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Motivated by the task of understanding microscopic dynamics of an evolving black hole, we present a
scheme describing gauge-fixed continuous time evolution of quantum gravitational processes in
asymptotically flat spacetime using the algebra of conformal field theory operators. This allows us to
study the microscopic dynamics of the Hawking emission process, although obtaining a full S-matrix may
require a modification of the minimal scheme. The role of the operator product expansion is to physically
interpret the resulting time evolution by decomposing the Hilbert space of the states for the entire system
into those for smaller subsystems. We translate the picture of an evaporating black hole previously
proposed by the authors into predictions for nonperturbative properties of the conformal field theories that
have weakly coupled dual gravitational descriptions. We also discuss a possible relationship between the
present scheme and a reference frame change in the bulk.
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I. INTRODUCTION

Quantum gravity has been elusive so far. Our lack of
understanding manifests itself especially prominently in the
study of black hole physics, where basic questions such as
the unitarity of the evolution and the smoothness of
horizons are still under debate [1–3]. Ever since the
discovery of the thermodynamic behavior of black holes
[4–6], we have been searching for the deeper structure of
spacetime and gravity beyond that described by general
relativity. In fact, we may need to revise the concept of
spacetime itself, as suggested by the holographic principle
[7,8] and complementarity hypothesis [9,10]. Furthermore,
it seems that a perturbative approach to gravity is incapable
of revealing the real nature of spacetime.
AdS=CFT duality [11,12] provides a possible approach to

quantum gravity at the nonperturbative level, albeit in
spacetimes that are asymptotically anti-de Sitter (AdS).
Motivated by the task of understanding microscopic dynam-
ics of an evolving black hole, the first half of this paper
presents a scheme which can describe quantum gravitational
processes in asymptotically flat spacetime using conformal
field theories (CFTs). A key point is that this does not require
a true (holographic) theory of quantum gravity in asymp-
totically flat spacetime, i.e. one accommodating the full
Bondi-Metzner-Sachs symmetry at null infinity [13] and
giving a fully unitary S-matrix in the asymptotically flat
spacetime. Instead, we can describe flat-space quantum
gravitational processes by focusing on time scales suffi-
ciently shorter than the AdS time scale and in a sufficiently
central region of the global AdS space in a single AdS
volume at the center. This description can bemade extremely
(and perhaps infinitely) accurate by making the AdS length
scale large compared to the scale of interest.

The relevant Heisenberg-picture states in the gravita-
tional bulk are represented by CFT operators at the point
corresponding to the infinite past, which exists on the flat
Euclidean space obtained by conformally compactifying
the boundary spacetime in which the CFT originally lived.
We need not use the concept of CFT fields; knowing the
spectrum and algebra of these operators is enough to
understand the dynamics of our interest. In particular, by
identifying the dilatation D of the conformal symmetry
with time translation in the bulk, we can describe continu-
ous time evolution (not just an S-matrix-type quantity) in
the gravitational bulk. Since the CFT description eliminates
all the gauge redundancies in the gravitational theory
(including those associated with the holographic reduction
of degrees of freedom), this provides a fully gauge-fixed
description of physical observables in quantum gravity. Our
particular choice of identifying D as time translation
corresponds to taking the reference clock to be in the
asymptotic region [14].
Despite its conceptual simplicity, current theoretical

technology does not allow us to compute the physics of
black holes explicitly by following the above program. In
the second half of this paper, we therefore adopt a different
strategy and use information from the gravitational descrip-
tion to study what properties the dual CFTs must possess.
In particular, we describe how the picture of an evaporating
black hole in Refs. [15,16], proposed to solve the black
hole information problem [1,3], is translated into the CFT
language given here. This has at least two virtues. First,
since the physics of black holes is expected to be universal,
the structures we identify can be viewed as predictions for
nonperturbative properties of the CFTs that have weakly
coupled gravitational descriptions. In principle, this allows
us to test (aspects of) the picture of Refs. [15,16], perhaps
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with some future theoretical developments. Second, the
translated CFT description clarifies the concept of space-
time-matter duality introduced in Refs. [15,16]: the black
hole microstates play the roles of both spacetime and
matter, but in fact are neither. In the CFT language, this can
be stated as properties exhibited by the operators corre-
sponding to black hole microstates.
The emergence of spacetime and gravity in AdS=CFT

is an important subject, and it has been studied by many
authors from various different angles, e.g., in Refs. [17–
32]. Our analysis builds on many of these works, which
we refer to more explicitly as we go along. It asserts that
when a relevant CFT possesses a finite central charge,
which is necessary to describe nonperturbative gravita-
tional processes in the bulk, the sector allowing for a
semiclassical particle interpretation comprises only a tiny
subset of the whole degrees of freedom representing the
single AdS volume. This elucidates why, in contrast with
what is postulated in Refs. [3,33–35], the microscopic
information about a black hole cannot be viewed as
propagating in semiclassical spacetime in the near black
hole region.
The organization of this paper is as follows. In Sec. II, we

present the scheme which describes flat-space quantum
gravitational processes using CFTs. We discuss under what
conditions and to what extent the CFTs may provide such
descriptions and how the continuous time evolution picture
in the gravitational bulk arises from the algebra of CFT
operators defined at a point in Euclidean spacetime. We
then discuss in Sec. III how these quantum gravitational
processes may be physically interpreted (purely) in CFTs.
This requires us to decompose operators into smaller
elements, which corresponds to decomposing the Hilbert
space of the states for the “entire universe” into those for
smaller subsystems. We discuss how this can be done using
the operator product expansion (OPE), defined as the action
of operators on general states. We finally apply the scheme
to black hole states to see how the picture of Refs. [15,16]
may be realized in CFTs. Section IV is devoted to the
summary and discussion.

II. EMBEDDING ASYMPTOTICALLY FLAT
SPACETIME IN AdS=CFT

One goal of this paper is to use AdS=CFT duality to
study how the structure of (a class of) CFTs encodes the
physics of an evaporating, dynamically formed black hole.
As a first step, here we ask how the physics of flat-space
quantum gravity may be encoded in CFTs.
Throughout the paper, we focus on the class of CFTs of

which the dual descriptions possess energy intervals in
which physics is well described by weakly coupled
effective field theories with Einstein gravity in spacetimes
one dimension higher than those of the corresponding
CFTs. Specifically, for a d-dimensional CFT, we require
that the dual theory has

lP < ls < Rc ≪ R; ð1Þ
where lP, ls, and R are the (dþ 1)-dimensional Planck
length, string length, and AdS curvature length, respec-
tively, and Rc collectively represents characteristic length
scales associated with compact extra dimensions beyond
dþ 1 spacetime dimensions. The precise and general
conditions for a CFT to give such descriptions are not
yet understood, although some necessary and/or sufficient
conditions to have weakly coupled dual gravitational
descriptions have been discussed in various contexts
[21,24,27,31]. In this paper, we assume the existence of
the relevant CFTs.
Since the flat-space limit corresponds to length scales

smaller than the AdS radius R, we are interested only in a
single AdS volume. We choose to work in global AdS
spacetime, focusing on a single AdS volume at the
center. This has the virtue that we need not be concerned
with the Poincaré horizon in dual AdSdþ1 descriptions.
In particular, we take our CFTs to live in Sd−1 ×R,
where Sd−1 represents the (d − 1)-dimensional sphere
with radius R.

A. AdS radius as an IR and UV cutoff

AdS=CFT duality is believed to hold between a d-
dimensional CFT and string theory on a spacetime of
which the asymptotic region contains an AdSdþ1 factor.
Suppose the spacetime geometry in the string theory side
is asymptotically AdSdþ1 × X, where X is a compact
space. It seems possible to make X as small as of order
the AdS radius R. This was indeed the case in originally
discussed examples of AdS=CFT [11], and we do not
anticipate any obstacles keeping X this size (or smaller)
in more elaborate setups, for example in nonsupersym-
metric cases. This allows us to dimensionally reduce on
X, yielding theory in AdSdþ1 that contains Kaluza-Klein
towers associated with X. In this subsection, we work in
this framework.
Let us consider a single AdS volume V at the center of

the bulk at some time τ ¼ t0,

0 ≤ r < R; ð2Þ
where τ and r are the AdS time and radial coordinates
defined by the metric

ds2 ¼ −
�
1þ r2

R2

�
dτ2 þ dr2

1þ r2

R2

þ r2dΩ2: ð3Þ

This region serves as our proxy of (an equal-time hyper-
surface of) flat space, in which R plays the role of the IR
cutoff. When we refer to flat-space physics, we mean
physical processes occurring in (a sufficiently interior part
of) this region; see Fig. 1. In general, excitations involved
in these processes modify the metric in Eq. (3), in which
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case the choice of time slice, τ ¼ t0, refers to that at the
boundary of the region, ∂V.1
What are the CFT operators representing physical

configurations in the volume V (or more precisely, in
the region inside ∂V)? Imagine that the CFT is defined on a
flat d-dimensional Euclidean spacetime obtained by per-
forming a Weyl transformation on (Euclideanized) Sd−1 ×
R and adding a point, x ¼ x−∞, corresponding to τ ¼ −∞.
Here, x represents the coordinates of the d-dimensional
space in which the CFT lives. We may then define the set of
(gauge-invariant) operators acting at this point, Ψ’s, which
corresponds to all the elements of the Hilbert space of this
CFT in radial quantization. The CFT state created by any of
these operators, Ψj0iCFT, then corresponds to a Heisenberg
state in the gravitational theory, representing a full space-
time history in the bulk. We can then ask what subset of
these CFT operators provides a complete basis fΨA¼1;2;���g
for the bulk states that can be interpreted as having
excitations only in the region inside ∂V at time t0.
Let us recall that AdS=CFT relates the central charge c of

the CFT with the AdS radius and the (dþ 1)-dimensional
Planck length as

c ∼
�
R
lP

�
d−1

: ð4Þ

Since we are interested in physics in (large) flat spacetime,
we take R ≫ lP. Namely, we are considering CFTs with

c ≫ 1: ð5Þ

In general, a CFT operator Ψ is given by a superposition of
primary and descendant operators OI:

