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We study linearized equations of a ghost-free gravity in four- and higher-dimensional spacetimes.
We consider versions of such a theory where the nonlocal modification of the □ operator has the form
□ exp½ð−□=μ2ÞN �, where N ¼ 1 or N ¼ 2n. We first obtain the Newtonian gravitational potential for a
point mass for such models and demonstrate that it is finite and regular in any number of spatial dimensions
d ≥ 3. The second result of the paper is calculation of the gravitational field of an ultrarelativistic particle in
such theories. And finally, we study a head-on collision of two ultrarelativistic particles. We formulated
conditions of the apparent horizon formation and showed that there exists a mass gap for mini-black-hole
production in the ghost-free theory of gravity. In the case when the center-of-mass energy is sufficient for
the formation of the apparent horizon, the latter has two branches, the outer and the inner ones. When the
energy increases the outer horizon tends to the Schwarzschild-Tangherlini limit, while the inner horizon
becomes closer to r ¼ 0.
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I. INTRODUCTION

Singularities are inherent properties of general relativity.
It is generally believed that the Einstein-Hilbert action
should be modified in spacetime domains where the curva-
ture becomes large. Such a modification is required, for
example, when one includes in the theory quantum correc-
tions, connected with particle creation and vacuum polari-
zation effects. At amore fundamental level, themodification
of the gravity equation might be required if the gravity is
described as an emergent phenomenon. In such a case the
Einstein equations are nothing but the low energy limit of
the corresponding more fundamental background theory.
The string theory is a well-known example. It is convenient
to introduce two (generally different) energy scale param-
eters μ and ~μ. The corresponding length scales are λ ¼ μ−1

and ~λ ¼ ~μ−1. We assume that when the spacetime curvature
R is much less than λ−2, the corrections to the Einstein
equations are small. These corrections become comparable
with other terms of theEinstein equations atR ∼ λ−2, and for
higher values of the curvature they play an important role.
We assume that one can use the classical metric gμν for the
description of the gravitational field. For example, one can
understand it as a quantum average of somemetric operator,
gμν ¼ hĝμνi. This means that the quantum gravity effects,
and in particular fluctuation of the metric, are small. In other
words, one can use the effective action approach to study
spacetime properties in this domain. The second parameter,
~λ, defines the scale when effective action description breaks

down and the quantum nature of the gravitational field
becomes important.
In studies of the singularity problem in modified gravity

it is usually assumed that ~μ ≫ μ. In the present paper we
also use this assumption and discuss some aspects of the
singularity problem in the framework of the classical
modified gravity equations.
There exist a wide class of the modified theories of

gravity proposed to solve fundamental problems of black
holes and cosmology. We consider a special class of such
theories, namely theories with higher derivatives. Important
features of such theories can be clarified already in a simple
approximation when the gravitational field is weak and can
be described as the perturbation on the flat spacetime
background. Such an analysis was performed by Stelle [1].
In particular, he demonstrated that the Newtonian gravita-
tional potential of a point mass located at ~r ¼ 0 can be
made finite at this point, if the higher derivative terms are
included in the gravity equations. Detailed analyses of this
problem can be found in recent papers [2,3].
However, the higher derivative gravity, as well as any

theory with higher derivatives, has a fundamental problem.
In a general case the propagator of such a theory contains
two or more poles, and, as a result, it almost always contains
ghostlike excitations (see, e.g., [1,4,5]). Presence of the
excitations with negative energy results in an instability of
the theory and the possibility of an empty space decay. This
is a special case of a very general phenomenon known as
Ostrogradsky instability [6] (see discussion in [5]).
In the higher-derivative theory a standard box operator

□, which enters the field equations, is changed to the
operator Pð□Þ□, where PðzÞ is a polynomial. The poles of
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P−1ðzÞ correspond to additional degrees of freedom.
However, there exists an interesting option of theories
where P−1ðzÞ is an entire function of z and hence it does not
have poles in the complex plane. Such a modification of the
gravitational equations is called ghost-free (GF) gravity
(see, e.g., [7–15] and references therein). GF gravity
contains an infinite number of derivatives and, hence, it
is nonlocal. Theories of this type were considered a long
time ago (see, e.g., [16–20]). They appear naturally also in
the context of noncommutative geometry deformation of
the Einstein gravity [21,22] (see a review [23] and
references therein). The initial value problem in nonlocal
theories was studied in [5,24]. The application of the ghost-
free theory of gravity to the problem of singularities in
cosmology and black holes can be found in [25–31]. Static
and dynamical solutions of the linearized equations of the
ghost-free gravity in four and higher dimensions were
studied in [32,33]. Recently the consequences of the ghost-
free modifications of higher-dimensional gravity on the
entropy of black holes and on cosmological models have
been studied [34].
In this paper we continue study of the linearized

