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The anomalous dimensions of the Planck mass and the cosmological constant are calculated in a
renormalizable quantum conformal gravity with a single dimensionless coupling, which is formulated
using dimensional regularization on the basis of Hathrell’s works for conformal anomalies. The
dynamics of the traceless tensor field is handled by the Weyl action, while that of the conformal-factor
field is described by the induced Wess-Zumino actions, including the Riegert action as the kinetic term.
Loop calculations are carried out in Landau gauge in order to reduce the number of Feynman diagrams
as well as to avoid some uncertainty. Especially, we calculate two-loop quantum gravity corrections to
the cosmological constant. It suggests that there is a dynamical solution to the cosmological constant

problem.
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I. INTRODUCTION

From the cosmological experiments dramatically
advanced in recent years [1,2], the primordial spectrum
of the Universe has been indicated to be almost scale
invariant. It seems to suggest that conformal invariance is
significant to describe the dynamics of the early Universe.
Actually, most of the fundamental quantum field theories
have conformal invariance at very high energies where
mass parameters can be neglected. Also in gravity, it seems
to be natural that we require conformal invariance at high
energies beyond the Planck scale. Under this thought, we
consider a conformal gravity that involves matter fields
with conformal couplings.

In the early works of fourth-order quantum gravities
[3-6], the nonconformal R? action was used as the kinetic
term of the conformal-factor field. On the other hand, in
order to realize conformal invariance at high energies, we
have proposed a renormalizable quantum theory of
gravity without the R’ action for several years [7-9],
in which the conformal-factor dynamics is induced
quantum mechanically. Its recent developments are the
following.

First, we have found that the conformal dynamics of
gravity is described by the combined system of the Weyl
action and the induced Riegert action [10] at the ultraviolet
(UV) limit. When we quantize it [11-18], conformal sym-
metry develops into a gauge symmetry, called the Becchi-
Rouet-Stora-Tyutin (BRST) conformal symmetry, because it
arises as a part of diffeomorphism symmetry. Therefore, all
theories connected to one another by conformal transforma-
tions become gauge equivalent. In this way, we can realize
the background-free nature of quantum gravity. The BRST
conformal algebra has been constructed, and by solving the
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BRST invariance condition, it has been shown that physical
states are given by real primary scalar fields only [17,18],'
which is consistent with scalar-dominated spectra of the early
Universe.

The second is that the indefiniteness existing in fourth-
order gravitational counterterms when using dimensional
regularization has been settled at all orders [20] through the
study of conformal anomalies [21-24] using the Hathrell’s
renormalization group (RG) equations [25-28]. On the
basis of this study, we have formulated the renormalizable
quantum theory of conformal gravity ruled by a single
dimensionless gravitational coupling constant “s” that
represents a deviation from the system with the BRST
conformal invariance [7-9].

In this paper, we calculate quantum gravity corrections
to the mass parameters by the coupling ¢ using our
renormalizable quantum gravity. The paper is organized
as follows. After we briefly review recent developments
of our quantum conformal gravity in the next section, we
derive propagators and interactions used here, emphasiz-
ing the relationship with conformal anomalies in Sec. II.
In Sec. IV, we calculate some renormalization factors by
controlling infrared (IR) divergences specific to fourth-
order theories that should be canceled out. The beta
function of the coupling ¢ that has a negative value is
given here and its physical meaning is explained. The
nonrenormalization theorem of the conformal-factor field,
which is a characteristic feature of our model, is explicitly
shown at o(#?) in arbitrary gauge. We then calculate the

'Due to the presence of this symmetry, ghost modes are no
longer gauge invariant. This is an alternative approach to the
unitarity problem different from that of Tomboulis [4], based on
the work of Lee and Wick [19].
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anomalous dimensions of the cosmological constant and
the Planck mass.’ Especially, the two-loop correction to
the cosmological constant is calculated in Sec. V. At that
time, we employ Landau gauge to reduce the number of
Feynman diagrams considerably and also to obtain
physically acceptable results directly [29,30], avoiding
the uncertainty due to a gauge-parameter dependence that
is not so clear yet. Section VI is devoted to conclusion
and discussion, in which we discuss a dynamical solution
to the cosmological constant problem.

Our conventions and some gravitational formulas used
here are summarized in Appendix A. In Appendix B, the
technique for determining the gravitational counterterm at
all orders through the RG equation is presented for QCD in
curved space as an example. In Appendix C, we calculate
the effective potential for the cosmological constant term,
and through its study we demonstrate that IR divergences
indeed cancel out. The Feynman parameter integrals are
evaluated by treating IR divergences carefully, which are
given in Appendix D. In Appendix E, we summarize the
integrands of Feynman integrals used in calculations of
the two-loop cosmological constant corrections.

II. RENORMALIZABLE QUANTUM
CONFORMAL GRAVITY

First of all, we briefly summarize the previous work on
the renormalizable quantum conformal gravity with a
single dimensionless coupling constant [9], which is for-
mulated using dimensional regularization that preserves
diffeomorphism invariance.”

Through the study of conformal anomalies for quantum
field theories with conformal couplings in curved space, we
have recently determined the form of the gravitational
actions [20] by solving Hathrell’s RG equations [26-28],
which are derived from the consideration of correlation
functions among normal products such as the energy-
momentum tensor and so on [25]. We then have been able
to fix the indefiniteness existing in fourth-order gravita-
tional actions. By employing this action, we define the
renormalizable quantum theory of conformal gravity.

The fourth-order action determined in this way is given
by two terms,”

*Some of these calculations had been carried out using
Feynman gauge in the previous work [8], but they were
incomplete. There were some missing diagrams and also errors
in the evaluation of two-loop integrals due to the careless
treatment of IR divergences.

3 Another advantage of using this regularization is that the
result is independent of how to choose the path integral measure
because of 5”(0) = [d”k = 0. On the other hand, in a four-
dimensional regularization, the contribution from the measure
such as conformal anomalies is obtained by evaluating the
quantity 6*(0) = (x|x")|,_ .

“If we introduce a nonconformally invariant dimensionless
coupling, we also have to add the R? term in addition to these two
terms.
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1
Sy = /de\/g{t_zFD+b0GD}v (2.1)
0

while the lower-derivative gravitational actions such as
the Einstein term are introduced later. The first term is the
D-dimensional Weyl action defined by

Rm//lﬁ_ 4 R, RH 1 2 RZ

Fp=C2. =R
b D-2"" (D-1)(D-2)

uvlc uvic

and ¢ is a dynamical coupling constant. The second term
that reduces to the Euler density at four dimensions is
significant for the conformal-factor dynamics, which is
given by [20]

Gp = Gy + (D - 4)y(D)H2, (2.2)
where G, is the usual Euler combination and H is the

rescaled scalar curvature defined by G4 = Rim - 4Rﬁ,, +

R? and H = R/(D — 1), respectively. The coefficient y is a
finite function of D only expanded in series of D —4 as

2(D) =S (D — 4y, (2.3)
n=1

which can be determined order by order. As mentioned
below, b, is not an independent dynamical coupling.

The first several values in (2.3) have been calculated
explicitly [20] for QED in curved space [27]. In
Appendix B, its calculation is generalized to the case of
QCD [28] with arbitrary gauge group and fermion repre-
sentation. These theories give the same values as

1
)(125, )(222- (2.4)
For the QED case, the third value has been calculated as
x3 = 1/3 using three loop calculations. The first value is
also obtained by the conformally coupled scalar theory in
curved space [26].

Furthermore, we have shown that the conformal anomaly
associated with the counterterm (2.2) is expressed in the
form Ep, = Gp —4yV?H. Here, it is significant that the
familiar ambiguous V2R term is fixed completely and this
combination reduces to E, = G, —2V?R/3, proposed by
Riegert [10] in the four-dimensional limit due to y; = 1/2.

The perturbation in f#, implies that the metric field is
expanded about a conformally flat spacetime satisfying

Cuio = 0, which is defined by

_ 29—
G = €7,
2
I}

S yhow + . (25)

gyb = (geluho)ﬂy = f]yu + tOhO;w +
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where h,, = §,2h(, and hy, =0, and g, is the back-
ground metric. The quantum gravity can be thus described
as a quantum field theory defined on the background §,,.

The significance of this theory is that the conformal
factor e?? is treated exactly without introducing its own
coupling constant. It ensures the independence under the
change of the background g,, — ez”f]w,, because, as is
apparent from (2.5), this change can be absorbed by
rewriting the integration variable as ¢ — ¢ — ¢ in quan-
tized gravity. Consequently, we can choose the flat back-
ground without affecting the results.

The renormalization factors for the traceless tensor field
and the coupling constant are defined as usual by

how = Z3 s 1o =p>PPZ1,  (2.6)

where y is an arbitrary mass scale to make up for the loss of
mass dimensions, and thus the renormalized coupling ¢
becomes dimensionless. On the other hand, the conformal-
factor field ¢ is not renormalized such that [7]

(2.7)

because there is no coupling constant for this field. This is
one of the most significant properties in our renormaliza-
tion calculations, which reflects the independence of how
to choose the background metric as mentioned above.

The renormalization factors of Z;, and Z, are expanded as
usual:

= fa 5 N~ O
logZ, =Y — 0 logZi=Y) — .
“~ (D -4) “~(D-4)

Using these factors, we can renormalize UV divergences
proportional to the F term. The beta function of a;, =
1?/4x is defined by

da -
p=L"" D4+,
o, du

(2.8)
where f, = ud(log Z;7%)/dp.

In addition to these renormalization factors, we also
introduce the bare parameter b, to renormalize UV diver-
gences proportional to the Gp term. The nonrenormaliza-
tion theorem of ¢ is related to the geometrical property of
Gp (2.2) [24]. Since its volume integral becomes topo-
logical at four dimensions, it is not dynamical at the
classical level. Therefore, b is not an independent dynami-
cal coupling. So we expand the bare parameter b, in a
pure-pole series as

D—4 o) bn
b= (fn)u/z ; (D -4 (29)
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Since the field-dependent part of the volume integral of G,
starts from the zero, namely o(D —4), the finite field
dependence just comes out at the quantum level by
canceling out the zero with the UV pole in b,. The finite
term in the action induced in this way describes the
dynamics of the conformal-factor field.

