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Charged rotating dilaton black holes with Kaluza-Klein asymptotics
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We construct a class of stationary and axisymmetric solutions to the five-dimensional Einstein-Maxwell-
dilaton gravity, which describe configurations of charged rotating black objects with Kaluza-Klein
asymptotics. The solutions are constructed by uplifting a vacuum seed solution to six dimensions,
performing a boost and a subsequent circle reduction. We investigate the physical properties of the charged
solutions and obtain their general relations to the properties of the vacuum seed. We also derive the
gyromagnetic ratio and the Smarr-like relations. As particular cases, we study three solutions, which
describe a charged rotating black string, a charged rotating black ring on Kaluza-Klein bubbles, and a
superposition of two black holes and a Kaluza-Klein bubble.
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I. INTRODUCTION

Einstein-Maxwell-dilaton gravity arises as a truncation
of the low-energy string theory action and has attracted a lot
of attention as a quantum-gravity-motivated gravitational
theory. A major topic of interest is the construction of
black hole solutions within the theory in various spacetime
dimensions and the investigation of their properties. Static
exact black hole solutions are known in four dimensions
[1,2], due to the integrability of the four-dimensional static
axisymmetric Einstein-Maxwell-dilaton equations. The
dimensionally reduced action describes a symmetric target
space with a SL(2, R) x R hidden symmetry group which
opens a way to the generation of new solutions by algebraic
means [3,4]. Thus, a dilaton-Weyl class of solutions can be
constructed generalizing the static Einstein-Maxwell sol-
utions in the presence of a dilaton field [4,5]. In the
stationary case, no nontrivial hidden symmetries are dis-
covered for general value of the dilaton coupling constant,
which hinders the construction of exact solutions describ-
ing rotating charged dilaton black holes. Two particular
values of the dilaton constant & make an exception when
the hidden symmetry group is enhanced: @ = 0 correspond-

ing to the Einstein-Maxwell case and a = \/§, which is
equivalent to the Kaluza-Klein theory.

The situation is similar in five dimensions, where the
static truncation of the Einstein-Maxwell-dilaton theory is
highly symmetric and allows for the construction of exact
solutions, while in the stationary case the integrability is
violated. Even in the Einstein-Maxwell limit « = 0, no
nontrivial hidden symmetries are discovered when the
electromagnetic field is fully exited [6]. An integrable
sector was found [7,8], in which the electromagnetic and
the twist potentials decouple and give rise to two
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independent sigma models. Consequently, some stationary
black hole solutions were constructed carrying magnetic
(dipole) charge [9,10]. However, electrically charged rotat-
ing solutions do not belong to this sector, as well as rotating
solutions with dipole charge, for which the electromagnetic
vector potential has a component along some of the axes of
rotation.

The only case when the dimensionally reduced action for
a general stationary and axisymmetric electromagnetic field
describes a symmetric space corresponds to the Kaluza-
Klein theory. It is contained as a particular case in the five-
dimensional Einstein-Maxwell-dilaton gravity for a dilaton
coupling constant @ = /8/3. Thus, Kaluza-Klein solu-
tions provide examples for exact solutions describing
charged rotating black holes, which do not have counter-
parts in the pure Einstein-Maxwell case. Due to the lack of
solution-generation techniques, five-dimensional charged

rotating black holes for dilaton coupling a # \/% are

investigated numerically [11-14] or perturbatively
[15,16]. Some exact solutions exist only for extremal
charged rotating black holes with Kaluza-Klein asymp-
totics [17].

In five dimensions, a great variety of exact stationary and
axisymmetric black hole solutions in vacuum were con-
structed. In addition to the higher-dimensional generaliza-
tion of the Kerr solution [18], asymptotically flat black
objects with non-spherical horizon topology were discov-
ered, such as black rings [19], and black lenses [20].
Nonlinear superpositions of such objects were obtained
resulting in different multihorizon solutions, including a
system of concentric or orthogonal black rings [21,22], and
black Saturns [23]. Black hole solutions with Kaluza-Klein
asymptotics (M* x S') were also considered motivated by
braneworld scenarios with compact extra dimensions. They
include a large class of solutions called black holes on
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Kaluza-Klein bubbles [24-28], which represent superpo-
sition between black objects with different horizon top-
ology and Schwarzschild instantons [29]. These systems
can be further generalized to solutions which are only
locally asymptotically Kaluza-Klein, but globally the
spacelike boundary at infinity represents some nontrivial
fibration of 3. In this way, configurations of black objects
and more complicated types of gravitational instantons
were obtained [30]. Different versions of such solutions
including electromagnetic fields were constructed [31-34].
They possess interesting thermodynamical properties, since
certain electromagnetic fluxes also give contributions in
their Smarr-like relations and the first law of thermody-
namics [35-37].

Charged generalizations of rotating vacuum solutions
can be obtained in the Kaluza-Klein sector of Einstein-
Maxwell-dilaton gravity by means of a simple procedure.
The D-dimensional vacuum solution is trivially embedded
in D 4 1-dimensional spacetime by adding an extra dimen-
sion, a boost is performed with respect to the extra
dimension, and the resulting solution is dimensionally
reduced again to D dimensions along the additional
coordinate. As a result a generalization of the initial
solution possessing an electromagnetic and a dilaton field
is constructed. Some charged rotating dilaton black objects
were obtained in five dimensions in this way.1 They include
the charged counterpart of the Myers-Perry black hole [39],
the black ring [40], and the black Saturn [41]. More general
black ring solutions with double rotation and carrying also
a dipole charge were obtained by a related scheme [42—45].
A suitable vacuum solution with a compact dimension is
constructed in six dimensions by means of the inverse
scattering method. Performing a Kaluza-Klein reduction
along the compact dimension leads to a solution to the five-
dimensional Enstein-Maxwell-dilaton gravity which can
possess a dipole charge [42,44], and an electric charge [45].