equations of the GF gravity. In Secs. II–IV we study
solutions for a static gravitational field in the Newtonian
approximation in different models of the GF gravity.
Namely, we consider a class of the GFN theories of
gravity with Pð□Þ ¼ exp½ð−□=μ2ÞN �. A static solution of
the linearized equations for N ¼ 1 in four-dimensional
spacetime was found in [8,26] (see also [33]). In this
paper we generalize this result to the higher-dimensional
case and obtain new solutions for GF2n theories in the
spacetime with an arbitrary number d of spatial dimen-
sions. In Sec. V we used these results to obtain a solution
of the GF gravity describing a gravitational field of an
ultrarelativistic particle. We succeeded to find a gener-
alization of the famous Aichelburg-Sexl solution [35] to
the GF gravity in an arbitrary number of dimensions. In
Sec. VI we used the obtained solutions to study the
apparent horizon formation in the head-on collision of
two ultrarelativistic particles. This problem for the gen-
eral theory of relativity in four dimensions was first
solved by Penrose [36]. Later, this result was generalized
for a collision with a nonzero impact parameter in four
and higher dimensions [37–40]. In the present paper we
show that in the GF gravity a similar process has two
important new features: (i) the apparent horizon is not
formed if the center-of-mass energy of the particles, E, is
smaller than some critical value Ecrit, which depends on
the scale parameter μ, the type of the theory, and the
number of spacetime dimensions; (ii) if the energy is
larger than Ecrit the apparent horizon besides the usual
outer part always has another inner branch. We discuss
the obtained results in the last section.
In the present paper we use units in which ℏ ¼ c ¼ 1 and

sign conventions adopted in the book [41].

II. NEWTONIAN LIMIT OF HIGHER-
DIMENSIONAL HIGHER-DERIVATIVE

EQUATIONS

Let us consider a static gravitational field perturbation
on a flat background and write the corresponding metric
in the form

ds2 ¼ −ð1þ 2φÞdt2 þ ð1 − 2ψ þ 2φÞdl2;

dl2 ¼ δikdxidxk; xi ¼ ðx1;…; xdÞ: ð2:1Þ

Here and later we denote by d ¼ D − 1 a number of
spatial dimensions. We also have

h00 ¼ −2φ; hij ¼ −2ðψ − φÞδij;
h ¼ 2½ðdþ 1Þφ − dψ �:

By substituting these expressions into the gravity
equations (A5) one gets

að△Þ△ψ ¼ κd
�
τ00 þ

1

d − 1
δijτij

�
;

½að△Þ − dcð△Þ�△φþ ðd − 1Þcð△Þ△ψ ¼ κdτ00:

Here κd ¼ 8πGðDÞ and D ¼ dþ 1 is the total number of
spacetime dimensions. In the Newtonian approximation
δijτij ¼ 0 and the first of these equations takes the form

aðΔÞΔψ ¼ κdτ00: ð2:2Þ

For the gravity theory with c ¼ a the equations simplify
and one obtains

ψ ¼ d − 1

d − 2
φ; ð2:3Þ

and the metric (2.1) takes the form

ds2 ¼ −ð1þ 2φÞdt2 þ
�
1 −

2

d − 2
φ

�
dl2: ð2:4Þ

For a point mass m the energy density has the form
τ00 ¼ mδdðxÞ. Then for the Einstein gravity, where a ¼
c ¼ 1 one has

φ ¼ −
κdmΓðd

2
Þ

2ðd − 1Þπd=2
1

rd−2
: ð2:5Þ

In four dimensions D ¼ 4 (d ¼ 3)

φ ¼ −
κ3
8π

m
r
: ð2:6Þ
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III. STATIC SOLUTIONS OF LINEARIZED
EQUATIONS IN GHOST-FREE GRAVITY

A. Ghost-free gravity

The Newtonian potential (2.5) is evidently singular at
r ¼ 0. One can regularize it and make it finite at r ¼ 0 by
modifying the gravity equations in the ultraviolet (UV)
domain. For example, one may assume that að□Þ and cð□Þ
are polynomials of the □ operator. If these functions obey
the condition að0Þ ¼ cð0Þ ¼ 1, the theory correctly repro-
duces the standard results of general relativity in the
infrared regime, that is in the domain where r → ∞. In
a general case such a theory possesses ghosts. These ghosts
are new degrees of freedom which are connected with extra
poles of the operators a−1 and c−1 which give contributions
to the propagator with a wrong (negative) sign. However,
there exists an option to use such functions a−1ðzÞ and
c−1ðzÞ that are entire functions of the complex z-variable
which do not have poles. It happens, for example, when
aðzÞ and cðzÞ are of the form expðPðzÞÞ, where PðzÞ is a
polynomial. A modified gravity which contains such
regular form factors is called ghost-free (GF) gravity. In
the present paper we focus on the special class of the
theories of GF gravity. Namely, we assume that

að□Þ ¼ cð□Þ ¼ expðð−□=μ2ÞNÞ: ð3:1Þ

We denote such a theory GFN. We restrict ourselves by
considering the cases N ¼ 1 and N ¼ 2n, which are of the
most interest for applications.
The exponent of the operator can be written in the form

of a convergent series of the powers of this operator.
However, it is not a good idea to “approximate” the
exponent by the polynomial which is obtained by keeping
a finite number of terms in this series. The inverse operator
will have extra poles and the ghost will be present for such
truncation. That is why our first goal is to present these
nonlocal objects in the form of an integral transform which
contains a well-defined kernel.

B. Potential ψd and Green functions in GF theories

Consider the equation for the potential ψd created by a
point massive particle placed at a point x0

F̂ψd ¼ κdmδdðx − x0Þ; ð3:2Þ

where the operator F̂ is defined on the d-dimensional
Euclidean space. It is assumed to be a function of the
Laplace operator

F̂ ¼ ~Fð−△Þ; ~FðξÞ ¼ −ξað−ξÞ: ð3:3Þ

The Euclidean Green function Ddðx; x0Þ of this operator is
the solution of the problem

F̂Ddðx; x0Þ ¼ −δdðx − x0Þ ð3:4Þ

with vanishing boundary conditions at infinity. Formally it
can be treated as a matrix element