Here, the residues b,(n > 2) depend on the coupling
constants only, while the simple-pole residue has a
coupling-independent part, which is divided as

by =b+ b, (2.10)
where b is coupling dependent and b is a constant part.

In order to carry out the renormalization systematically
incorporating the dynamics induced quantum mechani-
cally, we propose the following procedure. For the moment,
b is regarded as a new coupling constant. The effective
action is then finite up to the topological term as follows:

/"D_4 b — bc

(47)P2 D -4

/de\/§G4 + Fren([7 b)’

where [, is the renormalized quantity that depends on the
coupling constants. The divergent term exists in a curved
background only. The constant b, comes from the sum of
direct one-loop calculations [21-23], which is given by

769
(Ng+ 1INp 4 62N,) 4 ~—

b
180

for the quantum gravity model coupled with Ng confor-
mally coupled scalars, N fermions, and N, gauge fields.
Here, the last term is the sum of 87/20 and —7/90 coming
from the gravitational fields h,, and ¢, respectively
[5,12,14]. After the renormalization procedure is carried
out, we take b = b,.. In this way, we can obtain the finite
effective action 'y, (7, b,.) whose dynamics is governed by
a single gravitational coupling t.

From the RG equation udby/du =0, we obtain the
following expression:

db

H—= (D - 4)ﬁb’

i (2.12)

where S, is a finite function given by

— 31?1 -1 8[91
=—| = b — .
ﬂb (81)) < l+ataat
Here, in order to be able to replace the coupling b to the
constant b,. at the end, the condition udb/du = 0 should be
satisfied at four dimensions. Therefore, (2.12) ensures the
validity of the renormalization procedure proposed above.

From the RG analysis of QED and QCD in curved space,
we find that b} in (2.10) arises at the fourth order of the

064051-3



KEN-JI HAMADA and MIKOTO MATSUDA

gauge-coupling constant [see Eq. (B11)]. From this fact
and the similarity between the gauge field and the traceless
tensor field ruled by the Weyl action, we can guess that the
a; dependence of b is also given by

by = o(a?), (2.13)
and then we obtain f, = —b + o(a?). This assumption
should be verified through direct two-loop calculations of
three-point functions of the traceless tensor field or indirect
calculations using the RG equation, but this hard work is
not complete yet.

ITII. PROPAGATORS AND INTERACTIONS

In this paper, we consider the quantum gravity system
(2.1) with the Einstein action and the cosmological constant
term,

M;
/dDX\/_{ FD+b0GD—7R+A0} (31)

and calculate the anomalous dimensions of these mass
parameters.

Here, we first derive gravitational propagators and
interactions used later. The background metric g,, is then
chosen to be the flat Euclidean metric §,, and we take a
convention that the same lower indices denote contraction
in the flat metric.

A. The Fp term

The Weyl term in D dimensions is expanded as follows:
/d x\/9Fp= /de geP~ 4>¢Cﬁm,
/def|: 2 /41//16 2 ¢ wla

(3.2)

The first term of the right-hand side gives the propagator
and self-interactions of the traceless tensor field. The
second and other terms are the induced Wess-Zumino
actions associated with the Weyl-squared conformal
anomaly, which give new interactions that involve the
conformal-factor field.

We first define the gauge-fixed propagator for the
traceless tensor field. The kinetic term is given by

D-3
/ dD {D (hOﬂzzaAhO/w + 2)(0;:8 )(0;4)

D -3
D )(0/46 av)(()v}

where o, = 9,hg,, and 8> =9,0,. According to the
standard procedure of the gauge- ﬁxmg, we introduce the
following gauge-fixing term [5]:
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- ¢
Sgh+gf = / dDX&B{_lCOﬂN/w <)(0u - EOBOD

where ¢, is the antighost and By, is the auxiliary field. N,
is a symmetric second-order differential operator, which is
here defined as

2(D - 3) D-2
Nﬂy:ﬁ< 2826 + aa)

The BRST transformation denoted by g is defined by
introducing the ghost field ¢, as follows:

2
Ophou, = 0,¢0, + 0y — 55ﬂua/1€0,1 + 19020, hop

1,
+ 50 hou(0,c01 = 05c0,)

1,
+§0hom(8ﬂcm —05¢0u) + 005

1,
Opp = t9c10,¢ + 508/100/1,

5300” = l‘oC(MaiCOﬂ, 5350/4 = iBO/N SBBO/A =0.
The gauge-fixing term and the ghost action are then

expressed as
— D g()
Sgh+gf - d”x BOyN;wXOD - SBOMNWIBOU
+ iZ‘OﬂN/wa/I(thOM) } .

Here, note that the gauge-fixing term does not depend on
the conformal-factor field. Integrating out the auxiliary
field, we obtain the following gauge-fixing term:

1
ng—/de{z—Co)(oﬂNW)(oU}-

The renormalization of the ghost sector is carried out as
usual by introducing its own renormalization factor and the
gauge parameter is renormalized by {y = Z,(.

Let us derive the propagator of the traceless tensor field
in arbitrary gauge. The equation of motion is now given by

K/(w 10(k)h,,(k) = 0 in momentum space, where
© 72<D_3) H 4 -7l >
K, (k) = o ) mick +T Sk (Su2k ks

+ 5Mk ko + 8,k ks 4 8,0k, k)

- j K28,k + 81k, k,)

1 D-2
8,0,k — —k,k Kk
+D(D—1) uvYio D_luuﬂo':|}
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and

IH

1
uvie (5;4&5116 + 5#6511/1) - Béﬂuéﬂwf'

| =

©

By solving the inverse of K/, .,

we obtain the propagator

D-2 1

<h/w(k)h/10'(_k)> = mﬁlﬂu,}m

(k), (3.3)

where

1/ kk,
I/(jz),/la(k) = I;I:Iyia + (él - 1) |:§ (5;1& 2

k,k; kk; k,k,

+ 8,4 22 + 8,46 2 + 4, ’;{2>
1 kk k,k

- s a5, HY

D—1<"” 2 o k2)

1 D-2 kﬂkl,k,lk,,]

8,00 —
+D(D—1) T D-1 Kk

This tensor satisfies

1 1
ﬂ /,41/ /lo'(k) (2 klél/o' + 5 ko'6IM. - B kvéﬂa) )

and thus it becomes transverse when ¢ =0. In the
following, the choice of { =0 is called Landau gauge,
while { =1 is called Feynman gauge.

by / dPx\/gGp

D—4
H D by b,
= d
(4;:)0/2/ x{ (D—4+(D—4)ZJr

->a+<
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Lastly, we write down the three-point interaction coming
from the second term of (3.2), which is given by

Sty = (D= 4) / deqb{aﬂaa 1,005y
- 2avaihﬂaaﬂa/1hyo + aﬂaahﬂuaﬂauhﬂa

2 (1
<§ 02hy, Phy, — Pl 0,0,

" D-2

+ 02,0000 + 0,2,0.2, —zﬁ%)

2
To-nD-2) %%}

~-4) [ df”;’; H(=p = @) ()

X hio(@)W,, 1P @) (3.4)

where y, = 0,h,,. The momentum function wa 1o 18
defined through this equation. This interaction is necessary
to calculate the two-loop cosmological constant correction

in Sec. V.

B. The G, term

Next, we write down the kinetic term and the interactions
derived from the G action. From the expression of the bare
coefficient by (2.9) and the expansion formula (A2), this
action is expanded as follows:

20 1
P 4 ) <2¢A4¢+G4¢—§V RqH—ERz)

+[(D-4)b; +--] (¢2A4¢ +-Gyp? + 3¢V + 4pR*V V,p — —¢RV2¢ + (pvﬂRvﬂp + - )

D= 470+ 3R+ (413 5) (99,00 +

Here, A, is the fourth-order differential operator defined
by [10]

2 1
=V*4 2RV, V, - §RV2 +3 VIRV,

where |/gA, becomes conformally invariant at D = 4 for a
scalar quantity. The pole terms in (3.5) give the counter-
terms, while the others are the kinetic and interaction terms
induced quantum mechanically. The terms that we do not
use in this paper are denoted by the dots here.

(3.5)

et

The first line of the expansion (3.5) gives the
counterterm subtracting UV divergences proportional to
the Euler term G,, which determine the residue b, in
(2.9). The second line gives the Riegert action [10],
which is the Wess-Zumino action associated with the
conformal anomaly E,. It includes the bilinear term of the
conformal-factor field ¢ as
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at the lowest of the perturbations. Since this term is
independent of the coupling ¢, we can use it as the kinetic
term of ¢ and then the propagator is given by

o p@mPr
PR-0) =P (36)
Therefore, quantum corrections from this field are
expanded in 1/b, which corresponds to considering the
large-N expansion for the number of matter fields
Ngpa (2.11).

The three-point self-interaction is induced in the third

line as

D-4

Scuwas, = (0= 4>’?W / dPx? g, (3.7)

Here, note that due to the presence of the D — 4 factor, the
contribution of this interaction to UV divergences appears
in two or more loops.

