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I. INTRODUCTION

Understanding the physics of winding string states in
three-dimensional anti–de Sitter (AdS3) Neveu-Schwarz–
Neveu-Schwarz (NS-NS) backgrounds was crucial to
establish the consistency of the theory at quantum level.
The unitarity of the spectrum [1], the modular invariance
of the one-loop partition function [2], and the consistency
of scattering amplitudes [3] were not well understood until
the spectrally flowed sectors of the Hilbert space, asso-
ciated with winding degrees of freedom, were discovered
by Maldacena and Ooguri in Ref. [1]. In the context of
AdS/CFT correspondence, winding sectors were also very
important to complete the dictionary between bulk and
boundary three-point correlation functions [4,5].
The string scattering amplitudes involving winding

string states in AdS3 were first computed in Ref. [6] by
means of the Coulomb gas representation proposed in
Ref. [7]. The result was later reproduced by other methods
[3,8,9]. One of the salient features of these scattering
processes is the conservation of the total winding
number: Since it is not of topological origin, but due to
the presence of the B-field in the background, the
string winding number in AdS3 space is not necessarily
conserved by interactions. Nevertheless, this nonconserva-
tion exhibits a peculiar feature: As originally observed by
Fateev, Zamolodchikov, and Zamolodchikov, the violation
of the winding number in a tree-level amplitude is bounded
from above. More precisely, for an n-string scattering
amplitude to be nonvanishing, the total winding number
Δω ¼ ω1 þ ω2 þ � � �ωn has to obey jΔωj ≤ n − 2. The
purpose of this paper is to present a formalism to compute
tree-level and one-loop n-string winding violating scatter-
ing amplitudes in an AdS3 NS-NS background. This
formalism is a refined version of the one proposed in
[6,7], extending the latter in two directions. On the one
hand, the prescription we propose here is suitable for

describing one-loop amplitudes, namely, to compute the
Wess-Zumino-Witten (WZW) correlation functions on the
torus. On the other hand, this version of the Coulomb gas
realization makes the correspondence between WZW and
Liouville correlation functions manifest, and it represents
an advantage.
The paper is organized as follows: In Sec. II, after a brief

introduction to string theory in AdS3 NS-NS backgrounds,
we will study the world-sheet conformal field theory, which
corresponds to the Hþ

3 ¼ SLð2;CÞ=SUð2Þ WZW theory.
We will describe in detail the free-field approach of the
theory as originally proposed in [6,7]. In Sec. III, we will
review the so-called Hþ

3 WZW-Liouville correspondence.
This is a remarkable tool that permits us to write the string
amplitudes in AdS3 as a convolution of correlation func-
tions of Liouville field theory. This will serve us as
guideline in the construction. In Sec. IV, we will discuss
the tree-level string scattering amplitudes. This will allow
us to present our Coulomb gas formalism in a constructive
way, first considering the maximallly winding violating
amplitudes, then analyzing the next-to-maximally winding
violating process, and so on. In Sec. V, we will discuss the
one-loop scattering amplitudes. Wewill adapt our Coulomb
gas method to the case of genus-1 Riemann surfaces,
discussing the characteristic features of it, such as the
existence of twisted sectors.

II. STRING THEORY IN AdS3

The nonlinear σ model describing the dynamics of
strings in Euclidean AdS3 space in the presence of a
NS-NS B field corresponds to the WZW theory formulated
on Hþ

3 . This permits us to have access to the world-sheet
formulation and solve the theory at quantum level.
If Poincaré coordinates are used to describe AdS3 space,

the metric in the accessible patch takes the form

PHYSICAL REVIEW D 93, 064037 (2016)

2470-0010=2016=93(6)=064037(17) 064037-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.93.064037
http://dx.doi.org/10.1103/PhysRevD.93.064037
http://dx.doi.org/10.1103/PhysRevD.93.064037
http://dx.doi.org/10.1103/PhysRevD.93.064037


ds2 ¼ l2ðdϕ2 þ e2ϕdγdγ̄Þ; ð1Þ

where l is the radius of the spacetime. The near boundary
region of AdS3 corresponds to large values of ϕ. In these
coordinates, the B-field configuration needed to support
this background takes the form

B ¼ l2e2ϕdγ ∧ dγ̄: ð2Þ

The relevant parameter in the story is the ratio between
the radius of the spacetime and the string length scale,
namely,

k ¼ l2

α0
; ð3Þ

which controls the classical limit of the world-sheet-
theory large k corresponding to the semiclassical limit
l2 > l2

s ¼ α0. The value of k corresponds to the level of the
WZW action.
Introducing auxiliary fields β, β̄ and taking into account

quantum corrections, the world-sheet string action on the
background (1)–(2) takes the form [10]

SM ¼ 1

2π

Z
d2z

�
∂ϕ∂̄ϕþ β∂̄γ þ β̄∂ γ̄ − Rϕ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðk − 2Þp

− 2πMββ̄e−
ffiffiffiffi
2

k−2

p
ϕ

�
: ð4Þ

In these coordinates, the world-sheet CFT action
involves a scalar field ϕ ∈ R≥0 and a β − γ commuting
ghost system. The term linear in ϕ couples to the two-
dimensional curvature R of the world sheet; it introduces
a background charge and, in the string theory language, it
represents a linear dilaton configuration:

ΦðϕÞ ¼ ϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðk − 2Þp : ð5Þ

The factor ðk − 2Þ−1=2 in the dilaton term comes from
quantum corrections. In the path integral approach, this
can be seen to arise when integrating over β, β̄. This
produces a kinetic piece − 2

π

R
d2z∂ϕ∂̄ϕ and a back-

ground charge term 1
4π

R
d2zRϕ in the effective action

[11,12]. This results in (4) by simply rescaling ϕ. The
integration over β, β̄ also produces a factor j det ∂∂̄j−1.
On the Riemann sphere, this factor can be absorbed in
the normalization of the partition function. On the torus,
because of the existence of twisting sectors and the
dependence on the modular parameter, this factor
deserves special attention [13].
The value of the constant M in (4) can be set to 1 by

shifting ϕ → ϕþ
ffiffiffiffiffiffi
k−2
2

q
logM. This is, in fact, shifting the

zero mode of the dilaton (5). Therefore, one may associate
M with the string coupling constant, namely,

M ¼ g2s : ð6Þ

Since the theory (4) corresponds to the WZW action,
it is known to exhibit slð2Þk ⊕ slð2Þk affine Kac-Moody
symmetry. This algebra admits a free-field realization,
given by the so-called Wakimoto representation. This
amounts to defining the local currents [14],

JþðzÞ ¼ βðzÞ; ð7Þ

J3ðzÞ ¼ −βðzÞγðzÞ −
ffiffiffiffiffiffiffiffiffiffiffi
k − 2

2

r
∂ϕðzÞ; ð8Þ

J−ðzÞ ¼ βðzÞγ2ðzÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2k − 4

p
γðzÞ∂ϕðzÞ þ k∂γðzÞ; ð9Þ

together with their complex conjugate counterparts J̄3ðz̄Þ,
J̄�ðz̄Þ. Considering the free-field propagators both for the
scalar field ϕ and for the β-γ system, namely,

hϕðzÞϕðwÞi ¼ − logðz − wÞ; hβðzÞγðwÞi ¼ 1

ðz − wÞ ;

