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We study the gravitational collapse of a kink within spherical symmetry and the characteristic
formulation of general relativity. We explore some expected but elusive gravitational collapse issues
which have not been studied before in detail, finding new features. The numerical one-parametric solution
and the structure of the spacetime are calculated using finite differences, Galerkin collocation techniques,
and some scripting for automated grid coverage. We study the threshold of black hole formation and
confirm a mass gap in the phase transition. In the supercritical case we find a mass scaling power law
MBH ¼ M�

BH þ K½λ − λ��2γ þ fðK½λ − λ��2γÞ, with γ ≈ 0.37 independent of the initial data for the cases
considered, and M�

BH, K and λ� each depending on the initial datum. The spacetime has a self-similar
structure with a period of Δ ≈ 3.4. In the subcritical case the Bondi mass at null infinity decays in cascade
with Δ=2 interval as expected.
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I. INTRODUCTION

The practical limit of general relativity as it nears the
threshold of the quantum realm is an open issue. The answer
might involve elucidating where relativity fails and whether
there is a place where both theories merge. In the strong
field limit near the formation of a black hole, Choptuik
discovered critical behavior [1] for a massless scalar field
under spherical symmetry andminimally coupled to gravity.
Choptuik found: (i) a critical behavior of type II with a very
small black hole mass; (ii) an unstable naked singularity by
fine-tuning generic initial data; (iii) that the system follows a
power law mass scaling and shows discrete self-similarity.
Critical behavior of type I is found when a massive scalar
field (a Compton wavelength) is considered [2,3]. For a
review on the critical phenomena for gravitational collapse,
including quantum extensions, see Ref. [4].
A self-gravitating massless scalar field has been a pivotal

toy model for numerical general relativity in many different
ways: astrophysically, in the black hole coalescence and
merging to predict expected profiles of gravitational radi-
ation, relevant for detection [5]; cosmologically, a possible
connection with dark matter has been speculated (see
Ref. [6] and references therein); mathematically, the field
equations of the Einstein-Klein-Gordon system under
spherical symmetry have the same structure of those off
spherical symmetry in vacuum [7].
Although the critical behavior was studied and compre-

hended deeply, the massless scalar field still remains a good
playground to explore the nonlinear nature of gravity. In the
critical behavior of type II, is the final mass finite [8]?

When the spacetime contains a black hole, power law
scaling with a mass gap is not obvious [9,10]. What if we
collapse a kink [11] up to a black hole formation? From
physical grounds the critical behavior should not depend in
general on boundary-initial conditions. We describe this
system in terms of radiation coordinates [12,13], which in
the case of spherical symmetry the line element takes the
form [14]

ds2 ¼ e2βduðVr−1duþ2drÞ− r2ðdθ2þ sin2 θdϕ2Þ; ð1Þ
where β and V are functions of u and r. Here u is a timelike
coordinate; in a flat spacetime u is just the retarded time.
Therefore, surfaces u ¼ constant represent null cones open
to the future; r is a null coordinate (grr ¼ 0) such that
surfaces r ¼ constant are spheres; θ and ϕ are the usual
angular coordinates.
In these coordinates, the Einstein-Klein-Gordon equa-

tions reduce to [15,16]

β;r ¼ 2πrðΦ;rÞ2 ð2Þ

V;r ¼ e2β ð3Þ

and the scalar wave equation □Φ ¼ 0, which takes the
form

2ðrΦÞ;ur ¼ r−1ðrVΦ;rÞ;r: ð4Þ

The initial null data necessary for evolution consists of
Φðu0; rÞ, r ≥ R, at initial time u0. (We take u0 ¼ 0.) At the
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mirror, we set Φðu; RÞ ¼ A ¼ constant, with the gauge
condition that Φðu;∞Þ ¼ 0. We adopt the coordinate
condition βðu; RÞ ¼ 0. The condition that the metric
matches continuously to a flat interior for r < R requires
Vðu; RÞ ¼ R.
With these conditions the scalar field and metric com-

ponents have a unique future evolution. The resulting
metric does not have an asymptotic Minkowski form at
Iþ. This is characterized by the quantity HðuÞ ¼ βðu;∞Þ
which relates Bondi time t at Iþ to the proper time u at the
reflecting boundary according to dt=dτ ¼ e2H. Bondi time
is the physically relevant time for distant observers. The
Bondi mass of the system can be expressed in either an
asymptotic or integral form [17]:

