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We investigate homogeneous cosmological models with perfect-fluid sources in the framework of the
Hořava-Lifshitz model for quantum gravity. We show that the Hamiltonian constraint of such spacetimes
can be rewritten as the Cardy formula for the entropy in conformal field theory. The Cardy entropy is shown
to depend explicitly on the value of the Hořava parameter λ so that it can be interpreted as determining the
entropy and the gravitational interaction of the theory. Moreover, we show that Verlinde’s Pythagorean
representation of the Hamiltonian constraint is also valid in the case of homogeneous Hořava-Lifshitz
spacetimes. We interpret these results as a further indication of a deep relationship between gravity,
thermodynamics and holography in the quantum regime.
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I. INTRODUCTION

All the efforts spent to develop a self-consistent theory of
quantum gravity have been so far incomplete [1]. Even
though many approaches have been carried forward during
the last few decades, the problem of obtaining a covariant
scheme for quantum gravity still remains open and, con-
sequently, many phenomenological proposals have been
discussed in the literature [2–5]. An appealing technique
consists in assuming the violation of the Lorentz invariance
in some particular energy regimes [6]. The idea is that
Lorentz invariance is somehow broken at ultraviolet scales,
providing quantum effects which have consequences on the
observable Universe itself. Recently, following this phi-
losophy Hořava proposed an alternative theory which
reduces to Einstein’s gravity with a cosmological constant
in the infrared regime, leading to complicated modifica-
tions in the ultraviolet regime [7]. The underlying philoso-
phy of Hořava’s model is to include Lorentz-breaking terms
in the action, which provides a different scaling between
space and time at an ultraviolet fixed point. The trans-
formation xi → lxi, t → lzt, where z is the scaling expo-
nent, in the case z ¼ 3, leads to a theory which is
renormalizable by power counting. This idea was first
proposed by Lifshitz [8] and, in the case of the Hořava
approach, it leads to a model which is nonrelativistic in the
ultraviolet regime. However, in the infrared limit, the model
manifests an emerging four-dimensional general covari-
ance. Due to these considerations, the Hořava framework is

frequently referred to as the Hořava-Lifshitz (HL) model.
Although the model is clearly appealing for the description
of quantum effects in gravity, its physical interpretation is
still open. For instance, the model depends upon several
parameters, each of them having a precise physical role.
Nevertheless, the interpretation of these parameters is not
completely known. In this work, we will focus on the
parameter λ which is usually fixed in the infrared limit in
order to obtain Einstein’s gravity.
In this work, we will consider homogeneous spacetimes

with a perfect fluid as the gravitational source under the
condition that they satisfy the field equations of the Hořava-
Lifshitz model. In particular, we will explicitly analyze the
isotropic Friedmann-Lemaître-Robertson-Walker (FLRW)
spacetime and the anisotropic Bianchi cosmologies of the
types I, V and IX, following the procedure formulated in
Ref. [9].We first derive the field equations andwrite them in
a form which is suitable for our analysis. In particular, we
express the Hamiltonian constraint in terms of the Hubble
parameters which determine the expansion in different
spatial directions. Then, we assume the validity of the
Cardy entropy which was originally derived in two-
dimensional conformal field theory. Assuming the validity
of the Cardy formula implies that we are assuming a
holographic treatment of the entropy in the HL model. If
this assumption turns out to be true in the corresponding
cosmological scenarios, we can conclude that the holo-
graphic principle can be used in the corresponding models.
In fact, we will show that for all homogeneous spacetimes
under consideration in this work it is possible to define the
central charge and the eigenvalue of the Virasoro operator in
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such a way that the Cardy formula is identically satisfied,
generating an explicit expression for the Cardy entropy. In
doing so, it turns out that the Hořava parameter λ enters
explicitly the Cardy entropy, allowing us to interpret it,
determining the entropy and the gravitational interaction of
the theory. Moreover, we will calculate the Hubble,
Bekenstein and Bekenstein-Hawking entropies for the
anisotropic Bianchi IX cosmological model, and will show
that they can be arranged in such a way that the correspond-
ing Hamiltonian constraint can be cast into the Pythagorean
representation proposed recently by Verlinde [10].
This paper is structured as follows: In Sec. II, we present