In this paper, we obtain charged rotating solutions to the
five-dimensional Einstein-Maxwell-dilaton gravity, which
describe configurations of black objects with Kaluza-Klein
asymptotics. We consider a class of stationary and axisym-
metric solutions which contain at least one horizon and
for which the Killing vector associated with the compact
dimension is hypersurface orthogonal. Consequently, the
solutions possess a single angular momentum, and the
possible fixed point sets of the spacelike Killing fields are
restricted to Kaluza-Klein bubbles, and the axis of rotation.
Such solutions describe configurations of black objects
with different topology, which may be also superposed with
Kaluza-Klein bubbles. Given a particular vacuum configu-
ration, we apply on it the described Kaluza-Klein trans-
formation by uplifting it to six dimensions, performing a
boost, and a subsequent circle reduction. As a result, we

'For a charged dilaton generalization of the Kerr black hole,
see [38].
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obtain the corresponding charged dilaton solution in the
Kaluza-Klein sector of the five-dimensional Einstein-
Maxwell-dilaton gravity. Various general relations exist
between the properties of the vacuum seed solution and the
charged dilaton one. We investigate these relations and
show how the physical characteristics of the charged
solution can be expressed by means of the characteristics
of its vacuum counterpart.

The paper is organized in the following way. In Secs. 11
and III, we describe the class of solutions we consider, and
the solution generation technique. In Sec. IV, we study the
physical properties of the charged solutions and their
relations to the properties of the vacuum ones. In particular,
we consider the conserved charges, the local Komar masses
and angular momenta of the black holes, the local electric
charges associated with the horizons, the Smarr-like rela-
tions, and the gyromagnetic ratio. In Sec. V, we apply our
results for the investigation of three particular solutions—
the charged rotating black string, the charged rotating black
ring on Kaluza-Klein bubbles, and a superposition of two
rotating black holes and a Kaluza-Klein bubble. In the
paper, we work in geometrical units G = ¢ = 1.

II. CLASS OF ROTATING BLACK HOLES WITH
KALUZA-KLEIN ASYMPTOTICS

In this work, we consider a class of stationary and
axisymmetric solutions with Kaluza-Klein asymptotics,
which contain at least one horizon. The solutions possess
R x U(1)? isometry group generated by three Killing
vectors, one of which is asymptotically timelike. We can
introduce a coordinate system adapted to their orbits, such
that the asymptotically timelike Killing vector is expressed
as &= % the Killing vector associated with the compact
dimension is given by k = %, and the remaining spacelike
Killing vector is 1 = 9—% We consider only solutions for

which the Killing vector k is hypersurface orthogonal. Such
solutions rotate only with respect to the axis of the Killing
vector 7, and do not contain fixed point sets of nontrivial
linear combinations of the spacelike Killing vectors. The
general form of the metric for this class is given by

ds* = g,(dt + 0d})* + §psdd* + g, dyp?
+ yapdxtdx?, a,b=1,2, (1)

where x%, a = 1, 2 are the coordinates parametrizing the
two-dimensional surfaces orthogonal to the Killing fields,
and all the metric functions depend only on them. A useful
coordinate system are the canonical Weyl coordinates p and
Z, in which the two-dimensional metric is diagonal, and the
determinant of the three-dimensional metric spanned by the
Killing fields is equal to —p?.

A convenient way to classify the five-dimensional sta-
tionary and axisymmetric solutions is by means of their
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interval structure [46]. The interval structure gives infor-
mation about the existence and the position of the horizons
and the different fixed point sets of spacelike Killing fields.
We consider the factor space of the spacetime with respect
to the isometry group M = M/R x U(1)?. In Weyl coor-
dinates, it is diffeomorphic to the upper half-plane p > 0,
and all the horizons and the fixed point sets of the spacelike
Killing vectors are located on its boundary p =0.
Consequently, they correspond to finite intervals on the
z axis, given by z; < z < z;,; for some values z; and z;, 1,
or semi-infinite intervals on the z axis. We can associate
with each interval a direction vector, which specifies the
linear combination of Killing vectors which vanishes on it,
or equivalently, the particular kind of fixed point set which
it describes. The set of data, containing the position and the
type of the intervals for a given solution, and their lengths
and directions is called interval structure.

As an example, the interval structure of a solution
belonging to the class we consider is presented in
Fig. 1. The parameters a; correspond to the endpoints of
the intervals on the z axis. The direction vector is specified
over each interval, and it gives the coefficients in the linear
combination vanishing on it, with respect to a basis of
Killing vectors {£, d% . %} The finite intervals correspond
either to horizons (with direction (1,€;,0)), or to fixed
point sets of the Killing field associated with the compact
dimension (with direction (0, 0, 1)). These fixed point sets
form regular two-dimensional surfaces, which are called
Kaluza-Klein bubbles. Consequently, the presented interval
structure describes a sequence of alternating black holes
and Kaluza-Klein bubbles. Each horizon rotates with
angular velocity Q; around the axis of the Killing field
a%r The semi-infinite intervals with direction (0, 1, 0)

represent the axis of rotation.

The most general interval structure associated to a
solution within the class we consider contains three types
of intervals: finite intervals with direction (1,€;,0), cor-
responding to rotating black objects with angular velocity
Q,, finite intervals with direction (0, 0, 1) corresponding to
Kaluza-Klein bubbles, and finite and semi-infinite intervals
with direction (0, 1, 0) representing the axis of rotation.
Both semi-infinite intervals should be directed along the
Killing vector n = a% in order for the solutions to have

Kaluza-Klein asymptotics.
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ITII. CONSTRUCTION OF THE CHARGED
DILATON SOLUTIONS

We consider the Einstein-Maxwell-dilaton gravity in five
dimensions with the action

I=1c | dx/=g(R=20"0,00,0 - FHF,,). (2)
T

It leads to the following field equations,
1
R,, =20,00,0+2e* |F,,F) - ¢ GuF s, FP |,

a
V, Vg = —Ze 0, F,

Ve Fr) =0, (3)

where R, is the Ricci tensor for the spacetime metric g,
F,, is the Maxwell tensor, and ¢ is the dilaton field. We
assume that the dilaton coupling parameter takes the value

a = +/8/3, which constrains the Kaluza-Klein sector in the
theory.