Furthermore, expanding the metric g, (2.5) in
each term by the traceless tensor field, we obtain the
interactions between the conformal-factor field and the
traceless tensor field. From the —2¢V*R/3 and R?/18
terms in the second line of (3.5), we obtain two quadratic
interactions

D/2-2

u 2
Sé’w] = —bt7(4ﬂ)D/2/de§82¢3ﬂ)(w

bt 1
b _ D
SGt[hh] = W/d xl—gﬁﬂxﬂ&/}@. (38)
Note that in Landau gauge these interactions do not
contribute to loop calculations. This is one of the reasons
why we employ Landau gauge. We can then considerably
reduce the number of Feynman diagrams.
|

b2 po p (7 _2o%
Sot =b—+—- [ d G,—-V°R
Glphh] (4”)0/2/ x¢< 473 > o)
bt?
(4n’)D/2
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The three-point interaction derived from the 2¢A ¢ term
is given by
s
( 4 ”)D /2
D/2-2

-

[pph] — / de2¢Z4¢|o(t)

L
(4ﬂ)D/2

4
~3 0,90,0,0,¢ — 48/,81,4’76245}}1””

W22 [ P paPg
(4x)P/? / (27)?P

X (=p=q)Vi(p.q)

— bt / de{4a,,¢aya2¢ + gaﬂaﬂpayaﬂ/)

= bt

d(P)p(q)

and the four-point interaction is

D-4

b2 g M x
SGiggmn = b (4x)0" / dPx2¢p D4l o)

bt d® pdP qdPrdP s
(471.)D/2/ (27[)4D

x (27)P8"(p +q+r+5s)

X (D) () (@ his(r) Vi, 16(q. 735). (3.10)

and V;, . are defined

through these equations. Although the explicit expression
of the four-point interaction is very complicated, we can
straightforwardly derive it using the formulas given at the
end of Appendix A.

Furthermore, in order to calculate the two-loop cosmo-
logical constant corrections in Sec. V, we need the
following interactions. The three-point interaction with
br* coming from ¢(G, — 2V*R/3) in the second line of
(3.5) is given by

The momentum functions V3,

v

— 7/ deqﬁ{@Aa,,hwaia,,hW - 28D3,1hﬂ,;8ﬂ8,1hw + aﬂa{,h 8 ath

- <82h,w82hw —40%h,, 0,00, + 20,x,0,x, + 28,;@@)@) + 0,001,

312
b /dequ
- (4n’)D/2 (271)2D

(=P = (P oS3, 10 (P @)

111
+3 l:_ az(aihmxaﬂhﬂv) + 282(]1/4118;!)(1/) + 82()(/4)(/4) + 2h;wauayaﬂ)ﬁ + 2)(;48;481/ y:| }

(3.11)

The three-point interaction with (D — 4)br obtained by expanding the terms listed in the third and fourth lines of (3.5) up to

o(t) is given by

064051-6



TWO-LOOP QUANTUM GRAVITY CORRECTIONS TO THE ...

s

(4x)P/?

D—4)bl _ (D _4>b

(
SGlpg

1 - = 14, = 10 ==
/ dPx [5 Gu? + 3¢V p + 4¢R*“V N ,¢p — > dRV?p + qusvﬂzeviqs}
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o(t)

D/2-2
=(D-4)btr / def/){—shﬂyaﬂaya% — 64,0,0°h — 20°h,,0,0, + 40,1,0,0,¢

(47)P/?

14 10
-5 0,0, 0% + 5 aﬂay;@a,,gb}

D/2=2 [ gD 4P
H pa—q
= (D - 4>bt (471_)[)/2/ (2”)21) ¢<p)¢(Q)h/w(_p - C])T?w(]?, CI)- (312)
Expanding further up to o(#*), we obtain the following four-point interaction:
D4
(D-4)b> H p 1= 5 =4 . 14 =, 10 =-c
bt? d®P pdP qdPrdPs
=(D-4) (4n)7 / (22)P (27)P8°(p +q + 1+ 8)p(P)p() (D hio (1) T, 45 (qs 735),  (3.13)

where the explicit form of this expansion can be derived
using the formulas in Appendix A. The momentum
functions S5, . T, and T}, ;. are defined through these
Interactions.

C. The mass parameter terms

We here present interactions derived from the
Einstein action and the cosmological constant term in
|

|
the full action S (3.1) and define the renormalization
factors for the mass parameters. Note that unlike the
four-derivative actions, the exponential factor of ¢
remains in these actions. Owing to the nonrenormali-
zation theorem (2.7), the treatment of this factor can be
facilitated.

We first expand the Einstein action up to the second
order of the coupling constant as

2 2 —
-5 [ xR = =5 [ xR - (D~ 1) P}

3 D-1 D-2
= EM(Z) / dee(D_2)¢ {T 82¢ + T tOhOﬂy(_ayal/¢ + 8}4¢8l/¢)
D-1 D-1
+ T l%hO;MhOwlauav¢ + T t%hﬂuuayhOD/lallqb
D-3 12 I
- 6 t(2)h0}w)(0/48u¢ + 1_02 allho/wa/lho/w - go)foﬂ)(oﬂ } : (3 14)
The renormalization factor is defined by Ay / dPx\/5= A, / dPxeP?.
M(Z) = MD_4ZEHM2. (315)
The renormalization factor is defined by
The anomalous dimension for the Planck mass is then
defined by Ay = pP=*Zy (A + LyM*), (3.17)

u dM? _
=—-————=D-4 ,
YEH M dp + YEn

(3.16)
where ygy = pd(log Zgy )du.

The cosmological constant term is simply written in
terms of the exponential factor of the ¢ field as

where L, is the pure-pole term. The anomalous dimension
for the cosmological constant is defined by

udA M*

=" _D—_4+7% — 6\, 3.18
YA T +7a+ A 0A ( )
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where 7, = pd(log Z)du and

_ dLy

Op = o (D—4)Ly + (7 = 27en)Ly-  (3.19)

IV. SOME RESULTS OF RENORMALIZATION
FACTORS

In this section, we present some results of the renorm-
alization factors for loop diagrams with gravitational
internal lines. Some of them have already been calculated
elsewhere. We here add new calculations in arbitrary gauge
as well.

First, we mention how to treat IR divergences. In
fourth-order theories, in general, IR divergences become
stronger than those in the usual second-order field
theories. Further, since the Einstein term and the cosmo-
logical constant term have the exponential factor of ¢,
these terms cannot be considered as usual mass terms. So,
we have to regularize IR divergences by introducing an
infinitesimal mass parameter z in the propagators (3.3)
and (3.6) as

1 1 1

N 4.1
k4_’kzzl K2+ 27 (4.1)

while we do not introduce z in the tensor part ILU) (k) to
preserve the transverse and traceless properties. Since
this mass parameter violates diffeomorphism invariance, it
is a fictitious parameter that should be canceled out at
the end.”

In the following arguments, we set the dimension as
D =4-2¢

and 1/é =1/e —y +log4n. In Feynman diagrams, the
conformal-factor field ¢ and the traceless tensor field
h,, are denoted by a solid line and a spiral line,
respectively.

A. The beta function

Let us first calculate the beta function (2.8) of
a, = t*/4x. We here calculate the contribution from the
two-point function of /,,, with an internal ¢-line denoted by
Fig. 1, as an example.

Using the three-point interaction Sg’ ] with the
momentum function Vfw (3.9), we can calculate the
contribution from the diagram (1) in Fig. 1 as

This implies that what is called a massive graviton is not
gauge invariant. To begin with, the ordinary particle picture itself
is incorrect in a background-free spacetime, as mentioned in
Sec. IVA.
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(1) (2)

FIG. 1. The two-point function of %,, with a loop of ¢.

M4—D de
U [ a0

X/ rp 1

(27)P p2(p + k)2
X V;Sw (pv e Z k)Vza(_p
a, [ d°k

=8 () (—k
o [ Gt B0

1 /1

a0 (gt~
1 1 k2 229 1

- -1

+ 3kﬂkykﬂka>< o > 60) Srokike k,lka},

where there is no b dependence and IR divergences cancel
out within this diagram. On the other hand, the tadpole

rv—_

,p+k)

8k, k,k?

diagram (2) coming from the four-point interaction S/ G[ Sohi]

(3.10) gives no contributions because the tadpole integral
vanishes at the limit z — 0 due to the presence of
derivatives on the ¢ field in the interaction.

The right-hand side of the above can be combined into
the D-dimensional Weyl form and thus the effective action
from Fig. 1 is given by

D 2
w_a [d% 111k 289
ar) QB 3557108 2 60
D-3 4 2 -
X —2( "Méygk 25ﬂ1kyk6k )+mkﬂk0kﬂk6 .

This divergence can be removed by the field renormaliza-
tion factor Z,, defined in (2.6) such that Z, — 1 is taken to
be —(1/30)(a,/4ne). Since this diagram is gauge invariant,
it has a relationship with the renormalization factor Z, (2.6)
such as Z, Zl/ I 1. Thus, we obtain the contribution to

—1 from Flg. 1 to be (1/60)(a,/4xe). This result is
consistent with the previous calculation using the DeWitt-
Schwinger method in four dimensions [12].

In general, the renormalization factor for the coupling
constant is given by [21-23]

1 197
480(NS+6NF+12NA)+— ——+ (a7).

4=1- 120] 47

For the contribution from the traceless tensor field, we here
quote the result [5,12,14] obtained by using the background

064051-8
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field method [31] as follows. Introducing the background
traceless tensor field as j,, = (e™),, and calculating the

two-point function of the background field & s> W Obtain the

contribution —199/120 for Z, using the relation Z,Z ;1/ =1
ensured by the gauge invariance of the background field,
where Z; is the renormalization factor of the background
field h .- The sum of this value and 1/60 from the conformal-
factor field calculated above gives the last term at o(a,).

Hence, the beta function (2.8) has the negative value as
follows:

12 da, 1 197
Ng+6Np 4 12N,) + — | —
b= a, du ~ |70 Ns +ONF +12N0) + =55 47;
+ o(a?).

The coupling «a, thus indicates the asymptotic freedom,
which ensures that we develop the perturbation theory
about conformally flat spacetime.

Note that the asymptotic limit here does not mean the
realization of a picture in which free gravitons are propa-
gating in the flat spacetime because the conformal factor is
still nonperturbative and so the spacetime totally fluctuates
quantum mechanically. And also, it indicates that scalarlike
fluctuations by the conformal factor are much more
dominant than tensor fluctuations at very high energies.

B. The nonrenormalization theorem

Here, we show the nonrenormalization theorem (2.7) at
o(a;) [7] in arbitrary gauge. We calculate the two-point
function of ¢ depicted in Fig. 2 and show that all
divergences cancel out.