Ddðx; x0Þ ¼ hxjD̂jx0i ð3:5Þ

of the operator

D̂ ¼ −F̂−1; D̂ ¼ ~Dð−△Þ;
~DðξÞ ¼ −

1

~FðξÞ ¼
1

ξað−ξÞ : ð3:6Þ

The momentum space calculations of Ddðx; x0Þ are pre-
sented in Appendix B. The result reads (B6)

Ddðx; x0Þ ¼
1

4π

Z
∞

0

dη ~DðηÞ
� ffiffiffi

η
p

2πjx − x0j
�d

2
−1

× Jd
2
−1ð

ffiffiffi
η

p jx − x0jÞ; ð3:7Þ

In Sec. V and Sec. VI we will use this Green function to
study a gravitational field created by ultrarelativistic
particles. For this purpose it is useful to have another
representation of the Green function, where the Bessel
function is replaced by its integral representation

JνðzÞ ¼
�
z
2

�
ν 1

2πi

Z
cþi∞

c−i∞
dtt−ν−1 exp

�
t −

z2

4t

�
;

c > 0:

Then after the change of the integration variable

t ¼ iητ; η > 0; ð3:8Þ

the Green function can be written in the form

Ddðx; x0Þ ¼
1

2π

Z
∞

0

dη ~DðηÞ

×
Z

∞−ic

−∞−ic

dτ

ð4πiτÞd=2 e
iτηþiðx−x

0Þ2
4τ : ð3:9Þ

Note that the last integral contains the expression which
is known as the heat kernel of the Laplace operator in
a d-dimensional flat Euclidean space:

Kdðx; x0jτÞ ¼
1

ð4πiτÞd=2 e
iðx−x

0Þ2
4τ : ð3:10Þ

The heat kernel obeys the equation

i∂τKdðx; x0jτÞ þ ΔKdðx; x0jτÞ ¼ 0 ð3:11Þ

and the condition
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lim
τ→0

Kdðx; x0jτÞ ¼ δdðx − x0Þ: ð3:12Þ

It describes the amplitude

Kdðx; x0jτÞ ¼ hxjeiτ△jx0i: ð3:13Þ

In flat space, because of the symmetries of the system
in question, both the Green function Dd and the
potential ψd are the functions of a distance r between
the points only:

Dd ¼ DdðrÞ; ψd ¼ ψdðrÞ; r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − x0Þ2

q
:

ð3:14Þ

The potential at the point x created by the massive
particle located at the point x0 is

ψd ¼ −κdmDdðrÞ: ð3:15Þ

IV. GRAVITATIONAL POTENTIAL
IN LINEARIZED GF
GRAVITY THEORIES

A. General properties of GF theories

All GF theories of gravity are assumed to reproduce
Einstein gravity in the low energy regime, i.e., at large
scales. In particular it means that the functions aðξÞ and
cðξÞ approach smoothly to 1 at small ξ:

aðξÞ ¼ 1þOðξÞ; cðξÞ ¼ 1þOðξÞ: ð4:1Þ

Then we have the functions ~FðξÞ ¼ −ξþOðξÞ and
~DðξÞ ¼ 1=ξþOð1Þ. This property and (3.7), (3.15)
guarantee that in the limit of large distances one gets
a universal asymptotic for the potential for all these GF
theories:

ψdðrÞjr→∞ ¼ −κdm
Γðd

2
− 1Þ

4πd=2rd−2
: ð4:2Þ

Obviously, as it should be, it exactly reproduces the
gravitational potential (2.5) in the higher-dimensional
Einstein gravity theory.
The asymptotic of the potential at small distances is

theory dependent. Our particular interest is in GFN theories,
where

að−ξÞ ¼ expððξ=μ2ÞNÞ ð4:3Þ

and N ¼ 1 or an even integer number. The parameter μ
characterizes the scale where the nonlocality becomes
important. One can show that for all GFN gravities the
potential ψd is finite at small r. For these theories the

asymptotic at rμ → 0 can be computed explicitly. Let us
substitute (4.3) to (3.6), (3.7), (3.15) and change the
integration variable η ¼ z2=r2. Then we have

ψdðrÞ ¼ −
κdm

ð2πÞd=2rd−2
Z

∞

0

dzz
d
2
−2e

− z2N

r2Nμ2NJd
2
−1ðzÞ: ð4:4Þ

One can see that in the limit when rμ → 0 only small
arguments of the Bessel function contribute to the
integral (4.4). Therefore, one can substitute there an
expansion

Jd
2
−1ðzÞ ¼

ðz
2
Þd2−1

Γðd=2Þ
�
1 −

z2

2d
þ z4

8dðdþ 2Þ þOðz6Þ
�
: ð4:5Þ

Then taking the integrals in (4.4) one obtains

ψdðrÞ ∼ −κdm
μd−2½Γðd−2

2N Þ − r2μ2

2d Γð d
2NÞ�

ð4πÞd=2NΓðd
2
Þ þOðr4μ4Þ: ð4:6Þ

One can see that the leading term is finite and propor-
tional to κdmμd−2. Moreover the next term in the
expansion is proportional to r2 that guarantees regularity
of the metric at r ¼ 0.
There are other interesting universal properties of the

potentials in generic GF gravities. For example, because
the distance r in the integral (3.7) does not enter the
function ~D and due to the properties of the derivatives
of Bessel functions it is clear that there is a universal
relation

Ddþ2ðrÞ ¼ −
1

2πr
∂
∂rDdðrÞ: ð4:7Þ

For the potentials, considered as functions of the radial
distance r, this property leads to the relation

1

κdþ2

ψdþ2ðrÞ ¼ −
1

κd

1

2πr
∂
∂rψdðrÞ; ð4:8Þ

provided the mass parameter m is the same in d and
(dþ 2) dimensions.