a brief review of the Hořava action and comment on the free
parameters that enter the theory. In Sec. III, we study
homogeneous spacetimes with a perfect-fluid source. We
consider the FLRW metric and the Bianchi I, V and IX
metrics for which we derive the field equations explicitly.
Special attention is given to the form of the Hamiltonian
constraint which is expressed in a compact form in terms of
the scale factors, the Hubble parameters and the parameters
entering the HL model. In Sec. IV, we analyze the
Hamiltonian constraints of all the homogeneous cosmo-
logical spacetimes and establish a unique relationship that
allows us to define the Cardy entropy for each spacetime.
We also show that the Pythagorean representation of the
constraints in terms of entropies is valid in the HL model.
Finally, in Sec. V, we discuss our results.

II. THE HOŘAVA-LIFSHITZ PARADIGM

Consider an arbitrary four-dimensional metric in the
framework of the ADM (Arnowitt-Deser-Misner) formal-
ism, i.e.,

ds2 ¼ −N2c2dt2 þ gijðdxi − NidtÞðdxj − NjdtÞ; ð1Þ

where we introduce the lapse functionN, the shift vectorNi

and the three-dimensional metric gij. The Einstein-Hilbert
covariant action in the ADM decomposition is given by

SEH ¼ 1

16πG

Z
d4x

ffiffiffi
g

p
NðKijKij − K2 þ R − 2ΛÞ; ð2Þ

where

Kij ¼
1

2N
ð_gij −∇iNj −∇jNiÞ ð3Þ

is the extrinsic curvature tensor and K is its trace, where the
dot represents the time derivative.
The HL quantum gravity model is based upon a

generalization of the Einstein-Hilbert action which breaks
covariance in order to obtain in the ultraviolet limit a theory
that is renormalizable by power counting. Then, the Hořava
action can be expressed as [7]

S ¼
Z

dtd3xðL0 þ L1Þ; ð4Þ

with

L0 ¼
ffiffiffi
g

p
N

�
2

κ2
ðKijKij − λK2Þ þ κ2μ2ðΛWRð3Þ − 3Λ2

WÞ
8ð1 − 3λÞ

�
ð5Þ

and

L1 ¼
ffiffiffi
g

p
N

�
κ2μ2ð1 − 4λÞ
32ð1 − 3λÞ ðRð3ÞÞ2

−
κ2

2ν4

�
Cij −

μν2

2
Rð3Þ
ij

��
Cij −

μν2

2
Rð3Þij

��
; ð6Þ

where Rð3Þ
ij and Rð3Þ are the Ricci tensor and the scalar

curvature for the three-dimensional metric gij, respectively,
and

Cij ¼ ϵikl∇k

�
Rð3Þj
l −

1

4
Rð3Þδjl

�
ð7Þ

is known in literature as the Cotton tensor. The free
parameters entering the Hořava action (4) are λ, κ, μ, ν
and ΛW . Soon after the publication of the model, it was
found that the Schwarzschild-AdS black hole solution is
not recovered in the infrared limit, although Einstein’s
theory with cosmological model was obtained at the level
of the action [11]. This difficulty was solved by introducing
an additional parameter which modifies the IR behavior
[12,13]. In this work, however, we will use the original
Hořava action, since our results do not depend on the value
of the additional parameter.
The five constants κ, λ, μ, ν, and ΛW are parameters

which determine the velocity of the light c, the gravitational
constant G and the Einstein cosmological constant Λ by
means of [14]

c2 ¼ κ4μ2jΛW j
8ð3λ − 1Þ2 ;

G ¼ κ2c2

16πð3λ − 1ÞΛW ¼ 2

3
Λ: ð8Þ

These three constraints imply that three constants of the HL
model can be fixed by using experimental data. Notice that
for λ < 1=3 the gravitational constant becomes negative,
indicating the presence of repulsive gravity. We therefore
limit ourselves to the case λ > 1=3. Consequently, the HL
model possesses only two free parameters, which should be
chosen in accordance with observations. In this work, we
will focus on the investigation of the physical significance
of the parameter λ in the context of cosmological models.
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III. COSMOLOGICAL DYNAMICS