Solutions to the five-dimensional Einstein-Maxwell-
dilaton gravity with a = 1/8/3 can be obtained by the
following procedure. We consider a known vacuum sol-
ution to the five-dimensional Einstein equations, which
we call a seed. For our purposes, we assume that the seed
solution has the general form

dst = g1y (dt + & dp)? + Gy + gy dy’
+ yg}?dx“dxb, a,b=1,2; 4)

i.e., it belongs to the class of solutions described in Sec. II.
We embed it trivially in six dimensions by adding an extra
dimension. Thus, we obtain a vacuum solution to the six-
dimensional Einstein equations with the metric

ds? = ds§ + dxZ, (5)

where ds% is the metric of the seed solution, and the
coordinate xq parametrizes the extra dimension. Then we
perform a hyperbolic rotation in the # — x4 plane with the
matrix

F(1,0,,0) (1,22,0) {1,050}
{(0,0,1)! (0,0,1) P00 | (0,0,1)
(0,1,0) (0,1,0)
a, a, a, a, a Avs Ay, Ay ay
FIG. 1. Interval structure of sequence of rotating black holes and Kaluza-Klein bubbles.
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cosh sinh
L =( oshy y) (6)
sinhy

coshy
and reduce the resulting solution along the extra dimension
using the ansatz

ds2 = eV¥ds2 + V30 (dxg + 24,dx")2. (7)

The five-dimensional metric ds? corresponds to a solution
in the Kaluza-Klein sector of the five-dimensional Einstein-
Maxwell-dilaton gravity with a scalar field ¢ and an
electromagnetic potential A,,. The metric of the constructed
solution is connected to the seed solution (4) as

ds? = A3 (dt + coshyw© dep)?
+ Agde? + gydy® + 75 dx“dx"),  (8)

where the function A is given by
A = cosh? y + sinh?yg\, (9)
while the Maxwell 2-form F and the dilaton field are

F=dt AdA, +dp A dAy,
1
A, = EA_I sinhy coshy(1 + gﬁ?)),

1
Ay = EA_I sinhyo© g,

o209 — 8—4\/%(0 — A% (10)

The constructed solution possesses the same interval
structure as the seed solution i.e., it contains the same
number of disconnected horizons and the same fixed point
sets of the spacelike Killing vectors. The only difference is
that the angular velocity of each horizon is modified by a
factor cosh™! y. Thus, if the ith horizon in the seed solution

(0)

is rotating with angular velocity Q;”’, the angular velocity

of the same horizon in the charged solution will be
Q,; = cosh™! le(»()).

Solutions with multiple disconnected fixed point sets of a
spacelike Killing field may suffer from conical singular-
ities. To avoid conical singularities the orbits of the Killing
field in the vicinity of each of its fixed point sets should
have the same periodicity, which should be also consistent
with the asymptotic structure of the solution. For our class
of solutions, it follows that on each of the bubble intervals
we should have Ay = L, where L is the length of the
Kaluza-Klein circle at infinity, while on the axis of rotation
is should be satisfied A¢p = 2z. In Weyl canonical coor-
dinates, these conditions possess the form

PHYSICAL REVIEW D 93, 064052 (2016)

2
(Ay), =2alim %2 =L,
Bj p—0 glI/llf

(Aqﬁ)lq = 27‘[})1_{1(1) T/)(/) =2r, (11)

where [ B, is the jth bubble interval, and [, is an interval
corresponding to the rotation axis. Considering the general
form of the metric (8) we see that the charging trans-
formation does not influence the regularity conditions.
Therefore, if the seed solution is free of conical singularities
and the length of its Kaluza-Klein circle at infinity is equal
to L), the charged solution will be also free of conical
singularities with the same length of the compact dimen-
sion at infinity L = L), In the following discussion, we
will consider only balanced solutions.

IV. PHYSICAL PROPERTIES

A. Conserved charges

The constructed class of solutions are characterized by a
number of conserved charges—the ADM mass M zpy; and
angular momentum 7, the electric charge Q, and the
dilaton charge D. They can be computed by the following
integrals,

L . . L .
MADM:_E Sgo[ZIk*dé—lg*dk], j—16ﬂ/S§olk*d7’],

(12)

1 —2aq _ 1 Py
- Sgoxsle ? x F, D—EA?” ivigxdep, (13)
over the two-dimensional sphere at spacial infinity S2,.
Due to the Kaluza-Klein asymptotics, the solutions are
characterized by an additional conserved charge—the
gravitational tension [47,48]. It can be calculated by the
generalized Komar integral [35,49]

T = i * dE = 2i; » dk). (14)

“or ) |

The conserved charges can be extracted from the asymp-
totic behavior of the metric functions, and the electromag-
netic and dilaton potentials. We introduce the asymptotic
coordinates r and @ defined as

p =rsin0, z=rcosf

and consider the general expansion of the metric functions
at the asymptotic infinity » — oo,

2. . . . . . .
'We do not consider solutions which contain closed timelike
curves.
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C C,
g,tz—1+7t, ng1+7‘”. (15)

Then the Komar integrals for the ADM mass and the
gravitational tension are equal to

TL = (16)

Bl

L
M apm = Z(Zcz - Cw), (¢, = 2Cy/)'

The angular momentum, the electric charge and the dilaton
charge are contained as coefficients in the leading order
terms in the asymptotic expansion of the metric function
9ip» the electromagnetic potential A,, and the dilaton
potential ¢, respectively,

2.7 sin%@ o)
O A P

D
R —— 17
pr—— (17)
We can also define the magnetic moment M as the
coefficient in the asymptotic expansion of the electromag-
netic potential A

M sin? 0
L r

The conserved charges for our class of charged dilaton
solutions can be expressed by the characteristics of the
corresponding seed solution in the following way. We
obtain the asymptotic expansions for the metric functions
and the potentials in the form

(0) (0)
2
| L9 — +Ct——|——sinh2yct—,
r r 3 r
27 sin%0
L r’

Cy c,(,,o) 1. cgo)
gw,z 1 +7: 1 +T+§Slnh277,

Gy ~ — coshy

(19)