ð10Þ

the operator product expansion (OPE) of currents (7)–(9)
realizes the slð2Þk affine Kac-Moody algebra in the
following way,

J3ðzÞJ�ðwÞ≃� J�ðwÞ
ðz − wÞ þOð1Þ ð11Þ

JþðzÞJ−ðwÞ≃ k
ðz − wÞ2 þ

2J3ðwÞ
ðz − wÞ þOð1Þ ð12Þ

J3ðzÞJ3ðwÞ≃ −k=2
ðz − wÞ2 þOð1Þ; ð13Þ

where Oð1Þ stands for regular terms. The interaction term
in (4) has a regular OPE with the currents, so it preserves
the full slð2Þk ⊕ slð2Þk symmetry.
Through the Sugawara construction, the stress tensor

of the theory can be obtained from the currents (7)–(9).
This yields

TSLð2;RÞ ¼ βðzÞ∂γðzÞ− 1

2
∂ϕðzÞ∂ϕðzÞ− 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðk− 2Þp ∂2ϕðzÞ;

ð14Þ

together with its antiholomorphic counterpart T̄ðz̄Þ. The
central charge of the world-sheet theory is
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cWZW ¼ 3k
k − 3

; ð15Þ

which, as expected, tends to 3 in the large k limit. When the
theory is formulated on AdS3 ×N space, the value (15) is
complemented with the central charge of the internal CFT
that describes the world-sheet theory on N .
The spectrum of the theory is defined by Virasoro

highest-height representations. These representations are
built from Kac-Moody Verma moduli. Hermitian integrable
representations for the Hþ

3 WZW model are labeled by
isospin variables jj; mi with

j ¼ −
1

2
þ is; s ∈ R>0; m ∈ R: ð16Þ

Starting from these states, one constructs the spectrum
of the Euclidean theory. The string theory in Lorentzian
AdS3 corresponds, instead, to the WZW model on
SLð2;RÞ. The latter can be defined by analytic continu-
ation from the Hþ

3 model. This amounts to considering, in
addition to the continuous series (16), the SLð2;RÞ discrete
representations1:

j ∈ R; m ¼ −jþ n; n ∈ Z≥0; ð17Þ

and

j ∈ R; m ¼ j − n; n ∈ Z≥0: ð18Þ

In terms of j, m, and m̄; the angular momentum and
the kinetic energy of strings in AdS3 are given by m − m̄
and mþ m̄, respectively. However, these are not all the
relevant physical quantities that are necessary to consider in
describing the string spectrum. A crucial step in defining
the theory was the observation of the necessity of including
infinite new representations, which are constructed from
the ones described above by acting with spectral flow
automorphism of slð2Þk affine algebra [1]. These new
representations are labeled by an additional integer param-
eter ω, whose physical interpretation is that of the winding
number of the strings.2

As said before, this winding number is not topological,
but it is due to the presence of the NS-NS B field (2).
This implies that the total winding number does not have
to be necessarily conserved in a generic scattering

process. A remarkable result is that, in a tree-level process
involving n strings in AdS3, the total winding number
Δω ¼ ω1 þ ω2 þ � � � þ ωn can indeed be violated, but its
violation is bounded by jΔωj ≤ n − 2. This result was
originally observed for the SLð2;RÞ=Uð1ÞWZWmodel in
an unpublished paper [15], and it was later explained in
Ref. [3] in terms of the symmetries of the theory. The
scattering process violating winding number have been first
computed in Ref. [6], and the result was later rederived by
different methods in Refs. [3,8,9,16]. In Ref. [9], it has been
argued that n-string tree-level scattering processes in AdS3
that violate the winding number in jΔωj units can be
expressed in terms of a convolution of ð2n − 2þ jΔωjÞ-
point functions of Liouville field theory on the sphere. The
case jΔωj < n − 2 was proven in [9] and an educated
conjecture has been made for the case jΔωj ¼ n − 2. The
latter case was later proven in Ref. [17] by means of the
Coulomb gas formalism proposed in [7]. This formalism,
which is similar to the one we will consider in this paper,
consists of describing the theory on AdS3 in terms of the
WZW model on the product SLð2;RÞ=Uð1Þ × Uð1Þ.
While the SLð2;RÞ=Uð1Þ coset theory describes string
theory on the Euclidean black hole background [18], the
extra timelike direction Uð1Þ describes the time of the
Lorentzian geometry. The idea of describing spectrally
flowed sectors of the theory by modding-out aUð1Þ current
and subsequently adding it back, mimics the realization of
spectral flow in N ¼ 2 superconformal algebra, and in the
context of AdS3 string theory was first suggested in [1].
Here, we will consider the Coulomb gas formalism
proposed in [7] and further extend it. Let us begin by
describing the theory on the coset in the next subsection.

A. The coset construction

The coset SLð2;RÞ=Uð1Þ construction can be accom-
plished by supplementing the SLð2;RÞ model by adding
an extra scalar field XðzÞ ¼ XLðzÞ þ XRðz̄Þ and a c ¼ −2
fermionic B-C ghost system [19–21]. This amounts to
supplementing the stress tensor (14) with two extra pieces,
namely,

Tcoset ¼ TSLð2;RÞ − BðzÞ∂CðzÞ − 1

2
∂XðzÞ∂XðzÞ; ð19Þ

with

hXðzÞXðwÞi ¼ − logðz − wÞ; ð20Þ
and analogously for the antiholomorphic counterpart. This
yields the central charge

ccoset ¼
3k

k − 2
− 1:

The BRST charge associated with the Uð1Þ of the
coset is

1To be precise, since in order to avoid closed timelike curves
here we are considering the universal covering of AdS3, the
representations to be considered are those of the universal
covering of SLð2;RÞ, and in particular this implies that j is
not restricted to take semi-integer values.

2Strictly speaking, this interpretation is accurate for the so-
called “long strings,” which correspond to the states of the
continuous representations. For such states, in contrast with the
“short strings” (17)–(18), one has a notion of asymptotic states
and, consequently, of an S matrix.
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QUð1Þ
BRST ¼

Z
dzCðzÞ

�
J3ðzÞ − i

ffiffiffi
k
2

r
∂XðzÞ

�
: ð21Þ

This means that the vertex operators creating physical
states of the theory on the coset have to have regular OPE
with the current J3 − i

ffiffiffiffiffiffiffiffi
k=2

p ∂X. Such operators are

Vcoset
j;m;m̄ðz; z̄Þ ¼ γj−mðzÞγ̄j−m̄ðz̄Þe

ffiffiffiffi
2

k−2

p
jϕðz;z̄Þ

× ei
ffiffi
2
k

p
ðmXLðzÞþm̄XRðz̄ÞÞ; ð22Þ

where j, m and m̄ are isospin variables that label
the SLð2;RÞ × SLð2;RÞ representations. The conformal
dimension of these operators is

hcosetj;m ¼ −
jðjþ 1Þ
k − 2

þm2

k
;

h̄cosetj;m̄ ¼ −
jðjþ 1Þ
k − 2

þ m̄2

k
: ð23Þ

B. Adding the spectrally flowed sectors

Spectral flow automorphism of slð2Þk affine algebra
generates new representations [1]. The Virasoro primary
states corresponding to the spectrally flowed sectors of the
spectrum represent the winding strings, characterized by
the extra quantum number ω ∈ Z. A free-field realization
of such states was achieved by considering the theory on
the product SLð2;RÞ=Uð1Þ ×Uð1Þ. This amounts to add-
ing to the coset construction discussed above an extra
timelike free boson TðzÞ. Explicitly, one improves the
currents as3