B. Potential in GF1 theory

The static potential ψd in the GF1 theory satisfies the
equation

expð−Δ=μ2ÞΔψd ¼ κdmδdðx − x0Þ; ð4:9Þ

so that

~FðξÞ ¼ −ξeξ=μ2 ; ~DðξÞ ¼ 1

ξ
e−ξ=μ

2

: ð4:10Þ
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Substitution of this expression into (3.7) and change of the
integration variable η ¼ z2=r2 leads to

DdðrÞ ¼
1

ð2πÞd=2rd−2
Z

∞

0

dzz
d
2
−2e

− z2

r2μ2Jd
2
−1ðzÞ

¼ γðd
2
− 1; r

2μ2

4
Þ

4πd=2rd−2
; ð4:11Þ

where γðn; xÞ is the lower incomplete gamma function
[42]. At large distance r ≫ μ−1 this expression repro-
duces the static Green function of the d-dimensional
Laplace operator

Gdðx; x0Þ ¼
Γðd

2
− 1Þ

4πd=2rd−2
: ð4:12Þ

For small distances r ≪ μ−1 the Green function DdðrÞ is
a regular function of r and is of the form

DdðrÞ ¼
2μd−2

ðd − 2Þð4πÞd=2
�
1 −

d − 2

d
r2μ2

�
þ � � � : ð4:13Þ

The potential ψd is given by

ψd ¼ −κdmDdðx; x0Þ ¼ −κdm
γðd

2
− 1; r

2μ2

4
Þ

4πd=2rd−2
: ð4:14Þ

In four-dimensional spacetime (d ¼ 3) we reproduce the
results of [8,23,26,33,43]

ψ3 ¼ −κ3m
erfðrμ=2Þ

4πr
: ð4:15Þ

In the case of five-dimensional spacetime (d ¼ 4) we
obtain an even simpler expression:

ψ4 ¼ −κ4m
1 − exp ð−r2μ2=4Þ

4π2r2
: ð4:16Þ

The potentials ψd in an arbitrary number of dimen-
sions qualitatively look alike. They are negative and
finite at r ¼ 0. At larger distances they become more
shallow and at r ≫ μ−1 quickly approach the Einstein
asymptotic (4.2).

C. Potential in GF2 theory

When N ¼ 2 the operator F̂ corresponds to

aðΔÞ ¼ expðΔ2=μ4Þ ð4:17Þ

and, hence,

~FðξÞ ¼ −ξeξ2=μ4 ; ~DðξÞ ¼ 1

ξ
e−ξ

2=μ4 : ð4:18Þ

Then the potential takes the form

ψdðrÞ ¼ −
κdmμd−2

dðd − 2Þ23d
2
−2π

d−1
2

×

�
d

Γðd
4
Þ 1F3

�
d
4
−
1

2
;
1

2
;
d
4
;
d
4
þ 1

2
; y2

�

−
2ðd − 2Þy
Γðd

4
þ 1

2
Þ 1F3

�
d
4
;
3

2
;
d
4
þ 1;

d
4
þ 1

2
; y2

��
;

ð4:19Þ

where

y ¼ r2μ2

16
; ð4:20Þ

and pFq is the generalized hypergeometric function (see,
e.g., [42]).
Qualitatively the potentials for different parameters N

and in different dimensions d look similar. Figures 1–2
show examples of the gravitational potential for d ¼ 3 and
d ¼ 4 in two cases, N ¼ 1 and N ¼ 2.

D. Potential in GFN theories

Similar results in terms of the generalized hypergeo-
metric functions can be derived for an arbitrary GFN
theory. For all these theories the asymptotic at large
distances is governed by the (4.2) and the asymptotic
at small distances is given by (4.6). Let us present here
only one more explicit example of the potential in GF4
gravity:

FIG. 1. This plot shows the function ψ3ðrÞ for N ¼ 1 and
N ¼ 2.
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ψdðrÞ ¼ −A
�
dðdþ 2Þðdþ 4Þ2Γ

�
d − 2

8

�
B1

−8yðdþ 2Þðdþ 4Þ2Γ
�
d
8

�
B2

þ32y2ðdþ 4Þ2Γ
�
dþ 2

8

�
B3

−
2048

3
y3Γ

�
dþ 12

8

�
B4

�
; ð4:21Þ

where

B1¼ 1F7

�
d−2

8
;
1

4
;
1

2
;
3

4
;
d
8
;
d
8
þ3

4
;
d
8
þ1

2
;
d
8
þ1

4
;
y4

256

�
;

B2¼ 1F7

�
d
8
;
1

2
;
3

4
;
5

4
;
d
8
þ1;

d
8
þ3

4
;
d
8
þ1

2
;
d
8
þ1

4
;
y4

256

�
;

B3¼ 1F7

�
dþ2

8
;
3

4
;
5

4
;
3

2
;
d
8
þ1;

d
8
þ3

4
;
d
8
þ1

2
;
d
8
þ5

4
;
y4

256

�
;

B4¼ 1F7

�
dþ4

8
;
5

4
;
3

2
;
7

4
;
d
8
þ1;

d
8
þ3

4
;
d
8
þ3

2
;
d
8
þ5

4
;
y4

256

�
;

and the coefficient

A ¼ κdmμd−2

22d−
1
2π

d−3
2 dðd − 2Þðdþ 2Þðdþ 4Þ

×
1

Γðd−2
8
ÞΓðd

8
ÞΓðdþ2

8
ÞΓðdþ12

8
Þ :

Expressions for the potentials become more complicated
for higher N and we do not present them here.