The contribution from the diagram (1) in Fig. 2 is

calculated using the three-point interaction S ¢ Glogph (3.9) as
1 b* D=2 dPk
M= k)p(—k
! 2 (47)P22(D-3) ) (27)P PP (=)

x/ d°p 1
(27)P pi(p -
X Via(p -k, k)

k)4 I/(i),ia(p>v;3w(p - k’ k)
b4

The explicit expression of the integrand is given in
Appendix E. Evaluating IR divergences at 7 < 1, we obtain

1o [ Do )

43+§ 411z2 10
18 3\e 82) 79[

Here, the nonlocal term log(k?/u?) does not appear, which
cancels out.

The tadpole diagram (2) in Flg 2 can be calculated using
the four-point interaction S i (3.10), which gives

PHYSICAL REVIEW D 93, 064051 (2016)

(1) (2)

FIG. 2. The two-point function of ¢ at o(a;).

MD_4 dPk A
b / SRk

. 5/1 | z +11+§4 1 ) z +13
—<—|==log= | +—+|=(=—log— | +—] ;-
az\3\e %2) 736 0 3\e %2) 9

This contribution comes from the terms without derivatives
on h,, in (3.10), because if there are derivatives on &, it
gives a vanishing contribution at z — 0 for such a one-loop
tadpole diagram.6

Now, combining the contributions from two diagrams (1)
and (2) in Fig. 2, we find that both UV divergences and IR
divergences indeed cancel out and we obtain

s =

. WPt [ dPk 25
Mo =20 e [ G- |- 3+ 5]

Thus, we can see that the nonrenormalization theorem (2.7)
holds at o(a,).

The other nontrivial checks of the nonrenormalization
theorem (2.7) have been given in the quantum gravity
model coupled to QED up to o(a*) and o(a®/b) with an
internal ¢-line [7] using Hathrell’s result [27], where « is
the fine structure constant of QED.

C. Renormalizations of the mass parameters

The renormalization of the cosmological constant has
been carried out up to o(1/b*). The diagrams up to three
loops that yield simple poles are given in Fig. 3. These
diagrams are evaluated with particular attention to the
dependence on the mass scale z and then extract UV
divergences only. On the other hand, IR divergences are
ignored here, which should cancel out after all. How IR
divergences disappear in the effective cosmological con-
stant term is demonstrated at the one-loop level in
Appendix C.

The result for the renormalization factor Z, defined in
(3.17) is given by [9]

2 2
Zy=1-[Z4+5+—

b b 30b

1011
€’
®Note that in two-loop calculations that involve such a tadpole

diagram discussed in the next section, there are nonvanishing
contributions from the interaction terms with derivatives on f,,.
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€b
(1) (2)

FIG. 3.

where the three-point self-interaction of ¢ (3.7) contributes
to the diagrams (2) and (4) in Fig. 3 and the four-point self-
interactions of ¢ in the fifth line of (3.5) contribute to the
diagram (3) in Fig. 3. Using the equation udb/du =
2¢e[b + o(a?)] (2.12), we obtain

_ 4 8 20
YA = b + 2 + <R
By replacing b with the constant b, at D =4 at last, we
obtain the expression of the anomalous dimension. This

value agrees with the first three terms of the 1/b.-
expansion of the exact solution y, =2b.(1—

/1 —=4/b,) — 4 derived from the BRST conformal algebra
in four dimensions [17,18]. This result shows that our
gravitational action G, with the values (2.4) is correct also
in quantum gravity beyond the curved-space argument
given in [20] and Appendix B.

In Landau gauge, there are no corrections of o(a,) to the
cosmological constant. The next-order loop correction is
given at o(a,/b), which is discussed in the next section.

The Einstein term is also evaluated in the same way.
The diagrams for Zgy (3.15) up to o(1/b?) are given by
(1) and (2) in Fig. 4. On the other hand, (3) in Fig. 4
gives the pure-pole term L,; in the renormalization of the
cosmological constant term (3.17). The results of these
factors are [8]

1171
Zen=1-|——+—| - =— :
o [2b+4b2}e’ M6 bt e

(4.2)

9 (47)*1

From Zgy, we obtain the anomalous dimension (3.16) as
Yen = 1/b + 1/b%, which also agrees with the exact

solution ygy = 2b.(1 —+/1—=2/b.) —2. The pole term

Ly gives the contribution to &, (3.19) in the mass-
dependent part of (3.18), which is
- 9(4rx)?

Sh = — . 4.3

A g bz ( )

The potentially divergent o(@;) loop diagrams in

Landau gauge with the interactions (3.14) are depicted

7Although the second one in two four-point interactions depends
on the coefficient y5, the result becomes independent of it.
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;% €b ; €b
(3) (4)

The diagrams for Z, up to o(1/b%).

eb
0% g/; 0% g;
(1) (2)

FIG. 4. The first two are the diagrams for Zgy and the last one is
for the pole term L,,.

(3)

in Fig. 5, in which the first four diagrams contribute to
Zry- However, the three diagrams (2), (3) and (4) have
no UV divergences in Landau gauge. The last diagram
(5) that contributes to L,, also has no UV divergences.
Thus, only (1) in Fig. 5 gives the contribution such that

Combining with the coupling-independent part, we obtain
the anomalous dimension

1 1 5aq

N 44
Ven =ty (44)

with b = b,.

V. TWO-LOOP CORRECTIONS TO THE
COSMOLOGICAL CONSTANT IN
LANDAU GAUGE

Now, we can calculate two-loop quantum gravity cor-
rections to the cosmological constant, which are given at
o(a;/b) in Landau gauge. The Feynman diagram is given
by Fig. 6 with the subdiagrams in Fig. 7.

The integral expression of the effective action for
one-loop subdiagram (a) in Fig. 7 denoted by I'}(a =
l,---,5) is given in Appendix E. The momentum
integrations for 't and T'Y have been performed in
Sec. IV, which yields UV divergences, while T'X, TR
and I'} become finite because of the D —4 factor in the
associated interactions.
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9%

8%

FIG. 5. The first four are the diagrams for Zgy at o(e,) and the last one is for Ly at o(a,/b).

The two-loop cosmological constant correction with the
subdiagram (a) in Fig. 7 is denoted by I'. It is calculated
using the integrand F, given in Appendix E to define I'R.
The momentum integration is performed using the
Feynman integral formulas given in Appendix D. For each
diagram, the calculation is done in arbitrary gauge and then
we take Landau gauge. Each result is given as follows.

The contribution from the two-loop diagram of Fig. 6
with the subdiagram (1) in Fig. 7 is given by

FIG. 6. The two-loop correction to Z, at o(a,/b) in Landau
gauge, where the gray circle is depicted in Fig. 7.

rp = Lo ampe 2P =2) / dPxePd / d°pd°q _Fi(p.q)
b 64(D - 3) (27)*° piqt(q—p)?

_r D/2—4, 4=D (2\D—4 D. Db 40 6 32 4
S Y e P e e )| G

where the integrand F; is obtained by contracting two Vi,, in (3.9), which is given by (E1).
The contribution from the two-loop diagram with (2) is given by8

r* D*(D -2) d®pd®q Fy(p. q)
I — —— 4D(4;)D/2 A/dD D¢/ 2\F>
T T N A T

2 s o[ 40 124 32 47
== 4R @) 4A/dxe¢{3(D—4)2+9(D—4)+C<3(D—4)2+9(D—4)>}’ (52)

where the integrand F, is obtained by contracting Vﬁ in (3.10), which is given by (E2). Consequently, the double poles in
I} (5.1) and I} (5.2) cancel out.

The contribution from the two-loop diagram with (3) is given by

v, Ao

ry —§u4‘0(4n)0/2 Dz(D_z)z(D_4)A/deech/dDPqu F3(p.q)

32(D - 3)? (27)*? piqi(q - p)?
_z (4)P/244=D (;2)D4 25 A/dD D$ (5.3)
— b T M < 3(D _4) xe ? ’

where the integrand F3 is obtained by contracting me 1o 10 (3.4) and Si in (3.11), which is given by (E3). The result is

independent of ¢ due to the property of the interaction (3.4).

v, Ao

¥Note that in this calculation, the product of the integrals such as [ d” pdPqp*q®/p?q? yields a simple pole, though the single tadpole
integral [ d”pp?/p? vanishes at z — 0.
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(1)

(2)

+ il WO

(3)

ebt?

(4) (5)

FIG. 7. The subdiagrams for Z, at o(a,/b).

The contribution from the two-loop diagram with (4) is given by

r (D 2)(

ry= 3/44_1) (4m)P/? 32(

A/dD D¢/dequ Fy(p.q)

27)*P piqi(q - p):

1 110 94
—_(4 D/2-4,4-D(_2\D-4 A/dD D(/)’ 5.4
- (4mpprmtyt 2 () {3(1)_4)%3@_4)] e (5.4
where the integrand F, is obtained by contracting 77, in (3.12) and V;, in (3.9), which is given by (E4).
The contribution from the two-loop diagram with (5) is given by9
- —ﬁﬂ4_D(4ﬂ')D/2 (D 2)( A/dD D¢/dDPquF5(P .q)
b 32( 22)? pig!
_ _ﬁ(4”)D/2—4ﬂ4—D(Z2)D—4 20 C /dequ% (5.5)
b D—4 ’ '

where the integrand F’5 is obtained by contracting Tﬁv‘ o

Combining the contributions from (5.1) to (5.5), we
finally obtain the following result in Landau gauge:

s 155
Al — 1 (47)D/2—4,4-D (,2\D—4 A [ dPxeP?.
=0 b( ) uP(2%) 9(D - 4) /d xe

Thus, the renormalization factor to remove this UV
divergence is given by
2 1551
Zy=14——>5—-—.
AT T G 18 €

°The double pole in I} originates from the interaction
terms without derivatives on £, that come from the 20V
part in (3.10), and also the simple pole of I" g‘ originates from
such interaction terms in the (D —4)34’)@445 part of (3.13).
Consequently, the relationship T'[gpre pore = (3/2)(D —4) x

A . .
T2 double pole 1 satisfied.

in (3.13), which is given by (ES).