2

Ψ ¼
X
I

αIOI: ð6Þ

Here, OI’s are defined by the dilatation D and special
conformal transformations Kμ of which the center is at
x ¼ x−∞, and we take their normalization such that the
states created by them are appropriately normalized in
Lorentzian Sd−1 ×R,

h0jO†
IOJj0i ¼ δIJ; ð7Þ

where j0i is the CFT vacuum state. (This requires uncon-
ventional relative normalizations between primary and
descendant operators within a single conformal multiplet.3)
According to AdS=CFT, the dimension Δ of a CFT
(primary or descendant) operator O is related with the
bulk quantities as

Δ ∼ ER; ð8Þ

where E is the energy of the bulk state corresponding to O
as measured with respect to τ.
The relations in Eqs. (4) and (8) imply that a CFT

operator Ψ containing a primary or descendant operator
with Δ > c corresponds to a bulk state involving a
component with E > Rd−2=ld−1P . Such an operator cannot
be an element of the basis fΨAg we look for, since energies
this large cannot fit into V—they would lead to large black
holes, of which the Schwarzschild radii are larger than R.
A basis element of fΨAg thus can be written as

ΨA ¼
X

I∈fIjΔI<cg
αA;IOI; ð9Þ

where

~ R

D(V )

V

FIG. 1. A single AdS volume V is selected at the center of the
global AdS space at some reference time t0. We are concerned
with processes occurring in a sufficiently inner region of the
domain of dependence of V, DðVÞ.

1This statement becomes fully unambiguous only in the true flat-
space limit, in which we focus on processes occurring at the center,
0 ≤ r < ϵRwith ϵ → 0. Naively, this limitmaybe taken bykeeping
the number of possible states, Nϵ, realized in this region large and
finite.Here, lnNϵ ∼ ϵd−1cwithc being the central chargeof the dual
CFT, so that c → ∞; see Eq. (12). (This corresponds to taking the
ϵ → 0 limit keeping ϵR=lP large and finite.) To discuss physics of
black holes, however, we need to analyze CFT operators with
dimensions scaling as positive powers in c, which prevents us from
taking c to be literally infinite (see Sec. II B).We thus take ϵ ∼Oð1Þ
(< 1) in this paper. Any ambiguities arising from the prescription of
dealingwith∂V onlyaffect physics at the IRcutoff scale (whichmay
be made arbitrarily small by making ϵ smaller).

2Note that the index I in general involves spacetime indices in
the (Euclidean) d-dimensional space.

3For example, if a scalar primary operatorOð0Þ of dimension Δ
is normalized such that h0jOð0Þ†Oð0Þj0i ¼ 1, the conventionally
defined descendant operators Oð1Þ

μ ¼ ½Pμ;Oð0Þ� and OðnÞ
μ1���μn ¼

½Pμ1 ;O
ðn−1Þ
μ2���μn � (n ¼ 2; 3; � � �) give h0jOð1Þ†

μ Oð1Þ
ρ j0i ¼ 2Δημρ,

h0jOð2Þ†
μν Oð2Þ

ρσ j0i ¼ 4ΔðΔþ 1Þðημρηνσ þ ημσηνρÞ − 4Δημνηρσ , and
so on.
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X
I

α�A;IαB;I ¼ δAB: ð10Þ

Note that the coefficients αA;I depend on t0, and α�A;I refers
to the complex conjugate of αA;I in Lorentzian Sd−1 ×R.
The set of CFT operators ΨA is smaller than the set

spanned by all possible independent linear combinations of
OI’s with ΔI < c. This is because some of these linear
combinations correspond to bulk states in which not all the
excitations are confined within ∂V at time t0. While an
explicit expression for the sets of αA;I ’s giving correct basis
operators, ΨA, is not known, they must be uniquely
determined (up to basis changes and IR ambiguities
discussed in footnote 1) once the theory is fixed and time
t0 is chosen, since the CFT construction here selects time
slicing in the bulk. Note that the choice of t0 is simply a
convention for how we embed our “flat spacetime” into the
AdS spacetime. We refer to the set of basis operators
determined in this way as B:

B ¼ fΨAg: ð11Þ

This set contains complete information about physics
occurring in our flat spacetime, i.e. (a sufficiently small
part of) the domain of dependence of V, DðVÞ (see Fig. 1).
We stress that the dimensions of operators comprising

ΨA’s are bounded both from below (by the unitarity bound)
and above (by c); namely, the AdS radius provides a cutoff
both in the IR and UV. In fact, for finite R (in units of lP),
the number of elements of B,NB, is finite—the holographic
principle states that [7,8,36]

lnNB ¼ Ωd−1

4

�
R
lP

�
d−1

∼ c; ð12Þ

where Ωd−1 ¼ 2πd=2=Γðd=2Þ is the volume of the unit
(d − 1)-sphere, and we have used Eq. (4).4 This is the CFT
statement for holography in flat spacetime, in which (unlike
a large AdS region) a volume does not scale as the area
surrounding it.

B. Flat-space quantum gravity in d þ 1 dimensions

We now discuss in more detail how we may extract
physics of flat-space quantum gravity. We begin by con-
sidering the (potentially hypothetical) situation in which the
compact space X can be completely ignored. Specifically,
we consider the case in which the gravitational theory
contains only two length scales

~lP ∼ ls ∼ Rc ≪ R: ð13Þ

Here, ~lP is the Planck length in AdSdþ1 × X, which is
related with the (dþ 1)-dimensional Planck length, lP, by

ld−1P ¼
~ldþn−1
P

VX
; ð14Þ

where n and VX are the dimension and volume of X,
respectively. (Here, we take VX ¼ Rn

c ∼ lns , so that ~lP ∼ lP.)
As wewill discuss below, this setup might not be realized in
a consistent theory of quantum gravity (and so as a dual
description of a CFT). However, it provides a useful
starting point for our discussion.
Suppose we take the limit in which the cutoff for flat-

space physics is removed, R=lP → ∞, which corresponds
to c → ∞. The relations in Eqs. (4) and (8) then imply that
trans-Planckian physics in the bulk is encoded in the
structure of operators with extremely large (infinite)
dimensions

Δ≳ c
1

d−1: ð15Þ

As we have seen before, operators with Δ≳ c do not
correspond to physics in flat spacetime—they represent
intrinsically AdS physics. This implies that physics of flat-
space black holes is encoded in operators with5

c
1

d−1 ≲ Δ≲ c: ð16Þ

In the rest of this paper, we assume d > 2.
A main point of the above discussion is that to study

physics of flat-space quantum gravity, in particular that of
black holes, we need to analyze the structure of operators
that have very large dimensions, scaling as positive powers
in c. The detailed range of operator dimensions on which
we need to focus, however, depends on the size (and shape)
of the extra dimensions as well as the physics we are
interested in. Below, we discuss the effect of extra
dimensions on this issue. In particular, we discuss what
strategy one may adopt in studying flat-space black holes
using AdS=CFT.
Let us ask how small a compact space X can actually be.

From the viewpoint of effective AdSdþ1 field theory, there
is no restriction on the size of X. In particular, there is
nothing wrong in taking VX ∼ lns so that Eq. (13) is
satisfied. However, nonperturbative effects of quantum
gravity may impose constraints on the size and shape of
X. For example, Ref. [37] argues that for d ¼ 4 and n ¼ 5

4When we make ϵ discussed in footnote 1 smaller, we are
focusing on a smaller subset of the basis operators Bϵ ⊂ B. The
number of elements in this subset, Nϵ, is given by lnNϵ ∼ ϵd−1c.