1 RO
A,zisinhycoshyl—,
;
) JO sin%g
Ay~ —sinhy —
¢ sinhy =————.
(0)
sinhzy—ct ,
;

€0z—78 (20)

where we denote with zero index the corresponding
quantities for the seed solution, and L is the length of
the Kaluza-Klein circle at infinity. Consequently, the ADM
mass, the angular momentum and the tension are related to
the conserved charges of the seed solution as

PHYSICAL REVIEW D 93, 064052 (2016)

0 L . 0
MADM = MEXI))M + ZSlnthcg ),

J = cosh yj(()), T = T(O),

(1)

while the electric charge, the dilaton charge, and the
magnetic moment are

L 1
Q= 5 sinhy cosh ye”, D= NG sinhZyc\?,
M = sinhy g, (22)

The magnetic moment and the dilaton charge are not
independent characteristics of the solutions. They are
related to the product of the angular momentum, or electric
charge, respectively, and the so-called corotating potential
2y defined on the black hole horizons. The corotating
potential on the ith black hole horizon is defined as
Ty, = (U”Au)H,» (23)
where A, is the electromagnetic potential, and v = & + Q;n
is the Killing vector which becomes null on the corre-
sponding horizon. For the class of solutions which we
consider, the corotating potential takes the constant value
¥y =4tanhy on every black hole horizon. Thus, the
dilaton charge and the magnetic moment are equal to

- \/EZHQ 2y Q
= ——:a—’
3 L L

B. Twist potentials and local quantities

M =25,7. (24)

We consider the twist 1-form i:i, * d&. It satisfies the
Ricci identity

where R(&) is the Ricci I-form, and from the field
equations we can obtain the identity

2 1

Using the explicit form of the electromagnetic field (10), it
is reduced to

* [R(E) Ak A E] =2dA, Nigie™ x F. (27)

The field equations imply that diie™ » F =0,

consequently we can introduce an electromagnetic poten-

tial BB; such that dB; = izire >* x F. Taking advantage of
it, Eq. (25) yields

064052-5



CHRISTIAN KNOLL and PETYA NEDKOVA
digiy x d§ —4d(A,dB;) = 0. (28)
The 1-form igi; x d§ —4A,dB; is invariant under the

Killing fields &, k and # and can be viewed as defined on

the factor space M = M/R x U(1)2. The factor space is
simply connected, therefore there exists a globally defined
potential y, such that

In a similar way, we can define a potential related to the

twist 1-form i,i; * dn with respect to the Killing field 5. It
satisfies the relation

diyiy * dp =2 % [R(n) A k A7), (30)
where
* [R(n) Ak A =2dAy A iyize™? x F. (31)

Introducing an electromagnetic potential B, such that
dB, = i,iye™** x F, we obtain the identity

diy iy * dn —4d(A,dB,) = 0, (32)

which implies that there exists a potential ¢ such that
dp = iyiy * dn —4A,dB,. (33)
We consider the corresponding potentials »(© and z(©)
for the vacuum seed solution, defined by the relations
dy© = (igi; » d&)\” and du'® = (i iy, * din)”) in terms of
the corresponding Killing fields. We introduce in addition
the potential 1) satisfying dA®) = (i, iy * d&)©. By direct

calculation we can prove that the following identities are
satisfied,

igiy * d& = coshydy® — 2A, sinhydy",
iyix * dn = coshydu'® — 24, sinhy cosh ydA©),

dB; = — % sinh ydy©),
dB, = - % sinh y cosh ydA(®). (34)
Consequently, we obtain the relations

iciy * d& = coshydy” + 4A,dB:, (35)

iyiy * dip = coshydu'®) + 4A,dB,. (36)

and the twist potentials are connected as

PHYSICAL REVIEW D 93, 064052 (2016)

dy = coshydy©, du = coshydu®.  (37)

The identities (34) lead to relations between some local
characteristics of the charged dilaton solution and the
corresponding vacuum seed solution. We can define an
intrinsic mass My, and angular momentum Jy, of each
black hole by evaluating the integrals (12) on its horizon.
Using that the Killing field v = & + Qi = & — w7 ' van-
ishes on the horizon H; and that the corotating potential is
constant on each horizon, i.e. Xy = %tanh 7, we obtain the
following relations:

y. —_ L
1™ 16x [y,

L .
_Z[H. ipiy * dé&

L
= —w; 21, * d
40),[Hi151k* &

. / cosh?y (igiy * d&)© +Lw,~/ A,dB;

Iy, Iy,

20y * d& — iz * dk]

L
== / (iciy * d&)® — Lo, / S ydB:
4 Iy, n

i

Iy,

=My +L / AydBe, (38)
Iy,

i

L
i_1677,' H;

L -
= —gzﬁ iplx * dn

i

L L
= ——/ coshy (i, iy * dn)® ——/ AydB,
8 J; 2

H; Iy,

JH ik*dﬂ

L
= cosh ng),-) - 5/ A,dB,. (39)
Iy

i

The integration is performed over the interval /5 asso-

ciated with the i-th horizon in the interval structure, and we

denote by Mg)? and Jg)[) the intrinsic Komar mass and

angular momentum of the corresponding black hole in the
seed solution. We see that these quantities are modified due
to the interaction with the electromagnetic field. Similar
behavior is observed, for example, for the Kerr-Newman
black hole, or magnetized black holes when the magnetic
field is aligned with the axis of rotation (e.g. [50]).

We can also define an intrinsic mass M B, of each bubble
by considering the Komar integral (12) on its surface

064052-6
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L . L[ ..
MBj:E ; lé*dk:_gxﬁ_l"l‘f*dk' (40)

The intrinsic mass is related to the length of the interval
Alp, associated with the bubble in the interval structure

L

M:
B =73

Aly, =M}, (41)

Consequently, it coincides with the intrinsic mass M,(_L;Ol_) of
the corresponding bubble in the seed solution, if the
balance conditions (11) are satisfied.