Therefore, the anomalous dimension (3.18), including (4.2)
and (4.3) in the previous section, is given by

4,820 9(m?m
MW= T2 53 782 A 9b 4x

with b = b,.

Finally, we discuss the validity of the choice of Landau
gauge. The anomalous dimension in Landau gauge (5.6)
vanishes when we take the large b limit. It is quite an
acceptable result because in this limit the ¢ field becomes
classical and thus the anomalous contributions from this
field should disappear.

On the other hand, when we calculate the anomalous
dimension in arbitrary gauge, there is a correction of
o(a;) proportional to ¢ because the interaction Sg’[ ] in

(3.8) is then enabled, which does not vanish at the large b
limit. Furthermore, this interaction might cause the
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gauge-parameter dependence of o(«;) in the coefficient
supposed to be (2.13). If so, it induces new interactions
that give a contribution of o(a;) to the cosmological
constant.

In this way, in arbitrary gauge, unnatural behavior in the
anomalous dimension occurs. It may be because the
interaction (3.8) gives the contribution of a positive power
of b in loop corrections. It can be seen by rescaling the

conformal-factor field as ¢ — ¢/+/b to remove the b
dependence in the kinetic term. The interaction term is

then expanded in a negative power of /b, apart from the

interactions in (3.8) that have a positive power of v/b. As a
result, there arise the anomalous dimensions with a positive
power of b in arbitrary gauge.

One of the reasons why such a behavior occurs is that
there exists the dimensionless product of the bare cou-
plings like (D —4)(4x)P?byt3 = bt> + o(t*) in our
renormalization procedure so that any functions of it
become independent of u. So, we expect that the positive
b dependence in the renormalization factor can be
factored out as a function of such a dimensionless
product, which does not contribute to the anomalous
dimension.

In any case, all such unnatural behaviors will vanish in
Landau gauge. Of course, physical quantities should be
gauge independent. Since our formalism using dimen-
sional regularization respects diffeomorphism invariance,
we think that such an uncertainty will be resolved in the
future.

VI. CONCLUSION AND DISCUSSION

We studied the renormalizable quantum conformal
gravity with a single dimensionless coupling ¢ formulated
using dimensional regularization. The coupling ¢ intro-
duced in front of the Weyl action handles the dynamics
of the traceless tensor field, while the dynamics of the
conformal-factor field is ruled by the 1/b, expansion of the
coefficient (2.11) in front of the Riegert action that is
induced from the gravitational counterterm Gp (2.2)
determined through the analysis of conformal anomalies
using Hathrell’s RG equations.

After carrying out some calculations of renormalization
factors, including various consistency checks of our
renormalization procedure, we have calculated the anoma-
lous dimensions of the Planck mass and the cosmological
constant at the order of @, = t*/4x. We then employed
Landau gauge not only to reduce the number of Feynman
diagrams but also to avoid the indefiniteness as mentioned
in the latter half of Sec. V. The results are given by (4.4) and
(5.6), respectively. For the cosmological constant, such a
correction appears at the order of @,/b,. through two-loop
diagrams.

The a, correction to the anomalous dimension of the
Planck mass is positive, while that of the cosmological

PHYSICAL REVIEW D 93, 064051 (2016)

constant becomes negative. This suggests that the Einstein
term dominates the cosmological constant term in the low
energy region. It might give a dynamical solution of the
cosmological constant problem. The low energy effective
theory of gravity valid below the IR energy scale Aqg,
indicated from the negative beta function, would be given
by expansion in derivatives starting around the Einstein
action [32].10

The IR scale Agg separates the background-free quan-
tum gravity phase and our classical Universe where
gravitons and elementary particles are propagating. If its
value is taken to be about 10'7 GeV below the Planck
mass scale, we can construct an inflationary scenario that
ignites at the Planck scale and eventually ends at the Ayg
scale [32-34].

APPENDIX A: USEFUL FORMULAS FOR
GRAVITATIONAL FIELDS

The Christoffel symbol and the Riemann curvature
tensor are defined by

1
F,l/l'l/ = Eglo-(aﬂgyo' + ayg;m' - aﬁgﬂb)’
RY oy = 0,1, — 0,1 4y + T4 — T4 T
The Ricci tensor and the Ricci scalar are defined by R, =

R’lﬂ » and R = R¥,, respectively. The covariant derivative
then satisfies the following commutation relation:

V. VA, L, = Z Ry, A% ;0

The Weyl tensor is defined by

1
C/w/la = RMMG - m (Q;MRDG - gﬂo‘Rwl - gviR/m + gvo'R/M)
+ ! ( )R
(D— 1)(D _2) gﬂﬂgw; g;mgwl .

It satisfies the traceless conditions C*,;, = C*,,, = 0.
The number of independent components is
(D—=3)D(D + 1)(D +2)/12. In three dimensions it van-
ishes identically and in four dimensions it has ten
components.

Let us decompose the metric field as g,, = ¢*#g,,. The
curvatures are then expressed as

"In the case of QCD, the dynamics of gauge fields disappears
below the dynamical QCD scale, and the meson and baryon
become dynamical fields. In quantum gravity, although the
dynamics of fourth-order conformal gravity disappears below
Aqg. the metric tensor still remains as the dynamical variable in
Einstein gravity, which would be given by a composite field in
which the conformal factor and the traceless tensor field are
tightly binding.

064051-13



KEN-JI HAMADA and MIKOTO MATSUDA PHYSICAL REVIEW D 93, 064051 (2016)
=T, + 7.V, + 7.V -5.V'¢.
Ry = Ry + 780 = T By + GuoA'y = Gu A
+ (@9 = T6Gu) V0V §,
R, =R, —(D-2)A, - 5.,{V’¢+ (D-2)V,9V'p},
R=e¢2{R-2(D—-1)V*¢—(D—1)(D-2)V,pV'¢p}

A _
C pov — C Hov»

where ZW = jﬁyqﬁ - Wﬂq’)ﬁyqﬁ. The quantities with the bar are defined by using the metric g,,. Thus, the square of the
Weyl tensor is expressed as \/gC2,,, = /ge!P~?C: , . and the Euler density is

V3Gs = /5P G, + (D = 3)V,J* + (D —3)(D - 4)K], (A1)
where
JH = 8RN jp — ARV p + 4(D = 2)(V* ¢V p — VN ¢V . p + V* N,V ),
K = 4R"N ¢V, ¢p — 2RV,¢V'¢ + 4(D = 2)V*¢pV, ¢V’ + (D — 1)(D - 2)(V,4V' ).
Therefore, the ¢ dependence of |/gG, becomes the divergence form in four dimensions.

1. Expansion of the G, action

The volume integral of G, is expanded in a power series of D — 4 as

/ dPx\/9G, = / dPx\/geP~9[G, + (D = 3)V,J* + (D = 3)(D — 4)K]
n!

=S P o 57 + (D=3 @V, + I K))

= i—(D ’;4)" / d’x\/3{¢" G, +4(D - 3)¢"R*V,V ¢

—2(D =3)¢"RV*¢p —2(D = 2)(D = 3)(D — 4)p"V*pV*$pV ¢
—(D=2)(D=3*(D - 4)¢"(V'9V,9)*}

and the square of H = R/(D — 1) multiplied by D — 4 is expanded as

© —4)n —4 —, 2(D-6) _—
(D—4)/dD)C\/§H2 — Z(Dn' ) /de\/E{<(g_ 1))2¢”R2 _ (DD_ . )¢nRv2¢
n=0 .
+ %gbnwﬁ@ +4¢"Vp + 8(D — )" V2PV oV b

(D= 27D 4) <Vﬁ¢vﬁ¢>2}.

Combining these expressions and y(D) = 1/2 +3(D —4)/4 + y3(D — 4)> + y4(D —4)3 + - - -, we can expand the
volume integral of G, as
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[ @xyiGo = [ @xya(G. + (0 -4y D)8

0 _ 4 n o 4 _
_yoar / de¢§{¢”64+(§ — PR

n=0

+4(D-3)¢"R*V,V,p -2 {D -3+ g—:? )((D)] ¢"RV*p

2022 D)V RY g+ 41(D) T
F2(D = 4)[=(D=2)(D = 3) + 4D V4T 4

L (D—2)(D—4)-(D-3) + (D~ 2)1(0)14&*1(7@7%)2}
= / de\/é{G4 +(D—4) <2¢K4¢ + Gyp — %I_szqb + 1—18172)

+ (D —4)? (¢2A4¢ + %6441;2 + 3¢V + 4¢R*V,V ¢

14 e 10 o T 1 _ 5
-~ —¢RV*p +— V'RV, — ~RV*p + —R*p + —R?
g PRV g0 1 =GRV TR+ 0g )

+ (D -4)° [%¢3K4¢ + 264453 + (4}(3 - %) (V@Vﬁq;)z
+ (8= DV GV, + 35V + 2R,V L TRV

5 ruipo 1m0 T4 4 3P\ 4w
+9¢VRV/1¢+36R¢ + 43V + LT ORV ¢

4 ZA E—— 5 _ 4 7\ =
- (—;(3 +—) dV'RV 9 +1TSR2¢ + <— =X3 +—)RV2¢

3 54 3 27
+ G’“ - %)Rz] +o((D- 4)4>}, (A2)

where the dependence on the coefficient y, arises from o((D — 4)*).

2. Expansions in traceless tensor fields

Let g, = (g¢") . using the traceless tensor /2#,. The curvature quantities with the bar are then expanded up to o(h?) as
follows:

~ ~ 1 ~
A o c
\% (hZ)W - higv(ﬂh »+ Eh’ldv My,

N

— J | N
A \V4 vﬂ \V/
Fﬁy =1, + (yhiy) - E h/w + E (u (h2>iy) -

. " 1. le; le - . .
R=R-R,m +V,V, 0"+ ER"Whﬁahﬂv - Zvlhﬂvvﬁhv,, + 5vvhvﬂvwﬂ -V, (W N'R,),

1
)
1

> D > vaRvZ
R,=R,—R,h, + Rgﬂhy) ,+ Vi Vihy,

~ 1 ~ 1~ ~ 1~ ~
2 2 A1 6 o
VR =S, VP = Vb = 000,

S A 1= A
- _vll(hlav(;th I./)) +§v/1(h(ﬂvu)hlla) +

5 Vi (hEVhy,).

[\

Here, the contraction is taken by the background metric g,, and the traceless condition is #*, = g*h,,, = 0. The symmetric
product is defined by a(,b,) = (a,b, + a,b,)/2.