The simplest cosmological models assume a high degree
of symmetry in order to be able to handle the corresponding
field equations. In this section, we will assume that the
spacetime is homogeneous so that we are left with only two
possible classes of models, namely isotropic and aniso-
tropic cosmological models. In the first case, the geometry
of the spacetime is described by the FLRW metric

ds2 ¼ −dt2 þ aðtÞ2
�

dr2

1 − kr2
þ r2ðdθ2 þ sin2θdϕ2Þ

�
;

ð9Þ

where aðtÞ is the scale factor and k ¼ −1, 0, 1. The
corresponding field equations can be derived from the
variation of the Hořava action. We obtain

H2 ¼ 2

3λ − 1

�
8πG
3

ρtot −
k
a2

−
2k2

3λ − 1

�
4πGμ
a2

�
2
�
; ð10Þ

ä
a
¼ 2

3λ − 1

�
−
4πG
3

ðρtot þ 3ptotÞ þ
2k2

3λ − 1

�
4πGμ
a2

�
2
�
;

ð11Þ

where the total density and pressure are defined as ρtot ¼
ρΛW

þ ρ and ptot ¼ pΛW
þ p, respectively, with ρΛW

≡ 3ΛW
16πG

and pΛW
≡ −ρΛW

. The limiting case of the ΛCDMmodel is
recovered when λ → 1 and μ → 0.
For later use, it is convenient to rewrite the Hamiltonian

constraint (10) as

3λ − 1

2
H2 þ kþM

a2
¼ 8πG

3
ρtot; ð12Þ

where M ¼ Mða; λ; μÞ is a function of the scale factor and
the Hořava parameters. The explicit value of this function
depends on the topology of the cosmological model and
can be expressed as given in Table I.
We now consider the case of anisotropic cosmological

models. We will restrict ourselves to the study of the
Bianchi I, V and IX models, which are described by the
metrics

ðIÞds2 ¼ −dt2 þ a21dx
2 þ a22dy

2 þ a23dz
2; ð13Þ

ðVÞds2 ¼ −dt2 þ a21dx
2 þ e2xa22dy

2 þ e2xa23dz
2; ð14Þ

ðIXÞds2 ¼ −dt2 þ a21ðω1Þ2 þ a22ðω2Þ2 þ a23ðω3Þ2; ð15Þ

where the scale factors ai (i ¼ 1, 2, 3) depend on time only,
and

ω1 ¼
1

2
ð−dx sin zþ dy sin x cos zÞ;

ω2 ¼
1

2
ðdx cos zþ dy sin x sin zÞ;

ω3 ¼
1

2
ðdy cos xþ dzÞ: ð16Þ

In the case of the Bianchi IX metric, it is convenient to
introduce the alternative representation

ðIXÞds2 ¼ −dt2 þ e−2Ω½e2Xþ2Yðω1Þ2
þ e2X−2Yðω2Þ2 þ e−4Xðω3Þ2�; ð17Þ

which is useful for concrete calculations in terms of the
scale factors

a1 ¼ e−ΩþXþY; a2 ¼ e−ΩþX−Y; a3 ¼ e−Ω−2X:

ð18Þ

Introducing the directional Hubble parameters
Hi ¼ _ai=ai, the computation of the corresponding
Hamiltonian constraint yields

1

6
ðλ − 1ÞðH2

1 þH2
2 þH2

3Þ

þ λ

3
ðH1H2 þH1H3 þH2H3Þ þ

kþ F
a21

¼ 8πG
3

ρtot; ð19Þ

where F ¼ Fða1; a2; a3; λ; μÞ depends on the scale factors
and the Hořava parameters, and its explicit form is given in
Table II, where

ϵ2 ≡ 1 −
a23
a22

− 2

�
1 −

a21
a22

�
−
a22
a23

�
1 −

a21
a22

�
2

;

θ4 ≡ 1 −
a43
a42

− 2

�
1 −

a41
a42

�
−
a42
a43

�
1 −

a41
a42

�
2

: ð20Þ

As for the dynamical equations, we now have three
second-order differential equations which relate the second
time derivatives of the scale factors. Although these
equations are not strictly necessary for the following
analysis, for the sake of completeness and for future use
we present them explicitly in the Appendix.

