 1

2k

r
hkðrÞ −

ffiffiffiffiffiffiffiffiffiffiffi
k − 1

2k

r
hk−1ðrÞ: ð2:13Þ

We write the relation (2.13) between the N − 1 functions
hlðrÞ and the N − 1 quantities EkðrÞ as

E ¼ FN−1h; ð2:14Þ

where E ¼ ðE1;…; EN−1ÞT , h ¼ ðh1;…; hN−1ÞT and FN−1
is the lower-triangular ðN − 1Þ × ðN − 1Þ matrix with
entries

FN−1 ¼

0
BBBBBBBBBBBB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ð2 × 1Þp

0 0 � � � 0

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð2 × 2Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3=ð2 × 2Þp
0 � � � 0

0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ð2 × 3Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4=ð2 × 3Þp � � � 0

..

. ..
. ..

. � � � ..
.

0 0 0 � � � 0

0 0 0 � � � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N=ð2 × ðN − 1ÞÞp

1
CCCCCCCCCCCCA

: ð2:15Þ

By inverting FN−1 (2.15), we can write the hlðrÞ in
terms of the EkðrÞ:

h ¼ F−1
N−1E: ð2:16Þ

For the magnetic part of the gauge field potential (2.3),
we now assume that all the functions ωjðrÞ (2.4) in the
matrix C are nonzero. In this case one of the Yang-Mills
equations reduces to γjðrÞ≡ 0 for all j ¼ 1;…; N − 1 and
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r [23]. Our Ansatz for the gauge potential (2.3) then
reduces to

A ¼ Adtþ 1

2
ðC − CHÞdθ

−
i
2
½ðCþ CHÞ sin θ þD cos θ�dϕ; ð2:17Þ

and the nonzero entries in the matrix C are now simply

Cj;jþ1 ¼ ωjðrÞ; j ¼ 1;…; N − 1: ð2:18Þ

The above Ansätze for the matrices A and C appearing in
the electric and magnetic parts of the gauge field respec-
tively are related to the expansion of the suðNÞ gauge field
in terms of simple roots [such an expansion is well known
in the construction of the suðNÞ monopole; see, for
example, [26] for a review]. The matrix A (2.9) is a linear

combination of the generators ~ϒl: ~H, where the ~ϒl are the
positive roots of suðNÞ, while the matrix C with entries
given by (2.18) is a linear combination of the generators
E~ϒl

(the raising operators) corresponding to the simple

roots of suðNÞ.
In summary, the gauge field is described by 2ðN − 1Þ

functions of r: the N − 1 electric gauge functions hlðrÞ and
the N − 1 magnetic gauge functions ωjðrÞ.

2. Field equations

The components of the Yang-Mills gauge field are given
in terms of the gauge potential components (2.17) as
follows,

Fμν ¼ ∂μAν − ∂νAμ þ ½Aμ; Aν�; ð2:19Þ

when the gauge coupling constant g ¼ 1. The Yang-Mills
equations take the form

∇μFμν þ ½Aμ; Fμν� ¼ 0: ð2:20Þ

The stress-energy tensor of the Yang-Mills field is

Tμν ¼ Tr

�
FμαFν

α −
1

4
gμνFαβFαβ

�
; ð2:21Þ

where Tr denotes a Lie algebra trace. The stress-energy
tensor Tμν acts as the source in the Einstein equations,

Rμν −
1

2
gμνRþ Λgμν ¼ 2Tμν; ð2:22Þ

since we are using units in which 4πG ¼ 1.
The Yang-Mills equations (2.20) for the gauge field with

potential (2.17) take the form (a prime 0 denotes differ-
entiation with respect to the radial coordinate r)

h00k ¼ h0k

�
σ0

σ
−
2

r

�
þ

ffiffiffiffiffiffiffiffiffiffiffi
kþ 1

p

k
ω2
k

μr2
ðhk

ffiffiffiffiffiffiffiffiffiffiffi
kþ 1

p
− hk−1

ffiffiffiffiffiffiffiffiffiffiffi
k − 1

p
Þ þ

ffiffiffi
k

p

kþ 1

ω2
kþ1

μr2
ðhk

ffiffiffi
k

p
− hkþ1

ffiffiffiffiffiffiffiffiffiffiffi
kþ 2

p Þ; ð2:23aÞ

0 ¼ ω00
k þ ω0

k

�
σ0

σ
þ μ0

μ

�
þ ωk

σ2μ2

�
hk

ffiffiffiffiffiffiffiffiffiffiffi
kþ 1

2k

r
− hk−1

ffiffiffiffiffiffiffiffiffiffiffi
k − 1

2k

r �2

þ ωk

2μr2
ð2 − 2ω2

k þ ω2
k−1 þ ω2

kþ1Þ; ð2:23bÞ

for k ¼ 1;…; N − 1. The Einstein equations (2.22) give two equations for the metric functions mðrÞ and σðrÞ:

m0 ¼
XN−1

k¼1

�
r2h02k
2σ2

þ ω2
k

σ2μ

�
hk

ffiffiffiffiffiffiffiffiffiffiffi
kþ 1

2k

r
− hk−1

ffiffiffiffiffiffiffiffiffiffiffi
k − 1

2k

r �2�
þ
XN−1

k¼1

�
μω02

k þ kðkþ 1Þ
4r2

�
1 −

ω2
k

k
þ ω2

kþ1

kþ 1

�
2
�
; ð2:24aÞ

σ0 ¼
XN−1

k¼1

�
2σω02

k

r
þ 2ω2

k

σμ2r

�
hk

ffiffiffiffiffiffiffiffiffiffiffi
kþ 1

2k

r
− hk−1

ffiffiffiffiffiffiffiffiffiffiffi
k − 1

2k

r �2�
: ð2:24bÞ

Setting hkðrÞ≡ 0 for all k, the field equations (2.23)–(2.24)
reduce to the purely magnetic field equations studied in
[15–17].

B. Boundary conditions

The field equations (2.23)–(2.24) are singular at the
origin r ¼ 0 (relevant for soliton solutions), the black hole
event horizon r ¼ rh (if there is one) and infinity r → ∞.

We therefore need to specify appropriate boundary con-
ditions at each of these points. As with the purely magnetic
solutions [16] the boundary conditions at the origin are the
most complex. Local existence of solutions of the field
equations near the singular points r ¼ 0, r ¼ rh and r → ∞
is proven in [22], using a different representation of the
electric part of the gauge field potential. In this section we
cast the results of [22] into our notation for completeness.
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1. Infinity

We assume that the spacetime is asymptotically adS and that the field variables have regular Taylor series expansions
about r → ∞:

mðrÞ ¼ M þm1

r
þO

�
1

r2

�
;

σðrÞ ¼ 1þ σ1
r
þ σ2

r2
þ σ3

r3
þ σ4

r4
þO

�
1

r5

�
;

ωkðrÞ ¼ ωk;∞ þ ck;1
r

þO
�
1

r2

�
;

hkðrÞ ¼ hk;∞ þ dk;1
r

þO
�
1

r2

�
: ð2:25Þ

Substituting the expressions (2.25) into the field equations (2.23)–(2.24), we find that hk;∞, dk;1, ωk;∞ and ck;1 are free
parameters,

σ1 ¼ σ2 ¼ σ3 ¼ 0; ð2:26Þ

and that m1 and σ4 are given by (cf. [22])

m1 ¼ −
XN−1

k¼1

�
kðkþ 1Þ

4

�
1 −

ω2
k;∞

k
þ ω2

kþ1;∞

kþ 1

�2

þ d2k;1
2

þ c2k;1
L2

− L2ω2
k;∞

�
hk;∞

ffiffiffiffiffiffiffiffiffiffiffi
kþ 1

2k

r
− hk−1;∞

ffiffiffiffiffiffiffiffiffiffiffi
k − 1

2k

r �2�
;

σ4 ¼ −
1

2

XN−1

k¼1

�
L4ω2

k;∞

�
hk;∞

ffiffiffiffiffiffiffiffiffiffiffi
kþ 1

2k

r
− hk−1;∞

ffiffiffiffiffiffiffiffiffiffiffi
k − 1

2k

r �2

þ c2k;1

�
; ð2:27Þ

where L ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
−3=Λ

p
is the adS radius of curvature.