We can further assign a local charge QH, of each black

hole by evaluating the integral (13) on its horizon.
Performing the calculation

1
I g
o Ax H;

L Poa 20
e s ipige " x F
2 I,

L
==/ d
s ], 4

L
= Zsinhycoshy/ (il * dg)©

i

= sinhy coshyM 53[) , (42)

we obtain that the local charge on each horizon is propor-
tional to the intrinsic mass of the corresponding black hole
in the seed solution. Then, the total electric charge of the
solution can be expressed as

Q= ZQH[ = sinhy cosh ;/ZMS[). (43)

Other quantities, which are of physical interest, are the
surface gravity k. and the area Ay, of each horizon

1
KHi = —E'U”;y’[]ﬂ;yb_]i’ AH,- = A ,/gHidZd¢dl//,

where v = £ + Q;n. Explicit calculation shows that they
are related to the corresponding quantities for the seed
solution as

Ky, = cosh y_ll('g)i), AH[ = cosh yAg?, (44)
so that the charging transformation preserves their product.
Taking into account the Smarr relation on each horizon,

1
MH- = _KH-AH- + ZQZ‘JH_, (45)
4” i i i

i
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the horizon Komar masses and angular momenta should
satisfy

My, —29Q., =My -2,

i 1

(40)

which is consistent with the derived expressions (38)—(39).

C. Smarr-like relations

Let us consider the generalized Komar integral for
the ADM mass (12). It is convenient to reduce it to the
factor space M = M /R x U(1)? by acting with the Killing
field n associated with the azimuthal symmetry of the
two-dimensional sphere at infinity:

L

The integration is now performed over the semicircle
representing the boundary of the two-dimensional factor
space at infinity. Using Stokes’s theorem, the integral can
be further expanded into a bulk term over 4/ and an integral
over the rest of the boundary of the factor space, which is
represented by the interval structure /,,

L
M = g/M i iy * dé - di,i % di]
L .. .
Pe S [ i de—ii k. 49

If we take into account the definitions of the intrinsic
masses of the black holes My and the bubbles Mp , and
the fact that the integral vanishes on the axis of rotation, we
obtain

Mapm = ZMH,- + ZMB]-
i J

L
+ g/ 2diyiy * dé — diyie * dk],

M

(49)

where the index i enumerates the horizons, and the index j
runs over the Kaluza-Klein bubbles. Let us consider the
bulk integral and use the Ricci identity d * d{ =2 * R({),
which applies for any Killing field ¢

L
3 /M 2diyiy * dE — diyiz % dK]

_ % / 2iyi, % R(E) — iyiz % R(K).  (50)

M

We further apply the relation

2 1
*R(é’):_ze—za(/)<—§lcF/\* F+§F/\l§*F>, (51)
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which is also valid for any Killing field £, for the Killing
fields £ and k. Considering the explicit form of the
electromagnetic field, we obtain

2iyiy * R(E) — iyiz * R(K)
=2(icF N iyixe™ % F+ iy F A igipe™* % F)

The bulk term can be simplified using the Stokes’
theorem and taking into account that the integrals at infinity
vanish, as well as the integrals over the bubble intervals and
over the axis of the Killing field #. Thus, we obtain

L
5 Al [dA, A dB, + dAy A dB;]
L
=-3 Z [ [A,dB, + AydBe|. (53)

We substitute this expression in equation (49) and
apply the identity for the horizon Komar mass (38), which
leads to

L
M apy = ZMH[, + ZMB/_ —52 % ) [A,dB,+A,dB;]
i J i i
_ (0) 0 _L
- ZMH,, - ;MBj _EZ [ ) [A,dB,+Q;A;dB,]
S WIES SN
i J i
1. 0 0
:zi: <1 +2smh2y) My +zj:M%j). (54)

We can also consider the relation of the total angular
momentum to some local quantities by expanding the
corresponding Komar integral over the factor space M.
Thus, we obtain

L
J = ——/ i *d
8 Arc(o0) ( 1
L .. L ..
= _§ZL. Iyl * dn—zéznzk * R(n)
L
= ZJH[ —EfwdA(ﬁ A dB,
L
:Z[JHi +§/ A¢d8,1}
i IH,'
_ (0)
= cosh yZJHi ) (55)

where we have applied the identity (39) for the horizon
angular momenta, and the index i again runs over the
horizons. In the case when a single horizon is present, we

PHYSICAL REVIEW D 93, 064052 (2016)

can express the Smarr relation for the mass in the following
form,

1
MADM :EKHAH‘I'ZQJ‘I'ZMB/_ +2HQH’ (56)
J

using this relation.
In a similar way, we can derive a Smarr relation for the
tension. Considering the corresponding Komar integral

L
TL = / [l.,,l.k * dg - 21,115 * dk]
8 Arc(oo0)

L . . . .
* 4[9, [iyix * R(E) = 2ipic x R(K)],  (57)
and using the identity
ir]ik * R(g) — 21,715 * R(k) = 2[}1F A iéike—Qa(p « F
=2dA, N dBe, (58)

as well as the expression for the Komar mass of each
horizon, we obtain

TL = %ZMH[ +2> My - % > /1 AydB;
i J i Hi
- %ZME’O) + z;M;O_). (59)

Consequently, the Smarr relation for the tension coincides
with that for the seed solution.

D. Gyromagnetic ratio

We can investigate the gyromagnetic ratio of the con-
structed solutions. It is defined as the constant of propor-
tionality g in the relation

Y
M M o 0

between the magnetic moment, the angular momentum,
the ADM mass and the electric charge of the solution. Since
the magnetic moment and the angular momentum are not
independent, but related as M = tanh y 7, the gyromagnetic
ratio does not depend on the value of the angular momentum,
but only on the ratio between the ADM mass and the electric
charge. We use the Smarr-like relation for the mass,

1.
Maom =3 (1 + Esmh?y> My +> "My (61)
i J

and the expression for the local electric charge on each
horizon,
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u, = sinhy coshyM (f?‘_), (62)

and also take into account that the total electric charge of the
solution is a sum of the local charges on all of the horizons.
Then, we can express the gyromagnetic ratio in the form

) @

are the Komar masses of the black

)
J
»©

i H

0

> 1., M
g=2cosh™y 1+§smh Y+ o
where Mﬁ?} and Mg)j)
holes and the bubbles in the seed solution. For large electric
charges y — oo, the gyromagnetic ratio approaches the

value g = 1.