TABLE I. Hamiltonian constraint (12) for isotropic spacetimes.

FLRW universe k M

Flat 0 0

Open −1 2
3λ−1 ð4πGμa Þ2

Closed þ1 2
3λ−1 ð4πGμa Þ2
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IV. THE CARDY-VERLINDE ENTROPY

There are several ways to treat a cosmological model as a
thermodynamic system to which a particular value of
entropy can be associated. One can, for instance, demand
that the cosmological model satisfy the first law of
thermodynamics dE ¼ TdS − pdV, which in the case of
homogeneous cosmological models implies that [9]

T _S ¼ V

�
_ρþ ðpþ ρÞ

_V
V

�
; ð21Þ

where we assume that E ¼ ρV. Then, using the conserva-
tion law, an equation of state and Euler’s identity, it is
possible to obtain explicit expressions for the entropy and
the temperature in terms of the volume V or, equivalently,
the cosmic time t. Although this procedure gives reasonable
results in the case of homogeneous Bianchi models [9,15],
under the presence of inhomogeneities the physical
predictions are incompatible with observations [16,17].
An alternative approach consists in using the holo-

graphic principle and the results of conformal field theory
(CFT) [18]. Indeed, in two-dimensional CFT it is possible
to count the microscopic states of a physical system in a
simple manner by applying the Cardy formula [19]

SC ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c
6

�
L0 −

c
24

�s
; ð22Þ

where c is the central charge and L0 is the eigenvalue of the
Virasoro operator. Recently, Verlinde proposed the univer-
sal validity of Cardy’s entropy and found an interesting link
with Friedmann’s equations in general relativity [10].
Indeed, the Hamiltonian constraint in close FLRW space-
times turns out to coincide with the formula for the Cardy
entropy if the relationships

SC ¼ VH
2G

;L0 ¼
aE
3

; c ¼ 3V
aπG

ð23Þ

are satisfied with V ¼ a3. This formal analogy was con-
firmed also in the case of more general FLRW spacetimes
[20] and of Bianchi models [9,15], for which the gener-
alized Cardy formula reads

SC ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c
6

�
L0 − k

c
24

�s
: ð24Þ

The validity of this formula in so many different cosmo-
logical scenarios can be interpreted as indicating the
existence of a deeper relationship between general rela-
tivity, thermodynamics and holography.
From the results presented in the previous section, one

can easily see that in the HL quantum gravity model, the
Hamiltonian constraints of all FLRW cosmological models
satisfy the generalized Cardy formula if the corresponding
entropy is identified as

SC ¼ VH
2G

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3λ − 1

2

r
; ð25Þ

while the central charge and the eigenvalue of the Virasoro
operator must be chosen as given in Table III. In the
limiting case λ → 1 and μ → 0, our results reduce to those
of Einstein gravity.
We see that the parameter λ enters explicitly the

expression for the Cardy entropy (25), allowing us to
investigate its physical significance. Indeed, the constant
factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið3λ − 1Þ=2p
represents the only difference between

Einstein classical gravity and the HL model for quantum
gravity. Thus, the parameter λ can be considered as a
measure of the classical and quantum gravitational inter-
action. For the limiting value λ ¼ 1=3, the Cardy entropy
vanishes, indicating that no microscopic states can be
associated with the corresponding physical system. This
is in accordance with the physical interpretation of the HL
model, since this case corresponds to a vanishing value for
the gravitational constant, i.e. no gravitational interaction is
present. In fact, the value λ ¼ 1=3 corresponds to the
transition point between repulsive gravity (λ < 1=3) and
attractive gravity (λ > 1=3). For λ < 1=3, the Cardy
entropy becomes imaginary, which can be interpreted as
a manifestation of the absence of physical microscopic
states in a system dominated by repulsive gravity. We
interpret this result as an indication that repulsive gravity is
not a physically meaningful theory within the HL quantum

TABLE II. Hamiltonian constraint (19) for anisotropic cosmological models.