V. PENROSE LIMIT

Let us demonstrate now that obtained static solutions
of the GF gravity can be used to find the gravitational field
of an ultrarelativistic object. In the standard 4D Einstein
gravity such a limiting metric is known as an Aichelburg-
Sexl metric [35]. This metric was generalized to the case of
higher dimensions and for the spinning objects (called
gyratons) in papers [44–46]. In this section we obtain a
metric created by an ultrarelativistic object moving in D-
dimensional spacetime (nonspinning gyraton metric) in GF
theories of gravity. As we shall see a key role in this
derivation is played by the heat kernel representation (3.9)
of the Green function Ddðx; x0Þ.
Consider the metric in the following form:

ds2 ¼ −ð1þ 2φdÞdt2 þ ð1 − 2ψd þ 2φdÞðdy2 þ dζ2⊥Þ;
x ¼ ðy; ζ⊥Þ; ζ⊥ ¼ ðζ2;…; ζdþ1Þ: ð5:1Þ

Let us boost this metric in the y-direction

t̄ ¼ γðy − βtÞ; ȳ ¼ γðt − βyÞ; γ ¼ ð1 − β2Þ−1=2;
ð5:2Þ

and introduce null coordinates

u ¼ t̄ − ȳ; v ¼ t̄þ ȳ: ð5:3Þ

In the relativistic limit, when the boost velocity is close to
the speed of light, i.e., β → 1, the boost factor γ → ∞. In
this limit dt ∼ γdu and dy ∼ −γdu. Then the line element
(5.1) becomes

ds2 ¼ −dudvþ dζ2⊥ þ Φddu2; ð5:4Þ

where

Φd ¼ −2 lim
γ→∞

ðγ2ψdÞ: ð5:5Þ

For a point particle of massm the Penrose limit corresponds
to ultrarelativistic limit γ → ∞ with the condition that an
energy E ¼ γm of the particle is kept fixed.
The gravitational potential ψd [see (3.15), (3.9)] can be

presented in the form

ψd ¼ −κdmDdðrÞ

¼ −
κdm
2π

Z
∞

0

dη ~DðηÞ
Z

∞

−∞

dτ

ð4πiτÞd=2 e
iητei

r2
4τ : ð5:6Þ

One can see that the boost affects only the last exponent in
this integral representation.

FIG. 2. This plot shows the function ψ4ðrÞ for N ¼ 1 and
N ¼ 2.
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Taking into account that after the boost

y → −γu; r2 → γ2ðu − u0Þ2 þ ρ2;

ρ2 ¼ ðζ⊥ − ζ0⊥Þ2; ð5:7Þ

and using the delta-function representation

lim
γ→∞

γffiffiffiffiffiffiffiffiffi
4πiτ

p ei
γ2u2

4τ ¼ δðuÞ; ð5:8Þ

we obtain

Φd ¼ F dðρÞδðu − u0Þ: ð5:9Þ

Here

F dðρÞ ¼
κdE
π

Z
∞

0

dη ~DðηÞ
Z

∞

−∞

dτ

ð4πiτÞðd−1Þ=2 e
iητei

ρ2

4τ :

ð5:10Þ

Comparison of this integral expression with (5.6) leads to
the observation that the function F dðρÞ is proportional to
the gravitational potential defined in space of one dimen-
sion less, i.e., in the space orthogonal to the particle motion:

F dðρÞ ¼ 2κdEDd−1ðρÞ ¼ −2
κdE
κd−1m

ψd−1ðρÞ: ð5:11Þ

This property is valid for arbitrary GFN theories of gravity.
Using the property (4.8), which is also valid for a generic

GFN gravity, we derive a relation

∂ρF dðρÞ ¼ 4π ~Eρψdþ1ðρÞ; ~E ¼ κdE
κdþ1m

: ð5:12Þ

This relation will be useful for the study of gravitational
effects in collisions of ultrarelativistic particles (gyratons
[45–47]) in the next sections.

VI. APPARENT HORIZON FORMATION FOR
HEAD-ON COLLISION OF THE

ULTRARELATIVISTIC PARTICLES

Our next goal is to use the obtained results to study head-
on collision of the ultrarelativistic particles in the GF
theories of gravity. We use an approach developed by
Penrose [36] and D’Eath and Payne [48–50] and approxi-
mate the colliding particles by gyratons. A schematic
picture of such a process is shown in Fig. 3. It shows
two-particle motion in the center-of-mass frame. Each of
the particles moves with the velocity of light. Particle 1
moves from the left to the right along the y-direction, while
particle 2 moves in the opposite direction. The null lines,
representing their trajectories, belong to u ¼ 0 and v ¼ 0
null planes, correspondingly. The gravitational field of

these particles is localized on the plane u ¼ 0 (for particle 1)
and v ¼ 0 (for particle 2). The intersection of two null planes
is the (d − 1)-dimensional transverse plane. In the regions I,
II, and III, outside the u ¼ 0 and v ¼ 0 null planes the metric
is flat and null rays in these domains are nothing but null
straight lines. However, when such a ray passes either
through u ¼ 0 or v ¼ 0 planes, it is scattered by the
gravitational field of the corresponding particle.
Our purpose is to study formation of the apparent

horizon in such a process. Let us remember that a trapped
surface is a compact spacelike (d − 1)-dimensional surface
which has the property that both of the null congruences
orthogonal to it are not expanding. We focus on the
outgoing congruence. One calls a trapped surface amargin-
ally trapped surface if the outer normals to it have zero
convergence [51]. In a spherically symmetric spacetime
one may consider spherical slices and define an apparent
horizon as a d-dimensional surface which on each of the
slices coincides with the marginally trapped surface.
The problem of ultrarelativistic particle collision in