When we employ the flat background g, = J,,, the expansions of the squared curvatures with the bar and so on are given
up to o(h?) by
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RMSR 00 = 0,051,,0,0,h,, — 20,0,1,,0,0,h,, + 0,0,h,,0,0,h,,

- 1 1 1
R”DR”D = E(‘)M)(Vaﬂ;(y - 82hﬂy8ﬂ;(,, + 58//,)(1,8”){” + Zﬁ2hﬂ,ﬁzhﬂ
= 8;4)(/481/)@’
1 1
VZR aza;xu a (allh,uua/l ;w) 5820{/4)(;4) - az(h;wa/t}(u) - hﬂuaﬂabaﬂﬁ _)(ﬂaﬂau)(w

where y, = 0,h,,. The same lower indices denote contraction in the flat metric. The Euler density with the bar at o(h?*) can
be written in the divergence form

64 == (9,,L6
in any dimensions, where

L, = 0;h,,0,0,h,, — 85hm,82hﬂ,, —20;h,,0,0,h,s — 20,h,,0,1,
+ 480h;4v8/4)(1/ =+ 8/1,1/41/8/481/]/120 - 6ﬂhvaau)ﬁ —)(/131)(0 +)(08U(ﬂ'

The quantities with the bar including the ¢ field are expanded as

V= P = 1,0, — 0,000+ Db+ S D+ i, 0,0,

Vp = 00~ 00,00+ 1,0) = 10,000 = 10,30+ F (3,00 + 300+ 3,00
+hy, (8/481,}1168,13645 +20,h;50,0,0,¢ + h;;0,0,0,0,¢ + %@lhw{@,ﬁzq’) + %xﬂaﬁ%ﬁ +0,0,0,0,¢
+20,00,00 + HiD000) + 1OLD+ 1004 D000+ 0,0,

and

RNV, = 0,2,0,0,¢ — %a%,wa,,ayf/) - %alhﬂyamay(/) - %aihwamaﬂp + %aﬂhﬂyaﬂ;{yaﬂp + %azhwaﬂhmaﬂ/)

1P D0t~ D:,0,0:0) ~ D, DD+ 5 Py, Dh ~ 3 D,
0D D,00 - %@(%aﬂhw)aﬂam 30 0uhi) 0,0, + 30,0,
RY) = 0,,0°0 - 1, (0.1.0,0 + %){,ﬁ%) OO~ by (D, + 0,,0,0,0),

— 1
VﬂRvﬂd) = ayab)(uaﬂ¢ - Eaiaahyuaihuuaagb - 58/1 ()(u)(u)aﬂ¢ - ai(h,uuay)(u)a/lqﬁ - hm/aﬂaﬂ){iabqj'

APPENDIX B: DETERMINATION OF gauge theories in curved space [28], including fermions
GRAVITATIONAL COUNTERTERMS with an arbitrary representation.
FOR QCD IN CURVED SPACE The QCD action in curved space is defined by
We here briefly review recent achievements of how to D aw | 1 5
d F — (VHAS
determine the forms of gravitational counterterms in / x\/_{ [ o Fo + ( 0u)

dimensional regularization. In the previous paper [20],
we have determined them based on QED in curved space
[27] as a prototype of conformally coupled quantum field + agFp + byGy + co H2}7
theory. We here advance the argument to non-Abelian

+ “//07 D;tl//() la €o (a C _fabcAOMCO)
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where F(,, = 0,A5, — 9,A§, — f*"°Aj,AG, and D, = 9, +
OyapZop/2 — Ag, T The spin connection with Euclidean
indices denoted by a and f here is defined using the
vielbein e as .5 = €4(9,e,5 — I e5). The gamma
matrix can be described by y* = eay, and {y,.75} =
—26,5. The Lorentz generator is then given by X,; =
~[74+74]/4. The generators of the Lie group are normalized
as Tr(TT?) = —T ™ and focdfbed = C;6.

Here, for later convenience, we use the convention that
the gauge coupling is factored out, and thus the field
strength, the fermion and ghost actions do not manifestly
depend on the coupling. The renormalization factors are
then defined by g = u>P/2Z,g A§, = p>P1Z)As,
wo = ZY y and & = Z,Z;*¢E. Using a, = ¢*/4x, the beta
function is defined by g, = (u/a,)da,/du =D —4+ B,
and the anomalous dimensions of the fields are y, =
pud(log Z,)/du and y, = ud(log Z,)/dp.

For the moment, we consider three gravitational counter-
terms with the bare couplings ag, by and c¢. The end of this
appendix is to see that the last two are related to each other
|

1 VA 72
— |[Fo F#| = — g, F" ———FEy — = Egy, +
4g [ M ] ﬂg 49(2) Ou 2ﬁg 0A 2,59 Oy
Be \,p 4lo+L,)
L —< _|H? - °’V:H
+< C+D—4 D -4 ’

where the anomalous dimensions with the bar are defined
by 74 =71a+[ra— (D —4)|0(log Z4)/0¢ and 7, =y, +
[ya — (D —4)]é0(log Z,) /0&. Note that 1/f, has poles and
s0 (D —=4)/fy =145, (=py)" /(D —4)".

In order to see that (B1) is a normal product, according
to the technique developed in [27,28], we consider a
renormalized correlation function (a,0/0a, —E£0/0E)x
(ITATlw). This finite correlation function can be
expressed using (Bl) in the form ([[Fg F%]x
[TATTw)/44%, up to the terms of gauge-fixing origin that
becomes BRST trivial in physical correlation functions
without ghost fields. In this way, we can determine the form
of the normal product (B1), apart from the last divergence
term. The last term can be determined by imposing a further
condition such that the last three terms are finally combined
into the form Ej given in Sec. II.

Note that since the differential operators a,0/da, and
£0/0& do not act on the bare fields that are integration
variables, they pass through the bare field strength, the
fermion and ghost bare actions in our convention. It
simplifies the calculation significantly.

"In quantum conformal gravity, we set ay = 1/75 and by is
taken to be the pure-pole term without the constant b as (2.9),
while ¢, is expressed by b, as discussed here.
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through the RG equations at all orders and thus we can
combine them into the form Gp (2.2).

The bare gravitational couplings are defined by a, =
uP=*(a + L,) with the pole term expanded as L, =
S a,/(D—4)" and similar equations for by and c.""
The beta function of these couplings is defined by
Bo=pda/dy = —(D —4)a+p, and so on. The RG
equations are f, = —0(a,a;)/da, and d(a,a,,)/0a, +
ﬁgagaan /Oa, = 0 and similar equations for b, and c,.

In the following, we essentially use some normal
products denoted by the symbol []. The equation of motion
operators defined by Eoy = (A§,/+/9)8S/0A§, and Eo, =
(W06S/ oy + wodS/dyy)/+/g are the simplest normal
products. It is because (Eos, [[A]]w) becomes finite
for any renormalized correlation function denoted by
(ITATTw), which can be easily shown by carrying out
the partial integral for each field variable in the path integral.
Thus, we can write them as Eyy = [E4]| and E,, = [E,].

The normal product for the square of the gauge field
strength is given by

—4
7 ,uD_4|:<La+Dﬁ_a4>FD+ (Lb+Dﬂ_b4>G4

(B1)

The energy-momentum tensor is defined by 6" =
(2/1/9)68/8g,, and its trace is denoted by € =6/, =
6S/6Q. This is also the normal product because
(0" 1]A]]w) that is obtained by the variation of a
renormalized correlation function is trivially finite. As a
convention, we do not use the symbol [| for the energy-
momentum tensor.

1. Two-point functions

Since the partition function is finite, its gravitational
variations are also finite. Therefore, carrying out the varia-
tion two times, we obtain the condition (6(x)0(y))—
(66(x)/5Q(y)) = finite. From this, in momentum space,
we obtain (8(p)0(=p)) g — 8cop* = finite. For later con-
venience, we introduce the variable 0 =60—(D—1)[E,]/2.
Since the two-point function with [E,, | vanishes,'? we obtain

(O(P)O(=P)) s — 8p*uP L, = finite.

"Since one-point functions are dimensionally regularized to
zero for first- and second-order massless theories in flat space,
([Ey (IP())fae = (9P(y)/8x(x)) o = O s satisfied for a poly-
nomial composite P(y) in the fields w(y) and w(y), where
/0y = (Wod/ W0 + wod/0wo)//9-
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Next, we introduce the composite operator in flat space

D—-41

A2 = Fa F“ﬂl’
{ } ﬁg 49(2) Ouv™ 0
- L [Fy F“””]Jr—l (7alEa] + 72[E,])
v YalEA V21Ly])s
4>t 2p, v

and consider its two-point function defined by 'y (p?) =
({A%(p)}{A%*(=p)})p, in momentum space. Although
{A?} is not a normal product because 1/ B, yields poles,
the contributions from these terms with poles vanish due to
the property of the equation of motion operators. Therefore,
I'y4 is given by the two-point function of the normal
product [Fj, F®*]. Since correlation functions among
normal products do not yield nonlocal poles in general,
it can be expressed in the following form:

D-4
p

where L, = % ,x,/(D—4)" is a new pure-pole term
defined by this equation.

Since 0|, = B,{A*} up to the term of gauge-fixing origin,
Pl an = (00)g, is satisfied. So, we obtain the relation

2
Caa(p?) = P4/1D_4< ) L, = finite,  (B2)

(D —4)*’L, — 8L, = finite. (B3)
This implies that the simple-pole residue ¢; of L. can be
determined from the residue x5 of L, as ¢; = x3/8.