Bianchi type k F

I 0 0

V −1 2
3λ−1

	
4πGμ
a1



2

IX þ1 ϵ2

3
þ 2

3λ−1

	
4πGμ
a1



2
h
3ð3 − 8λÞ

	
1þ ϵ2

3



2
− 8ð1 − 3λÞ

	
1þ θ4

3


i

TABLE III. Cardy entropy for FLRW spacetimes in HL gravity.

FLRW universe k SC L0 c

Flat 0 2π
ffiffiffiffiffiffiffiffi
c
6
L0

p
aE
3

3V
aπG

Open −1 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c
6
ðL0 þ c

24
Þp

aE
3
ffiffiffiffiffiffiffiffiffiffi
−1−M

p 3V
ffiffiffiffiffiffiffi
1−M

p
aπG

Closed þ1 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c
6
ðL0 − c

24
Þp

aE
3
ffiffiffiffiffiffiffiffi
1þM

p 3V
ffiffiffiffiffiffiffiffi
1þM

p
aπG
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gravity model. Starting at λ ¼ 1=3, the attractive gravita-
tional interaction increases as λ increases, and for λ ¼ 1 it
reaches the classical value of general relativity. As λ
increases, the Cardy entropy increases as λ1=2, and at some
point the theory will reach a quantum regime whose
gravitational interaction will depend on the value of λ.
In particular, λ is related to measurements of Lorentz
invariance deviations and can be constrained at different

cosmological regimes to get limits over quantum gravity
effects [21].
We now consider Bianchi cosmologies in HL gravity. As

before, the idea is to identify SC, L0 and c such that the
Cardy formula (24) coincides with the Hamiltonian con-
straint (19). One can show that there is a unique identi-
fication which satisfies this condition, namely

SC ¼ V
2G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

6
ðλ − 1ÞðH2

1 þH2
2 þH2

3Þ þ
λ

3
ðH1H2 þH1H3 þH2H3Þ

r
; ð26Þ

while the values of L0 and c depend on the model as given
in Table IV. In the limiting isotropic case ðH1 ¼ H2 ¼ H3Þ,
we obtain the values for the FLRW spacetime given above.
This proves that the Cardy formula is also valid for
homogeneous spacetimes in HL gravity.
Notice that the validity of the Cardy entropy imposes

certain conditions on the Hubble parameters. In fact, for
values of λwithin the interval ½1;∞Þ the Hubble parameters
H1, H2 and H3 can take any positive real values. This
means that the velocity of expansion can be arbitrarily large
in any spatial direction. In the interval λ ∈ ð1=3; 1Þ,
however, the reality condition of the Cardy entropy implies
that the expansion velocity is limited by the value of λ. This
behavior is illustrated in Fig. 1, where we plot the
(normalized) Cardy entropy in terms of H3 for different
values of λ and fixed values of H1 and H2. We see that in
order for the Cardy entropy to be a real quantity, the value
of the Hubble parameter H3 must be inside a finite interval

whose maximum depends on the value of λ. This result
implies that the expansion velocity in the spatial directions
cannot be arbitrarily large. The parameter λ acts as a
physical barrier which limits the expansion velocity of an
anisotropic universe.
In the case of FLRW spacetimes in Einstein gravity,

Verlinde noticed that the Hamiltonian constraint can be
written in a Pythagorean form

S2H − 2SBHSB þ S2BH ¼ 0; ð27Þ

where SH, SBH and SB are the Hubble, Bekenstein-
Hawking, and Bekenstein entropies, respectively. A
lengthy but straightforward calculation shows that the
Hamiltonian constraints (12) and (19) in HL gravity can
also be put in the Pythagorean form. Indeed, in the case of
the Bianchi IX model, the entropies entering Verlinde’s
formula (27) can be expressed as