5If we make ϵ smaller (see footnote 1), the upper bound on the
operator dimensions becomes ϵd−2c, instead of c, since we are not
interested in energies leading to black holes of which the
Schwarzschild radii are larger than ϵR. The same also applies
to Eqs. (20) and (21), implying that ϵ cannot be made of order
ðgd−nþ1

s =cn−1Þ1=dn or smaller if the size of X indeed takes the
values discussed there.
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the volume of X must satisfy ðVX=l5s Þ≳ gsðR=lsÞ, where gs
is the string coupling. A naive extension of this to arbitrary
d and n gives6

VX

lns
≳ gs

R
ls
: ð17Þ

If bounds like this indeed exist, we will not be able to have a
consistent setup in which the effect of extra dimensions can
be completely neglected.
How do we study flat-space black holes in such cases?

One way would be to consider a setup in which the extra
dimensions are large, e.g. of order the AdS radius R, and
investigate ðdþ nþ 1Þ-dimensional physics at length scales
smaller than R. This, however, might allow us to study only
special classes of black holes, e.g. those in 10- or 11-
dimensional spacetimes with a large number of supersym-
metries (see, e.g., Ref. [38]). Another possibility is to make
X as small as possible and study black holes larger than X.
Imagine that X can indeed saturate the bound in Eq. (17)
with all the length scales being roughly comparable. The
compactification length Rc ∼ V1=n

X is then given by

Rc ∼
�
gd−nþ1
s

cn−1

� 1
dn

R: ð18Þ

The Schwarzschild radius of a black hole of massM is larger
than Rc if

M ≳Mmin ∼ ðgðd−2Þðd−nþ1Þ
s cdþ2n−2Þ 1

dn
1

R
: ð19Þ

This implies that we can study physics of flat-space black
holes in (dþ 1)-dimensional spacetime by analyzing CFT
operators with the dimensions Δ satisfying

MminR≲ Δ≲ c: ð20Þ

For d ¼ 4 and n ¼ 5, for example, we may investigate CFT
operators with

c
3
5 ≲ Δ≲ c; ð21Þ

to study five-dimensional flat-space black holes; see Fig. 2.
Bounds on Rc as the ones described above, if they indeed

exist, provide a restriction on how much our minimal
formalism in the previous subsection can capture flat-space
physics. Consider a black hole of mass M in AdSdþ1 with
the Schwarzschild radius smaller than R (so that it behaves
as a flat-space black hole). It has the Hawking temperature

THðMÞ ¼ d − 2

4π

�ðd − 1ÞΩd−1

16π

� 1
d−2 1

ðMld−1P Þ 1
d−2

; ð22Þ

so that a black hole with an initial massM0 has the lifetime
of order

τðM0Þ ∼ ðMd
0l

2ðd−1Þ
P Þ 1

d−2: ð23Þ

In order for our minimal scheme to be able to describe the
full formation and evaporation history of this black
hole, τðM0Þ must be smaller than order R, yielding the
condition for the Schwarzschild radius of the initial black
hole R0 ¼ ½16πM0ld−1P =ðd − 1ÞΩd−1�1=ðd−2Þ as

R0 ≲ ðRld−1P Þ1d: ð24Þ

For AdS5 × X5, this gives R0 ≲ R1=4l3=4P , which is incon-

sistent with the bound on Rc in Eq. (18), Rc ≳ R2=5l3=5P ,
obtained under the assumption that X5 has a single
length scale.
This restriction does not affect the description of the

Hawking emission process in flat-space quantum gravity
using the scheme of Sec. II A—we can still form a black
hole of which the Schwarzschild radius is larger than the

~c 1/3

Δ

~c 1/5

~c 3/5

~ c

AdS physics

AdS physics

5D physics

5D black holes

5D Planck scale

~“flat space” physics

~ O(1)

FIG. 2. For AdS5 × X5, the five-dimensional Planck scale in the
bulk corresponds to the scaling dimension of order c1=3 in the
four-dimensional dual CFT. If there is a lower bound on the size
of X5 as suggested by the argument in Ref. [37], then (assuming
X5 has only a single scale) the physics of five-dimensional
black holes can be explored by considering operators with
dimensions between ∼c3=5 and ∼c. (To study five-dimensional
perturbative processes, we may focus on operators with dimen-
sions ≲c1=5.)

6The validity of this extension beyond d ¼ 4 is not clear, since
we have not taken into account nontrivial profiles of the dilaton
field induced by relevant branes. Here, we present it simply to
illustrate the basic issue.
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lower bound on Rc and study how it emits Hawking quanta.
It does, however, prevent us from obtaining the full S-
matrix elements between the initial collapsing matter and
final Hawking quanta within the minimal scheme. To
obtain the S-matrix elements, one would need to modify
the minimal scheme. This can be done, for example, by
introducing absorptive boundary conditions at r ∼ R for
τ > t0 by adiabatically turning on couplings between the
dual CFT to another larger theory at τ ∼ t0 through
appropriate CFT operators (i.e. by introducing such cou-
plings in the appropriate region in the d-dimensional
Euclidean spacetime). This would allow us to study the
full evolution of a (dþ 1)-dimensional black hole, except
for the last moment of evaporation where the physics is
ðdþ nþ 1Þ-dimensional.
Our main interest in the rest of this paper is not to obtain

the full S-matrix elements, so we will not be concerned with
this issue. (Furthermore, it seems possible to circumvent
the problem.) We take the viewpoint that the scheme
described thus far indeed works so that we can study
evaporating flat-space black holes in dþ 1 dimensions
using AdS=CFT duality.

C. Time evolution

How can we describe time evolution in our (IR cut-off)
flat spacetime? Recall that the set of CFT operators B in
Eq. (11) provides a complete basis for describing a single
AdS volume at the center at τ ¼ t0. More precisely, a state
representing a physical configuration in the region within
the codimension-2 hypersurface ∂V defined at τ ¼ t0 can
be written in general as

jfi ¼
X
A

fAΨAj0i; ð25Þ

where
P

AjfAj2 ¼ 1. Now, similarly to ΨA’s, we can select
CFT operators ~ΨA representing physical configurations in
the d-dimensional volume ~V,

0 ≤ r < R; τ ¼ t0 þ t: ð26Þ

Here, as in the case of V, the time τ is specified at the
boundary of the region ∂ ~V in the presence of arbitrary
excitations.
Because of the symmetry, we can choose an operator ~ΨA

to represent the physical configuration on ~V obtained by
time translating the configuration on V created byΨA (with
the same value of A) by the amount Δτ ¼ t. In terms of the
coefficients αA;I in Eq. (9), this gives

~ΨA ¼
X

I∈fIjΔI<cg
αA;IeiΔI

t
ROI: ð27Þ

We call the set of operators obtained in this way ~B:

~B ¼ f ~ΨAg: ð28Þ

The number of elements of this set, N ~B, is obviously the
same as that of B, so that lnN ~B ∼ c; see Eq. (12). Note that,
while the choice of t0 is a convention, that of t is not—it
affects relations between ΨA’s and ~ΨA’s.
With this machinery, we can represent an arbitrary

physical configuration on a single AdS volume by a set
of coefficients fA with

P
AjfAj2 ¼ 1, where A ¼ 1;…; NB.

The amplitude for a configuration represented by ffAg
to become that represented by fgAg after time t is then
given by

hgjfi ¼
XNB

A;B¼1

g�AfBh0j ~Ψ†
AΨBj0i: ð29Þ

In terms of the coefficients αA;I , it can be written as

hgjfi ¼
X
A;B

g�AΓABfB; ð30Þ

where

ΓAB ¼
X

I∈fIjΔI<cg
α�A;Ie

−iΔI
t
RαB;I: ð31Þ

Note that the (implicit) dependence of αA;I on t0 drops out
from the amplitudes.
Since the CFT description is supposed to eliminate all the

gauge redundancies in the gravitational theory (including
those associatedwith the holographic reduction of thedegrees
of freedom), this provides a fully gauge-fixed description of
physical observables in quantum gravity, i.e. correlations
between physical entities (such as causal relations among
events). The time t here corresponds to that measured at the
asymptoticboundaryofflat space.7Note that thematrixΓAB in
Eq. (31) is not unitary because of the possibility that
excitations come into or go outside the region under consid-
eration between τ ¼ t0 and t0 þ t. Namely, B and ~B do not
represent exactly the same set of CFT operators. This effect,
however, is negligible for processes occurring in a sufficiently
inner region of the AdS volume (which corresponds to
considering only certain subsets of ΨA ’s and ~ΨA’s) within
a time scale sufficiently shorter than the AdS scale (corre-
sponding to taking t sufficiently smaller thanR). Indeed, these
are the processes that concern us below.
We mention that possible nonlinear instability in AdS

spacetime is not an issue here. Since theories in AdS with
reflective boundary conditions, which we assume (at least)
for τ < t0, are unitary, we can prepare any initial state at t0,
although it may correspond to finely tuned quantum

7This statement becomes formally exact (only) in the limit
ϵ → 0.
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configurations at earlier times. The freedoms in choosing
t0 and the conformal compactification of Sd−1 ×R to
Euclidean Rd (specifically the relative scale between t
and jxj) correspond to the ambiguity in relating the initial
states to the operators at τ ¼ −∞. This ambiguity, however,
completely disappears from the transition amplitudes in
Eqs. (30) and (31).