MðuÞ ¼ 1

2
e−2Hr2

�
V
r

�
;r

����
r¼∞

¼ 2π

Z
∞

R
e2ðβ−HÞr2ðΦ;rÞ2dr: ð5Þ

II. STATIC AND OTHER KINKS

The asymptotically flat static solution Ψ of the Einstein-
Klein-Gordon system is an extremum of the energy,
subject to a fixed kink potential [11]. This solution [18]
of Janis-Newman-Winicour (JNW) can be obtained in null
coordinates by setting Φ;u ¼ 0 in the wave equation (4).
This gives

rVΨ;r ¼ const; ð6Þ

whose solution, after using (2) and (3) to eliminate the
r-dependence, is

ΨðVÞ ¼ 1

4
ffiffiffi
π

p
coshα

ln

�
V þ Rðe2α − 1Þ
V þ Rðe−2α − 1Þ

�
; ð7Þ

with rðVÞ ¼ rΨ given by

r2Ψ ¼ e−4α tanhα½V þ Rðe−2α − 1Þ�1−tanh α
× ½V þ Rðe2α − 1Þ�1þtanh α: ð8Þ

Here the integration constantα determines the kink potential,

AΨðαÞ ¼
αffiffiffi

π
p

cosh α
: ð9Þ

The spacetime has a naked singularity when analytically
extended to r ¼ 0 [18]. The Bondi mass of this solution is

MΨðαÞ ¼ 2R sinh2 αe−2α tanh α: ð10Þ

The one-parameter family of static equilibria has kink
potential AΨðαÞ, given by (9), which increases monotoni-
cally with α from AΨð0Þ ¼ 0 until it reaches a maximum at

the turning point αc ≈ 1.199 satisfying αc tanhαc ¼ 1.
Above αc, AΨðαÞ monotonically decreases to 0 as α → ∞.
Thus, below AΨðαcÞ ¼ Ac, there are two static equilibria for
each kink amplitude. Similarly, the mass MΨðαÞ increases
monotonically from MΨð0Þ ¼ 0 to a maximum at the same
turning point αc and then decreases monotonically to the
black hole limit, MΨðαÞ → R=2, as α → ∞ [11]. Figure 1
shows the basic setting of the system to study the critical
behavior in the gravitational collapse of a kink. The static
solution of JNW, and the physics behind it, is our starting
point to build four types of kinks and study their dynamics
in depth.

A. Globally perturbed static solution

From the JNW static solution, we construct a kink for any
specific value of α, truncating such a solution at r ¼ R and
introducing the following simple global scale perturbation:

ϕð0; r;αÞ ¼ Ψþ λ

�
R − r

2rðrþ RÞ
�

ð11Þ

keeping the values of the static kink as boundary conditions.
We know that for α ¼ 1 and below λ� ≈ 0.1929 the per-
turbed kink does not form a black hole; instead it decays to
the static solution.

B. Noncompact initial kink

For a kink potential A > Ac no static equilibria exist.
With these boundary conditions, we would expect any
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FIG. 1. The Bondi massMB as a function of the amplitude A for
the kink formed with the JNW solution, with R ¼ 1. The critical
solution ðAc;McÞ without a mass gap is critical and refers to a
turning point. Below Ac the system has a mass gap ΔM ¼
Mþ −M− which corresponds to the same amplitude Aþ ¼ A−. If
we perturb the static solution ðA−;M−Þ, below some critical
parameter λ� the system decays to the static solution; beyond λ�
the system always forms a black hole. If we perturb the static
solution ðAþ;MþÞ, below some critical parameter λ� the system
decays to the static solution with less energy; beyond λ� the
system always forms a black hole. By construction of the kink we
extract the naked singularity contained in the JNW solution when
it is analytically extended to r ¼ 0.
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initial state to undergo collapse to a black hole [11]. We
explore this then by considering initial data of the form

ϕð0; rÞ ¼ 2ðAc þ λÞR
ðRþ rÞ ; ð12Þ

for which a critical value of λ� ¼ 0 no mass gap exists, and
we have to wait an infinite proper time to observe whether
or not a black hole is formed.

C. Compact initial kink

From the above initial conditions and numerical exper-
imentation we arrived to the following kink:

ϕð0; rÞ ¼ RðAc þ λÞ
reðr−RÞ2=σ2

; ð13Þ

with a variance σ ¼ 1=2. The Gaussian-like shape makes
this datum properly to explore the critical behavior in the
gravitational collapse of the kink.