SH ¼ V
2G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ

3
ðH1H2 þH1H3 þH2H3Þ þ

λ − 1

6
ðH2

1 þH2
2 þH2

3Þ
r

; ð28Þ

SBH ¼ V
2Ga1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ2

3
þ
�

2

3λ − 1

��
4πGμ
a1

�
2
�
8ð3λ − 1Þ

�
1þ θ4

3

�
− 3ð8λ − 3Þ

�
1þ ϵ2

3

�
2
�s
; ð29Þ

SB ¼ 2π

3

Ea1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ2

3
þ
�

2
3λ−1

��
4πGμ
a1

�
2
�
8ð3λ − 1Þ

�
1þ θ4

3

�
− 3ð8λ − 3Þ

�
1þ ϵ2

3

�
2
�s : ð30Þ

In the isotropic limit, the results are consistent with those
obtained for FLRW spacetimes. This form of the Hamil-
tonian constraint allows us to represent the dynamical
evolution of the entropies as being inside a circle of radius
SB. In the case of the FLRW spacetimes, this radius is
constant so that the dynamical evolution of the Hubble and
Bekenstein-Hawking entropies are restricted to evolve
inside the circle. In the anisotropic case, however, SB

TABLE IV. Cardy entropy for Bianchi cosmologies in HL
gravity.

Bianchi type k SC L0 c

I 0 2π
ffiffiffiffiffiffiffiffi
c
6
L0

p a1E
3

3V
a1πG

V −1 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c
6
ðL0 þ c

24
Þp a1E

3
ffiffiffiffiffiffiffiffiffiffi
−F−G

p 3V
ffiffiffiffiffiffiffi
1−F

p
a1πG

IX þ1 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c
6
ðL0 − c

24
Þp a1E

3
ffiffiffiffiffiffiffiffi
FþG

p 3V
ffiffiffiffiffiffiffi
1þF

p
a1πG
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depends explicitly on time so that the evolution of the
remaining entropies is no longer restricted to be inside a
fixed circle, leading to a more complex pictorial repre-
sentation which physically implies that the evolution
depends on the equation of state of the fluid [15].
The radius SB also depends explicitly on the value of
the parameter λ. This means that for a given value of λ, the
radius of the circle cannot be arbitrarily small or arbitrarily
large as time passes, but it depends explicitly on the value
of λ. In other words, the Hořava parameter λ influences the
evolution of the entropies in the Verlinde representation.

V. FINAL OUTLOOKS AND PERSPECTIVES

In this work, we investigated the structure of the
Hamiltonian constraint for homogeneous cosmological
models with a perfect-fluid source in the Hořava-Lifshitz
quantum gravity model. We calculated explicitly the field
equations for the isotropic FLRW metric and for the
anisotropic Bianchi I, V and IX metrics. The metrics were
chosen in such a way that in each case the resulting
Hamiltonian constraint has a particular compact and simple
form, which allowed us to perform a comparative analysis.
We assumed thevalidity of theCardy entropy formula,which
was used in two-dimensional conformal field theory to carry
out a counting of the microscopic states of physical systems.
It was shown that the Hamiltonian constraint of homo-

geneous cosmological spacetimes can be identified with the
Cardy entropy, by choosing in a unique way the central
charge and the eigenvalue of the Virasoro operator which
enter the Cardy formula. As a result, we obtain explicit
expressions for the Cardy entropy of the FLWR and
Bianchi spacetimes. This proves the validity of the

Cardy entropy in the HL quantum gravity model, implying
in turn that the corresponding gravitational fields can be
analyzed by using the holographic approach of the Cardy
entropy. Moreover, the fact that a particular entropy can be
associated with homogeneous spacetimes indicates that a
thermodynamic analysis can also be performed. This,
however, was not analyzed in the present work.
Our results show that the Cardy entropy for homogeneous

HLcosmologies depends explicitly on theHořava parameter
λ. We use this byproduct of our analysis to investigate the
physical significance of this parameter. In the case of FLRW
spacetimes, we obtained that if λ takes values within the
interval ½1=3;∞Þ, the Cardy entropy is a real quantity. For
λ < 1=3, the entropy becomes imaginary, corresponding to a
theory in which only repulsive gravity is present. We
interpret this limiting theory as unphysical. The point λ ¼
1=3 corresponds to the transition between repulsive and
attractive gravity. At this particular point, the Cardy entropy
vanishes. Then, for increasing values of λ the entropy
increases as SC ∝