III. MICROSCOPIC DYNAMICS OF
SPACETIME IN AdS=CFT

In this section, we discuss what the physics of flat-space
black holes implies for CFTs. As has been emphasized, we
focus our attention on the class of CFTs that admit weakly
coupled gravitational descriptions in (dþ 1)-dimensional
spacetime, although we expect that much of our analysis
applies (with appropriate modifications) to the case in
which the gravitational bulk has higher dimensions already
at the AdS length scale.
At the level of perturbative expansion in 1=N, whereN is

related with c by c ∼ N2, conditions for CFTs to have
relevant gravitational descriptions were studied, e.g., in
Refs. [21,22,24,25]. In particular, it was argued that
important ingredients are:

(i) large central charge, c ≫ 1;
(ii) the existence of a low-lying sector of operators of

which the correlators almost factorize, in particular a
sector that admits 1=N-type expansion;

(iii) a large gap in the spectrum of operator dimensions,
making string states heavy.

If these conditions are indeed sufficient, as demonstrated
in simple cases in Ref. [21], then the universal nature of
black hole physics implies that our analysis can be viewed
as predictions for nonperturbative properties of CFTs
characterized by these ingredients.
Below, we discuss what the picture of evaporating black

holes proposed in Refs. [15,16] to avoid the information
problem [1,3] implies for CFTs in the framework described
in the previous section. Since CFTs are well defined, this in
principle allows us to test (aspects of) the proposal, perhaps
with the future development of techniques to analyze CFTs.

A. General considerations

What does the existence of a weakly coupled gravita-
tional description in spacetime mean in our formalism? As
discussed in the previous section, we describe time evo-
lution in quantum gravity in a fully gauge-fixed manner,
through Eqs. (30) and (31). In particular, the generator of
time evolution is given by the Hamiltonian

HAB ¼
X

I∈fIjΔI<cg
α�A;I

ΔI

R
αB;I: ð32Þ

In this language, the existence of a local gravitational
description means the existence of an operator basis

fΨA ¼ P
IαA;IOIg in which the action of HAB on some

subsector(s) takes a local (nearest-neighbor) form. (For a
related discussion, see Ref. [39].) We will make this
statement more precise in the next subsection, but for
now this schematic picture is sufficient.
An interesting feature of Eq. (32) [or Eqs. (30) and (31)]

is that its structure is fully determined by the spectrum
of operators, i.e. their dimensions, ΔI , and spins. On the
other hand, we know that a CFT is specified by the
spectrum of primary operators O~I as well as a set of

constants C ~K
~I ~J

that appear in the OPE between primary
fields (which are constructed by taking appropriate super-
positions of primary and descendant operators). What is
the role played by these OPE coefficients, C ~K

~I ~J
, in our

formalism?
Let us first recall that a state ΨAj0i created by a basis

operator represents a Heisenberg state of the entire universe
in the gravitational picture. Suppose we want to consider a
process in which two high energy elementary particles
(which are well localized in momentum space) collide
to form a black hole, which then evaporates. This entire
process then corresponds to some operator Ψ≡P

AfAΨA ¼ P
IβIOI , where the coefficients βI ¼P

AfAαA;I have significant support only for values of I
in which the corresponding operators OI have dimensions
in a narrow range around some Δ̄ > c1=ðd−1Þ (reflecting the
fact that the process occurs in a trans-Planckian regime).8

Note that all the relevant ΨA’s (or OI’s) here simply
correspond to states with trans-Planckian energies. How
can we then interpret that the state represented by Ψ
consisted of two elementary particles at some time before
the formation of the black hole? More generally, how can
we decompose a state (or the Hilbert space) of the entire
universe into those of smaller subsystems? This is where
the OPE comes into play.
In our description, the OPE coefficients appear in the

definition of the action of operators OI on general (not
necessarily vacuum) states. For example, if a primary
operator O~I acts on a state j ~Ji ¼ O~Jj0i created by a
primary operator O~J, then the resulting state can be
expanded as

O~Ij ~Ji ∝
�X

~K

C ~K
~I ~J
j ~Ki þ…

�
; ð33Þ

where the dots represent contributions from states corre-
sponding to descendant operators, the coefficients of which
are determined by the conformal symmetry. The action of
an arbitrary operator OI (primary or descendant) on an

8If the black hole formed by the collision is large, with the
lifetime of order R or larger, then we need to modify our minimal
scheme to describe the entire evaporation process, as discussed in
Sec. II B. This issue is not relevant for our discussion here.
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arbitrary state jJi ¼ OJj0i follows from conformal
symmetry.
Now, let us consider the operator in the above example

Ψ ¼
X
I

βIOI; ð34Þ

corresponding to a state that represents a black hole
existing at τ ¼ t0. The statement that this black hole
formed from two high energy elementary particles at some
time ti (< t0) is then translated into the statement that, when
the operator

~Ψ ¼
X
I

βIeiΔI
δt
ROI; δt > t0 − ti ð35Þ

is expanded in terms of the basis operators ΨA defined at
τ ¼ t0 as

~Ψ ¼
X
A

~gAΨA; ð36Þ

then the coefficients ~gA have significant support only for
terms in which ΨA are obtained by the OPEs of two
operators representing single-particle states at τ ¼ t0 [in the
sense given in Eq. (33)]. We can write this schematically in
the form

~Ψ ∼ Φ1Φ2; ð37Þ

where Φ1 and Φ2 are single-particle operators (superposed
appropriately to form wave packets) which correspond
to states having a single particle at τ ¼ t0. Note that
single-particle operators can be defined purely algebrai-
cally at the nonperturbative level. They are superpositions
of components of low-lying conformal multiplets so that
their OPE property and responses to the dilatation allow
them to be viewed as the generators of a Fock-space-like
structure. (In the language of CFT fields, this corresponds
to the approximate factorization property of correlators.)
We stress that if we perform a similar analysis on Ψ,

instead of the time translated ~Ψ, then the same statement
need not apply. Specifically, if we expand Ψ in terms of the
basis operators ΨA,

Ψ ¼
X
A

gAΨA; ð38Þ

then operators contributing to the right-hand side need not
be simple multiparticle operators. In fact, we assert that
they are not. Namely, operators appearing in Eq. (38)
cannot be obtained by successive OPEs of single-particle
operators within the regime in which an approximate
particle interpretation holds. In the gravitational descrip-
tion, this corresponds to the fact that states representing
black holes cannot be obtained by a simple Fock space

construction built on a flat spacetime background—they
must be viewed as classical backgrounds on which the
concept of particles is defined.
The existence of operators such as Ψ here, which cannot

be interpreted as multiparticle operators without shifting in
time, has profound implications for how the semiclassical
picture emerges from the fundamental theory of quantum
gravity. We now turn to this issue.

B. Emergence of the semiclassical picture

Recall that our basis operators, ΨA, are in one-to-one
correspondence with possible physical configurations
within our IR cut-off flat space, V, at some time τ ¼ t0.
The number of such operators is given by Eq. (12), i.e.

A ¼ 1;…; exp½OðcÞ�: ð39Þ

In a CFT with a weakly coupled gravitational description,
there is a class of operators ΨA0

(⊂ ΨA) that corresponds to
multiparticle states in a pure AdS background at τ ¼ t0.
These operators obey a 1=N-type scaling and can be
identified by their OPE properties [21,22,24,25]. How
many such operators exist nonperturbatively, and what is
the distribution of their scaling dimensions?
To address these questions, we consider the bulk picture.

The highest entropy states consisting of multiple particles
within the single AdS volume V correspond to a thermal
state. Let the temperature of this system be T. Then, its
energy E and (coarse-grained) entropy S are given by

E ∼ Tdþ1Rd; S ∼ TdRd: ð40Þ
The condition that the backreaction to spacetime is neg-
ligible (or sufficiently small) is given by the requirement
that the Schwarzschild radius of a black hole of mass E is
smaller than R:

ðld−1P EÞ 1
d−2 ≲ R: ð41Þ

Combining Eqs. (40) and (41), we obtain

S ≲
�
R
lP

�dðd−1Þ
dþ1

∼Oðc d
dþ1Þ: ð42Þ

This implies that the index A0 runs only over an extremely
small subset of the whole A index

A0 ¼ 1;…; exp½Oðc d
dþ1Þ�: ð43Þ

Namely, the degrees of freedom described by a semi-
classical field theory on a fixed background comprise only
a tiny subset of the whole quantum gravitational degrees of
freedom [7,40].
The distribution of the dimensions of operators ΨA0

can
be obtained from Eq. (40). We find that the number of ΨA0
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operators with dimensions between Δ and Δþ dΔ is
given by

dNΨA0
∼ exp½OðΔ d

dþ1Þ�dΔ; ð44Þ

in the relevant range of 0 < Δ≲ c. For simplicity, here
we have assumed that all the extra dimensions are
small. If some of them are large, so that the temper-
ature of the multiparticle system exceeds the compac-
tification scale 1=Rc, then the expression must be
modified accordingly.
What do the rest of the operators, ΨA with A ∉ fA0g,

represent? We claim that these operators correspond to
states with nontrivial spacetime backgrounds at τ ¼ t0,
like Ψ in the previous subsection. In particular, they
represent predominantly states with a black hole(s) at
time τ ¼ t0.