2. Event horizon

We assume that there is a regular, nonextremal black hole
event horizon at r ¼ rh. At r ¼ rh, the metric function μðrÞ
(2.2) has a single zero, so that

mðrhÞ ¼
rh
2
−
Λr3h
6

: ð2:28Þ

To avoid a singularity at the event horizon, it must be the
case that the electric gauge functions hkðrÞ vanish at
r ¼ rh. We therefore assume the following Taylor series
expansions near the event horizon:

mðrÞ ¼ mðrhÞ þm0ðrhÞðr − rhÞ þOðr − rhÞ2;
σðrÞ ¼ σðrhÞ þ σ0ðrhÞðr − rhÞ þOðr − rhÞ2;

ωkðrÞ ¼ ωkðrhÞ þ ω0
kðrhÞðr − rhÞ þOðr − rhÞ2;

hkðrÞ ¼ h0kðrhÞðr − rhÞ þOðr − rhÞ2: ð2:29Þ

From the field equations, we find that σðrhÞ, h0kðrhÞ and
ωkðrhÞ are free parameters and that m0ðrhÞ, σ0ðrhÞ
and ω0

kðrhÞ are given in terms of them as follows
(cf. [22]):

m0ðrhÞ ¼
XN−1

k¼1

�
r2hh

0
kðrhÞ2

2σðrhÞ2
þ kðkþ 1Þ

4r2h

�
1 −

ωkðrhÞ2
k

þ ωkþ1ðrhÞ2
kþ 1

�
2
�
;

σ0ðrhÞ ¼ 2
XN−1

k¼1

�
ωkðrhÞ2

σðrhÞμ0ðrhÞ2rh

�
h0kðrhÞ

ffiffiffiffiffiffiffiffiffiffiffi
kþ 1

2k

r
− h0k−1ðrhÞ

ffiffiffiffiffiffiffiffiffiffiffi
k − 1

2k

r �2�
þ 2

XN−1

k¼1

σðrhÞω0
kðrhÞ2

rh
;

ω0
kðrhÞ ¼

ωkðrhÞ
μ0ðrhÞr2h

�
ωkðrhÞ2 − 1 −

1

2
½ωk−1ðrhÞ2 þ ωkþ1ðrhÞ2�

�
: ð2:30Þ
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The value of σðrhÞ is fixed in practice by the requirement
that the metric function σðrÞ approaches unity as r → ∞.
This leaves the 2ðN − 1Þ free parameters h0kðrhÞ and ωkðrhÞ
for k ¼ 1;…; N − 1, whose values are restricted by the
requirement

μ0ðrhÞ ¼
1

rh
−
2m0ðrhÞ

rh
− Λrh > 0; ð2:31Þ

which is needed for a regular nonextremal horizon
at r ¼ rh.

3. Origin

In the purely magnetic case [15,16], the boundary
conditions for the suðNÞ gauge potential near the origin
are rather complicated, with a power series expansion up to
OðrNþ1Þ necessary in order to completely specify the gauge
field functions. It is no surprise that the addition of a
nontrivial electric part to the gauge field potential only
complicates matters further [22].
We begin by assuming regular Taylor series expansions

for all field variables in a neighborhood of the origin r ¼ 0:

mðrÞ ¼ m0 þm1rþm2r2 þm3r3 þOðr4Þ;
σðrÞ ¼ σ0 þ σ1rþ σ2r2 þOðr3Þ;

ωkðrÞ ¼ ωk;0 þ ωk;1rþ ωk;2r2 þ ωk;3r3 þOðr4Þ;
hkðrÞ ¼ hk;0 þ hk;1rþ hk;2r2 þ hk;3r3 þOðr4Þ: ð2:32Þ
The constant σ0 must be nonzero in order for the metric
(2.1) to be regular at the origin. It is otherwise arbitrary as
far as the expansions near the origin are concerned, and will
be fixed in practice by the requirement that σ → 1 as
r → ∞. Regularity of the field equations (2.23)–(2.24),
metric (2.1) and curvature at r ¼ 0 gives [22]

m0 ¼m1 ¼m2 ¼ 0; σ1 ¼ 0; ωk;1 ¼ 0; hk;0 ¼ 0:

ð2:33Þ

From the equation for m0ðrÞ (2.24a), we also have

XN−1

k¼1

kðkþ 1Þ
�
1 −

ω2
k;0

k
þ ω2

kþ1;0

kþ 1

�2
¼ 0; ð2:34Þ

which is solved by

ωk;0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðN − kÞ

p
: ð2:35Þ

The field equations (2.23)–(2.24) are unchanged by the
transformation ωkðrÞ → −ωkðrÞ, for each k separately.
Therefore we take the positive sign in (2.35) without loss
of generality.
We consider next the magnetic gauge field functions

ωkðrÞ. The coupling between these and the electric gauge
field functions hkðrÞ in the Yang-Mills equation for ωkðrÞ
(2.23b) does not affect the first two terms in the expansion
of this equation near r ¼ 0, because hkðrÞ ¼ OðrÞ as
r → 0. Following [16,22], we define two vectors ω2 ¼
ðω1;2;ω2;2;…;ωN−1;2ÞT and ω3¼ðω1;3;ω2;3;…;ωN−1;3ÞT .
The first two terms in the expansion about r ¼ 0 of the
Yang-Mills equation (2.23b) then give the following
equations for ω2 and ω3:

MN−1ω2 ¼ 2ω2; MN−1ω3 ¼ 6ω3; ð2:36Þ

where MN−1 is the ðN − 1Þ × ðN − 1Þ matrix [16,22,27]

MN−1¼

0
BBBBBBBBBBBB@

2ðN−1Þ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN−1Þ2ðN−2Þp

0 � � � 0

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN−1Þ2ðN−2Þp

2×2ðN−2Þ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðN−2Þ3ðN−3Þp � � � 0

0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðN−2Þ3ðN−3Þp

2×3ðN−3Þ � � � 0

..

. ..
. ..

. . .
. ..

.

0 0 0 � � � −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN−1Þ2ðN−2Þp

0 0 0 � � � 2ðN−1Þ

1
CCCCCCCCCCCCA

: ð2:37Þ

As discussed in [27], the eigenvalues of the matrix
MN−1 are

Ej ¼ jðjþ 1Þ; j ¼ 1;…; N − 1; ð2:38Þ

and the eigenvectors have a complicated form involving
Hahn polynomials [27,28]. Writing a basis of normalized

eigenvectors of MN−1 as u1; u2;…; uN−1 [where uj is the
eigenvector having eigenvalue Ej (2.38)], we have, from
(2.36),

ω2 ¼ b1u1; ω3 ¼ b2u2; ð2:39Þ

where b1 and b2 are arbitrary constants.
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We proceed in a similar way for the electric gauge
field functions hkðrÞ, defining two vectors h1 ¼
ðh1;1; h2;1;…; hN−1;1ÞT and h2 ¼ ðh1;2; h2;2;…; hN−1;2ÞT .
As with the magnetic gauge field functions, the coupling
between the hkðrÞ and ωkðrÞ in the Yang-Mills equa-
tion (2.23a) does not affect the first two terms in the

expansion of this equation about r ¼ 0, which then give the
following two equations,

N N−1h1 ¼ 2h1; N N−1h2 ¼ 6h2; ð2:40Þ

where N N−1 is the ðN − 1Þ × ðN − 1Þ matrix

N N−1 ¼

0
BBBBBBBBBBBB@

2ðN − 1Þ þ ðN − 2Þ −ðN − 2Þ ffiffiffi
3

p
0 � � � 0

−ðN − 2Þ ffiffiffi
3

p
2× 2ðN − 2Þ þ ðN − 4Þ −ðN − 3Þ ffiffiffiffiffiffiffiffiffiffi

2× 4
p � � � 0

0 −ðN − 3Þ ffiffiffiffiffiffiffiffiffiffi
2× 4

p
2× 3ðN − 3Þ þ ðN − 6Þ � � � 0

..

. ..
. ..

. . .
. ..

.