V. PARTICULAR SOLUTIONS
A. Charged rotating dilaton black string

The most simple solution which belongs to the class we
consider is the black string. It contains a single horizon and
can be described by the interval structure represented in
Fig. 2 (left). The rotating black string in vacuum is
constructed by trivially embedding the Kerr black hole
in five-dimensional spacetime by adding a compact extra
dimension. By performing the Kaluza-Klein transformation
on it we obtain its charged dilaton generalization. The
solution is represented in the most simple form in
the Boyer-Lindquist coordinates, in which the metric is
given by

— a%sin%@

A
ds? = —A3 (dt + wdg)?
>Asin?6 >
+ A% md¢2 +Kdr2 + Zd@z + dl//z s
2mrasin®6
P TN sin20 coshy,

2
A=1+ % sinh?y,

PHYSICAL REVIEW D 93, 064052 (2016)
mr
A, = A 'sinhy coshyf,

Ay =-N\"! sinhy%asinzé. (65)

It is characterized by the real parameters a € (0, 1),
m > 0, which correspond to the spin parameter of the
vacuum seed solution a = J(© /M), and its mass normal-
ized to the length of the compact dimension m = M©) /L.
The length of the horizon interval in the interval structure
Al =20 is connected to them by the relation

2 2_—a’. The horizon is located at r=ry =

o> =m? —a’.
m + vVm? — a?, and rotates with angular velocity

~ acosh™'y

- 2m(o+m)’ (66)

The ADM mass, angular momentum, and electric charge
of the solution are given by

1
MADM =Lm <1 + 5 Sinh2y> s
J = Lcoshyam,

Q = Lsinhy coshym, (67)

and the gyromagnetic ratio is equal to g = 1 + cosh™y.
We can obtain the horizon Komar mass and angular
momentum by calculating the integral

L.
I=L j AydB; = == sinhy 1 Aydy©.  (68)

The twist 1-form for the vacuum seed solution on the
horizon takes the form

a(1 4+ a?)(1 — a*cos?d) sin @

do,
(1 + a*cos?6)?

dy0) = — (69)

A = r*=2mr+ a, T = 12 4 a*cos?, (64)
where @ = a/ry, and the restriction of the electromagnetic
and the electromagnetic potentials are potential A, on the horizon is given by
:(1,9,0) 1(1,92,0)
L (0,0.1) L (0.0,1)
(0,1,0) (0,1,0) (0,1,0) (0,1,0)
-c c -u,o -uo Ny no

FIG. 2.

Interval structure of the rotating black string (left), and the rotating black ring on Kaluza-Klein bubbles (right).
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masin?6

—_—, 70
B + a’cos’0 (70)

Ay = —sinhy

where we define the parameter > = 1 + sinh? y(1 + a?).
Consequently, the integral is equal to’

(1+a?)?
ap(1—a®)(p* 1)

x <2ﬁ arctan @ — (1 + %) arctan %) .

~———% + Locosh?y

Taking into account the expression for the horizon Komar
mass of the seed solution

0) 1+ a?

(
My, =Lm=L , 71
H 12 (71)

we obtain for the horizon Komar mass

(1+a?)?
ap(1—a®)(f* — 1)

X <2ﬂ arctan @ — (1 + %) arctan %) . (72)

My = Locosh?y

The horizon angular momentum is calculated from (39)
using this result and the fact that on the horizon it is
satisfied that dBB, = —Qp;'dB;. We obtain the following
expression:

Lo*(1 + ) (1+a%)?
a(1-a?) ap(1—a?)(p* = 1)

N <2ﬂ arctana — (1 + %) arctan %)] :

JH:_

coshy [1 — cosh?y

B. Charged rotating black ring
on Kaluza-Klein bubbles

The charged rotating black ring on Kaluza-Klein bubbles
is an example of a solution which contains a single horizon,
but in addition also possesses fixed point sets of the Killing
field associated with the compact dimension. The rotating
black ring on Kaluza-Klein bubbles in vacuum was con-
structed recently by means of solitonic techniques [28]. It is
characterized by the interval structure represented in Fig. 2
(right). If the solution is balanced, it should contain bubbles
with equal size. Then, it is described by three real
parameters 6 >0, y; € (0, 1) and p, > 1, which are asso-
ciated with the lengths of the horizon and bubble intervals,
and the angular momentum. Due to the balance conditions

3 .

Instead of the mass and spin parameters m and a, we can
parametrize the black string solution with the parameters ¢ and a.
o(14+0?)

1-a?

200
1-a?"

They are related as m = and a =

PHYSICAL REVIEW D 93, 064052 (2016)

the length of the compact dimension at infinity is not an
independent parameter, but is defined by the relation

Hlﬂz(ﬂz - ﬂl)

L = 8rc
(i = 1) (o + 1)

=1 (73)

Applying the Kaluza-Klein transformation we obtain
the metric of the charged dilaton generalization in the form

w
ds? = —A—3 Wl (dt + coshywdg)?
2

Wy, e2Unre?lne  2Tone 2l
+ A | —p*— —djp” + — — dy
W17 0200 20,0 020130 02Us10

+ Y(dp* + sz)] .
Wi

W, —
A =1+sinh%—2_—1,
+ sinh“y .

f]C:%ln[ p2+(z—c)2+(z—c)],

where p and z are Weyl coordinates, and the metric
functions W;, W,, w, and Y depend only on them. Due
to their complexity, we provide their explicit form in the
Appendix.
The electromagnetic potentials are
1 ) W, — W,
A, = —A~lsinhycoshy ——,
1= 5 14 /4 W,
1 w
Ay =—=A"lsinhy—Lw. (74)
) W,
We obtain for the ADM mass, the angular momentum,
and the electric charge of the solution the expressions

L (mipy +1) L . (2 = 1)
M =—o(uy — ) ———= + =sinh’y0 ———~
) (e : (mipp—1) 2 (uipn — 1)
Jchoshsz (1= p3) (W3 = 1),
Q = Lsinhy cosh yow (75)

(ﬂlﬂz - 1)'

The intrinsic masses of the black hole and the bubbles for
the vacuum seed solution are given by