9 The (coarse-grained) entropy of these
states with total energy E is given by the entropy of
a single black hole of mass E (if it is large enough) or
the entropy of a thermal gas of total energy E (if black
holes compose only a small part of the entire system).
We thus find that the dimensions of operators ΨA
(A ∉ fA0g) is distributed as

dNΨA∉fA0g
∼

8<
:

exp
h
O
�
Δ

d−1
d−2

c
1

d−2

�i
dΔ for c

dþ1
2d−1 ≲ Δ≲ c;

exp½OðΔ d
dþ1Þ�dΔ for c

1
d−1 ≲ Δ≲ c

dþ1
2d−1:

ð45Þ

Here, we have again assumed that all the extra
dimensions are small, of order lP (∼ls). Note that
for a finite value of c a basis operator ΨA0

cannot
in general be chosen as one of the primary or
descendant operators OI: ½D;ΨA0

�∝ΨA0
. This implies

that if it is time translated, it becomes an operator
containing ΨA’s with A∉fA0g. Therefore, some (not all)
of the operators ΨA with A∉fA0g can be produced
from ΨA0

’s through time evolution.
The existence of a black hole in the system does not

mean that there are no degrees of freedom described by
local dynamics. We can certainly consider semiclassical
field theory on a black hole background, which we believe
can describe the dynamics of (at least) some degrees of
freedom, even in the vicinity of the black hole. How exactly
do we construct a semiclassical (field or string) theory from
the viewpoint of the fundamental theory of quantum
gravity?
To illustrate the basic idea in the simplest manner,

let us take the limit in which all the extra dimensions

are small, as in Eq. (13). (Incorporating the effect of
larger extra dimensions is straightforward.) The first
step is to divide the basis operators ΨA∉fA0g into groups
ΨA1

;ΨA2
; � � � in such a way that members of each group

represent possible states inside ∂V that all correspond
to (a time slice of) a specific spacetime geometry. For
example, we may take ΨA1

’s to represent states that
have a black hole of mass M [within the uncertainty of
order the Hawking temperature THðMÞ] at a specific
location (within a proper length uncertainty of order
lP). Note that the specification of a geometry must
necessarily involve uncertainties arising from quantum
mechanics [15,16,42]. Including the case of a pure AdS
background, we may divide the index A as

fAg ¼ ⋃
i¼0;1;2;���

fAig: ð46Þ

Here, we take fAig∩fAjg ¼ ∅ for i ≠ j. As long as we
are interested in a sufficiently short time scale, the
description of the evolution of the system [using
Eqs. (30) and (31)] does not require operators beyond
those in a single group. For instance, in the above
example of fΨA1

g, representing a black hole of mass
M, the system can stay within the regime described by
ΨA1

’s for time scale of Δτ ≲ 1=THðMÞ. We can there-
fore build a semiclassical theory applicable for a
limited time scale, using only operators in the single
group. A semiclassical theory on a time-dependent
background can then be constructed by “patching”
theories obtained in this way, each of which describes
(semiclassical) physics in a certain time interval.
How can we construct a “component” semiclassical

theory—a semiclassical theory applicable to a limited time
interval—from operators ΨAi

in a single group? To be
specific, let us consider the case in which fΨAi

g (i ≠ 0)
represents states with a black hole of mass M at a specific
location (within appropriate uncertainties) at τ ¼ t0. In
the region far from the black hole, physics is well
described by a semiclassical theory on a pure AdS back-
ground. This implies that ΨAi

’s can be OPE decomposed
(approximately) as

ΨAi
∼ΨafarΨAnear ; ð47Þ

where fAig ¼ fafarg × fAnearg, and Ψafar ’s can be written
as appropriate superpositions of ΨA0

’s corresponding to
configurations of particles outside the near black hole
region (often called the zone), conveniently defined to
be the interior of the gravitational potential barrier for all
the angular momentum modes,

~r≲
�

8πd
ðd − 1ÞΩd−1

� 1
d−2ðMld−1P Þ 1

d−2 ≡ ~rz; ð48Þ

9In this paper, we focus on black holes that are well
approximated by the Schwarzschild black hole. We do not expect
difficulty in extending the analysis to more general cases. For
some implications of charged black holes at the nonperturbative
level in AdS=CFT, see Ref. [41].
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where ~r is the Schwarzschild radial coordinate. The black
hole physics is encoded in the structure of fΨAnearg as well
as the “interactions” between fΨafarg and fΨAnearg [i.e. how
ΨAi

’s are expanded in terms of Ψafar ’s and ΨAnear ’s defined
analogously for a black hole of a different mass, ΨAj

’s with
j ≠ i, after shifting in time by Δτ ≳ 1=THðMÞ].
The number of operators ΨAnear is, at least, of the order of

the exponential of the Bekenstein-Hawking entropy of a
black hole of mass M,

SBHðMÞ ¼
�

4dπd−1

ðd − 1Þd−1Ωd−1

� 1
d−2ðMlPÞd−1d−2: ð49Þ

On the other hand, an analysis similar to the one that led to
Eq. (43) implies that the number of possible configurations
of semiclassical degrees of freedom within the zone,
Eq. (48), is much smaller than that implied by this number;
specifically, it is given by the exponential of

SscðMÞ ∼ SBHðMÞ d
dþ1 ≪ SBHðMÞ: ð50Þ

Here, by the semiclassical degrees of freedom, we mean
the degrees of freedom that have “reference frame
independent” meaning within the semiclassical theory,
e.g., a detector located in the zone. In particular, they do
not include the degrees of freedom associated with the
“thermal atmosphere” of the black hole, the existence of
which is frame dependent. (This point will be discussed
in more detail in the following subsections.) This
suggests that we can label ΨAnear ’s using two indices a
and k, each of which refers to the (reference frame
independent) semiclassical degrees of freedom in the
zone and the rest of the degrees of freedom represented
by the ΨAnear ’s. The latter are called the vacuum degrees
of freedom [15,16].
The analysis described above indicates that the index a

runs over

a ¼ 1;…; exp½SscðMÞ�: ð51Þ

In general, the physics of the vacuum degrees of freedom,
k, does not decouple from that of the semiclassical degrees
of freedom, a and afar. This effect, however, is negligible
for sufficiently short time scales in which the information
exchange between these degrees of freedom can be ignored
—in our context, time scales shorter than the single
Hawking emission time of order 1=THðMÞ. In this case,
we can take k to run over a fixed range,

k ¼ 1;…; exp½SBHðMÞ�: ð52Þ

A basis operator in the group, ∈ fΨAi
g, can then be

specified by the set of indices

fAig ¼ fafarg × fða; kÞg; ð53Þ

where a and k run over the ranges given by Eqs. (51)
and (52).10 We emphasize that we focus here only on a
component semiclassical theory applicable in time scales
sufficiently shorter than ∼1=THðMÞ. The nondecoupling
nature of the semiclassical and vacuum degrees of freedom
becomes important for physics of longer time scales,
especially the evolution of the black hole discussed in
the next subsection. In the language adopted here, this
has to do with how we patch different component theories
together to obtain a full semiclassical theory on a time-
dependent background.
The component semiclassical theory in question is

obtained by coarse graining the vacuum degrees of free-
dom, represented by k. By assumption, interactions
between the semiclassical and vacuum degrees of freedom
are negligible, implying that the generator of time evolution
at the microscopic level—Hðafar ;a;kÞðafar0;a0;k0Þ given by
Eq. (32)—factors as

Hðafar ;a;kÞðafar0;a0;k0Þ ∼HðscÞ
ðafar ;aÞðafar0;a0ÞH

ðvacÞ
kk0 : ð54Þ

The state of the semiclassical theory representing the
configuration ðafar; aÞ can be identified as the maximally
mixed state in k space,

ρafar ;a ¼
1

eSBH

XeSBH
k¼1

jΨafar ;a;kihΨafar ;a;kj; ð55Þ

where jΨafar;a;ki≡Ψafar ;a;kj0i. Since physics in k space do
not concern us here, we may choose the basis in this
space to agree with the approximate energy eigenstates

(within the time scale of interest), HðvacÞ
kk0 ∼ δkk0 . The

microscopic time evolution, obtained by acting
Eq. (54) on Eq. (55), can then be written as if ρafar;a
is a quantum field theory state evolving under the

semiclassical (gauge-fixed) “Hamiltonian” HðscÞ
ðafar ;aÞðafar0;a0Þ:

ρafar ;a ∼ jΨðscÞ
afar ;a

ihΨðscÞ
afar;a

j: ð56Þ

From the point of view of the fundamental theory, the
semiclassical theory emerges because the labeling scheme
in Eq. (53) can be chosen such that the Hamiltonian

HðscÞ
ðafar ;aÞðafar0;a0Þ gives time evolution of jΨðscÞ

afar ;a
i in such a

way that it occurs on a fixed black hole background and

10To be more precise, we also need an index ā labeling the
modes on the stretched horizon, which is located at a microscopic
distance outside of the mathematical horizon and is regarded as a
physical (timelike) membrane that may be physically excited [9].
We will omit this index below because it is not essential for our
discussion here, but including it is straightforward. (For example,
Eq. (53) becomes fAig ¼ fafarg × fða; ā; kÞg.) For more details
about these modes, see Refs. [15,16].
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is local at length scales larger than ls.
11 Remember that

our component semiclassical theory here is applicable
only for time scales shorter than ∼1=THðMÞ. Also, since
our time variable is determined at the boundary of the
space, we expect that it corresponds (approximately) to
the Schwarzschild time. The semiclassical picture
obtained here, therefore, provides a distant view of the
black hole.