0 0 0 � � � −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN − 2ÞNp

0 0 0 � � � 2ðN − 1Þ− ðN − 2Þ

1
CCCCCCCCCCCCA

: ð2:41Þ

In [22], an expansion similar to (2.32) is performed for
the alternative electric gauge field functions Ek, defined in
terms of the hl functions that we use here by (2.13)–(2.14):

EkðrÞ ¼ Ek;0 þ Ek;1rþ Ek;2r2 þ Ek;3r3 þOðr4Þ: ð2:42Þ

Again we have Ek;0 ¼ 0 for all k, and the vectors E1 ¼
ðE1;1; E2;1…; EN−1;1ÞT and E2 ¼ ðE1;2; E2;2…; EN−1;2ÞT
satisfy the equations [22]

MN−1E1 ¼ 2E1; MN−1E2 ¼ 6E2: ð2:43Þ

Using the relationship between h and E in (2.14), it is
clear that the matrices MN−1 (2.37) and N N−1 (2.41) are
related by

N N−1 ¼ F−1
N−1MN−1FN−1; ð2:44Þ

and therefore the matrices MN−1 and N N−1 have the same
eigenvalues Ej (2.38). In particular, we have, from (2.40),

h1 ¼ g1v1; h2 ¼ g2v2; ð2:45Þ

where g1 and g2 are arbitrary constants and the vectors vi,
i ¼ 1, 2, are eigenvectors of N N−1, given by

vi ∝ F−1
N−1ui; i ¼ 1; 2; ð2:46Þ

where an overall multiplicative constant is required so that
the vi are normalized.
Once we have found the eigenvectors ω2, ω3, h1 and h2,

the first two terms in the Einstein equations (2.24a)–(2.24b)
give the values of m3, m4, σ2 and σ3 (which also depend on
the cosmological constant Λ) [22].
From the above analysis, the expansion of the hkðrÞ to

order r and ωkðrÞ functions to order r2 depends on just two

arbitrary constants, b1 (2.39) and g1 (2.45), while the
expansion to next order in r [that is, to order r2 for
the electric gauge field functions hkðrÞ and order r3 for the
magnetic gauge field functions ωkðrÞ] adds a further two
arbitrary constants, b2 and g2. It is shown in proposition 8
in [22], in analogy with the purely magnetic case [16], that
a total of 2ðN − 1Þ arbitrary constants are required to
completely specify the gauge field functions in a neighbor-
hood of the origin. Each additional power of r in the
expansion of the hkðrÞ and ωkðrÞ depends on just two
further arbitrary constants, one for the hkðrÞ and one for
the ωkðrÞ.
To see this, define the vectors

hj ¼ ðh1;j; h2;j;…; hN−1;jÞT;
ωj ¼ ðω1;j;ω2;j;…;ωN−1;jÞT: ð2:47Þ

Examination of the appropriate term in the expansion of the
relevant Yang-Mills equation (2.23) shows that the vectors
hj, ωj satisfy equations of the form

½MN−1 − jðjþ 1Þ�ωjþ1 ¼ pjþ1;

½N N−1 − jðjþ 1Þ�hj ¼ qjþ1; ð2:48Þ

where pjþ1 and qjþ1 are complicated vectors depending on
h2; h3;…; hj−1, ω2;ω3;…ωj, m3; m4;…mj, σ2; σ3;…; σj,
whose detailed form can be found in [22]. The solutions of
(2.48) are [22]

hj ¼ gjvj þ ~vjþ1;

ωjþ1 ¼ bjuj þ ~ujþ1; ð2:49Þ

where bj and gj are arbitrary constants. In (2.49), the
vectors ~ujþ1 and ~vjþ1 are particular solutions of (2.48). It is
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shown in [22] that these particular solutions can be chosen
such that ~ujþ1 and ~vjþ1 are linear combinations of
u1; u2;…; uj−1, v1; v2;…; vj−1.
We can therefore write the electric and magnetic gauge

field functions in the following vectorial form, where ωðrÞ
¼ ðω1ðrÞ;ω2ðrÞ;…;ωN−1ðrÞÞT and hðrÞ ¼ ðh1ðrÞ; h2ðrÞ;
…; hN−1ðrÞÞT ,

ωðrÞ ¼ ω0 þ
XN−1

k¼1

βkðrÞuk;

hðrÞ ¼
XN−1

k¼1

γkðrÞvk; ð2:50Þ

where

ω0 ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffi
N − 1

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðN − 2Þ

p
;…;

ffiffiffiffiffiffiffiffiffiffiffiffi
N − 1

p
ÞT; ð2:51Þ

and the βkðrÞ and γkðrÞ functions have the following
behavior near the origin:

βkðrÞ ¼ bkrkþ1 þOðrkþ2Þ;
γkðrÞ ¼ gkrk þOðrkþ1Þ: ð2:52Þ

As is explained in more detail in the next section, in our
numerical procedure we integrate the field equations for the
βkðrÞ and γkðrÞ functions rather than hkðrÞ and ωkðrÞ, to
improve numerical accuracy.
In this paper we present dyonic solutions for the N ¼ 2

and N ¼ 3 cases only, so it is sufficient for our purposes to
find h2, h3, ω2 and ω3. We do not need to consider the
complicated vectors pjþ1, qjþ1 (2.48) or ~ujþ1, ~vjþ1 (2.49).

III. SOLUTIONS

We now present our new soliton and black hole solutions
of the field equations (2.23)–(2.24). These field equations
have a number of trivial solutions, which we describe first
in Sec. III A, before discussing our numerical method in
Sec. III B and the nontrivial solutions for suð2Þ and suð3Þ
gauge groups in Secs. III C and III D respectively.

A. Trivial solutions

The first trivial solution arises on setting the electric
gauge functions hkðrÞ≡ 0 for k ¼ 1;…; N − 1, and the
magnetic gauge functions ωkðrÞ to be the following
constants:

ωkðrÞ≡�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðN − kÞ

p
; k ¼ 1;…; N − 1: ð3:1Þ

The metric functions mðrÞ and σðrÞ are then constants.
Setting σðrÞ≡ 1 without loss of generality gives the
Schwarzschild-adS metric with mðrÞ≡M.

The second trivial solution is Reissner-Nordström-adS.
The metric function σðrÞ≡ 1 and μðrÞ takes the form

μRNðrÞ ¼ 1 −
2M
r

þQ2

r2
−
Λr2

3
; ð3:2Þ

where the mass M and charge Q are constants. This
solution of the field equations arises on setting the magnetic
gauge functions ωkðrÞ≡ 0 for all k ¼ 1;…; N − 1, in
which case the electric gauge functions are exactly

hkðrÞ ¼ hk;∞ −
dk;1
r

; k ¼ 1;…; N − 1; ð3:3Þ

where the hk;∞ and dk;1 are constants. From the Einstein
equation (2.24a), the charge Q is given by

Q2 ¼ 1

6
NðN − 1ÞðN þ 1Þ þ

XN−1

k¼1

d2k;1: ð3:4Þ

The charge Q (3.4) is an effective charge, with Q2 having
two components. The first, NðN − 1ÞðN þ 1Þ=6, is a
magnetic charge, and the second,

P
N−1
k¼1 d

2
k;1, is an electric

charge. The Reissner-Nordström-adS solution is therefore
dyonic in this case. Setting all the dk;1 ¼ 0 yields the
purely magnetically charged Reissner-Nordström-adS
solution. Note that purely electrically charged Reissner-
Nordström-adS is not a solution of the field equa-
tions (2.23)–(2.24) due to the coupling between the electric
gauge field functions hkðrÞ and the magnetic gauge field
functions ωkðrÞ.
The third class of trivial solutions is suð2Þ embedded

solutions, obtained in [22] with an alternative parametriza-
tion of the electric part of the gauge field potential. We start
by writing the N − 1 magnetic gauge functions ωkðrÞ in
terms of a single function ωðrÞ, and the N − 1 electric
gauge functions hkðrÞ in terms of a single function hðrÞ, as
follows,

ωkðrÞ ¼ AkωðrÞ; hkðrÞ ¼ BkhðrÞ; ð3:5Þ

where Ak and Bk are constants. The Yang-Mills equa-
tions (2.23) reduce to those for the suð2Þ case with gauge
functions hðrÞ and ωðrÞ if the following conditions hold:

1 ¼
�
Bk

ffiffiffiffiffiffiffiffiffiffiffi
kþ 1

2k

r
− Bk−1

ffiffiffiffiffiffiffiffiffiffiffi
k − 1

2k

r �2

¼ 1

2
ð2A2

k − A2
kþ1 − A2

k−1Þ

¼ A2
kþ1

ffiffiffi
k

p

2ðkþ 1Þ
� ffiffiffi

k
p

−
Bkþ1

Bk

ffiffiffiffiffiffiffiffiffiffiffi
kþ 2

p �

þ A2
k

ffiffiffiffiffiffiffiffiffiffiffi
kþ 1

p

2k

� ffiffiffiffiffiffiffiffiffiffiffi
kþ 1

p
−
Bk−1

Bk

ffiffiffiffiffiffiffiffiffiffiffi
k − 1

p �
: ð3:6Þ
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Substituting (3.5) into the Einstein equations (2.24), we
obtain the suð2Þ equations if

1

6
NðN − 1ÞðNþ 1Þ ¼

XN−1

k¼1

A2
kffiffiffiffiffi
2k

p ðBk

ffiffiffiffiffiffiffiffiffiffiffi
kþ 1

p
−Bk−1

ffiffiffiffiffiffiffiffiffiffi
k− 1

p
Þ2

¼
XN−1

k¼1

A2
k

¼
XN−1

k¼1

B2
k; ð3:7Þ

and

1 ¼
�
A2
k

k
−

A2
kþ1

kþ 1

�
2

: ð3:8Þ

The conditions (3.6)–(3.8) are solved by taking

Ak ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðN − kÞ

p
; Bk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
kðkþ 1Þ

r
: ð3:9Þ

The values of Ak are the same as those used to embed
purely magnetic suð2Þ solutions into suðNÞ EYM [27].
Substituting (3.5) and (3.9) into the field equations (2.23)–
(2.24) and defining new rescaled variables as follows [22],

R ¼ λ−1N r; ~m ¼ λ−1N m; ~h ¼ λNh; ~Λ ¼ λ2NΛ;

ð3:10Þ

where

λN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

6
NðN − 1ÞðN þ 1Þ

r
; ð3:11Þ

gives the suð2Þ field equations

d ~m
dR

¼ R2

2σ2

�
d ~h
dR

�2

þ ω2 ~h2

σ2μ
þ μ

�
dω
dR

�
2

þ 1

2R2
ð1 − ω2Þ2;

dσ
dR

¼ 2σ

R

�
dω
dR

�
2

þ 2ω2 ~h2

Rσμ2
;

d2 ~h
dR2

¼ d ~h
dR

�
1

σ

dσ
dR

−
2

R

�
þ 2~hω2

μR2
;

0 ¼ d2ω
dR2

þ dω
dR

�
1

σ

dσ
dR

þ 1

μ

dμ
dR

�

þ ω

μ

�
~h2

σ2μ
þ 1

R2
½1 − ω2�

�
; ð3:12Þ

where the magnetic gauge field function ωðrÞ and the
metric functions μðrÞ and σðrÞ are not scaled. Setting

~hðRÞ≡ 0 gives, as expected, the purely magnetic
embedded suð2Þ equations.

B. Numerical method

The field equations (2.23)–(2.24) form a set of 2N
ordinary differential equations. Note that, unlike the purely
magnetic case [15], here the equation for the metric
function σ (2.24b) does not decouple from the other
equations. This does not complicate the numerical method
significantly. We employ standard “shooting” techniques
[29], using a Bulirsch-Stoer algorithm in C++ to integrate
the ordinary differential equations. The field equations are
singular at the origin or a black hole event horizon.
For black hole solutions, we start our integration just

outside the event horizon, at r ¼ rh þ 10−7, using the
expansions (2.29) as initial conditions. We then integrate
outwards with r increasing until the solution either
becomes singular or the field variables hkðrÞ, ωkðrÞ,
mðrÞ and σðrÞ have converged to constant asymptotic
values to within a suitable numerical tolerance.
For soliton solutions, we start our integration close to the

origin. The need to include higher order terms in the
expansions of the gauge field functions hkðrÞ and ωkðrÞ
means that these functions are not suitable for numerical
integration. With limited numerical precision, we cannot
keep adding powers of r in our initial conditions [the
expansions (2.32)] without losing accuracy. For each N we
therefore first make a change of variables, writing the
electric gauge functions hkðrÞ in terms of new variables
γjðrÞ, j ¼ 1;…; N − 1, and the magnetic gauge functions
ωkðrÞ in terms of new variables βjðrÞ, j ¼ 1;…; N − 1

(2.50), where the βjðrÞ and γjðrÞ are chosen so that their
expansions near the origin have the form (2.52). In Secs. III
C 2 and III D 2 the details of this change of variables is
presented for the N ¼ 2 and N ¼ 3 cases respectively.
In the following sections, we present examples of

numerical solutions of the field equations (2.23)–(2.24)
representing both dyons and dyonic black holes, for N ¼ 2
and N ¼ 3. Following [15], we also study the structure
of the space of solutions by examining the phase space of
parameters characterizing the solutions near the event
horizon or origin, as applicable.
In the suð2Þ case, it is straightforward to show that the

single electric gauge field function h1ðrÞ has no zeros, as
follows. The equation for h1ðrÞ takes the form (2.23a)

h001 ¼ h01

�
σ0

σ
−
2

r

�
þ 2ω2

1h1
μr2

: ð3:13Þ

If the function h1ðrÞ has a turning point at r ¼ r0, then
h0ðr0Þ ¼ 0 and (3.13) gives

h001ðr0Þ ¼
2ω1ðr0Þ2h1ðr0Þ

μðr0Þr20
: ð3:14Þ
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Since the metric function μðrÞ is strictly positive for all
r ≥ 0 for soliton solutions and for all r > rh for black hole
solutions, we conclude from (3.14) that the turning point is
a minimum if h1ðr0Þ > 0 and a maximum if h1ðr0Þ < 0.
From the expansions (2.32), noting that h1;0 ¼ 0, we see
that h01ðrÞ has the same sign as h1ðrÞ very close to the
origin. Similarly, near a black hole event horizon, h01ðrÞ and
h1ðrÞ have the same sign from (2.29). We deduce that it is
not possible for h1ðrÞ to have a turning point, and therefore
it is monotonic and has no zeros.
For suðNÞ, it is proven in [22] that the electric gauge field

functions EkðrÞ, defined in terms of the hkðrÞ by (2.13), are
monotonic and have no zeros. While it is not necessarily the
case that our alternative electric gauge field functions hkðrÞ
have no zeros, since all the EkðrÞ are nodeless any zeros of
hkðrÞ are a quirk of our parametrization of the electric part of
the gauge potential, rather than revealing any underlying
structure of the space of solutions. We therefore divide our
numerical solutions into classes depending on the numbers
of zeros nk of the magnetic gauge field functions ωkðrÞ
respectively. We use colored plots to show this phase space
structure, but hope that the key features will still be apparent
to readers using black and white.

C. suð2Þ solutions
Dyons and dyonic black holes in suð2Þ EYM in adS

were first found by Bjoraker and Hosotani [12]. In this
section we study the phase space of suð2Þ solutions,
checking that we reproduce the results of [12] and explor-
ing in more detail those key features which extend to the
larger N case.

1. suð2Þ dyonic black holes

Four parameters are required to describe the suð2Þ black
hole solutions: rh, Λ, h01ðrhÞ and ω1ðrhÞ (2.29)–(2.30). We
fix rh ¼ 1.
A typical black hole solution with Λ ¼ −0.01 is shown

in Fig. 1. As anticipated, the electric gauge field function
h1ðrÞ is monotonic and has no zeros. In Fig. 1, we have
chosen the initial values h01ðrhÞ ¼ 0.01 and ω1ðrhÞ ¼ 0.95.
For these initial values we see that the magnetic gauge field
function ω1ðrÞ has a single zero.
We now study the phase space by fixing Λ and varying

h01ðrhÞ and ω1ðrhÞ. Setting h01ðrhÞ ¼ 0 gives purely mag-
netic solutions. The field equations (2.23)–(2.24) are
invariant under the separate transformations h1ðrÞ →
−h1ðrÞ and ω1ðrÞ → −ω1ðrÞ. Therefore it suffices to
consider h01ðrhÞ > 0 and ω1ðrhÞ > 0. The values of
h01ðrhÞ and ω1ðrhÞ are not completely free: the constraint
(2.31) must be satisfied. As in the purely magnetic case
[15], for each value of Λ studied we find a region in the
ðh01ðrhÞ;ω1ðrhÞÞ-plane for which (2.31) is satisfied, but we
are unable to find regular black hole solutions which
converge as r → ∞.