J�ðzÞ → J�ðzÞe�i
ffiffi
2
k

p
ðXðzÞþTðzÞÞ ð24Þ

J3ðzÞ → J3ðzÞ − i

ffiffiffi
k
2

r
ð∂XðzÞ þ ∂TðzÞÞ; ð25Þ

with

hTðzÞTðwÞi ¼ þ logðz − wÞ ð26Þ

and its antiholomorphic counterpart. These currents repro-
duce the OPE (11)–(13).
Now, let us compose the theory on the product

SLð2;RÞ=Uð1Þ ×Uð1Þ and study the spectrum. The states
of the theory are given by representations of SLð2;RÞ×
SLð2;RÞ, including the spectral flow quantum number ω.
Let us denote these states by jj; m; m̄;ωi. They are created
by operators

Vω
j;m;m̄ðzÞ¼ γj−mðzÞe

ffiffiffiffi
2

k−2

p
jϕðzÞei

ffiffi
2
k

p
mXðzÞei

ffiffi
2
k

p
ðmþk

2
ωÞTðzÞ×H:c:

ð27Þ

where H.c. stands for the antiholomorphic part.4 These
operators are the product of operators (22) and the expo-
nential operators that carry the charge under TðzÞ. This
charge corresponds to the total energy E ¼ mþ m̄þ kω.
Unlikeω, the energy is conserved in the scattering processes.
Operators (27) create the in-states jj; m; m̄;ωi from the

SLð2;RÞ invariant vacuum j0i, namely,

lim
z→0

Vω
j;m;m̄ðz; z̄Þj0i ¼ jj; m; m̄;ωi: ð28Þ

The out-states are given by

hj; m; m̄;ωj ¼ lim
z→∞

z2h
ω
j;m z̄2h̄

ω
j;m̄h0jVω

−1−j;m;m̄ðz; z̄Þ; ð29Þ

where hωj;m is the value of the conformal dimension of
Vω
j;m;m̄, given by

hωj;m ¼ hcosetj;m −
ðmþ kω=2Þ2

k

¼ −
jðjþ 1Þ
k − 2

−mω −
k
4
ω2;

h̄ωj;m̄ ¼ hωj;m̄: ð30Þ

The OPE of the vertex operators (27) and the currents is

J3ðzÞVω
j;m;m̄ðwÞ≃ ðmþ kω=2Þ

ðz − wÞ Vω
j;m;m̄ðwÞ þOð1Þ ð31Þ

J�ðzÞVω
j;m;m̄ðwÞ≃ ð�j−mÞ

ðz−wÞ1�ωV
ω
j;m�1;m̄ðwÞþOððz−wÞ∓ωÞ:

ð32Þ
This means that states jj; m; m̄;ωi are also eigenstates of

the J3ðzÞ, J̄3ðz̄Þ currents (25), with eigenvalues

pL ¼ mþ k
2
ω; pR ¼ m̄þ k

2
ω; ð33Þ

respectively. It is worthwhile noticing that formulas (30)
and (33) are both symmetric under the Weyl reflection

ðj; m; m̄;ωÞ → ð−1 − j; m; m̄;ωÞ ð34Þ

and the reflection
3Hereafter, TðzÞ will represent a timelike free boson. It is

important not to mistake it for the holomorphic component of the
stress tensor.

4Strictly speaking, the part that is omitted depends on the
variable z̄ and the momentum m̄.
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ðj; m; m̄;ωÞ → ðj;−m;−m̄;−ωÞ: ð35Þ

These Z2 symmetries allow us to consider here corre-
lation functions with ω1 þ ω2 þ � � � þ ωn ≤ 0 without loss
of generality.

C. Conjugate vertex representations

Apart from the Wakimoto-type representation (27), to
which we will refer as “standard representation,” there
exists another free-field representation of Virasoro primar-
ies with conformal dimension (30) and OPE (31)–(32).
This second representation is constructed by considering in
the coset SLð2;RÞ=Uð1Þ the free-field realization of dis-
crete states proposed in Ref. [19] and adding to it the charge
under the field TðzÞ. Explicitly, the operators take the form

~Vω
j;m;m̄ðzÞ ¼

1

Zj;m
βjþmðzÞe−

ffiffiffiffi
2

k−2

p
ðjþk

2
ÞϕðzÞei

ffiffi
2
k

p
ðm−k

2
ÞXðzÞ

× ei
ffiffi
2
k

p
ðmþk

2
ωÞTðzÞ × H:c: ð36Þ

where ðZj;mZ̄j;m̄Þ−1 is a normalization factor to be con-
veniently fixed.
The β-dependent operators (36) are reminiscent of the

Dotsenko conjugated representation of the SUð2Þ WZW
theory [22,23]. They create conjugate in-states from a
conjugate vacuum j~0i, namely,

lim
z→0

~Vω
j;m;m̄ðz; z̄Þj~0i ¼ jjn; mn; m̄n;ωni: ð37Þ

An standard way of fixing the normalization Z−1
j;m in (36)

is requiring the 2-point function to be normalized as

hj; m; m̄;ωjj;−m;−m̄;−ωi≡ 1: ð38Þ

It is possible to verify that, with this normalization, the
OPE with the currents also gives

J3ðzÞ ~Vω
−1−j;m;m̄ðwÞ≃ðmþkω=2Þ

ðz−wÞ
~Vω
j;m;m̄ðwÞþOð1Þ ð39Þ

J�ðzÞ ~Vω
−1−j;m;m̄ðwÞ≃ ð�j −mÞ

ðz − wÞ1�ω
~Vω
−1−j;m�1;m̄ðwÞ

þOððz − wÞ∓ωÞ; ð40Þ

which coincides with (31)–(32). That is, operators
Vω
−1−j;m;m̄ and ~Vω

j;m;m̄ create states with the same conformal
dimension and the same OPE with the currents. However,
normalization (38) is not the only solution that yields the
OPE (32)–(31). In fact, one can also consider

Zj;mZ̄j;m̄ ¼ ð−1Þjþmc
Γð1þ jþmÞ
Γð−j − m̄Þ ; ð41Þ

with c being a constant independent of j,m, and m̄. We will
adopt (41) for convenience.
For computing correlation functions in the Coulomb gas

(free-field) approach, it is crucial the inclusion of screening
operators [6,7,21]. These are operators of conformal
dimension (1,1) that, in addition, have regular OPE with
the slð2Þk currents (up to a total derivative).
The screening operators of the SLð2;RÞ WZW theory

are

SþðzÞ ¼ c ~V−1
1−k

2
;k
2
;k
2
¼ βðzÞe−

ffiffiffiffi
2

k−2

p
ϕðzÞ × H:c:; ð42Þ

and

S−ðzÞ ¼ c ~V−1
k
2
−2;k

2
;k
2
¼ βk−2ðzÞe−

ffiffiffiffiffiffiffiffiffiffi
2ðk−2Þ

p
ϕðzÞ × H:c: ð43Þ

While (42) corresponds to the interaction term appearing
in (4) and, therefore, can be understood simply in terms
of the path integral approach to the σ model, the physical
interpretation of dual screening operator (43) is less clear.
The latter can be associated with world-sheet instanton
effects. In Ref. [6], it has been shown that operator (43) can
be consistently used to compute WZW correlation func-
tions, leading to the exact result. Here, instead, we will
consider only the usual screening operator (42).
The theory also contains other special operators. Such is

the case of the dimension-(0, 0) operator,

~V0
0;0;0ðzÞ ¼ e−

ffiffiffiffi
2

k−2

p
k
2
ϕðzÞe−i

ffiffi
k
2

p
XðzÞ × H:c:; ð44Þ

which can also be associated with representations (27) as
follows:

V1
−k
2
;−k

2
;−k

2

ðzÞ ¼ e−
ffiffiffiffi
2

k−2

p
k
2
ϕðzÞe−i

ffiffi
k
2

p
XðzÞ × H:c: ð45Þ

This operator has been dubbed in Ref. [3] “spectral flow
operator,” and, following the prescription originally pro-
posed in Ref. [15], it was used to compute correlation
functions that violate winding number conservation. In the
unpublished paper [15], operator (44) was referred to as
“conjugated representation of the identity operator.”
Other interesting objects are the dimension-(1, 1)

operators,

~V0
−1;0;0ðzÞ ¼ c−1=2β−1ðzÞe−

ffiffiffiffi
k−2
2

p
ϕðzÞe−i

ffiffi
k
2

p
XðzÞ × H:c:; ð46Þ

V−1
1−k

2
;k
2
;k
2

ðzÞ ¼ γðzÞe−
ffiffiffiffi
k−2
2

p
ϕðzÞei

ffiffi
k
2

p
XðzÞ × H:c:; ð47Þ

and

~V−2
1−k;k;kðxÞ ¼ c−1=2βðxÞe

ffiffiffiffi
k−2
2

p
ϕðxÞei

ffiffi
k
2

p
XðxÞ × H:c: ð48Þ

The latter will be very important in our discussion later.
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D. Correlation functions

We are interested in computing n-point correlation func-
tions of Virasoro primary operators in the WZW theory.
Formaly, these observables are the expectation values,

XΔω
n ≡

�Yn
i¼1

Vωi
ji;mi;m̄i

ðziÞ
�

WZW

; ð49Þ

where the superscript Δω refers to the total winding number
in the correlators.5

Wewill follow the prescription for computing correlation
functions presented in Ref. [7] and eventually propose a
refined version of it that is suitable for the genus-1
generalization. The prescription of [7] is the following:
Consider the correlation function

XΔω
n ¼ hj1; m1; m̄1;ω1j

Yp
t¼2

Vωt
−1−jt;mt;m̄t

ðztÞ

×
Yn−1

l¼pþ1

~Vωl
jl;ml;m̄l

ðzlÞjjn; mn; m̄n;ωni; ð50Þ

which involves both fields of the standard representation
(27) and the conjugate representation (36). The first
question is which representation has to be used to describe
the in-state jj;m; m̄;ωi, i.e. whether one has to resort to the
standard representation (27) or to the conjugated repre-
sentation (36). The bottom line of the next subsection will
be that, in fact, one can actually make use of any of these
representations. The only detail to be taken into account is
that, depending on which representation one decides to use,
the charge compensation condition to consider has to be
consistent with such choice.
We define the out-state in the correlator as

hj1; m1; m̄1;ω1j ¼ lim
z1→∞

z
2h

ω1
j1 ;m1

1 z̄
2h̄

ω1
j1 ;m̄1

1 h0jVω1

−1−j1;m1;m̄1
ðz1; z̄1Þ

ð51Þ

and the in-state as

jjn; mn; m̄n;ωni ¼ lim
zn→0

~Vωn
jn;mn;m̄n

ðzn; z̄nÞj~0i; ð52Þ

or alternatively as in (28); see subsection IIE.
In the Coulomb gas approach [6,21], the correlators

involve, in addition, s integrated screening operators Sþ;
more precisely, the correlators take the form

XΔω
n ¼ Γð−sÞcsg2ss

Z Ys
r¼1

d2wr

�Yp
t¼1

Vωt
−1−jt;mt;m̄t

ðztÞ

×
Yn

l¼pþ1

~Vωl
jl;ml;m̄l

ðzlÞ
Ys
r¼1

~V−1
1−k

2
;k
2
;k
2
ðwrÞ

�
M¼0

ð53Þ

where s ¼ −
P

n
i¼1 ji − p − k

2
ðn − pþ 1Þ, and where the

subscript M ¼ 0 refers to the fact that the correlator (53) is
defined in terms of the free action, i.e. M ¼ 0 in (4).
Charge compensation conditions in (53) are defined by

demanding the fields in the correlators to equal the charges
of the conjugate identity operator (44), [22,23]. In particu-
lar, if one considers (52), the compensation of the charge
associated with the field ϕðzÞ demands

k
2
ðp − nÞ − p − s −

Xn
i¼1

ji ¼ −
k
2
; ð54Þ

which follows from the fact that ~V0
0;0;0ðzÞ has charge −k=2

under ϕðzÞ. Analogously, the compensation of the charge
associated with the field XðzÞ reads
Xn
i¼1

mi þ
k
2
ðp − nÞ ¼

Xn
i¼1

m̄i þ
k
2
ðp − nÞ ¼ −

k
2
; ð55Þ

expressing the fact that the charge of ~V0
0;0;0 associated with

that field is also −k=2. The compensation of the charge
associated with the field TðzÞ, which expresses the energy
conservation, reads

Xn
i¼1

�
mi þ

k
2
ωi

�
¼

Xn
i¼1

�
m̄i þ

k
2
ωi

�
¼ 0; ð56Þ

and, then, equations (54)–(56) imply the total winging
number violation:

Xn
i¼1

ωi ¼ pþ 1 − n: ð57Þ

That is, the total winding number (non)conservation in
(53) depends on p, i.e. on the relative amount of operators
in the representation (27) or in the representation (36) one
decides to include in the correlator. Such is the prescription
proposed in Ref. [7], which has been used in Ref. [6] to
compute both winding preserving and winding violating
string amplitudes. In Ref. [17], the case p ¼ 1 with generic
n, i.e. the maximally violating amplitude, has been studied
in relation to a previous conjecture about the functional
form of such observables [9].
The charge compensation conditions (54)–(57) also yield

a condition for the relative amount of β and γ ghost fields
in (53). If one denotes by NβðXΔω

n Þ and NγðXΔω
n Þ the

amount of operators β and γ included in a given correlator
XΔω
n , respectively, this condition reads

5We omit the dependence on other variables such as ji, mi, m̄i,
zi, z̄i.
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NβðXΔω
n Þ − NγðXΔω

n Þ ¼ N β̄ðXΔω
n Þ − N γ̄ðXΔω

n Þ ¼ 0: ð58Þ

This follows from Nβð ~V0
0;0;0Þ ¼ Nγð ~V0

0;0;0Þ ¼ 0. Similar
condition has been considered, for instance, in
Ref. [24]. However, this is not the relation obtained
from the path integral approach when integrating over
the zero modes of the ghost fields. In fact, one rather
obtains [21]

NβðXΔω
n Þ − NγðXΔω

n Þ ¼ N β̄ðXΔω
n Þ − N γ̄ðXΔω

n Þ ¼ 1: ð59Þ

Then, the question is how to find a prescription for
computing amplitudes that, while being consistent with
the method of [7] and the result (57), is at the same time
consistent with the condition (59) arising in the path
integral approach. This question is motivated by the fact
that having such a path integral realization would be useful
to extend the computation to higher loops. Such a pre-
scription is actually possible, and we will discuss it in the
next subsection.