C. Evolution of a flat-space black hole

In order to discuss the evolution of a black hole, we
need to consider the dynamics at time scales longer than
∼1=THðMÞ. At the level of the fundamental theory,
the evolution of the system is simply described by the
Hamiltonian in Eq. (32), giving unitary evolution of the
black hole (within a time scale of order R). However, to
have a simple framework to interpret the evolution process,
we need to match to the semiclassical picture. This can be
done by patching together the component semiclassical
theories described in the previous subsection.
Let us consider two groups of basis operators, fΨAi

g and
fΨAj

g, each representing states with a black hole of mass
Mi and Mj with Mi −Mj ∼ THðMiÞ, located at a specific
position.12 (Here, appropriate uncertainties for both the
mass and position are implied. The precise meaning of the
black hole mass in our context will be discussed shortly.)
We take the basis operators in two groups to be orthogonal,
hΨAi

jΨAj
i ¼ 0 for i ≠ j, and we assume that these oper-

ators provide a complete basis to describe the evolution of a
black hole in the relevant time scale of order 1=TH; in other
words, by preparing a series of groups similarly, i.e.
fΨAi

g; fΨAj
g; fΨAk

g; � � � representing the black hole of
mass Mi, Mj ¼ Mi − THðMiÞ, Mk ¼ Mj − THðMjÞ, and
so on, we can fully describe the future evolution of an initial
black hole of mass Mi (modulo macroscopic effects
discussed in Refs. [43,44], which can be included straight-
forwardly by adding groups representing black holes at
different locations, spins, and charges). We assume that the
approximation of Eq. (54) holds for evolution within each
group and that nontrivial physics associated with Hawking
emission—in particular, interactions between semiclassical
and vacuum degrees of freedom—occurs only when the
system evolves between the groups. Of course, this “dis-
cretization” of the emission process is an approximation,

and the true microscopic evolution occurs continuously
through the Hamiltonian in Eq. (32).
We define the black hole massM to be the whole energy

of the evolving black hole system (measured in the
asymptotic region) except for the part associated with
the semiclassical degrees of freedom that have reference
frame independent meaning. In particular, it contains
energies associated with the thermal atmosphere of the
black hole as well as an ingoing negative energy flux that
appears in the calculation of the stress-energy tensor on the
relevant background [45]. Therefore, our vacuum degrees
of freedom k contain the degrees of freedom associated
with these entities.13 With this definition, the operators
fΨAi

g can be labeled by the indices afari ; ai; ki with ki
running over

ki ¼ 1;…; exp½SBHðMiÞ�; ð57Þ

while fΨAj
g can be labeled by afarj ; aj; kj with kj taking

kj ¼ 1;…; exp½SBHðMjÞ�: ð58Þ

Note that the latter range is smaller than the former because
of the smaller mass of the black hole, Mj < Mi. The
Hawking emission, caused by HAjAi

in Eq. (32), then
occurs as

jΨafari ;ai;kii →
X

afarj ;aj;kj

γafari ;ai;ki;afarj ;aj;kj jΨafarj ;aj;kji; ð59Þ

in the time scale of order 1=THðMiÞ. In order for this
process to be unitary, the space labeled by afarj must be
larger than that by afari . In fact, afarj contains the component
labeling the newly emitted Hawking quanta, which was not
present before the process occurred.14

An important aspect of the picture in Refs. [15,16] is that
the process in Eq. (59) must be viewed as occurring around
the edge of the zone, ~r ∼ ~rz. In the present scheme, this
manifests as follows. afari and ai (and afarj and aj) label the

11If we include the stretched horizon modes, the relevant
Hamiltonian takes the form Hðafar ;a;āÞðafar0;a0;ā0Þ. The dynamics of
the ā modes represented by this Hamiltonian need not be local in
the angular directions.

12We focus only on an evaporating black hole. The CPT
invariance of the theory implies that there is an equal number
of states involving the corresponding “antievaporating” black
hole. Since these states can only be formed from exponentially
fine-tuned initial states, we do not consider them.

13This definition is different from the one adopted mainly in
Refs. [15,16], although the physics described below is equivalent.
Roughly speaking, the definition used in Refs. [15,16] corre-
sponds to describing the system as an expansion around the
Hartle-Hawking vacuum [46] at each moment in time, while here
we describe it as an expansion around the evolving black hole
background, which is well approximated by the advanced/
ingoing Vaidya spacetime near the horizon [47]. See Sec. 3.2
of Ref. [16] for a detailed discussion on this point.

14The sum in the right-hand side of Eq. (59) contains (small)
components in which the energies of emitted Hawking quanta are
larger than the chosen uncertainties of Mi and Mj. In these
components, Mj should be understood to take different values
determined by the energy of the emitted Hawking quanta through
energy conservation. Including this effect explicitly (which we
will not do) does not affect our discussion below.
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largest possible degrees of freedom that can be interpreted
as the semiclassical excitations obeying local dynamics on
a fixed spacetime background. To put it the other way
around, the vacuum degrees of freedom, ki and kj, do not
admit such an interpretation. The fact that a part of the
information in ki is transferred directly to afarj in Eq. (59)
should then be interpreted from the semiclassical point of
view that a part of the microscopic information about the
black hole (ki) is distributed at the edge of the zone and that
the information is transferred there to semiclassical degrees
of freedom outside the zone (afarj )—i.e. the Hawking quanta
—without involving an information transportation mecha-
nism from the horizon within the semiclassical theory.
Because of energy conservation, this process must be
accompanied by the creation of an ingoing negative energy
flux (reflected here by Mj < Mi), which carries negative
entropy [15,16] (reflected by the fact that kj’s run over
smaller ranges than ki).
The mechanism of information transfer described above

avoids the paradox in Refs. [3,33–35] which relies crucially
on the assumption that some information transportation
mechanism is in operation from the horizon to the edge of
the zone on a semiclassical background. Our picture says

that the information transfer from black holes cannot be
understood in that manner.
Since the only essential ingredients in the process of

Eq. (59) are ki, kj, and (a part of) afarj , we may suppress
other indices and write the equation as

jΨkii →
X
h;kj

γki;h;kj jΦhijΨkji; ð60Þ

where h ⊂ afarj labels the emitted Hawking quanta and we
have introduced the notation of separating the emitted
quanta jΨh;kji ¼ jΦhijΨkji. How does the semiclassical
theory describe this process? Given that the semiclassical
theory is obtained after coarse graining the vacuum degrees
of freedom, Eqs. (55) and (56), the description at the
semiclassical level is that the initial state

ρinit ¼
1

eSBHðMiÞ
XeSBHðMiÞ

ki¼1

jΨkiihΨki j ð61Þ

evolves as

ρinit →
1

eSBHðMiÞ
XeSBHðMiÞ

ki¼1

X
h;h0

XeSBHðMjÞ

kj;k0j¼1

γki;h;kjγ
�
ki;h0;k0j

jΦhijΨkjihΦh0 jhΨk0j
j: ð62Þ

Because of an enormous number of degrees of freedom involved, it is natural to expect that the sums over the vacuum
degrees of freedom show the thermodynamic characteristics,

1

eSBHðMiÞ
XeSBHðMiÞ

ki¼1

XeSBHðMjÞ

kj;k0j¼1

γki;h;kjγ
�
ki;h0;k0j

jΨkjihΨk0j
j ≈ 1

Z
ghe

− Eh
THðMiÞδhh0 ; ð63Þ

where Eh is the energy of the state jΦhi, Z ¼ P
hgh exp½−Eh=THðMiÞ� and gh is a factor that depends on h. Then, Eq. (62)

becomes

ρinit →
1

Z

X
h

ghe
− Eh
THðMiÞjΦhihΦhj: ð64Þ

In contrast with the case in a component semiclassical theory, there is no way to write this evolution (obtained after coarse
graining the vacuum degrees of freedom) preserving unitarity within quantum field theory. The best one can do is to
write it as

jΨðscÞ
vac ðMiÞihΨðscÞ

vac ðMiÞj →
1

Z

X
h

ghe
− Eh
THðMiÞjΨðscÞ

h ðMjÞihΨðscÞ
h ðMjÞj: ð65Þ

This is Hawking’s original result [6] with gh representing
the graybody factor calculable in the semiclassical theory
[48]. We expect that modes softer than THðMÞ can still be
described by the standard local dynamics in the patched
semiclassical theory, except when they participate in the