In Fig. 2 we show the phase space for black holes with
rh ¼ 1 and Λ ¼ −0.01, part of which has previously been
shown in [12]. All points in the plot in Fig. 2 represent
black hole solutions with particular values of h01ðrhÞ and
ω1ðrhÞ. In Fig. 2 we find a richly structured parameter
space, with solutions for which ω1ðrÞ has up to 17 nodes.
The number of zeros of ω1ðrÞ increases as h01ðrhÞ increases
for each fixed value of ω1ðrhÞ. The corresponding plot in
[12] focused on the small region near h01ðrhÞ ¼ 0, ω1ðrhÞ ¼
1 for which there are nodeless n ¼ n1 ¼ 0 solutions, so for
comparison with [12], in Fig. 3 we show a closeup of the
parameter space near the n ¼ n1 ¼ 0 region, which is in
agreement with [12].

FIG. 2. Phase space of dyonic black hole solutions of suð2Þ
EYM, with rh ¼ 1 and Λ ¼ −0.01. All shaded points in the plot
correspond to black hole solutions. The solutions are indexed by
n ¼ n1, the number of zeros of the magnetic gauge field function
ω1ðrÞ. The different values of n ¼ n1 are indicated by color
coding the regions—in black and white the different colors are
different shades of grey. Solutions with the largest values of n ¼
n1 are found towards the right-hand side of the colored region.
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FIG. 1. Dyonic black hole solution of suð2Þ EYM in adS.
The parameters are rh ¼ 1, Λ ¼ −0.01, h01ðrhÞ ¼ 0.01 and
ω1ðrhÞ ¼ 0.95. The electric gauge field function h1ðrÞ is mon-
otonic and nodeless; the magnetic gauge field function ω1ðrÞ has
a single zero.
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For purely magnetic solutions, increasing the magnitude
of the negative cosmological constant jΛj increased the size
of the region of phase space where solutions were found
[15]. The n ¼ n1 ¼ 0 region of nodeless solutions also
expanded as a proportion of the total solution space [15].
We find the same effects for dyonic black hole solutions.
To illustrate this, in Fig. 4 we show the phase space of
solutions for Λ ¼ −3 and rh ¼ 1. In this case the only
solutions we find are such that the magnetic gauge field
function ω1ðrÞ has no zeros. In Fig. 4, we have also shown
the region of the ðh01ðrhÞ;ω1ðrhÞÞ-plane where the con-
straint (2.31) is satisfied but we have not been able to find
regular solutions. This region is marked “no solution”
in Fig. 4.
Bjoraker and Hosotani [12] found a rich, “fractal”-like,

structure in the phase space of solutions as jΛj → 0 (see

also [13] for similar behavior for solitons in the purely
magnetic case). In asymptotically flat space, there are no
dyonic black hole solutions of suð2Þ EYM [3]. However,
there are purely magnetic solutions found by setting the
electric part of the gauge potential equal to zero [2]. In
Figs. 5–6 we investigate the structure of the phase space as
jΛj → 0. We fix ω1ðrhÞ and vary h01ðrhÞ and Λ. In Fig. 5 we
set ω1ðrhÞ ¼ 0.632206952, which is the value for the
first colored black hole solution which exists in the limit

FIG. 3. Closeup view of the region surrounding the nodeless
n ¼ n1 ¼ 0 solutions from Fig. 2. All shaded points in the plot
correspond to black hole solutions. The n ¼ n1 ¼ 0 region [the
small red or dark grey region near the point (0,1)] is in agreement
with Ref. [12].

FIG. 4. Phase space of dyonic black hole solutions of suð2Þ
EYM, with rh ¼ 1 and Λ ¼ −3. All black hole solutions that we
find have n ¼ n1 ¼ 0. The region labeled “no solution” [the red/
darker grey region containing larger values of h01ðrhÞ and ω1ðrhÞ]
is the region where the constraint (2.31) is satisfied, giving a
regular event horizon, but we have not found any regular black
hole solutions.

FIG. 5. Phase space of dyonic black hole solutions of suð2Þ
EYM with rh ¼ 1 and ω1ðrhÞ ¼ 0.632206952. The solutions are
indexed by n ¼ n1, the number of zeros of the magnetic gauge
function ω1ðrÞ. Regions with different colors (or shades of grey)
correspond to different values of n ¼ n1. We find solutions with
very large values of n ¼ n1 as jΛj decreases. The blue/darkest
region (second from the right) corresponds to n ¼ n1 ¼ 1 black
hole solutions, and extends to jΛj → 0, with h01ðrhÞ → 0 in
this limit.

FIG. 6. Phase space of dyonic black hole solutions of suð2Þ
EYM with rh ¼ 1 and ω1ðrhÞ ¼ 0.5. The solutions are indexed
by n ¼ n1, the number of zeros of the magnetic gauge function
ω1ðrÞ. Regions with different colors (or shades of grey) corre-
spond to different values of n ¼ n1. We find solutions with very
large values of n ¼ n1 as jΛj decreases. However, the phase space
of solutions does not extend to jΛj → 0 as there is no solution in
this limit for this value of ω1ðrhÞ.
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jΛj → 0 [2]. In Fig. 6 we set ω1ðrhÞ ¼ 0.5, which does
not correspond to a regular black hole solution in the
limit jΛj → 0.
In Figs. 5–6, we have marked “no solution” the region

where the constraint (2.31) for a regular event horizon is
satisfied, but our numerical solution becomes singular
before r → ∞. For jΛj sufficiently large, for both values
of ω1ðrhÞ the solutions are such that ω1ðrÞ is nodeless. As
jΛj decreases, the number of zeros of ω1ðrÞ increases
rapidly. We find solutions for which ω1ðrÞ has more than
fifty zeros. The phase spaces shown in Figs. 5–6 are subtly
different when jΛj is very small. When ω1ðrhÞ ¼
0.632206952 (Fig. 5), the n ¼ n1 ¼ 1 part of the phase
space (the second region from the right) extends to jΛj → 0
as we have the first colored black hole solution in this limit
[2]. However, for ω1ðrhÞ ¼ 0.5, there is no solution in the
limit jΛj → 0 and so the phase space ends at a small but
nonzero value of jΛj. We are unable to find solutions for
ω1ðrhÞ ¼ 0.5 and jΛj smaller than about 10−9.

2. suð2Þ dyons
As well as the cosmological constant Λ, dyonic solitons

in suð2Þ EYM are parametrized by the quantities ω1;2 and
h1;1, so that the expansions (2.32) of the gauge field
functions take the form

ω1ðrÞ ¼ 1þ ω1;2r2 þOðr3Þ;
h1ðrÞ ¼ h1;1rþOðr2Þ: ð3:15Þ

Unlike the black hole case, where the constraint (2.31) for a
regular nonextremal event horizon restricts the values of the
parameters describing the solutions, for solitons there are
no a priori constraints on the values that ω1;2 and h1;1 can
take. In particular, ω1;2 can take either positive or negative
values. However, since the field equations are invariant
under the transformation h1ðrÞ → −h1ðrÞ, we can restrict
attention to h1;1 > 0 without loss of generality.
To avoid numerical errors in terms in the field equa-

tions (2.23)–(2.24), we define a new variable ψðrÞ by

ψðrÞ ¼ ω1ðrÞ2 − 1; ð3:16Þ

which satisfies the first order differential equation

ψ 0ðrÞ ¼ 2ω1ðrÞω0
1ðrÞ; ð3:17Þ

and add this differential equation to (2.23)–(2.24) to be
integrated numerically. Near the origin,