E. Alternative representation and path integral

The main idea to obtain the condition (59) within
the prescription of Ref. [7] is to describe the in-state
jjn; mn; m̄n;ωni in terms of the representation
Vω
−1−j;m;m̄ðzÞ instead of ~Vω

j;m;m̄ðzÞ; namely, consider

XΔω
n ¼ lim

z1→∞
z
2h

ω1
j1 ;m1

1 z̄
2h̄

ω1
j1 ;m̄1

1

�Yp
t¼1

Vωt
−1−jt;mt;m̄t

ðztÞ

×
Yn−1

l¼pþ1

~Vωl
jl;ml;m̄l

ðzlÞVωn
−1−jn;mn;m̄n

ð0Þ
�

WZW

ð60Þ

where, instead of defining the charge compensation con-
dition with respect to the conjugate identity ~V0

0;0;0ðzÞ, we
have to do it with respect to the Weyl-reflected version of
the operator V0

0;0;0 ¼ 1, that is, with respect to

V̂0
0;0;0ðzÞ≡ V0

−1;0;0 ¼ γ−1e−
ffiffiffiffi
2

k−2

p
ϕ × H:c: ð61Þ

The first of these charge compensation conditions is
given by requiring the difference between the amount of
fields β and fields γ in the correlator XΔω

n to be equal to the
difference between the amount of fields β and fields γ in the
conjugated identity operator (61). That is,

NβðXΔω
n Þ − NγðXΔω

n Þ ¼ NβðV̂0
0;0;0Þ − NγðV̂0

0;0;0Þ ¼ 1

ð62Þ

since NβðV̂0
0;0;0Þ ¼ 0 and NγðV̂0

0;0;0Þ ¼ −1, cf. (58). For
correlators (60), this condition reads explicitly

Xn
l¼1

jl þ
Xn
l¼1

ml þ pþ s ¼ 0: ð63Þ

The rest of the condition comes from equaling the charges
associated with fields ϕðzÞ, XðzÞ, and TðzÞ. Those are

Xn
l¼1

jl þ pþ sþ k
2
ðn − p − 1Þ ¼ 0; ð64Þ

together with

Xn
l¼1

ml ¼
k
2
ðn − p − 1Þ;

Xn
l¼1

ml þ
k
2

Xn
l¼1

ωl ¼ 0;

ð65Þ

and

Xn
l¼1

ωl ¼ pþ 1 − n: ð66Þ

Notice that (63)–(66) exactly agree with (54)–(57). Let
us show that, in addition, conditions (63)–(66) also agree
with those obtained by integrating over the zero modes of
the fields in the path integral approach. In this approach, the
correlation functions are defined as

XΔω
n ¼

Z
D2βD2γDϕe−SM

Ypþ1

i¼1

Vωi
−1−ji;mi;m̄i

ðziÞ

×
Yn

l¼pþ2

~Vωl
jl;ml;m̄l

ðzlÞ: ð67Þ

Since β, β̄ are 1-differentials and the γ, γ̄ are 0-
differentials, the Riemann-Roch on the Riemann surface
of genus-g yields

NβðXΔω
n Þ − NγðXΔω

n Þ ¼ N β̄ðXΔω
n Þ − N γ̄ðXΔω

n Þ ¼ 1 − g;

ð68Þ
which reduces to (62) when g ¼ 0. On the other hand, the
integration over the zero mode ϕ0 of field ϕðzÞ yields6

XΔω
n ¼ð−1ÞsΓð−sÞc2g2ss

Z Ys
r¼1

d2wr

Z
D2βD2γDϕe−S0

×
Ypþ1

i¼1

Vωi
−1−ji;mi;m̄i

ðziÞ
Yn

l¼pþ2

~Vωl
jl;ml;m̄l

ðzlÞ
Ys
r¼1

~V−1
1−k

2
;k
2
;k
2
ðwrÞ;

ð69Þ

6Here, we have absorbed a k-dependent factor in the definition
of the path integral. We also have made the replacement
zn ↔ zpþ1.
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where the operators are now evaluated on the fluctuations
ϕðzÞ − ϕ0, the action S0 corresponds to (4) with M ¼ 0,
and s is given by

Xn
l¼1

jl þ pþ sþ 1þ k
2
ðn − p − 1Þ ¼ 1 − g: ð70Þ

This condition follows from the Gauss-Bonnet theorem on
the sphere because of the existence of the background
charge (5), and in the case g ¼ 0 it coincides with (64).
The integration over the zero modes of fields XðzÞ and

TðzÞ is substantially simpler and yields

Xn
l¼1

ml ¼
k
2
ðn − p − 1Þ;

Xn
l¼1

ml þ
k
2

Xn
l¼1

ωl ¼ 0;

ð71Þ

which implies

Xn
l¼1

ωl ¼ pþ 1 − n; ð72Þ

in exact agreement with (65)–(66). Then, we have a path
integral realization of correlation functions that yields
Δω ≠ 0.

III. LIOUVILLE STRINGS IN AdS3

Besides the Coulomb gas prescription of [7], another
important tool in our discussion will be a close relation
that exists between correlation functions in the Hþ

3 WZW
theory and correlation functions in Liouville field theory. In
the next subsection, we will briefly review the latter theory,
and in subsection IIIB, we will review the precise corre-
spondence between Hþ

3 WZW and Liouville observables.

A. Liouville field theory

Liouville theory naturally arises in the formulation of the
two-dimensional quantum gravity and in the path integral
quantization of string theory. It is also closely related to
Einstein gravity in AdS3 space and to four-dimensional
N ¼ 2 superconformal gauge theories. This is a nonra-
tional conformal field theory whose action reads

SL ¼ 1

4π

Z
d2z

�
∂φ∂̄φþ 1

2
ffiffiffi
2

p QRφþ 4πe
ffiffi
2

p
bφ

�
: ð73Þ

The background charge parameter takes the value Q ¼
bþ b−1 in order to render the potential barrier e

ffiffi
2

p
bφ an

exact marginal operator. The central charge of Liouville
theory is given by

cL ¼ 1þ 6Q2: ð74Þ

Important objects of the theory are the exponential vertex
operators,

VαðzÞ ¼ e
ffiffi
2

p
αφðzÞ; ð75Þ

which are local primary operators of conformal dimension

hLα ¼ h̄Lα ¼ αðQ − αÞ: ð76Þ

A special case of operator (75) is the degenerate field of
momentum α ¼ −1=ð2bÞ,

V− 1
2b
ðxÞ ¼ e−

1ffiffi
2

p
b
φðxÞ; ð77Þ

which creates a non-normalizable state of dimension
h−1=ð2bÞ < −1=2 that is annihilated by the Virasoro operator
L2
−1 þ b−2L−2. That is, vertex operator (77) is a degenerate

field in the sense that it contains a null state in the Verma
modulo.
Correlation functions in Liouville theory are formally

defined as follows:

�Yn
i¼1

VαiðziÞ
�

L

≡
Z

Dφe−SL
Yn
i¼1

e
ffiffi
2

p
αiφðziÞ: ð78Þ

In the case that at least one of the n operators in (78)
has momentum α ¼ −1=ð2bÞ, as in (77), the correlation
function happens to solve the Belavin-Polyakov-
Zamolodchikov (BPZ) equation.
On the spherical topology, generic correlation functions

(78) admit the integral representation [25]

�Yn
i¼1

VαiðziÞ
�

L

¼ b−1Γð−sÞ
Yn
i<j

jzi − zjj−4αiαj

×
Z Ys

r¼1

d2wr

Yn
i¼1

Ys
r¼1

jzi − wrj−4bαi

×
Ys
r<t

jwr − wtj−4b2 ; ð79Þ

with s given by

bsþ
XN
i¼1

αi ¼ Q: ð80Þ

Expression (79) makes sense for s ∈ Z≥0. However, it
can be analytically continued to other (complex) values
of s. For instance, in the case of the partition function, and
the 2- and the 3-point functions (n ¼ 0, 2, 3), integral (79)
can be exactly solved in terms of the Dotsenko-Fateev
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formula [26–28] and the result can be extended to complex
values of αi and b.

B. The Hþ
3 WZW-Liouville correspondence

In Ref. [29], a remarkable connection between the Hþ
3

WZW correlation functions and Liouville correlation
functions was derived. This is based on a previous work
of Stoyanovsky [30], who noticed a connection between
the Knizhnik-Zamolodchikov and the BPZ equations. The
correspondence between Hþ

3 WZW and Liouville correla-
tors, as presented in [29], states that n-point functions in the
WZW theory are given by a convolution ð2n − 2Þ-point
function of Liouville field theory, the latter involving n
generic primary operators (78) and n − 2 degenerate
operators (77). The formula of [29] was rederived in
Ref. [31] using the path integral approach, and then
extended to arbitrary genus g ≥ 0. In Ref. [9], Ribault
proposed a generalization of the g ¼ 0 formula to the case
in which spectrally flowed states are included in the WZW
correlator. The result reads7

�Yn
i¼1

Vωi
ji;mi;m̄i

ðziÞ
�

WZW

¼ 2π3−2nbcΔω

Γðn−1þΔωÞ
Yn
i¼1

Γð−ji−miÞ
Γðjiþ1þm̄iÞ

Y
i<j

jzi−zjj2βik

×
Z Yn−2−jΔωj

l¼1

d2xl
Yn
i¼1

Yn−2−jΔωj

l¼1

jzi−xlj2mi−k
Yn−2−jΔωj

l<t

jxl−xtj2k

×

�Yn
i¼1

VαiðziÞ
Yn−2−jΔωj

l¼1

V− 1
2b
ðxlÞ

�
L

; ð81Þ

where βik ¼ k − kωiωj − 2ωimj − 2miωj − 2mi − 2mj, c
is a constant independent of ji, mi, and zi, and where8

αi ¼ bðji þ 1Þ þ 1

2b
; b2 ¼ 1

k − 2
: ð82Þ

Formula (81) was proven in Ref. [9] for the case
jΔωj < n − 2; the case jΔωj ¼ n − 2, however, remained
therein as a conjecture. In such case, the formula takes the
succinct form

�Yn
i¼1

Vωi
ji;mi;m̄i

ðziÞ
�

WZW

¼ 2π3−2nbc2−n
Yn
i¼1

Γð−ji −miÞ
Γðji þ 1þ m̄iÞ

×
Y
i<j

jzi − zjj2βik
�Yn

i¼1

VαiðziÞ
�

L

:

ð83Þ

This formula for jΔωj ¼ n − 2, which unlike jΔωj <
n − 2 cannot be proven using the BPZ equation because of
the absence of degenerate fields on the right-hand side of
(83), has been reproduced in Ref. [17] by means of the
Coulomb gas formalism described in the previous section.
We will review this derivation in the next section, and this
will be the first step to construct our method to compute
winding violating amplitudes.

IV. TREE-LEVEL STRING AMPLITUDES
IN AdS3

String amplitudes are defined by integrating correlation
functions over the insertion of the vertices (the moduli)
modulo the conformal Killing group (CKG) symmetries. At
tree level, one first considers the WZW correlation function
(53) defined on the Riemann sphere, and then defines the
string scattering amplitudes as

A ¼
Z Yn−1

l¼3

d2zlXΔω
n ×…; ð84Þ

where the ellipses stand for the contribution of the internal
CFT to the correlation functions. The integral in (84) is over
n − 3 vertex insertions on CP1 in order to cancel out the
volume of the CKG, PSLð2;CÞ. Without loss of generality,
we can set z1 ¼ ∞, z2 ¼ 1, and zn ¼ 0.
As explained before, correlation functions XΔω

n can be
defined by resorting to p operators of the representation
(27) and n − p operators of the representation (36). In the
next subsections we will analyze several particular cases
of (50), which correspond to different values of p and,
consequently, to different values of the total winding
number.

A. Maximally winding violating amplitudes

As a first example, let us review the computation of the
maximally winding violating amplitude, carried out in
Ref. [17]. Nevertheless, in order to avoid redundancies,
and with the purpose to prepare the ingredients for the
discussion of the genus-1 case, here we will compute this
observable in an alternative way. In [17], the amplitudes
of a scattering process of n strings in which the winding
number conservation is violated in n − 2 was represented
by the correlator

7Notice that, while the world-sheet central charge is given by
(15), the Liouville central charge (74) in terms of k reads
cL ¼ cWZW − 2þ 6k. A curious feature is that in the semi-
classical (large k) limit the Liouville central charge agrees with
the central charge of the dual boundary CFT [10,32].

8Here, we are considering the particular case mi ¼ m̄i for
short. The case with mi ≠ m̄i does not bring substantial infor-
mation and makes the expressions slightly more complicated.
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X2−n
n ¼

�
Vω1

−1−j1;m1;m̄1
ðz1Þ

Yn
l¼2

~Vωl
jl;ml;m̄l

ðzlÞ
�

WZW

: ð85Þ

Working out the product of the multiplicity factor
coming from the Wick contraction of the β-γ contribution,
and resorting to the Dotsenko-Fateev integral representa-
tion [26–28], expression (85) was shown to realize (81)
exactly. Here, instead of starting from (85), we will prefer
to compute the same observable but using the alternative
representation

X2−n
n

¼
�
Vω1

−1−j1;m1;m̄1
ðz1Þ

Yn−1
l¼2

~Vωl
jl;ml;m̄l

ðzlÞVωn
−1−jn;mn;m̄n

ðznÞ
�

WZW

:

ð86Þ

As discussed in subsection IIE, the result has to be the
same. However, as already said, prescription (86) is better
suited for a path integral realization.
Expanding (86), one obtains