We next consider the RG equation that relates x3 with x;.
In order to derive it, we use the fact that if F is a finite
quantity, f;"ud(p3F)/du is also finite in spite of the
presence of the pole factor §;" because of f,"udpy/du =
nagaﬁg/aag. Applying this fact for n =2 to the finite
equation (B2) as F, we obtain the RG equation

1 d

E/A % {IUD_4 (D - 4)2Lx} = ﬁnite, (B4)
g

where we use the fact that ud(B,{A%})/du = 0 because
B,{A*} can be described in terms of bare quantities.
Expanding this equation in Laurent series and extracting
finiteness conditions, we can derive the relation among the
residues x,. Solving it, we obtain

_/_%Z‘g) /0 da{ale(a)% (ﬁ g(i‘”) } (BS)

As shown later, the lowest term of x; is o(1) and thus x3

and ¢, start from o(ar}).

X3 (ag) =

2. Three-point functions

We also consider the three-point function of . In terms
of @, it is expressed in flat space as
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0()0()0(2)) 0 — OB, 2) )
- <§<Y>§2<Z7x)>ﬂat - @(2)52(% y)>ﬂat
58 .
" <5sz<x>asz<y>6sz<z>>ﬂat = finite

where  6,(x,y) = 80(x)/6Q(y) — (D — 1)80(x) /25x(y),
where §/8y is defined in footnote 12.

The three-point function of {A?} is denoted by
I'yaa as before. Since 0|g, = f,{A?} and 6,(x,y)|p, =
—4p,{A*}8" (x — y) + 8¢x0*6” (x — y), the finiteness con-
dition above can be written in momentum space as

Bl aaa(p3. 3. p2) + 40T 4a(p3) + Tan(p3) + Taa(p?)}
+ byB(p3. py. p?) + coC(p3. py. p?) = finite,

where the last two functions are given by B = —2(D — 2)x
(D =3)(D = 4)[pi+ py + pi —2(pip7 + pyp: + P2p3)]
and C=—4[(D +2)(pi+ p} + p?) +4(pip; + pipl +
2.2
pzp3)l-
Consider the special cases that some momenta are taken
to be on shell. Combining (B2) and (B3), we obtain

Bl aaa(p?.0.,0)
— p*uP*2(D = 2)(D = 3)(D —4)L, +4(D - 6)L.]
(B6)

= finite
and Sl aaa(p?, p2.0) — 8(D — 4) p*uP~*L, = finite.
In general, I'444 has the following form:

FAAA(P% P% P?)
- ZPOICS X {T4a(p3) +Taa(p3) +Taa(p?)}

— ub—4 Zpoles x {terms in p7p3} = finite. (B7)
This expression cannot be obtained by dividing (B6) by
13 .
1/ ﬂ; because 1/, has poles. ” In order to determine the
pure-pole factor in front of I',4, we consider the equation
obtained by applying a,0/0a, to (B2), which yields the
equation for T'yss(p?, p?.0) because of a,0S/0a,|n, =
— [dPx{A?} up to the gauge-fixing term origin and
a,0{A%} /0, = ~[1 + (a3/B,)0(B, )0t} {A%}. The
pole factor can be extracted from this equation and fixed
to be (a2/B,)0(B,/a,)/da,. Therefore, Typs(p?.0,0) has
the following form:

PSince three-point functions with the equation of motion
operators do not vanish, the terms with 1/, in {A%} produce
nonlocal poles. Thus, unlike I'44, I'444 has nonlocal poles. The
second term in (B7) plays a role in canceling out such nonlocal
poles.
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. _
Lyaa(p*.0.0) — ﬂ_—aa <ﬂg> TCya(p?)
g

— ptub—4 (D—_4) L, = finite. (B8)
By

Here, the last pure-pole term L, =} %, y,/(D—4)"
cannot be deduced from the argument above, which is
defined through this equation.

Multiplying (BS) by ﬂg, we obtain another equation of
BT aaa, independent of (B6). By eliminating 31 444 from
these equations, we obtain the following pole relation:

2(D=2)(D=3)(D -4)L,
+4[D 6 — 228%<ﬂ9>}Lc—(D—4)3L

Ay

= finite,

(B9)

where (B2) and (B3) are used.

The RG equation for L, can be derived as similar to the
derivation of (B4). Consider the equation obtained by
applying S, ud/du to (B8) multiplied by f;. Since that
ud(BiT aan)/du = ud (P 44)/dpu = 0, we obtain the fol-
lowing RG equation:

D —4\3 9
(2= [0- 0ty 1]

0*B, (D —4\?2
+ o 'qu< 5 )Lx:finite,
g

(B10)

where (B2) is used.

3. Gravitational counterterms

The four RG equations (B3), (B4), (B9) and (B10) imply
that the pole terms L, and L. are related to each other at all
orders. Thus, we can combine these two terms into G, (2.2)
as introduced in Sec. II. The coupling constant ¢ in ¢ is
then removed. By solving the RG equations, we can
determine the function y(D) order by order when it is
expanded as (2.3) [20].

Since the derived RG equations have the same forms as
those obtained for the QED in curved space, we can solve
them in the same way as in the QED case. The information
needed to solve the RG equations is the simple pole of L,
and L, and the QCD beta function expanded as

x; = X; + X0, + 0(0{3),
By = Pra, + fra% + o(a}).

yi =Y+ Ysa, +o(al),

The solution for the first three terms of y is then given by
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| Y,
X=s- )(221—4—)(1,
203) 40
s\° "X, x,) 6\ X
1 X, (Y, 3V,
+6/31X1( 5XT>

The explicit values of the coefficients X; and Y, are
obtained from the one-loop calculations of I'y, and I'444,
respectively. They are given by

ruP= 1

FAA(pZ):_EWp D_a
D-4
ru 1
FAAA(p 0,0) = 2(4 )2P4D 4

where r is the dimension of the Lie group. From these, we
obtain X| = Y, = —r/2(4x)? and thus y, is determined to
be 3/4.

In this way, we can see that at least y; and y, are
the universal coefficients independent of the gauge group
and the fermion representation. At present, it is not clear
whether the coefficient y,(n > 3) has a universal value
independent of the theories or not. In any case, y,, can be
determined at all orders.

Finally, we calculate the explicit value of ', which is the
coupling-dependent part of b;. ' From x1 = 1/2, we obtain
the relation b, = 2¢; + o(a}). The residue ¢; = x3/8 is
obtained from x; through (B5). Since x; = X + o(a,),
we obtain ¢; = —f,$,X,a;/96 + o(aj) and therefore b,.
Further, using the RG equation among b,,, we obtain

P Xy
b = o? Bl11
| =20+ (). (B11)
Thus, the coupling dependent part of the residue b; starts

from o(a}).

APPENDIX C: EFFECTIVE POTENTIAL AND
HOW TO HANDLE IR DIVERGENCES

In this appendix, we calculate the one-loop effective
potential for the cosmological constant term, and then we
demonstrate that IR divergences indeed cancel out [8].

We here introduce the background ¢ and expand the ¢
field about it as follows: ¢ = & + \/ (47)P/% /4buP~*¢p. We
then expand the action up to the second order of ¢, which is
given by

“Note that the coupling-independent part cannot be deter-
mined from the RG equation.
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A
A A
Vloop = + + +
A A A
FIG. 8. One-loop effective potential for the cosmological

constant term.

S,
D?(4x)P/?

1
D
—/d x{2¢84(p+ 2h

The last term is the counterterm to remove UV divergences.
The kinetic term is given by D = k* + A in momentum
space, where A = (D?(4x)P/?/4b)AeP?, and D, = k* for
the free field. The one-loop effective potential depicted in
Fig. 8 is then given by

AeDa(pZ

yloop — _ log [det (Da] ,D)]_%
4-D D
p dPk A
2 (2z)P og( +k§>

4-D n—1

U (-1)
= A"l
2 Z n "

n=1

where the IR cutoff is introduced as (4.1) and I, is the

tadpole-type integral defined by

I = / d°k 1
") ot k)
The integral /, has both UV and IR divergences. For n > 2,
the integral has IR divergences only. They are given by

I = (4711) <1 logz>

1 Z2(2—2n)

") = G an = 1y2n - 2)

After UV divergences are removed and D =4 is
taken, we obtain the one-loop correction to the effective
potential as

1 __10 + 42 1)" lAn —4n
@2\ 2 2 2 Zon(an—1)(2n-2)
1 A
- og 2 4o (F—Alog [1+5

(4;1)2{ 5 logz +4(z ) 0g< +Z4>

— z2V/Aarctan <\Z/Z> - iA}

Vloop —

Here, the sum of the series is calculated as follows. Let
f(x)=>"%,(=1)"'x"/2n(2n — 1)(2n — 2) and so the

12
_ :ZMD_4A6DU}'
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series part is denoted by z*f (\/K/zz). We also consider
the series defined by h(x) = 0?/0x*{f(x)/x} =

;’l°:3(—1)”‘1x2"‘3 /2n, which can be easily evaluated as
h(x) = [log(1 +x 2) — x?]/2x3. The former series is then
obtained by f(x) = x [ du ¢ dvh(v).

Now, we can take the z — 0 limit and obtain the finite
expression VI°P = A{3 —log(A/u*)}/4(4x)%. Adding the
classical part Ae*’ and taking b = b,., we finally obtain the
effective potential

1 6472 A
—Ae*{1+—|3-10 .
Ve { +bc|:3 g(ﬂ bc>:|}

In this way, we can demonstrate that IR divergences
cancel out.

APPENDIX D: FEYNMAN
INTEGRAL FORMULAS

We here summarize the integral formulas used in one-
and two-loop calculations, which are evaluated by paying
particular attention to IR divergences.