ψðrÞ ¼ 2ω1;2r2 þOðr3Þ: ð3:18Þ

In the suð2Þ case, the relation (2.50) for the gauge field
functions takes the form

h1ðrÞ ¼ γ1ðrÞ; ω1ðrÞ ¼ 1þ β1ðrÞ: ð3:19Þ

Therefore our new variable ψðrÞ (3.16) is related to
β1ðrÞ by

ψðrÞ ¼ 2β1ðrÞ þ β1ðrÞ2; ð3:20Þ

and, using (2.52),

ω1;2 ¼ b1: ð3:21Þ

A typical soliton solution with Λ ¼ −0.01 is shown in
Fig. 7, where the parameters are ω1;2 ¼ −0.002 and
h1;1 ¼ 0.003. For these initial values we see that the
magnetic gauge field function ω1ðrÞ has a single zero.
As expected, the electric gauge field function h1ðrÞ is
monotonic and has no zeros.
The entire phase space of soliton solutions for Λ ¼

−0.01 is shown in Fig. 8. All points in the plot in Fig. 8
represent dyonic soliton solutions with particular values of
h1;1 and ω1;2. In Fig. 8, as in the black hole case (Fig. 2), the
phase space is very complicated, and we find solutions for
which ω1ðrÞ has up to 17 nodes. The corresponding plot in
[12] focused on the small region near h1;1 ¼ 0, ω1;2 ¼ 0 for
which there are nodeless n ¼ n1 ¼ 0 solutions. For com-
parison, in Fig. 9 we show a closeup of the parameter space
near the n ¼ n1 ¼ 0 region, which is in agreement with the
corresponding plot in [12].
As jΛj increases, the phase space of dyonic soliton

solutions simplifies, in the same way as we observed for the
black hole solutions. This can be seen in Fig. 10, where we
plot the phase space of solutions for Λ ¼ −3. We find
solutions where the magnetic gauge field function ω1ðrÞ
has either zero nodes or one node.
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FIG. 7. Dyonic soliton solution of suð2Þ EYM in adS. The
parameters are Λ ¼ −0.01, ω1;2 ¼ −0.002, h1;1 ¼ 0.003. The
electric gauge field function h1ðrÞ is monotonic and nodeless;
the magnetic gauge field function ω1ðrÞ has a single zero.
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D. suð3Þ solutions
Having discussed the phase space of suð2Þ dyonic black

holes and solitons in some detail, we now present new
suð3Þ dyonic black holes and solitons, and explore the
phase space of solutions.

1. suð3Þ dyonic black holes

Dyonic black hole solutions of suð3Þ EYM are
described by the following six parameters: rh, Λ, h01ðrhÞ,
h02ðrhÞ, ω1ðrhÞ and ω2ðrhÞ. We fix the event horizon radius
rh ¼ 1. The field equations (2.23)–(2.24) are symmetric
under the transformations hk → −hk, ωk → −ωk, for each
function separately, and so we can consider h0kðrhÞ > 0,
ωkðrhÞ > 0, for k ¼ 1, 2 without loss of generality.

Figure 11 shows a typical suð3Þ dyonic black hole
solution, with Λ ¼ −0.01 and the initial values
h01ðrhÞ ¼ 0.01, h02ðrhÞ ¼ 0.005, ω1ðrhÞ ¼ 1.2 ¼ ω2ðrhÞ.
For this solution the two electric gauge field functions
are monotonic and have no zeros; h1ðrÞ is monotonically
decreasing and h2ðrÞ monotonically increasing. The two
magnetic gauge field functions ω1ðrÞ and ω2ðrÞ have zeros;
ω1ðrÞ has two zeros and ω2ðrÞ has three.
In order to explore the phase space using two-

dimensional plots, it is necessary to fix two of the four
parameters h01ðrhÞ, h02ðrhÞ, ω1ðrhÞ and ω2ðrhÞ as well as the
event horizon radius rh and cosmological constant Λ.
Overall, the structure of the phase space of solutions is
extremely complicated; we give a flavor of some of the key

FIG. 9. Closeup view of the region surrounding the nodeless
n ¼ n1 ¼ 0 solutions from Fig. 8. The n ¼ n1 ¼ 0 region [the
green or light grey region containing the point (0,0)] is in
agreement with Ref. [12]. The region labeled “no solution”
(the red/darker grey region containing larger values of ω1;2 for
smaller values of h1;1) is the region where we have not found any
regular soliton solutions.

FIG. 8. Phase space of dyonic soliton solutions of suð2Þ EYM,
with Λ ¼ −0.01. All shaded points in the plot correspond to
soliton solutions. The solutions are indexed by n ¼ n1, the
number of zeros of the magnetic gauge field function ω1ðrÞ.
The different values of n ¼ n1 are indicated by color coding the
regions—in black and white the different colors are different
shades of grey. Solutions with the largest values of n ¼ n1 are
found towards the right-hand side of the colored region.

FIG. 10. Phase space of dyonic soliton solutions of suð2ÞEYM,
withΛ ¼ −3. The different values of n ¼ n1 are indicated by color
coding the regions—in black and white the different colors are
different shades of grey. The region labeled “no solution” (the red/
mid grey region containing larger values of ω1;2 and h1;1) is the
region where we have not found any regular soliton solutions.
There are solutions for which the number of nodes n ¼ n1 of the
magnetic gauge field function ω1ðrÞ is either zero or one.
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FIG. 11. Dyonic black hole solution of suð3Þ EYM in adS. The
parameters are rh ¼ 1, Λ ¼ −0.01, h01ðrhÞ ¼ 0.01, h02ðrhÞ ¼
0.005 and ω1ðrhÞ ¼ 1.2 ¼ ω2ðrhÞ. Both electric gauge field
functions h1ðrÞ and h2ðrÞ are monotonic and nodeless. The
magnetic gauge field function ω1ðrÞ has two zeros and ω2ðrÞ
has three.
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features in Figs. 12–13. As explained in Sec. III B, we can
classify the solutions according to the numbers of zeros n1
and n2 of the magnetic gauge field functions ω1ðrÞ and
ω2ðrÞ respectively. In Figs. 12–13, we have fixed the values
of ω1ðrhÞ and ω2ðrhÞ, scanning the values of h01ðrhÞ and

h02ðrhÞ such that the constraint (2.31) is satisfied. As in the
suð2Þ case, there are values of the parameters such that
(2.31) is satisfied but for which we do not find regular black
hole solutions.
When the magnitude of the cosmological constant is

small, we typically find a rich phase space structure with
solutions with many different numbers of nodes. This is
illustrated in Fig. 12, where we set Λ ¼ −0.01. We have
also fixed the values of the magnetic gauge field functions
on the event horizon to be ω1ðrhÞ ¼ 1.2 ¼ ω2ðrhÞ, and
scanned the phase space by varying h01ðrhÞ, h02ðrhÞ. With
these values of the parameters, for all the solutions both
magnetic gauge field functions ω1ðrÞ and ω2ðrÞ have at
least two zeros. As we have set the magnetic gauge field
functions to be equal on the event horizon, from (3.5) and
(3.9) there are embedded suð2Þ solutions along the line
h02ðrhÞ ¼

ffiffiffi
3

p
h01ðrhÞ. In [22] the existence of dyonic black

hole solutions of suðNÞ EYM in adS in a neighborhood of
embedded suð2Þ dyonic black holes is proven. In Fig. 12
we see the neighborhood of the embedded suð2Þ solutions
for which there are nontrivial suð3Þ dyonic black holes.
Also from Fig. 12, the number of nodes of the magnetic
gauge field functions increases as h01ðrhÞ and h02ðrhÞ
increase.
As the magnitude of the cosmological constant

increases, for suð3Þ black hole solutions we find [as for
the suð2Þ case] that the phase space simplifies consider-
ably. This is illustrated in Fig. 13, where we have fixed the
cosmological constant to be Λ ¼ −3 and the magnetic
gauge field functions on the horizon have the values
ω1ðrhÞ ¼ 1.3, ω2ðrhÞ ¼ 1.2. For these values of the param-
eters, all nontrivial solutions are such that the two magnetic
gauge field functions ω1ðrÞ and ω2ðrÞ have no zeros. Since
ω1ðrhÞ ≠ ω2ðrhÞ in Fig. 13, there are no embedded suð2Þ
solutions in this part of the phase space.