D. Mixed initial kink

In order to combine the features of data B and C we built
the following initial datum, which resembles a Heaviside
steplike descent function:

ϕð0; rÞ ¼ RðAc þ λÞ
r

f1þ eðR−R0Þ=σg
f1þ eðr−R0Þ=σg ð14Þ

with R0 ¼ 10 (step width related) and σ ¼ 1=2 (speed of
descent related). These parameters let us adjust the dynam-
ics and prescribe the formation or not of a black hole.

III. NUMERICAL METHODS, TESTS
AND OTHER TOOLS

The problem has been studied using two different
numerical methods and some scripting. We briefly resume
here these well established numerical solvers and the
wrapper scripts.

A. Finite differences

We use a null cone evolution algorithm for nonlinear
scalar waves developed in Refs. [19,20] (the 1D Pitt code)
adapted to the present setting as reported in [11]. The
algorithm is based upon the compactified radial coordinate
x ¼ r=ðRþ rÞ, so that Iþ is represented by a finite grid
boundary, with x ¼ 1=2 at the mirror and x ¼ 1 at Iþ. The
code has been tested to be globally second order accurate,
i.e., the error in global quantities such as the Bondi mass is
Oðx2Þ in terms of the grid spacing x. This code has been
used to get global energy conservation near the critical
behavior [21] in a setting as originally studied by Choptuik.

B. Galerkin collocation

We have performed numerical experiments using the
Galerkin-collocation method as described in Ref. [10].
Briefly, we have introduced a new radial coordinate η¼
r=R−1 to place the reflector at η ¼ 0, and further compac-
tified the domain 0 ≤ η < ∞ into −1 ≤ x < 1. After intro-
ducing the auxiliary field Φ≡ ð1þ ηÞϕ, the relevant fields
were approximated as series with respect to suitable basis
functions that satisfy the boundary conditions. For instance,

Φðu; ηÞ ¼
XN
k¼0

akðuÞψkðηÞ; ð15Þ

where N is the truncation order, akðuÞ are the unknown
modes and ψkðηÞ represent the basis functions. The field
equations (2), (3) and (4) are reduced to a set of ordinary
differential equations for the modes akðuÞ.

C. Scripting

In order to make a large amount of numerical experi-
ments, minimize error of handling, processing the collected
data, we use scripting with PYTHON. We explore the critical
point near the bifurcation, ensuring that the runs offered a
mostly uniform coverage of theln ðλ − λ�Þ space.

IV. NUMERICAL EXPERIMENTS

We explore numerically the power spectrum when a
black hole forms (supercritical case). Are there critical
phenomena? In the threshold of the black hole formation, is
the spacetime discretely self-similar?
Data A and C were used in Ref. [11]; they are not the best

initial setting to explore in practice critical behavior. These
data evolve too slow to reach critical values with the highest
resolution, but they lead us to data C and D. However we
extract an expected feature from datum A, that is, the mass
gap can be reduced to zero. Figure 2 displays themass gap as
a function of λ for different values ofα. Figure 3 illustrates the
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FIG. 2. The Bondi massMB as a function of the parameter λ for
different values of α in datum A: 0.5; 0.6; 0.7; 0.8; 0.9 and 0.95
(curve not labeled in graph). Near the critical value λ� for each α
the mass gap is apparent, with a tendency to close near α ≈ 0.95.
The grid size for these calculations is Nx ¼ 3; 072.
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mass gap for the initial datum D, which is representative of
any studied initial condition, except datumB, as explained in
the caption of Fig. 1. Figure 4 shows themass spectrum in the
supercritical case for data C and D. For this particular graph,
we have considered the Galerkin-collocation method to
evolve datum C. Figure 5 displays the natural logarithm
of the Bondi mass as a function of τ defined as

τ ¼ − ln½ðt� − tÞ=t��; ð16Þ

where t� is the accumulatedBondi timewhich corresponds to
the accumulated proper time referred to r ¼ R.

From numerical experimentation we infer the following
mass scaling power law:

δM ¼ Kδλ2γ þ f½Kδλ2γ�; ð17Þ

where δM ¼ MB −M�, δλ ¼ λ − λ�, being f a nontrivial
function of its argument. M� is the supercritical mass limit
which corresponds to the critical amplitude λ�.
In general our results show agreement between the finite

differences and the Galerkin collocation method.
To obtain one point for the black hole spectrum ðMBH; λÞ

it takes 65 minutes for a grid size of Nx ¼ 15, 000 using a
N1-standard-1 virtual machine on the Google Compute
Engine.