ffiffiffi
λ

p
. The particular value λ ¼ 1 corre-

sponds to the limit of general relativity at which covariance
is recovered. Thus, we can interpret λ as the parameter
responsible for the intensity of the gravitational interaction
in different gravity models. As λ increases and tends to
infinity, the HL quantum gravity model describes situations
in which quantum effects become more important.
We also calculated the explicit expression for the Cardy

entropy of anisotropic spacetimes. The entropy depends
explicitly on λ also, asSC ∝

ffiffiffi
λ

p
.We investigated in detail the

results for the Bianchi IX model, which is characterized by
three different scale factors. Within the interval λ ∈ ½1;∞Þ,
the Hubble parameters can be arbitrarily large, indicating
that the velocity expansion in the spatial directions is not
limited by the reality condition of the Cardy entropy.
However, in the interval λ ∈ ð1=3; 1Þ, the situation is
completely different. If we fix two of the Hubble parameters
of the Bianchi IX model, the remaining third Hubble
parameter cannot take an arbitrary value, but is limited
within the interval ½0; Hmax� where Hmax depends explicitly
on the value of λ. This means that an anisotropic spacetime
cannot expand with arbitrary velocity along the spatial
dimensions. The parameter λ acts as a physical barrier that
limits the expansion velocity.
We also proved that the Hamiltonian constraints of homo-

geneousHL spacetimes can bewritten in a Pythagorean form,
leading to explicit expressions for theHubble,Bekenstein and
Bekenstein-Hawking entropies. This particular form of the
Hamiltonian constraint allows us to represent the dynamical
evolution of the entropies as being inside a circle of radiusSB.
In contrast to the case of the FLRW spacetime in general
relativity, where the radius of the circle is constant, in the
anisotropic case it depends explicitly on time, so that the
evolution of the remaining entropies is no longer restricted to
be inside a fixed circle. The radius SB also depends on the
parameter λ. This means that for a given value of λ, the radius

FIG. 1. A normalized Cardy entropy as a function of the Hubble
parameter H3 for different values of the Hořava parameter λ. For
concreteness we fix the remaining Hubble parameters as H1 ¼
0.7 and H2 ¼ 0.6.
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of the circle cannot be arbitrarily small or arbitrarily large as
time passes, but it is limited by the value of λ. We conclude
that the Hořava parameter λ drastically changes the evolution
of the entropies in the Verlinde representation.
Our results show that the holographic approach as

expressed in the Cardy entropy can be used in the framework
of the HL quantum gravity model to investigate the thermo-
dynamic properties of homogeneous spacetimes. Here, we
have only investigated the resulting expressions for theCardy
entropy in order to analyze the physical significance of the
Hořava parameter λ. A more detailed thermodynamic analy-
sis is beyond the scope of the present work. Nevertheless, we
consider that our results are a further indication of the
possible existence of a not-yet-discovered deep relationship
between gravity, thermodynamics and holography.
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APPENDIX: DYNAMICAL EQUATIONS FOR
THE BIANCHI SPACETIMES

The three dynamical equations for each Bianchi model
can be obtained directly from the HL field equations, and
can be written as follows:

ðλ − 1Þ
�
−
1

2
ðH2

i þH2
j þH2

l Þ þ
äi
ai

þHiHj þHiHl

�

þ λ

�
HjHl þ

äj
aj

þ äl
al

�
þ kþD

a2i
¼ 8πGptot; ðA1Þ

where the subindices fi; j; lg take the values f1; 2; 3g,
respectively, and the remaining two equations can be
obtained by permutation. The function D ¼
Dðai; aj; al; λ; μÞ is different for each Bianchi model,
and its explicit value is given in Table V, where

ξ2i ≡ 1 −
a2l
a2j

−
a2j
a2l

�
1 −

a4i
a4j

�
; ðA2Þ

ϵ2i ≡ 1 −
a2l
a2j

− 2

�
1 −

a2i
a2j

�
−
a2j
a2l

�
1 −

a2i
a2j

�
2

; ðA3Þ

θ4i ≡ 1 −
a4l
a4j

− 2

�
1 −

a4i
a4j

�
−
a4j
a4l

�
1 −

a4i
a4j

�
2

: ðA4Þ
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