1. One-loop integral formulas

In one-loop calculations, we need the following integral:

m _ [ d°k (k) (k- 1)
fe ‘/ @n) (e 2P~ + T

lZa ! l2
ri4 /dxxl—x)/ Dp+x (p- —|—x)7
(27) (p*> + K)*

(D1)
where z is an IR cutoff (4.1) and
K=22+x(1-x)?
In Landau gauge, we also need the integral of the form

n) _ dPk (k . l)”
= / 2P (€ + 2Pk - 17 + 2P ()

= [Fant— e [Mas -y

) / (Czlif’)

where

(p -1+ xP)"

(D2)

=(x+y—xy)zZ +x(1-x)P.

Note that there is no z dependence in 1/(k?)”, and therefore

Jéo) is not defined here because there are IR divergences
that cannot be handled by the cutoff z, but this integral is
not necessary in our calculations.
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In order to evaluate (D1), we expand the numerator in
powers of p. We then find that the following integral
appears:

dD 2\n .1 2m

— (12)§+n+2m—4fn‘m’

where F,, is a dimensionless quantity defined by

— I Tm+)rn+m+2)r(d-n-m-52)
" (Am)Pr FGT(m+3)
X F%+n+m—4
with
—_ K 2
K:l—2:w2+x(1—x), wzzl—z. (D3)

This function satisfies the relation

= _TBrk+5)

=2 — _ZF ..
n—k,k n,0
T(k+3)()

In order to evaluate the p-integral in (D2), we also need
the following integral:

B L(p+4) [ d°p (p-1)™
Ry = 655" [ G 1
_ ( lz)§+2m—/}—4§

mf}

where the dimensionless part is defined by

Ry — 1 I(m+ %)F(,lﬁ +4-m-9) ey
T (4m)Pia rre)
with
_ L 5
Lzl—zz(x—i-y—xy)w +x(1 —x). (D4)

The integrals 1§ (D1) and Ji” (D2) are then given by
the linear combinations of the parameter integrals of these
functions defined by

_ 1 _
[xaFn,m] = / dxxa+l(1 _X>Fn,mv
0

_ 1 1 _
[xaRm;/)’] :[) dxxa+l(] _x)ﬂ+IA dyy(] _y)ﬂ_lRm;/}-

These parameter integrals have to be evaluated with
attention to IR divergences. We here summarize the results
used in this paper. First, the integrals [x*F, o] (n > 1) that
have no IR divergences are evaluated at w> = 0 and we
obtain
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_ 3729 _ 4 89
Fuol=— 4+ 22 Fonl = —— _ 22
[Fao] 7z T 980" [F30] 5¢ 75°
[xfw]——g—ﬁ, [X2F30]:_i_1276’
’ 56 150 ’ 35¢ 3675
1 5 _ 1 5
Frool =— 42 Fol = — 1+ >
[Fapl ==+—, [xF, 0] 2€+12,
_ 3 27 _ 1 59
2F _ = = 3 — -
Pl =10 T 100 Wl =5t 3500
_ 1 449 _
Fy0] ==+ == Fiol =2
_ _ 2 _ 1
[XFyo] =1, [X*F, o] = 3 (X¥°F, o) = 5
_ 2 _ 1 _ 2
[X*F) o) = 5 [(X°F, o] = 3 [X°F, o] = 7

The integrals with IR divergences only are evaluated at
D = 4 and w? < 1, which are given by
[F0,0] = -2 log 1/\/2 - 2, [XFO,O} = —log W2 — 1,

_ _ 5
[)CZFO.()] = —log W2 — 2, [.XBF()’()] = —log W2 - 5,

F 17 = 37
[x4F0,0] = —logw? — 6 (X Foo] = —logw? — 1
- 197 _ 60
[x*Foo] = ~logw? - 60 [x"Fo 0] = —logw?* — 20
= 503
[ng0,0] = —IOg w? — m

In the same way, we calculate [x“R,, ;). For f =1, we
obtain

_ 1 11
[RU;]] :W—Zlong —7,

_ 5
[xRo,] = —2logw? — 3

_ 3 — 5
[**Ro.1] = —logw? 3 [ Ro.1] = —logw? — 3
_ _ 10
[x*Ro, ] = —logw? =3, X Ro;] = —logw? — 3
_ 43
Ry ] = —logw? — —
[x 0,1] ogw o’
| _
[Rll]——ZIOgW -5 [XRH]——,
[xzﬁl;l] =3
_ 1 _ 1
[X°R,.] =1z [X*R,] T
_ 3 — 1 — 1
[Ry.] = 16 [XRa1] 6 [¥*Ry, | = vk
[E] 51+25 [E] 11+47
1 ===+— iR | =—=+—
764 T 192 328 T 960
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and for f =2 we obtain"

_ 1 41 — 17
[XR()Q] =5 210g W2 -, [szo.z] = -2 10g W2 -,
’ w 6 ’ 6
— 11 — 17
(X' Ry] = —logw? — 5 [¥*Ros] = —logw? — <
11
[ Roo] = —logw? — —. [X°Ro,] = —logw? 3
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Using these quantities, we can calculate the integrals of (D1) and (D2). For Ié"), we obtain
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and for f = 2 we obtain

As mentioned before, [Ry.,] and so J(ZO) are not defined here.
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2. Two-loop integral formulas

Next, we present the integral formulas to calculate the
two-loop cosmological constant corrections depicted in
Fig. 6. They are given by the two-loop integral involving
1% and J as follows:
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These integrals can be written in the linear combination of
the two-loop integrals defined by
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In the following, we extract UV divergences only, and
pure IR divergences are disregarded though its evaluation is
significant here.

a. Two-loop integral with F,, ,,

We first evaluate the two-loop integral L[x“F,,,]
whose integrand [x“F,,] does not have IR divergen-
ces. In this case, it can be easily evaluated as
follows:
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We then obtain the following results:
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Noting z7% =1 —2elogz> + o(e?), we can find that 2 o\4 & ‘ 2\
IR divergences appear. Pure IR divergences are <—2 2> = E (=1)%4Cy (—2 2> (D6)
. . . . IF+z = IF+z

ignored here, while we leave the mixed divergences §=

of the form (1/e¢)logz?, which should cancel out in
the end. The strength of UV divergences then becomes weak in

The evaluation of the integral L[x“F,,] whose accordance with the increasing of s. In the two-loop
integrand [x“F,,] has IR divergences is carried out as integral, we neglect the terms that are not related to UV

follows. From K = K/I2 (D3), this integral can be written divergences. In this case, UV divergences appear at s = 0
only and thus we obtain

in the form
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The last term is now expanded as From this expression, we obtain
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Here, note that even though the integrand [xF o] has no UV divergences, the two-loop integral L[x“F ] has a double pole.

b. Two-loop integrals with R,

Let us evaluate the two-loop integral L[x“R,, 5]. We first evaluate the integral whose integrand [x“R,,, ;] does not have IR
divergences, which are m = 2, 3 for # = 1 and m = 3 for # = 2. In this case, we can easily calculate the integral as before.
For f =1 and m = 2, 3, we obtain
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and for f =2 and m = 3, we obtain

L[EZ;J = Z_4

L[R:,| = z77%¢—.
[3,2] 4 96e

For the cases when the integrand has IR divergences, which are m =0, 1 for f =1 and m =0, 1, 2 for f =2, UV
divergences are evaluated as follows. From L = L/[?> (D4), they can be written in the form
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where the last term is expanded as (D6).

Lp=1,m=0

We first evaluate the integral of m = 0 for § = 1, which
has UV divergences for s = 0, 1 in the expansion (D6) to
the last term. The integration for s = 0 can be performed as
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Changing the variables as x=1—u and y =1—v, we
rewrite the right-hand side as
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we can perform the parameter integrals and thus we obtain

D
(zz)_2€(4ﬂ)2€EF(a —1+e¢)
XZ I'(r+2e)l'(r+¢)
—(r+2)I0(r+a—-1+2¢)

The UV divergence in the series part now arises from the
r =0 term only, while the sum of r > 1 becomes finite.
Therefore, we separate the series into r = 0 and r > 1, and
the latter will be evaluated by taking e = 0.

We next evaluate the s = 1 part, which is given by

1
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The series part becomes finite and so UV divergences appear in the overall I'(a + €) factor when a = 0 only.
We can see that the s > 2 parts do not have UV divergences. We evaluate the /-integral by introducing the Feynman

parameter further as follows:
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The parameter integral can be performed at € = 0 for s > 2 and thus it does not produce UV divergences. For example, we
obtain the finite values L[R.i]|,_, = 1.72 and L[xR,,]|,_, = 0.34.
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Combining the results of s =0, 1 and extracting the UV divergences, we obtain
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The explicit values are given by

2p=1,m=1

In this case, the integral has UV divergences for the s = 0 part only, which can be performed as follows:
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Changing the variables as before, we perform the parameter integrals using expansion formula (D8) so that we obtain
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The series part has UV divergences at r = 0 only and so the sum of > 1 can be evaluated by taking ¢ = 0. We thus obtain
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In this case, UV divergences arise from the s = 0, 1 parts of (D7) with (D6) only. These can be calculated as before and
we obtain
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for the s = 0 part and
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5p=2,m=2

This case has UV divergences at the s = 0 part only,
which is given by
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The explicit values are given by
1 1
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c. Two-loop A-integrals

Using the integral formulas derived above, we can
calculate UV divergences of the two-loop A-integrals (D5).
The explicit values of the A-integral for 7 é") are given by
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The explicit values of the A-integrals for J/(") are given by
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Here, note that A[/ 12J§0) | is not defined, but it is not necessary in our calculations.

APPENDIX E: EXPRESSIONS OF I'R.....r'¥

Here, we summarize the integral expressions of IR (i = 1
which are calculated using MAXIMA software.

The diagram (1) is calculated using the interaction (3.9) as

, ...5) obtained from the Feynman diagrams (1) to (5) in Fig. 7,
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The diagram (2) is calculated using the interaction (3.10) as
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where
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The diagram (3) is calculated using the interactions (3.4) and (3.11) as
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The diagram (4) is calculated using the interactions (3.9) and (3.12) as
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The diagram (5) is calculated using the interaction (3.13) as
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