general relativity was discussed recently in connection
with possible mini-black-hole creation in colliders
[37–39,47]. Eardley and Giddings [37] demonstrated that
a problem of existence of the apparent horizon can be
reduced to a special boundary-value problem for an elliptic
(Poisson) equation in a flat spacetime. Generalizations
of these results to the collision of shock waves on AdS
background were also considered in [52,53]. The problem
is greatly simplified for the case of the head-on collision
and can be solved analytically in any number of spacetime
dimensions. In the present paper we follow their approach.
Let us write the metric (5.4) in the form

ds2 ¼ −dūdv̄þ dζ̄2⊥ þ Φddū2; ð6:1Þ

Φ ¼ F dðρ̄ÞδðūÞ; ρ̄ ¼
ffiffiffiffiffi
ζ̄2i

q
: ð6:2Þ

It is possible to show that geodesics and their
tangent vectors are not continuous in these coordinates

FIG. 3. Head-on collision of two ultrarelativistic particles.
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(see e.g., [37]). One can change the coordinates so that both
geodesics and their tangent vectors will be continuous in
the new coordinates. The new coordinates in the domain II
are defined as follows:

ū ¼ u; ζ̄i ¼ ζi þ
u
2
∇iΦϑðuÞ;

v̄ ¼ vþ ΦϑðuÞ þ 1

4
uϑðuÞð∇ΦÞ2: ð6:3Þ

A similar transformation (with a change u ↔ v) should be
made in the domain III.
The metric (6.1) in the new coordinates takes the form

ds2 ¼ −dudvþ ½Hð1Þ
ik H

ð1Þ
jk þHð2Þ

ik H
ð2Þ
jk − δij�dζidζk;

Hð1Þ
ij ¼ δij þ

1

2
∇i∇jΦuϑðuÞ;

Hð2Þ
ij ¼ δij þ

1

2
∇i∇jΦvϑðvÞ: ð6:4Þ

We consider a special marginally trapped surface S
which consists of two parts Su Sv. In coordinates ðu; v; ζiÞ
a position of Su and Sv on two incoming null planes is
described by equations

fv ¼ −ΨðρÞ; u ¼ 0g and fu ¼ −ΨðρÞ; v ¼ 0g; ð6:5Þ

respectively. These two (d − 1)-dimensional surfaces
intersect at (d − 2)-dimensional boundary C, located at
u ¼ v ¼ 0. The function Ψ is positive inside the boundary
C and vanishes at C. The internal (induced) geometry of Su
and Sv are the geometry of a half of a (d − 1)-dimensional
round sphere, their intersection C being a round (d − 2)-
dimensional sphere. For the head-on collision the function
ΨðρÞ, which enters both equations in (6.5), is the same. In
[37] it was shown that the outer null normals have zero
convergence in Su and Sv if

∇2ðΨ − F dÞ ¼ 0: ð6:6Þ

A condition that both normals (in Su and Sv) coincide at
their boundary C implies

ð∇ΨÞ2 ¼ 4: ð6:7Þ

Denote χ ¼ Ψ − F d and by ρC the radius ρ at the
boundary. Then

∇2χ ¼ 0; χC ¼ −F dðρCÞ: ð6:8Þ

Hence one can put χ ¼ −F dðρCÞ inside C so that

Ψ ¼ F dðρÞ − F dðρCÞ: ð6:9Þ

The condition (6.7) takes the form

ð∇F dÞ2jC ¼ 4: ð6:10Þ

Using (5.12) one gets

2πκdEρDdþ1ðρÞ ¼ 1: ð6:11Þ

In terms of a dimensionless coordinate x ¼ μρ, dimension-
less energy ~E ¼ 2πμd−2κdE, and a dimensionless profile
function

PdðxÞ≡ xDdþ1ðx=μÞ=μd−1; ð6:12Þ

this condition reads

PdðxÞ ¼
1

~E
: ð6:13Þ

All functions PdðρÞ look similar (see Figs. 4 and 5).
They vanish at x ¼ 0 and then grow, reach maximum, and
then decrease to a universal asymptotic that does not
depend on the parameter N, though it depends on d.
The plots in Figs. 6 and 7 show solutions of Eq. (6.13).
The apparent horizon exists for the energy obeying the
condition ~E ≥ ~Ecritical. In this energy domain it has at least
two branches, inner and outer. At ~E ¼ ~Ecritical they meet
and the apparent horizon disappears [54]. This behavior
resembles qualitatively that of the colliding relativistic
extended sources [55]. This resemblance is not accidental.
One can rearrange Laplace operators in (3.2) and move
aðΔÞ−1 to the right-hand side of the equation. Then it can
be identically rewritten as

Δψd ¼ j; j ¼ κdmaðΔÞ−1δdðx − x0Þ: ð6:14Þ

When acting on the localized source, the operator aðΔÞ−1
delocalizes it and makes j become effectively an extended
current for the traditional Laplace equation (6.14). In this
sense the analogy of effects in the ghost-free gravities and
for the colliding extended sources [55] becomes evident.