0) (ﬂz—ﬂl)
M, =Lo———-,
" (ﬂlﬂz—l)
L .
My =Zol—m). j=12  (76)

Using these expressions, we can calculate the gyromag-
netic ratio of the charged solution

g =1+ cosh™ yu,p,. (77)
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The horizon angular velocity and area are

(1—u})

(w3 = 1)

S Mo (py — ) (3 — 1)
(ipy = 1) (uy + p2)*”

1 Hipy — 1
20 coshy py (uy — piy)

Ay = 32xL coshyo (78)

The horizon Komar mass and angular momentum are
obtained by calculating the integral

L
I=L / A,dB; = ——sinhy / Aydy®  (79)
Iy 2 Iy

and using the relation (38). The twist potential of the
seed solution possesses the following form on the
horizon,

()
T

where y = z/0, and

(1 — i) (u3 —y?)
(w3 — 1) (7 =)’
_ A=)+ )
P =\ =D ) (81)

b =

The restriction of the electromagnetic potential A, on the
horizon is given by

1 sinhy (1—y?)b?

2 QO 1+ p%y? + sinh?y(1 + b?)°

Ay = (82)

Consequently, the integral (79) is equal to

I — _Lo(ﬂz — )
Hipy — 1
2 2 F2 ZZ
x |1-= ﬂ12 —arctan Z — +2 arctan I’
tanh“y \Z FZ
=MW + My,
o pi(l —pi)
i (u3 = 1) + sinhy (43 — p3)
1— 2
72— - _”11 , (83)
2

and we obtain for the horizon Komar mass

w3 (o — )

My=Lo———F——"—
" tanh®y (e p1, — 1)

2 F?+7?
—arctanZ — — 5 —arctan F).
Z F7z

(84)

PHYSICAL REVIEW D 93, 064052 (2016)

The horizon angular momentum is calculated in a similar
way using the relation (39), and the evaluated integral (79)

- 2_1
Jy = —L coshyu3c? 2 =) b2 5
pipy — 1\ 1= pg

_ F2 ZZ
1+ /412(/42 ) +2 arctan F'
tanh’y (i = 1)\ FZ

Fwnz)|
——arctanZ | |.
Z

C. Charged rotating black holes
on a Kaluza-Klein bubble

As a next example, we consider a multihorizon solution,
which describes a superposition of two rotating black holes
and a Kaluza-Klein bubble. The vacuum solution was
constructed in [27] using the inverse scattering method,
and it is described by the interval structure presented in
Fig. 3. The solution is characterized by 4 parameters
m <n, <-1<1<1, and ¢ > 0, which are related to
the lengths of the horizon and bubble intervals in the
interval structure, and the angular momentum of the
solution. The solution is free of conical singularities, if
the length of the Kaluza-Klein circle at infinity is related to
the solution parameters as

m+D(m =1+ @A+ 1) - 1))

e D T 1P+ At D+ 1)
(A=nm)A—m)(m +1)
X\/ o ' (85)

We apply the Kaluza-Klein transformation on this
solution and obtain a charged dilaton solution with metric
5 W1 g2U'72”

ds?=—A" _
W2 erqlu

(dt + coshywdde)?

%% eZUVna 6204”

A |22 d? + ———dy® + Y (dp? + dZ?) |,

+ 3[W1p 0 ) +e2UW w* +Y(dp* +dz®)
W,—W

A=1+sinh?y—2 "1
W,

f]C:%ln [\/pz—l-(z—C)Q—l-(Z-C)},

$(1,921,0):

1(1,922,0)

L(0,0.1)
—

(0,1,0) (0,1,0)

n,c ﬁzc A 6

FIG. 3. Interval structure of the rotating black holes on a
Kaluza-Klein bubble.
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where p and z are Weyl coordinates, and the metric
functions W, W,, @ and Y depend only on them.
Similar to the previous solution, the metric functions are
given by complicated expressions. Therefore, we provide
their explicit form in the Appendix.

The electromagnetic potentials are

1 Wy, -W
A, = EA_I sinhycoshy%,

1 w
Ay =507 sinhlew. (86)

The black hole horizons rotate with angular velocities

—B(1 = p*)cosh™ly
[(1—=m +p*(1+n))c’
o (A0 +m)
(I4m)?
—p(1 = B*)((1 = np)(1 = 2) + (1 = )*)cosh!y
(T =m)* + (1 =n)(1 = A]o

1=

92:

(87)

The ADM mass, the angular momentum and the electric
charge of the solution possess the following form:

L(4=2n +m+A+p (4420 —m—2)o
MADM:Z Ty
_ _ 132 _ _
+£Sinh2y(’72 m+2 5(72]2 n 2))0,
4 1-p
J = —coshy
2Lﬂ0 (2=2n; +m+ A+ 22421 —n, — 1))
(1-p%)? '
L 2= = =2
QZESinh)/coshy(’72 m+ 1'6;22 Ul ))5‘
(88)

We calculate the horizon and bubble Komar masses for
the vacuum seed solution, and obtain

0 _ Lol —n) 1+ 500 -2 i)
2 <1—ﬂ2> [1 — Gl ’
2 (1-mp)(1-4)
Mg)z) _ ( Lo )[ +ﬁ(lm] ’
D
My =%(ﬁ )0, (89)

) the Komar mass of the horizon

located at 7,0 < z < r]za, and by quz) the Komar mass of

where we denote by M,

PHYSICAL REVIEW D 93, 064052 (2016)

the horizon located at Ao < z < ¢. Using these expressions
and the relation (13), we can calculate the local charges on
the horizons:

L
Qu, = 2smhycoshy(( ﬁZ;)
R (= ][ ﬂzizf &

[ 1+/1)] ’

Lo [1+p U
(1=5) -

(1- nz)(1+/1)]
(1—’11)2

Qp, = sinhy coshy (90)

VI. CONCLUSION

We construct a class of stationary and axisymmetric
solutions to the five-dimensional Einstein-Maxwell-dilaton
equations, which describe sequences of charged rotating
black objects and Kaluza-Klein bubbles. The solutions are
obtained for the special value of the dilaton coupling

constant @ = 1/8/3 by uplifting a five-dimensional vac-
uum solution with the same interval structure to six
dimensions, performing a boost and a subsequent circle
reduction. We investigate the general relation of their
physical properties to the properties of the corresponding
vacuum solutions. Certain relations are obtained between
the twist potentials and the electromagnetic potentials for
the charged and the vacuum cases, which lead to relations
between some local properties of the solutions. The horizon
Komar masses and angular momenta are modified with
respect to the vacuum ones by a term reflecting the
interaction with the electromagnetic field. On the other
hand, the electric charge associated with each horizon is
proportional to the corresponding horizon Komar mass in
the vacuum solution. Although our class of solutions
possess Kaluza-Klein asymptotics, these relations are also
valid for asymptotically flat solutions obtained by the same
procedure, up to certain normalization factors. We further
derive the Smarr-like relations and obtain an expression for
the gyromagnetic ratio.