2. suð3Þ dyons
For the suð3Þ gauge group, the electric and magnetic

gauge field functions need to be expanded to Oðr3Þ in a
neighborhood of the origin, as follows (see the discussion
in Sec. II B 3):

hkðrÞ ¼ hk;1rþ hk;2r2 þOðr3Þ;
ωkðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kð3 − kÞ

p
þ ωk;2r2 þ ωk;3r3 þOðr4Þ; ð3:22Þ

for k ¼ 1, 2, where we have assumed without loss of
generality that ωkð0Þ > 0.
The vectors ω2 ¼ ðω1;2;ω2;2ÞT and ω3 ¼ ðω1;3;ω2;3ÞT

are eigenvectors of the matrix M2 (2.37) with eigenvalues
2 and 6 respectively. For N ¼ 3, the matrix M2

simplifies to

M2 ¼
�

4 −2
−2 4

�
; ð3:23Þ

FIG. 12. Phase space of dyonic black hole solutions of suð3Þ
EYM with rh ¼ 1, Λ ¼ −0.01, and ω1ðrhÞ ¼ 1.2 ¼ ω2ðrhÞ. All
shaded points in the plot correspond to black hole solutions. The
solutions are indexed by ðn1; n2Þ, the number of zeros of
the magnetic gauge field functions ω1ðrÞ, ω2ðrÞ respectively.
The different combinations of values of ðn1; n2Þ are indicated by
color coding the regions—in black and white the different colors
are different shades of grey. In general the number of zeros of the
magnetic gauge field functions increases as we move towards the
edges of the phase space. For these values of the parameters, there
are no nodeless solutions. The number of zeros of the magnetic
gauge field functions is n1 ¼ 2 ¼ n2 in the green/lighter grey
region containing the origin.

FIG. 13. Phase space of dyonic black hole solutions of suð3Þ
EYM with rh ¼ 1, Λ ¼ −3, ω1ðrhÞ ¼ 1.3 and ω2ðrhÞ ¼ 1.2. The
solutions are indexed by ðn1; n2Þ, the number of zeros of
the magnetic gauge field functions ω1ðrÞ, ω2ðrÞ respectively.
The different combinations of values of ðn1; n2Þ are indicated by
color coding the regions—in black and white the different colors
are different shades of grey. For these values of the parameters, all
nontrivial solutions are nodeless. We have also shown in red/
darker grey (marked “no solution”) those values of the parameters
ðh01ðrhÞ; h02ðrhÞÞ for which the constraint (2.31) for a regular event
horizon holds, but we have not found regular solutions.
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and the relevant normalized eigenvectors are [15]

u1 ¼
1ffiffiffi
2

p
�
1

1

�
; u2 ¼

1ffiffiffi
2

p
�

1

−1

�
; ð3:24Þ

in terms of which ω2 and ω2 are given by (2.39).
Similarly, the vectors h1 ¼ ðh1;1; h2;1ÞT and h2 ¼

ðh1;2; h2;2ÞT are eigenvectors of the matrix N 2 (2.41) with
eigenvalues 2 and6 respectively. ForN ¼ 3, thematrixN 2 is

N 2 ¼
�

5 −
ffiffiffi
3

p

−
ffiffiffi
3

p
3

�
; ð3:25Þ

with the relevant normalized eigenvectors [in terms ofwhich
h2 and h3 are given by (2.45)] being

v1 ¼
1

2

�
1ffiffiffi
3

p
�
; v2 ¼

1

2

�
−

ffiffiffi
3

p

1

�
: ð3:26Þ

It is straightforward to check that the eigenvectors uj (3.24),
vj (3.26), j ¼ 1, 2 are related by

v1 ¼
1ffiffiffi
2

p F−1
2 u1; v2 ¼ −

ffiffiffi
3

2

r
F−1

2 u2; ð3:27Þ

where, for N ¼ 3, the matrix F 2 (2.15) takes the form

F 2 ¼
�

1 0

− 1
2

ffiffi
3

p
2

�
: ð3:28Þ

In order to numerically integrate the field equa-
tions (2.23)–(2.24) with the initial conditions (3.22), we
seek new variables βjðrÞ, γjðrÞ, j ¼ 1, 2, with the behavior
(2.52) near the origin. The βjðrÞ depend only on the
magnetic gauge field functions and the γjðrÞ depend only
on the electric gauge field functions. Using the relations
(2.50) and the eigenvectors (3.24) and (3.26), we define the
βjðrÞ functions so that the magnetic gauge field functions
ωjðrÞ take the form

ω1ðrÞ ¼
ffiffiffi
2

p
þ 1ffiffiffi

2
p ½β1ðrÞ þ β2ðrÞ�;

ω2ðrÞ ¼
ffiffiffi
2

p
þ 1ffiffiffi

2
p ½β1ðrÞ − β2ðrÞ�; ð3:29Þ

and the γjðrÞ functions so that the electric gauge field
functions hjðrÞ take the form

h1ðrÞ ¼
1

2
γ1ðrÞ −

ffiffiffi
3

p

2
γ2ðrÞ;

h2ðrÞ ¼
ffiffiffi
3

p

2
γ1ðrÞ þ

1

2
γ2ðrÞ: ð3:30Þ

The new variables β1ðrÞ, β2ðrÞ, γ1ðrÞ and γ2ðrÞ satisfy the
following equations, which are derived from (2.23):

β001 ¼ −
�
σ0

σ
þ μ0

μ

�
β01 þ

1

4μr2
ð2þ β1Þðβ21 þ 4β1 þ 7β22Þ

−
1ffiffiffi

2
p

σ2μ2

� ffiffiffi
2

p �
9γ21
16

þ 3γ22
2

�
þ β1ffiffiffi

2
p

�
9γ21
16

þ 3γ22
2

�

−
ffiffiffi
3

p
β2γ1γ2ffiffiffi
2

p
�
; ð3:31aÞ

β002¼−
�
σ0

σ
þμ0

μ

�
β02þ

1

4μr2
ð7β21þ28β2þβ22þ24Þβ2

−
1ffiffiffi

2
p

σ2μ2

� ffiffiffi
6

p
γ1γ2þ

ffiffiffi
3

p
β2γ1γ2ffiffiffi
2

p −
β1ffiffiffi
2

p
�
9γ21
16

þ3γ22
2

��
;

ð3:31bÞ

γ001 ¼
�
σ0

σ
−
2

r

�
γ01 þ

2γ1
μr2

þ 1

μr2

�
1

2
ðβ21 þ β22Þ þ 2ðβ1 − β2Þ − β1β2

�

×

�
1

2
γ1 þ

ffiffiffi
3

p

2
γ2

�

þ 1

μr2

�
1

2
ðβ21 þ β22Þ þ 2ðβ1 þ β2Þ þ β1β2

�

×

�
1

2
γ1 −

ffiffiffi
3

p

2
γ2

�
; ð3:31cÞ

γ002 ¼
�
σ0

σ
−
2

r

�
γ02 þ

6γ2
μr2

þ 1

μr2

�
1

2
ðβ21 þ β22Þ þ 2ðβ1 − β2Þ − β1β2

�

×

� ffiffiffi
3

p

2
γ1 þ

3

2
γ2

�

þ 1

μr2

�
1

2
ðβ21 þ β22Þ þ 2ðβ1 þ β2Þ þ β1β2

�

×

� ffiffiffi
3

p

2
γ1 −

3

2
γ2

�
: ð3:31dÞ

We also substitute for hjðrÞ and ωjðrÞ from (3.29)–(3.30)
into the Einstein equations (2.24), and then numerically
integrate the resulting equations, together with (3.31), using
the initial conditions (2.52). The solutions are parametrized
by the cosmological constantΛ, and the four parameters b1,
b2, g1 and g2. As in the suð2Þ case, there are no a priori
constraints on the values of these four parameters. In
general b1 and b2 can take both positive and negative
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values. In our phase space plots, we have restricted our
attention to g1 > 0, g2 > 0 since this reveals the key
features of the phase space.
A typical dyonic soliton solution of suð3Þ EYM is