Hawking emission process. In particular, we expect this to
be the case even around the black hole, since sending
generic soft quanta to an evaporating black hole is not the
same as the time reversal of the Hawking emission process,
which corresponds to sending highly fine-tuned quanta to
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an antievaporating black hole [16]. (This is also consonant
with the fact that Hawking emission is a process in which
the coarse-grained entropy increases [49].)
The above analysis explains why the semiclassical

calculation of Refs. [1,6] finds an apparent violation of
unitarity—semiclassical theory is incapable of resolving
the microscopic dynamics of the vacuum degrees of free-
dom by construction and hence is secretly dealing with
mixed states [15,16,40,42]. For sufficiently short time
scales, this aspect can be neglected because interactions
between the semiclassical and vacuum degrees of freedom
are relatively slow. However, for longer time scales, i.e.
when the Hawking emission effect becomes relevant, the
mixed nature of the vacuum degrees of freedom is
necessarily “leaked” into semiclassical degrees of freedom,
allowing a description of Hawking quanta only as mixed
states. In our treatment here, this occurs because of the
necessity of patching multiple component theories together,
throughout which the approximation in Eq. (54) does not
apply (although it holds within each of the component
theories).
A similar analysis can be performed for black hole

mining, in which the energy (and information) of a black
hole is directly extracted by an apparatus located within the
zone [50]. The time scale for this process is still of order
1=THðMÞ as measured in τ [51], although the number of
available “channels” is larger than that of spontaneous
Hawking emission, so it can accelerate the energy loss rate
of the black hole. (This is because, unlike the case of
spontaneous Hawking emission, which is dominated by an
s-wave, higher angular momentum modes can also con-
tribute to the mining process.)

The process can still be described as in Eq. (59). There
are essentially only two differences from the case of
spontaneous Hawking emission. First, the decrease of
the range over which the vacuum degrees of freedom runs,
Eqs. (57) and (58), is compensated by the degrees of
freedom representing excited states of the apparatus (⊂ aj),
not by the Hawking quanta (⊂ afarj ). Second, since the
process involves higher angular momentum modes, the
negative energy excitations arising as backreactions can be
localized in angular directions. This implies that the final
state in Eq. (59) should now be interpreted as a black hole
of mass Mi with ingoing excitations of negative energy
Mj −Mi (< 0) even within the semiclassical theory, as
described in Ref. [52]. (This implies that the labeling
scheme in Eq. (53) contains operators representing such
excitations as a part of the modes labeled by a.) Denoting
the ground and excited states of the apparatus by 0 and
x (x ¼ 1; 2; � � �), respectively, and the negative energy
excitations by n, we can write the equation analogous to
Eq. (60) as

jΨ0;kii →
X
x;n;kj

γki;x;n;kj jΨx;n;kji: ð66Þ

Note that the apparatus states and the negative energy
excitations need not be maximally entangled after the
process, which allows for transferring information from
the black hole to the apparatus [16].15 After coarse graining
the vacuum degrees of freedom and assuming the thermal
property for these large degrees of freedom, as in Eq. (63),
we arrive at the equation analogous to Eq. (65),

jΨðscÞ
0 ðMiÞihΨðscÞ

0 ðMiÞj →
1

Z

X
x

gxe
− Ex
TH;locðMiÞjΨðscÞ

x;n ðMiÞihΨðscÞ
x;n ðMiÞj; ð67Þ

where Ex are the proper energies needed to excite the
apparatus from the ground to the x states and TH;locðMiÞ is
the local Hawking temperature at the location of the
apparatus. gx is the response function reflecting intrinsic
properties of the apparatus under consideration, and
Z ¼ P

xgx exp½−Ex=TH;locðMiÞ�. jΨðscÞ
x;n ðMiÞi represents

the semiclassical state in which, in addition to the apparatus
in the x state, the ingoing excitations with negative energy
Mj −Mi (as measured in the asymptotic region) are excited
over the black hole of mass Mi.
Once again, in the semiclassical picture the process in

Eq. (66) occurs at the location of the apparatus without
involving an information transportation mechanism from
the horizon to there over a semiclassical spacetime
background. The negative energy excitations carry
negative entropies as reflected by the fact that the ranges
over which kj’s run are smaller than that of ki. These

negative energy excitations will scramble with the
vacuum degrees of freedom in the time scale of order
ð1=THðMiÞÞ lnð1=THðMiÞlPÞ [53] after reaching the
stretched horizon, making the system relax into a black
hole of mass Mj (other than the apparatus).

D. Spacetime-matter duality

The CFT description of the black hole physics presented
above sheds new light on the meaning of spacetime-matter

15For components in which Ex is larger than the uncertain-
ties of Mi and Mj, the extra energies needed to excite the
apparatus must be compensated by the negative energy ex-
citations. This creates some amount of entanglement between
the apparatus states and the negative energy excitations. (See
also footnote 14 for a related discussion.) Below, we ignore this
small effect.
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duality [15,16], the term referring to the fact that the black
hole microstates can be viewed, in some sense, as playing
the roles of both spacetime and matter, but in fact are
neither.16

First, consistency with the semiclassical calculation—
or the assumption of “standard” thermodynamic proper-
ties for the vacuum degrees of freedom—indicates that
the black hole microstates, represented by k’s, interact
with the semiclassical degrees of freedom as if they
comprise a thermal atmosphere of the black hole (modu-
lated by the negative energy flux due to the evolution)
with the temperature given by the blueshifted Hawking
temperature

Tð~rÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ~rd−2

0

~rd−2

q d − 2

4π ~r0
θð~rz − ~rÞ; ð68Þ

where ~r0 ¼ ½16πMld−1P =ðd − 1ÞΩd−1�1=ðd−2Þ is the
Schwarzschild radius; see Eqs. (65) and (67). On the
other hand, we may also interpret these microstates as
the “spacetime degrees of freedom” arising from the fact
that the uncertainty principle forces us to coarse grain
“detailed” spacetime geometry to arrive at the semi-
classical picture: the number of independent quantum
states representing black holes of mass between M and
M þ ΔM with ΔM ≈OðTHðMÞÞ is labeled by the k
index [42]. The vacuum degrees of freedom play dual
roles of matter and spacetime [15,16].
There is also a sense, however, in which the vacuum

degrees of freedom cannot be usual matter or spacetime.
As already discussed in the previous subsection, the
internal dynamics of these degrees of freedom cannot be
organized in a way such that they are subject to local
dynamics on some spacetime background. In this sense,
they are not real matter.17 Furthermore, these degrees of
freedom also exhibit a peculiar feature called extreme
relativeness [15,16]: while in the distant reference frame
they can be viewed as distributed according to the
thermal entropy calculated using Eq. (68), in other
reference frames their distribution is different. (This
feature cannot be seen in the analysis here which is
tied to the distant description.) Namely, these degrees of
freedom are not “anchored” to spacetime, and in this
sense they cannot be viewed as a spacetime itself, at

least in the sense envisioned in standard general
relativity.
What are the vacuum degrees of freedom then? In the

CFT description given here, they correspond to operators
with high scaling dimensions, Δ≳ c1=ðd−1Þ, which cannot
be interpreted as simple multiparticle states. These
operators are significant especially because they can
be generated by simple multiparticle operators through
time evolution. Specifically, we can consider an operator
Ψ representing two energetic particles aimed at
each other at some reference time t0, which can be
related [as in Eq. (37)] to two single-particle operators
by the OPE,

Ψ ∼ Φ1Φ2: ð69Þ

Here, each Φi is an operator representing an appropriate
single-particle wave packet at time t0 and is obtained by
superposing (a tremendous number of) energy-eigenstate
operators OI. We can then time translate this operator by
an amount t using the dilatation operator D,

ΨðtÞ ∼ e−iDtΨeiDt; ð70Þ

and ask how/if this operator can be expressed in terms of
operators representing multiparticle states at t0. Recall
that these multiparticle operators can be defined purely
in a CFT at the nonperturbative level by their character-
istic OPE structure.
Suppose the energy of the initial state is super-Planckian;

namely, when Ψ is expanded in terms of D-eigenstate
operators, the coefficients are most significant for operators
having dimensions larger than c1=ðd−1Þ. If t is sufficiently
large, corresponding to a time longer than the lifetime of the
black hole formed by the collision, then ΨðtÞ can be
written as (a superposition of) multiparticle operators;
schematically

ΨðtÞ ∼
X
n

X
ΦðnÞ

aΦðnÞΦðnÞ; ð71Þ

where ΦðnÞ represents n-particle operators obtained from
single-particle operators (operators representing single-
particle states at t0) by OPEs within the regime in which
the approximate particle interpretation is possible. This
corresponds to a final Hawking radiation state.18 On the
other hand, if t is chosen to be smaller than the black hole’s
lifetime (but larger than the time it takes for the initial
particles to collide), then ΨðtÞ cannot be approximated by
multiparticle operators, i.e.