We investigate three exact solutions as particular cases.
The first one represents the charged rotating dilaton black
string. It is the most simple solution belonging to the class
we consider, since it contains only a single horizon and no
fixed point sets of the Killing vector associated with the
compact dimension. As more complicated examples we
investigate the charged rotating black ring sitting on
Kaluza-Klein bubbles, and a multihorizon solution describ-
ing a superposition of two rotating charged black holes and
a Kaluza-Klein bubble.
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APPENDIX: BLACK HOLES ON KALUZA-KLEIN
BUBBLES IN VACUUM

1. Rotating black ring on Kaluza-Klein bubbles

The metric of the rotating black ring on Kaluza-Klein
bubbles in vacuum is given by

W, 020130 02U
W1 0200 p2Uine

w
ds? = _Wl (dt + wdp)* + dep?
2

020110 02010
+207dy/ + Y(dp?* + dz?).
e~ e~ e

The metric functions W;, W, and w have the form

W, =[(R_, + R,)* — 46°](1 + ab)?

+ [(R—a - RO')Z - 402} (a - b)z’
Wy = [(R_; + R, +20) + (R_, + R, — 20)ab]’
+ [(R—(r - R(r - 26)61 - (R—(i - R(r + 26>b]2’
eV eUne G 4oa
w = — 0 l—] —— _ 2
e~ e e e W] 1 (04
& = [(R_, + R,)* — 46%|(1 + ab)
X [(R_, — R, +206)b+ (R_, — R, — 20)d]
[(R = R,)* — 4o’ ](b—a)
X [(R_y,+ R, +20) — (R_, + R, —20)ab], (Al)
where the following functions are used,
2o 4+ 20U i U

a= > _
eU’/‘l” e2Us —+ erfﬂsz

€2U" + 820"2" gf]#](’
e[/ﬂz{, e2Us 4 ezfjﬂw’

. ﬂezu,s + 2o eU-mo ~ e2U— + &2Une
eUfﬂza er_,, + e2U*u1'f eUﬂlff
gUIAZ"

er-a + 82[/#2(; s
R, =\/p*+(z—c)%
~ 1
Ue=5[R:+(z=c)],
1
U. = Eln R.—(z—0)]. (A2)

The constants a and f are connected with the solution
parameters as

PHYSICAL REVIEW D 93, 064052 (2016)

(1= )1+ py)

PENIEYS) (A3)

The remaining metric function Y is given by

Y = W2 Y(S.—ﬂzﬁYﬂ.ﬂ[UY—ﬂ,—ﬂIGY—G.ﬂz{F
16(1 — a?)’R,R YooY Y

o,—p 6t o6t —6.—pr6 ' —o.uo
20_,,, ,20,
Yﬂl"#z" e~ 1o ppo

T T bl
Y—ﬂl 0,UrO er"‘l"eﬂ]"Z”

(A4)

Y Y—MGMUY—/MU;MO'

R, R, .Y

23 iy Ty 1 iy 1V S [

20,110

R

R

—H20

where we define the notation

Yea = RRy+ (2= ¢)(z—d) +p°. (AS5)

We consider only balanced solutions, i.e. solutions
which are free of conical singularities. If conical singular-
ities are allowed, the metric possesses more general form
(see [28]).

2. Rotating black holes on a Kaluza-Klein bubble

The metric of the rotating black holes on Kaluza-Klein
bubble in vacuum is given by

W W, . e2Une
ds? = le Y dr+ wdp? + 22 g
W2 e »715 Wl eZU/L'x
2UAJ
+ dy? + Y(dp? + dz?).
o200

The metric functions W, W,, and w have the form

W, =[(R_, + R,)* — 46%|(1 + ab)?

+ (R = R,)* —40°](a - b)*,
W,y =[(R_s + R, +20) + (R_, + R, — 206)ab)?
+[(Rg = R, = 20)a — (R_; — R, + 20)b]*,
e & doa
T gl W, 1—a
& = [(R_y + R,)* —40*](1 + ab)
X [(R_, —R,+20)b+ (R_, — R, — 20)d]
[(Rzr R,)* —40°|(b —a)
X [(R_y + R, +20) — (R_, + R, — 26)ab],  (A6)

where the following functions are used:
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era' + eZU/ln era' + erﬂzc < eU’llﬂ )2

4= Ui oUne e2Uo 4 ¢2Uno
b= p Ui ] eUne ] (er" + 620’71")2’
e2U-c 1 ¢2Uis p2U, + 22U eYno
R.=\/p*+(z-¢),
U=k + (=0, Uc=3m[R~(z=c)]

(A7)

The constants @ and f are connected with the solution
parameters as

o \/_(1 +A)(1+ 1)

(14m)*

(A8)

PHYSICAL REVIEW D 93, 064052 (2016)

The remaining metric function Y is given by

W,
"~ (1-0*)?R,R_,R),R, R

mo= mo

« Y 50 Y—rf.nzrf Yﬂrwn o Yﬂ(r,ﬂzﬂ Ym 0.0
Yo‘,/ltr Yo'.tho’

Y

20
Ymma e--me ( 9)
Y 2Ui.0 ’
—o.an0 €

where we define the notation

Yoo =RRs+ (z—c)(z—d)+p*.  (Al0O)
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