FIG. 4. The plot shows function P3ðxÞ for N ¼ 1, 2.
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VII. SUMMARY AND DISCUSSION

In this paper we discussed an application of the linear-
ized equations of the ghost-free theory of gravity to three
connected problems. First, we calculated the gravitational
potential of a point mass in the Newtonian limit and showed
that GF modification of gravity works as a regularizer.
Namely, this potential is regular at the origin. This property

is valid for GF1 and GF2n theories in any number of spatial
dimensions d ≥ 3. This is a generalization of the earlier
obtained result for GF1 for d ¼ 3 [8,26] and for d > 3 [33].
The second main result of the paper is calculation of the
gravitational field of an ultrarelativistic particle in the GF
theories. The obtained metrics are generalizations of the
famous four-dimensional Aichelburg-Sexl metric [35] of
general relativity. Again, the obtained metrics are solutions
of the equations of the GFN gravity equations (N ¼ 1 and
N ¼ 2n) in a spacetime with an arbitrary number of
dimensions dþ 1. And finally, we used these results to
study an apparent horizon formation in the head-on
collision of two ultrarelativistic particles. Our main con-
clusion is that in such a process there exists a mass gap for
the mini-black-hole formation. If μ is the characteristic
mass scale of the corresponding ghost-free theory, then in
order for a mini black hole to be formed in the collision, the
center-of-mass energy E should be of the order of or larger
than ðGðdÞμd−2Þ−1. Another important feature of the process
is that when the apparent horizon is formed, it has two
branches: outer and inner marginally trapped surfaces. Both
of them have the geometry of the sphere. When the center-
of-mass energy increases, the inner part becomes closer to
the point until it reaches the scale ~λ, where the model we
used breaks down.
This result is again valid for any GFN theory (N ¼ 1 and

N ¼ 2n) in any number of dimensions. It can be considered
as some indication that for such theories the inner singu-
larity of a black hole might be absent and there exists a
closed apparent horizon. Such a model was proposed in
[56] and discussed later in many publications. It should
be emphasized that most of the results, related to the study
of the models with closed apparent horizons, beyond a
linear approximation, were obtained without using concrete
dynamical equations. In this sense they are phenomeno-
logical. It is a real challenge to obtain solutions for a
dynamical collapse in the modifications of the Einstein
theory which are UV complete. In particular, in order to
arrive at a definite conclusion concerning the structure of a
black hole interior in the GF gravity one needs to perform
analysis in the complete version of such a theory, which
includes nonlinear effects.
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APPENDIX A: LINEARIZED EQUATIONS
OF THE HIGHER-DERIVATIVE MODIFICATION

OF THE GRAVITATIONAL EQUATIONS
IN HIGHER DIMENSIONS

In order to obtain linearized equations of a theory of
gravity with higher derivatives in higher dimensions

FIG. 5. The plot shows function P4ðxÞ for N ¼ 1, 2.

FIG. 6. The plot shows the radius x ¼ μρ of outer and inner
apparent horizons as a function of the energy ~E for d ¼ 3 and
N ¼ 1, 2.

FIG. 7. The plot shows the radius x ¼ μρ of outer and inner
apparent horizons as a function of the energy ~E for d ¼ 4 and
N ¼ 1, 2.
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one can follow a similar derivation in four dimensions
presented in the papers [8,12]. In this appendix we
collected the corresponding formulas for further
reference.
The main steps of this derivation are the following.

One considers first a covariant action which besides
the Einstein term contains also a part Sq which is
quadratic in curvature. The latter may contain an
arbitrary number of covariant derivatives acting on
each of the curvature tensors. One can always move
the derivatives acting on the first Riemann tensor to
the position, when it acts on the other one. This can
be achieved by using integration by parts. The number
of derivatives may even be infinite, so that a theory is
nonlocal. Since each of the Riemann curvature tensors
has four indices, the maximal total number of deriv-
atives with “free” indices is eight. All other derivatives
can be combined in functions of the covariant box
operator. In order to achieve this it might be required
to commute the derivatives. But this operation produ-
ces terms which are of the third order in the curvature
so that they should be neglected in the adopted
approximation. Using symmetry properties of the
curvature tensor, Bianchi identities and commutativity
of the covariant derivatives in the adopted approxima-
tion one finally obtains the following expression for
Sq [8,12]:

S ¼ 1

2κd

Z
dx

ffiffiffiffiffiffi
−g

p ½Rþ RF1ð□ÞRþ RμνF2ð□ÞRμν

þRμνλσF3ð□ÞRμνλσ�:

Here κd ¼ 8πGðDÞ and GðDÞ is the gravitational coupling
constant in D-dimensional spacetime. In four dimen-
sions the value of this constant is fixed by the
requirement that the Poisson equation for the gravita-
tional potential in the Newtonian limit have a standard
form. There is an ambiguity in the normalization of
GðDÞ in higher dimensions. We fix it by requiring the
Einstein-Hilbert action to have the same form in all
dimensions.
This general form of the quadratic in curvature

action can be further simplified using the following
observation [2,57]: the “Gauss-Bonnet structures” of
the form (k ≥ 1)

�Rαβγσ□k�Rαβγσ ¼ Rαβγσ□kRαβγσ − 4Rαβ□kRαβ

þ R□kR ¼ OðR3Þ þ div: ðA1Þ

in arbitrary dimensions are all of the third and higher
order in curvature plus total divergence terms. As a

result, the general higher derivative action can be
written in the form which contains only two arbitrary
functions of the box operator [12].
To obtain the linearized equation we write the action in

the form

S ¼ 1

2κd
ðS0 þ S1 þ S2 þ S1 þ S3Þ;

S0 ¼
Z

dx
ffiffiffiffiffiffi
−g

p
R;

S1 ¼
Z

dx
ffiffiffiffiffiffi
−g

p
RF1ð□ÞR;