16This is reminiscent of wave-particle duality in quantum
mechanics—a quantum object exhibits dual properties
of waves and particles while the “true” (quantum) description
does not fundamentally rely on either of these classical
concepts.

17This has an interesting implication if the lesson from black
holes can be extrapolated to (metastable) de Sitter spacetimes: the
problem of Boltzmann brains may be “trivially” solved because
the dynamics of the vacuum degrees of freedom may not support
intelligent observers [54].

18Again, if the black hole formed by the collision is
large so that its lifetime exceeds R, then this minimal scheme
needs to be modified; see Sec. II B. This does not affect our
discussion below.
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ΨðtÞ ≁
X
n

X
ΦðnÞ

aΦðnÞΦðnÞ; ð72Þ

for any choice of aΦðnÞ . Rather, ΨðtÞ is written in
the form

ΨðtÞ ∼
X
n

X
ΦðnÞ

X
ΦðBHÞ

aΦðnÞ;ΦðBHÞΦðnÞΦðBHÞ; ð73Þ

where ΦðBHÞ are operators that cannot be obtained
by OPEs of single-particle operators within the regime
in which the particle interpretation is available and ΦðnÞ are
(generalized) n-particle operators defined on the “back-
ground” of ΦðBHÞ.
Since ΦðBHÞ’s do not obey the property characterizing

multiparticle operators, which is responsible for the emer-
gence of the gravitational bulk picture, there is no reason to
expect that the dynamics of these degrees of freedom (i.e.
how ΦðBHÞ’s respond to D) have a simple interpretation in
the weakly coupled gravitational theory [although small
components of them, labeled by a in Eq. (53), admit a
semiclassical interpretation]. The spacetime attribute of
these degrees of freedom, k, is defined only through
interactions with the multiparticle degrees of freedom,
afar and a, as in Eqs. (60) and (66). In the distant
description, this exhibits a thermodynamic characteristic
given by Eq. (68). As argued in Refs. [15,16], however, this
attribution is expected to depend on the description
(reference frame) one adopts. Since the internal dynamics
of the vacuum degrees of freedom does not have a simple
spacetime interpretation in the gravitational bulk, the
transfer of black hole microscopic information cannot be
viewed as occurring through field (or string) theoretic
modes on a fixed semiclassical background. This was a
crucial ingredient in the picture of Refs. [15,16] to avoid the
firewall argument in Refs. [3,33].
The vacuum degrees of freedom naturally live in

(d-dimensional) holographic spacetime. The fact that their
dynamics does not have a simple interpretation in the
gravitational bulk does not mean that it is totally random; it
still obeys constraints imposed by a d-dimensional CFT,
which is a local field theory (though not on a spacetime on
which the gravitational picture is built). In particular, we
expect that these degrees of freedom are classicalized in the
(d − 1)-dimensional space as time passes. This suggests
that, in the (fictitious) limit in which interactions with other
systems are turned off, these degrees of freedom are subject
to the classical Poincaré recurrence time eS, not the
quantum Poincaré recurrence time ee

S
(see Ref. [54] for

a related discussion).

IV. SUMMARY AND DISCUSSION

If a global spacetime description of quantum gravity
exists, it will be highly redundant. In addition to standard

diffeomorphism invariance, we expect redundancies asso-
ciated with holography [7,8] and large-scale causal struc-
tures [9,10]. However, there certainly must be quantities
free from these redundancies, such as causal relations
among events. How do we extract such physical
information?
AdS=CFT duality provides a way to fix these redun-

dancies for spacetimes that are asymptotically AdS: a
unitary theory with conformal symmetry describes quan-
tum gravity in these spacetimes. This implies that the
physical content of such theories is fully encoded in
the algebra of operators OI’s which are representations
of the conformal group. While these operators are often
combined to form fields, this need not be the case—they
can all be viewed as located at the point x ¼ x−∞.
Moreover, if the theory satisfies certain additional criteria,
such as a large central charge, then the dual gravitational
description possesses a large approximately flat spacetime
region. In this case, a suitable (tiny) subset of operators
OI’s contains virtually all of the information about flat-
space quantum gravity (except for that associated with the
asymptotic or large-time structure of the theory). In
particular, this set of operators, ΨA, can represent the
action of sufficiently small dilatations; namely,
e−iDtΨAeiDt for generic A can be written as a superposition
of ΨA ’s with extremely high accuracy for t≲ R. This
allows us to describe continuous time evolution of
processes in flat-space quantum gravity.
To physically interpret such processes, we need a way to

decompose operators into smaller elements, i.e. the Hilbert
space of the states for the entire universe into those for
smaller subsystems. This can be done by the OPE, defined
by the action of ΨA ’s on general states. For configurations
that do not have strong gravitational effects, this allows us
to interpret ΨA as multiparticle operators

ΨA ∼
X
n

X
ΦðnÞ

aΦðnÞΦðnÞ;

ΦðnÞ ∼
	 1 for n ¼ 0;

Φð1Þ
1 � � �Φð1Þ

n for n ¼ 1; 2;…;
ð74Þ

where Φð1Þ
i are single-particle operators which can be

defined at the nonperturbative level by their characteristic
OPE structure. However, for configurations with strong
gravitational effects, such as those with a black hole,
this decomposition is not possible. We can only write
them as

ΨA ∼
X
n

X
ΦðnÞ

X
ΦðBHÞ

aΦðnÞ;ΦðBHÞΦðnÞΦðBHÞ; ð75Þ

where ΦðBHÞ cannot be obtained by OPEs of Φð1Þ
i ’s

within the regime in which the particle interpretation is
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available. We have argued that in the near black hole
region, the degrees of freedom corresponding to ΦðBHÞ
(labeled by k) completely dominate over those corre-
sponding to ΦðnÞ (labeled by a). These dominant degrees
of freedom k—called the vacuum degrees of freedom
and responsible for most of the Bekenstein-Hawking
entropy—do not obey simple semiclassical dynamics in
the gravitational bulk. Their spacetime attribute is defined
only through their interactions with multiparticle opera-
tors. This is the essence of what was called spacetime-
matter duality in Refs. [15,16], a crucial element to make
the existence of the black hole interior consistent with
unitary evolution.
It is useful to describe explicitly how the construction

here avoids the firewall argument in Ref. [34], specifi-
cally tailored to the context of gauge/gravity duality. Our
assertion is that the black hole microstates represented
by the Bekenstein-Hawking entropy correspond to states
generated by operators ΦðBHÞ. On the other hand,
operators representing semiclassical excitations are asso-
ciated with ΦðnÞ. When (exterior) quantum field theory
operators, b and b†, are defined together with the Fock
space generated by them, all of the black hole micro-
states are mapped into a particular thermal state (so that
these microstates cannot be resolved at the field theory
level, manifesting the coarse graining performed to
obtain the semiclassical picture). Furthermore, physical
excitations of the semiclassical degrees of freedom give
only a slight perturbation to this overall picture. This
implies that the space of physical states is only a tiny
portion of the naive Fock space spanned by all the
possible states obtained by acting b†’s on the b vacuum.
Therefore, the average over all the b eigenstates
employed in Ref. [34] is irrelevant to see properties
of physical states, all of which are in (very) special
linear combinations of the b eigenstates.
We stress that, while our scheme allows for describing

the microscopic dynamics of an evaporating black hole
using a CFT, and hence can test aspects of the proposal
in Refs. [15,16], the corresponding description in the bulk
is the one viewed from the asymptotic infinity. In
particular, it does not guarantee that an infalling descrip-
tion in the bulk, which involves the interior spacetime
of the black hole and in which the time evolution operator
takes a simple time-independent form, must be obtained
within the CFT. It is possible that in order to represent
a bulk reference frame change in a holographic theory
we need to enlarge the operator set beyond that of the
CFT, so that complementarity transformations—and in
particular, the time evolution operators for infalling
reference frames—can only be represented with this
enlarged operator set. Note that in order for this picture
to make sense the number of independent CFT operators,
NO, must be much smaller than ðdimHÞ2, where H is
the CFT Hilbert space. This is indeed the case because

of the operator-state correspondence, which dictates
NO ¼ dimH. A simple way to state this is that the
CFT description of the bulk spacetime may be the one
in which the reference point is anchored to the asym-
ptotic infinity region.19 We stress that this is not an
indication that the CFT can provide only an incomplete
description of the bulk physics, nor does this prove the
existence of firewalls. It simply says that the CFT
description arises only after the “reference frame gauge”
has been fixed to an exterior—in fact, the asymptotically
distant—one.20

In summary, although current theoretical technology
does not yet allow us to explicitly compute the microscopic
dynamics of black holes, it is reassuring that a consistent
picture exists [15,16] and that properties of the class of
CFTs with weakly coupled gravitational descriptions can
test (at least the distant description part of) it. Hopefully,
further theoretical advancements will confirm these
properties.
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