V. DISCUSSION

When the spacetime contains a black hole and the critical
behavior is studied, no mass gap is apparent [9,10]. Simply
the black hole increases the mass by the accreting massless
scalar field. As it was pointed out in Ref. [11], when the
scalar field undergoes gravitational collapse to form a
horizon, some of the scalar energy is radiated to infinity
and the remainder crosses the horizon and contributes to the
final black hole mass. The mirror itself must fall into the
horizon for otherwise it would continue to reflect the scalar
field until all scalar energy were radiated to infinity. Near
the critical strength, the sensitivity of the final mass is
somewhat analogous to the critical behavior studied by
Choptuik [1] except there is now a mass gap because the
final black hole must have a mass larger than R=2 in order
to contain the mirror. Figures 2 and 3 show the evidence of
the expected mass gap as a rule, and no mass gap as an
exception. The black hole mass in the critical behavior of
type II can be finite.
The critical behavior as observed in this paper is not

exactly as reported up to now. The kink setting may contain
more complexity, and further study is planned. The spectrum
of the variation of the Bondi mass δM as a function of the
natural logarithm of the variation of the parameter, as
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FIG. 3. The Bondi mass MB as a function of the parameter λ.
Near the critical value λ� the mass gap is apparent. This
calculation corresponds to the initial datum D for Nx ¼ 104.
The squared line represents the final Bondi mass for subcritical
evolutions λ < λ� reaching the limit value ofMλ<λ� ≈ 0.4157; the
circled line represents the black hole mass for supercritical
evolutions λ� < λ reaching the limit value of Mλ�<λ ≈ 0.5450.
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FIG. 4. δM as a function of lnðδλÞ for the initial data C (blue
circles) and D (red squares), with Nx ¼ 1.5 × 104. The continu-
ous line (black) roughly grows up with a power of 2γ ≈ 0.74.
From the oscillatory main component we get a period of
Δ=2γ ≈ 4.59. The inset shows the same functions in a narrow
window. Other unstable modes of decaying oscillations are
apparent. In this graph we also show results using the Galer-
kin-collocation method for datum D (green squares) with
N ¼ 350. Both methods, finite differences and Galerkin-collo-
cation give the same results up to some resolution.
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FIG. 5. ln½MB� as a function of τ for the initial datum D, with
Nx ¼ 1.5 × 104. The mass decays in the lower right quadrant
roughly with a period of Δ=2 as expected.
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displayed in Fig. 4, shows a curious behavior related with
the standard critical phenomena. In fact, we observe the
presence of Δ and γ as originally reported by Choptuik, but
in the present case the mass scaling power law is 2γ. We do
not know yet why it is roughly twice the critical exponent of
Choptuik. It is intriguing indeed for us, and we are reporting
it as it was found. Even more, very close to the critical point
appears an unstable main mode, followed by an unstable
second mode. We do not know yet if other minor unstable
modeswill bemanifest just improving the resolution or if the
second unstable mode is a numerical dissipation of the main
unstable mode. We have confidence that these peculiar
results are not a numerical artifact, instead they are a
consequence of nonlinearity near the critical values and
the boundary conditions. Clearly, the mismatch in the
critical exponent is due to the presence of the kink,
constructed by means of a perfect reflecting barrier, and
this makes the system different from the one originally
studied byChoptuik.Other authors also have found different
critical exponents when boundary conditions for the same
system changed [10] or other sources and dimensions are
considered [4,22]. However, the system as we studied
basically behaves as Choptuik discovered: the spacetime
is discretely self-similar and has a power law mass scaling.
We emphasize in this paper the expected mass gap con-
jectured in Ref. [11], where the system was studied with

othermotivations departing from that of Choptuik. Thus, the
mass gap was previously conjectured but not found until
now, and finding it was the main driver for this paper. The
“universal” critical exponent is respect to the initial data, as
has been clarified in many works after the pioneering work
ofChoptuik [4]. Finally theBondimass can be singled out as
in Fig. 5 in a such way that the periodic decaying in the
subcritical case is Δ=2, as expected for a dependence of the
Bondi mass as λ2, in agreement with Ref. [8].
The kink setting may look artificial or idealized. It is a

perfect reflector barrier and just to the interior the spacetime
is Minkowskian, but it can be filled with a fluid and the
radius of the mirror incorporated to the dynamics. A
number of other settings can be less unrealistic and the
kink will behave basically the same way. The next problem
to study is the kink under the axial and reflection symmetry,
particularly motivated by the present results. Although the
subcritical zone in the present setting deserves a more
accurate resolution. Work in this direction is in progress.
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