S2 ¼
Z

dx
ffiffiffiffiffiffi
−g

p
RμνF2ð□ÞRμν;

S3 ¼
Z

dx
ffiffiffiffiffiffi
−g

p
RμνλσF3ð□ÞRμνλσ:

We use the following expressions for the variations
of the objects that enter the above action and
keep only the terms that are quadratic in perturbations

S0 ¼ −
Z

dx

�
−
1

2
hμν□hμν þ hμν∂μ∂αhαν

−hμν∂μ∂νhþ 1

2
h□h

�
;

S1 ¼
Z

dxðhμνF1ð□Þ∂μ∂ν∂α∂βhαβ

−2hμν□F1ð□Þ∂μ∂νhþ h□2F1ð□ÞhÞ;

S2 ¼
1

4

Z
dxð2hμνF2ð□Þ∂μ∂ν∂α∂βhαβ

−2hμν□F2ð□Þ∂μ∂αhαν − 2hμν□F2ð□Þ∂μ∂νh

þhμν□2F2ð□Þhμν þ h□2F2ð□ÞhÞ;

S3 ¼
Z

dxðhμνF3ð□Þ∂μ∂ν∂α∂βhαβ

þhμν□2F3ð□Þhμν − 2hμν□F3ð□Þ∂μ∂αhανÞ:

Let us write the total linearized action S in the
form

S ¼ 1

2κd

Z
dx

�
1

2
hμνa□hμν þ hμνb∂μ∂αhαν

þhμνc∂μ∂νhþ 1

2
hd□h

þ 1

2
hμν

f
□
∂μ∂ν∂α∂βhαβ

�
: ðA2Þ

Then we have
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a ¼ 1þ 1

2
F2□þ 2F3□;

b ¼ −1 −
1

2
F2□ − 2F3□;

c ¼ 1 − 2F1□ −
1

2
F2□;

d ¼ −1þ 2F1□þ 1

2
F2□;

f ¼ 2F1□þ F2□þ 2F3□: ðA3Þ

It is easy to see that the form factors a, b, c, d, f
satisfy the identities

aþ b ¼ 0; cþ d ¼ 0; bþ cþ f ¼ 0: ðA4Þ

The equations of motion, obtained from (A2), are

að□Þ□hμν þ bð□Þ∂σð∂νhμσ þ ∂μhνσÞ
þ cð□Þðημν∂ρ∂σhρσ þ ∂μ∂νhÞ þ ημνdð□Þ□h

þ fð□Þ□−1∂μ∂ν∂ρ∂σhρσ ¼ −2κdτμν: ðA5Þ

Here

τμν ¼ 2ffiffiffiffiffiffi−gp δSMatter

δgμν
: ðA6Þ

Let us remember that ημν is a metric in D-dimensional
Minkowski spacetime, and partial derivatives and the □

operator are written in Cartesian coordinates in this space.
Let us emphasize that the number of independent arbitrary
functions of the box operator, as well as the form of the
equations, is the same as in the four-dimensional case.
However, the dimensional gravitational coupling constant
GðDÞ depends on the number of dimensions. We also
show in Sec. II that the form of the equations for static
gravitational potentials, which contain contractions of the
form ημνhμν, would be explicitly dependent on D.

APPENDIX B: GRAVITATIONAL POTENTIAL
IN MOMENTUM SPACE

Let us write the gravitational potential ψd in terms of the
modes in momentum space

ψdðxÞ ¼
Z

ddk
ð2πÞd e

ikxψ̄ðkÞ: ðB1Þ

Here k ¼ ki is the d-dimensional vector of momentum.
Similarly we have

Ddðx; x0Þ ¼
Z

ddk
ð2πÞd e

ikðx−x0ÞD̄ðkÞ: ðB2Þ

From (3.15) and (3.6) one can derive

ψ̄ðkÞ ¼ −κdmD̄ðkÞ;

D̄ðkÞ ¼ 1

k2að−k2Þ ¼
~Dðk2Þ; k ¼ jkj:

Using the spherical symmetry of the system we get

ddk ¼ dkdθkd−1sind−2θAd−2;

Ad−2 ¼ 2
πðd−1Þ=2

Γðd−1
2
Þ ;

where Ad−2 is the area of a unit sphere Sd−2. In spherical
coordinates

kiðxi − x0iÞ ¼ kr cosðθÞ; r ¼ jx − x0j: ðB3Þ

Then the Green function reads

Ddðx; x0Þ ¼ 2
πðd−1Þ=2

Γðd−1
2
Þ
Z

∞

0

dk
ð2πÞd

kd−3

að−k2Þ

×
Z

π

0

dθsind−2θeikr cosðθÞ: ðB4Þ

Integration over θ gives the expression for the Green
function Ddðx; x0Þ in terms of an integral from the
Bessel function

Ddðx; x0Þ ¼
1

2π

Z
∞

0

dk
kað−k2Þ

�
k
2πr

�d
2
−1
Jd

2
−1ðkrÞ:

Both the potential ψd and the Green function Ddðx; x0Þ
depend only on the distance r between points. Change of
the integration variables leads to the following equivalent
forms (z ¼ kr):

DdðrÞ ¼
1

ð2πÞd=2rd−2
Z

∞

0

dz
z
d−4
2

að−z2=r2Þ Jd
2
−1ðzÞ; ðB5Þ

and (η ¼ z2=r2)

DdðrÞ ¼
1

4π

Z
∞

0

dη ~DðηÞ
� ffiffiffi

η
p
2πr

�d
2
−1
Jd

2
−1ð

ffiffiffi
η

p
rÞ: ðB6Þ
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