shown in Fig. 14. The cosmological constant is Λ ¼ −0.01
and the other parameters are b1 ¼ −0.002, b2 ¼ −0.00001,
g1 ¼ 0.001, g2 ¼ 0.0005. For these values of the param-
eters, the two electric gauge field functions h1ðrÞ and h2ðrÞ
are monotonic and have no zeros; h1ðrÞ is monotonically
decreasing and h2ðrÞ is monotonically increasing. The two
magnetic gauge field functions ω1ðrÞ and ω2ðrÞ are
monotonically decreasing, and both have a single zero.
Once again we find a very rich space of solutions, and

illustrate some features in Figs. 15–16. Figure 15 shows the
phase space for Λ ¼ −0.01. The parameters b1 ¼ −0.002
and b2 ¼ −0.00001 which govern the behavior of the
magnetic field functions near the origin are fixed; we have
scanned over positive values of the parameters g1 and g2
describing the electric gauge field functions near the origin.
As we have seen previously for both suð2Þ solutions and
suð3Þ dyonic black holes, for suð3Þ dyonic solitons with
jΛj comparatively small, the phase space is very compli-
cated. There are many different regions in which the two
magnetic gauge field functions ω1ðrÞ and ω2ðrÞ have
different numbers of zeros. For these values of the
parameters, we find that ω1ðrÞ and ω2ðrÞ can have up to
four zeros. We find a small region close to g1 ¼ 0 ¼ g2 for
which both magnetic gauge field functions have no zeros.
Embedded suð2Þ solutions correspond to b2 ¼ 0 ¼ g2, and
therefore there are no embedded solutions in Fig. 15.
As the magnitude of the cosmological constant

increases, the phase space simplifies considerably. This
can be seen in Fig. 16, where Λ ¼ −3. The size of the space
of nontrivial solutions also expands as jΛj increases. In
Fig. 16, we have fixed b1 ¼ −0.2 and b2 ¼ −0.1, and

varied g1 > 0 and g2 > 0. With these values of the
parameters, most of the nontrivial dyonic soliton solutions
are such that n1 ¼ 0 ¼ n2 and both magnetic gauge field
functions have no zeros. There are small regions close to
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FIG. 14. Dyonic soliton solution of suð3Þ EYM in adS. The
parameters are Λ ¼ −0.01, b1 ¼ −0.002, b2 ¼ −0.00001,
g1 ¼ 0.001, g2 ¼ 0.0005. Both electric gauge field functions
h1ðrÞ and h2ðrÞ are monotonic and nodeless. The magnetic gauge
field functions ω1ðrÞ and ω2ðrÞ both have a single zero.

FIG. 15. Phase space of dyonic soliton solutions of suð3Þ EYM
with Λ ¼ −0.01, b1 ¼ −0.002, b2 ¼ −0.00001. All shaded
points correspond to soliton solutions. The solutions are indexed
by ðn1; n2Þ, the number of zeros of the magnetic gauge field
functions ω1ðrÞ, ω2ðrÞ respectively. The different combinations
of values of ðn1; n2Þ are indicated by color coding the regions—in
black and white the different colors are different shades of grey.
We find solutions where the magnetic gauge field functions have
a wide variety of numbers of nodes. There is a small region close
to the origin where both ω1ðrÞ and ω2ðrÞ have no zeros.

FIG. 16. Phase space of dyonic soliton solutions of suð3Þ EYM
with Λ ¼ −3, b1 ¼ −0.2, b2 ¼ −0.1. All shaded points corre-
spond to soliton solutions. The solutions are indexed by ðn1; n2Þ,
the number of zeros of the magnetic gauge field functions ω1ðrÞ,
ω2ðrÞ respectively. The different combinations of values of
ðn1; n2Þ are indicated by color coding the regions—in black
and white the different colors are different shades of grey. The
phase space has a much simpler structure for this larger value of
jΛj. For most of the solution space, both magnetic gauge field
functions ω1ðrÞ and ω2ðrÞ have no zeros. There are small regions
at the edges of the space of solutions where either ω1ðrÞ or ω2ðrÞ
has a single zero.
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the edge of the solution space where one of ðω1ðrÞ;ω2ðrÞÞ
(but not both) has a single zero.

IV. CONCLUSIONS

In this paper we have presented new dyonic soliton and
black hole solutions of the suðNÞ EYM field equations in
asymptotically adS spacetime with a negative cosmological
constant Λ < 0. The metric is static and spherically
symmetric. The gauge field has nontrivial electric and
magnetic components, and is described by 2ðN − 1Þ
independent gauge field functions, with equal numbers
of electric and magnetic gauge field functions. We have
explored the phase space of soliton and black hole solutions
for suð2Þ and suð3Þ gauge groups. The solutions can be
categorized by the numbers of zeros, nj, of the magnetic
gauge field functions ωjðrÞ. In general the phase space is
very rich, with many different combinations of nj possible.
However, we find the following general features, many of
which are in common with the phase space of purely
magnetic suðNÞ solutions [15]:

(i) For small jΛj, we find solutions in which the
magnetic gauge field functions have large numbers
of zeros, particularly for the suð2Þ case;

(ii) for small jΛj, the phase space is particularly com-
plicated, with many different combinations of values
of nj;

(iii) as jΛj increases, the phase space expands in param-
eter space and the number of different combinations
of values of nj decreases;

(iv) for large jΛj, there are solutions for which all the
magnetic gauge field functions have no zeros.

The existence of nontrivial dyonic solutions has been
proven recently in the following regimes in parameter
space [22]:

(i) In a neighbourbood of the embedded trivial solution,
either pure adS (for solitons) or Schwarzschild-adS
(for black holes);

(ii) in a neighborhood of embedded nontrivial suð2Þ
dyonic soliton and black hole solutions;

(iii) in a neighborhood of nontrivial purely magnetic
suðNÞ solutions (whose existence is proven in [16]).

Of particular interest are the solutions in the intersection
of the last items in the two lists above, namely nontrivial
nodeless solutions in the intersection of a neighborhood
of embedded suð2Þ solutions and a neighborhood of
embedded purely magnetic suðNÞ solutions. We conjecture
that it may be possible to prove that such solutions are
stable under linear, spherically symmetric perturbations.
Recently the existence of stable dyonic soliton and black
hole solutions of suð2Þ EYM in adS has been proven [21],
and it would be interesting to attempt to extend that analysis

to the case of a larger gauge group. In the suð2Þ case, the
perturbation equations for dyonic solutions are much more
complicated than the corresponding equations for purely
magnetic background solutions, and the same will be true
for the suðNÞ gauge group. We therefore leave this
question open for future work.
The dyonic soliton and black hole solutions studied in

this paper are spherically symmetric, with the event horizon
being a surface of constant positive curvature. The exist-
ence proof in [22] is more general, and applies also to
topological black holes for which the event horizon has
either zero or constant negative curvature. A natural
question would be to investigate the phase space of dyonic
topological black hole solutions of the suðNÞ EYM
equations, extending the recent study of the phase space
of purely magnetic topological black hole solutions [30].
Black holes with a flat event horizon in particular have
attracted a great deal of attention in the literature as models
of holographic superconductors (see [31] for a recent
review). Planar black holes with a suð2Þ gauge field have
been used to model p-wave superconductors (see, for
example, [32] for a selection of papers), and enlarging
the gauge group in these models would also be of interest.
We plan to return to this topic in a future publication.
Finally, we anticipate that the thermodynamics of the

dyonic black holes presented here would be very interest-
ing. The thermodynamics of purely magnetic suð2Þ black
holes in adS has recently been studied [33,34]. In [33], a
complex picture emerges: it is found that purely magnetic,
spherically symmetric suð2Þ black holes with unit mag-
netic charge at infinity are globally thermodynamically
unstable; those with zero magnetic charge at infinity have
two branches of solutions, both of which are globally
thermodynamically unstable to decay to an embedded
Schwarzschild-adS black hole; while those with general
magnetic charge at infinity also have two branches of
solutions, one of which is thermodynamically stable. We
expect that the additional complexity of both enlarging the
gauge group and including an electric as well as a magnetic
part of the gauge field will render the thermodynamics of
the suðNÞ dyonic black holes studied in this paper even
more complicated than that presented in [33] for the purely
magnetic suð2Þ case. Accordingly we leave a systematic
study of the thermodynamics to future research.
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