X2−n
n ¼ ð−1ÞsΓð−sÞc2−n

Yn−1
l¼2

ð−1Þ−jl−mlΓð−jl − m̄lÞ
Γð1þ jl þmlÞ

Z Ys
r¼1

d2yr

�
γ−1−j1−m1ðz1Þ

Yn−1
l¼2

βjlþmlðzlÞ
Ys
r¼1

βðyrÞγ−1−jn−mnðz∞Þ
�

M¼0

×

�
e−

ffiffiffiffi
2

k−2

p
ðj1þ1Þϕðz1Þ

Yn−1
l¼2

e−
ffiffiffiffi
2

k−2

p
ðjlþk

2
ÞϕðzlÞ

Ys
r¼1

e−
ffiffiffiffi
2

k−2

p
ϕðyrÞe−

ffiffiffiffi
2

k−2

p
ðjnþ1Þϕð∞Þ

�
M¼0

×

�
ei

ffiffi
2
k

p
m1Xðz1Þ

Yn−1
l¼2

ei
ffiffi
2
k

p
ðml−k

2
ÞXðzlÞei

ffiffi
2
k

p
mnXðznÞ

��Yn
l¼1

ei
ffiffi
2
k

p
ðmlþk

2
ωlÞTðzlÞ

�
× H:c: ð87Þ

where s, in terms of the variables (82), is given by

s ¼ b−1
Xn
i¼1

αi þ 1þ b−2: ð88Þ

The Wick contractions of the free fields yield the integral
expression9

X2−n
n ¼ g2ss c2−n

Yn
i¼1

Γð−ji − m̄iÞ
Γð1þ ji þmiÞ

Yn
i<j

jzi − zjj2βij

×
Yn
i<j

jzi − zjj−2αiαjΓð−sÞ

×
Z Ys

r¼1

d2yr
Yn
i¼1

Ys
r¼1

jzi − yrj−2αib
Ys−1;s
r<t

jyr − ytj−2b2 ;

ð89Þ
with βij ¼ k=2 −mi −mj − kωiωj=2 −miωj −mjωi. To
obtain this, one also has to consider the combinatoric factor
coming from the Wick contraction of the β-γ system, now
involving two operators with γ fields inserted at z1 and zn.
This factor can be seen to be

ð−1Þs Γð−j1 − m̄1Þ
Γðj1 þm1 þ 1Þ

Γð−jn − m̄nÞ
Γðjn þmn þ 1Þ : ð90Þ

This expression yields the same integral representation
as (85), cf. formula (24) of Ref. [17]. Therefore, the final
results turns out to be the same as in [17], namely,

X2−n
n ¼ g2ss c2−n

Yn
i¼1

Γð−ji − m̄iÞ
Γð1þ ji þmiÞ

Yn
i<j

jzi − zjj2βij

×

�Yn
i¼1

VαiðziÞ
�

L

; ð91Þ

which coincides with the formula conjectured in Ref. [9]
for the maximally violating correlator. This shows with a
particular working example how the prescription involving
two operators in the representation (27) and n − 2 operators
in the representation (36) also leads to the correct result on
the sphere topology, at least in the case of maximally
winding violating correlators, Δω ¼ 2 − n. Now, let us
move to the case of next-to-maximally winding violating
correlators.

B. Next-to-maximally winding violating amplitudes

The maximally winding violating correlators discussed
above correspond to the case p ¼ 1 in (50). Now, let us
consider the case p ¼ 2, which describes next-to-
maximally winding violating amplitudes, i.e. with
Δω ¼ 3 − n. According to the prescription described
before, this would be given by the correlator

X3−n
n ¼

�
Vω1

−1−j1;m1;m̄1
ðz1Þ

Yn−1
l¼2

~Vωl
jl;ml;m̄l

ðzlÞVωn
−1−jn;mn;m̄n

�
WZW

;

ð92Þ

which yields9Here we have absorbed an irrelevant factor.
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X3−n
n ¼ ð−1Þsg2ss Γð−sÞc3−n

Yn−1
l¼2

ð−1Þ−jl−mlΓð−jl − m̄lÞ
Γð1þ jlþmlÞ

Z Ys
r¼1

d2yr

�
γ−1−j1−m1ðz1Þ

Yn−1
l¼2

βjlþmlðzlÞ
Ys
r¼1

βðyrÞγ−1−jn−mnðznÞ
�

M¼0

×

�
e−

ffiffiffiffi
2

k−2

p
ðj1þ1Þϕðz1Þ

Yn−1
l¼2

e−
ffiffiffiffi
2

k−2

p
ðjlþk

2
ÞϕðzlÞ

Ys
r¼1

e−
ffiffiffiffi
2

k−2

p
ϕðyrÞe−

ffiffiffiffi
2

k−2

p
ðjnþ1ÞϕðznÞ

�
M¼0

×

�
ei

ffiffi
2
k

p
m1Xðz1Þ

Yn−1
l¼2

ei
ffiffi
2
k

p
ðml−k

2
ÞXðzlÞei

ffiffi
2
k

p
mnXðznÞ

��Yn
l¼1

ei
ffiffi
2
k

p
ðmlþk

2
ωlÞTðzlÞ

�
×H:c: ð93Þ

with

s ¼ −2 −
Xn
l¼1

jl −
k
2
ðn − 3Þ;

Xn
i¼1

mi ¼
Xn
i¼1

m̄i ¼
k
2
ðn − 3Þ;

Xn
i¼1

ωi ¼ 3 − n: ð94Þ

After Wick contraction of free-field propagators, the
integral representation of the correlator (100) yields

Γð−sÞð−1Þs
Yn
i¼1

Γð−ji −miÞ
Γðji þmi þ 1Þ

Yn
i<t

jzi − ztj2βij−4αiαj

×
Z Ys

r¼1

d2wr

Ys
r¼1

Yn
i¼1

jzi − wtj−4bαi
Ys
r<t

jwr − wtj−4b2 ;

ð95Þ

where, again, we have used the Wick contraction of the
ghost system and the variables (82) to express the final
result.
However, notice that (95) is not exactly what one

would naively expect from the Hþ
3 WZW-Liouville

correspondence formula (81). In addition, (81) includes
the insertion of one degenerate operator V− 1

2b
ðxÞ that

seems to be missing in (95). Such insertion would
generate an additional factor:

I ¼
Z

d2x
Ys
r¼1

jx − wrj2
Yn
i¼1

jzi − xj2jiþ2mi: ð96Þ

This does not mean that formula (95) is incorrect; in fact,
the case n ¼ 3 have been explicitly computed in [6,21]
and shown to reproduce, through a Melian transform, the
correct result [33,34]. What the lack of the extra insertion
in x actually means is that the form (95) does not suffice
to make the correspondence between Hþ

3 WZW and
Liouville correlators manifest. In order to solve this
inconvenience, one possible strategy would be trying
to solve the Selberg-type integral (96) by standard

techniques and see whether it produces the right depend-
ence on zi (i ¼ 1; 2;…n) and wr (r ¼ 1; 2;…s) needed
to reproduce (95). However, this is not efficient; there is a
more proactive strategy, which is trying to interpret the
Liouville degenerate insertions V− 1

2b
ðxÞ from the AdS3

world-sheet point of view. We will see that, in fact, the
Liouville degenerate fields can be thought of as part of a
dimension-(1, 1) field in the WZW theory.10 This will
allow us to give a general prescription for computing
winding violating correlators and eventually “exponen-
tiate” such operator. Let us see how it works: The first
observation is that, in (81), the Liouville degenerate
vertex comes with an accompanying factor:

Yn
i¼1

jzi − xj−kþ2miV− 1
2b
ðxÞ: ð97Þ

Besides, the OPE of the degenerate operator V− 1
2b
ðxÞ and

the other vertices gives

V− 1
2b
ðxÞVαiðziÞ ¼ e−

1ffiffi
2

p
b
φðxÞe

ffiffi
2

p
αiφðziÞ ≃ jzi − xj2αib ; ð98Þ

which, in particular, yields the following OPE with the
Liouville screening operator:

V− 1
2b
ðxÞVbðyrÞ ¼ e−

1ffiffi
2

p
b
φðxÞe

ffiffi
2

p
bφðyrÞ ≃ jx − yrj2: ð99Þ

These x-dependent factors indicate how to interpret the
insertion of an operator at x in the WZW theory side. If the
original question was how to realize such a contribution
from the string world-sheet point of view, the answer turns
out to be that (96) can be realized by the introduction of the
dimension-(1, 1) operator,

~V−2
1−k;k;kðxÞ ¼

1

c
βðxÞe

ffiffiffiffi
k−2
2

p
ϕðxÞei

ffiffi
k
2

p
XðxÞ × H:c:; ð100Þ

which, besides, exhibits the regular OPE:

J3ðzÞ ~V−2
1−k;k;kðxÞ≃Oð1Þ: ð101Þ

10A similar idea, in a different representation, has been
considered in Ref. [35].
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This is quite interesting as it permits us to understand
the presence of the Liouville fields (77) from the string
world-sheet point of view as a kind of a marginal
deformation. Furthermore, the insertion of operator
(100) happens to be consistent with the adequate charge
conjugation conditions

NβðX3−n
n Þ − NγðX3−n

n Þ ¼ Nβ̄ðX3−n
n Þ − N γ̄ðX3−n

n Þ ¼ 1;

ð102Þ

and with the total winding number

Xn
i¼1

ωi ¼ 3 − n: ð103Þ

In conclusion, the WZW correlator to be considered
to describe a next-to-maximally winding violating
process is

X3−n
n ¼

Z
d2x

�
Vω1

−1−j1;m1;m̄1
ðz1Þ ~V−2

1−k;k;kðxÞ

×
Yn−1
l¼2

~Vωl
jl;ml;m̄l

ðzlÞVωn
−1−jn;mnm̄n

ðznÞ
�

WZW

; ð104Þ

cf. (92). Taking into account (97)–(99), it is easy to
verify that correlator (104) actually realizes the Hþ

3

WZW-Liouville correspondence formula (81) in the case
Δω ¼ 3 − n. This already suggests a prescription to
compute winding violating amplitudes, which actually
refines the formalism of [7]. In this new version, instead
of inducing the violation of the winding number by
playing with the relative amount of operators (27) and
operators (36) in the correlator as in [7], we are
obtaining the same effect by inserting dimension-(1, 1)
operators in the world sheet. Roughly speaking, the role
played by operator ~V−2

1−k;k;kðxÞ in (104) is that of
reducing the winding number violation in one unit,
starting from the maximally violating case (86). In some
sense, this method is the inverse of the Fateev-
Zamolodchikov-Zamolodchikov prescription, reviewed
by Maldacena and Ooguri in [3], in which the insertion
of the dimension-(0, 0) “spectral flow operator” plays
the role of increasing the violation of the winding
number in one unit.

C. Next-to-next-to-maximally winding
violating amplitudes

Before going to the general case, let us test our
proposal and gain intuition by seeing how it works in
another special case: the next-to-next-to-maximally wind-
ing violating amplitude. According to the new prescrip-
tion we have just discussed, this would correspond to the
correlator

X4−n
n ¼

Z
d2x1

Z
d2x2

�
Vω1

−1−j1;m1;m̄1
ðz1Þ ~V−2

1−k;k;kðx1Þ

× ~V−2
1−k;k;kðx2Þ

Yn−1
l¼2

~Vωl
jl;ml;m̄l

ðzlÞ

×Vωn
−1−jn;mn;n̄n

ðznÞ
�

WZW
; ð105Þ

where two operators (100) have been introduced. The
charge compensation conditions in this case read

ðk − 2Þ −
Xn
i¼1

ji −
k
2
ðn − 2Þ − s ¼ 1; ð106Þ

together with

Xn
i¼1

mi ¼
Xn
i¼1

m̄i ¼
k
2
ðn − 4Þ; ð107Þ

and

Xn
i¼1

ωi ¼ 4 − n: ð108Þ

Using the variables (82), condition (106) can be
written as

Xn
i¼1

αi −
1

b
þ bs ¼ Q; ð109Þ

which exactly matches the Liouville relation (80) for
nþ 2 operators with αnþ1 ¼ αnþ2 ¼ −1=ð2bÞ. In addi-
tion, one observes that

~V−2
1−k;k;kðx1Þ ~V−2

1−k;k;kðx2Þ≃ jx1 − x2j2;

which exactly reproduces the contribution

jx1 − x2jkV− 1
2b
ðx1ÞV− 1

2b
ðx2Þ≃ jx1 − x2j2; ð110Þ

also present in the formula (81). Therefore, also in the
case jΔωj < n − 3, the correct expression for the WZW
correlators on the sphere is obtained from the Coulomb
gas realization,

Z Yd
a¼1

d2xa

Z Ys
r¼1

d2wr

�Y2
l¼1

Vωl
−1−jj;ml;m̄l

ðzlÞ
Yn
i¼3

~Vωi
ji;mi;m̄i

ðziÞ

×
Yd
a¼1

~V−2
1−k;k;kðxaÞ

Ys
r¼1

~V−1
1−k

2
;k
2
;k
2
ðwrÞ

�
M¼0

; ð111Þ

with d ¼ n − 2 − jΔωj and s ¼ P
n
i¼1 ji þ 1þ ðk=2Þ×

ðn − 2þ dÞ.
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This confirms that the presence of the dimension-(1, 1)
operator ~V−2

1−k;k;kðxÞ in the correlator controls the winding
number conservation. The question of whether the
introduction of a dimension-(1, 1) operator could be
behind the violation of the winding number was raised
in Ref. [36], where a no-go argument for the existence of
such operator was presented. The argument therein was
basically that, if such operator existed, then this would
lead to a violation of the winding number in an arbitrary
amount which in principle could violate the bound
jΔωj ≤ n − 2. The reason why here we managed to
circumvent this obstruction is the contribution (110) in
the integrand when computing the correlator. As
explained in [16], the accumulation of factors jxa−xbj2
in the integrand of the Dotsenko-Fateev-type formula
can eventually yield a vanishing result.11 This is what
happens, for instance, in sine-Liouville theory, where the
violation of the winding number is also bounded from
above, although it is precisely produced by the screening
operators of the theory [16].
Based on (111), we have all the ingredients to state the

general prescription. However, we will postpone this to
subsection VB, where we will present a more general case
that will be valid both for genus-zero (g ¼ 0) and for genus-
one (g ¼ 1) correlation functions.

V. GENUS-ONE AMPLITUDES IN AdS3

A. On winding number violation at genus-g

Before going into the discussion of the Coulomb gas
representation of genus-1 correlators, let us make a digres-
sion about the bound on the violation of the winding
number on a genus-g surface. The argument follows from
factorization of the g-loop process or, in other words, from
the seewing of the genus-g Riemann surface: An n-string
scattering amplitude at g loops is associated with a genus-g
n-puncture surface, which can always be decomposed in
3g − 3þ n tubes and 2g − 2þ n trinions. In principle, as it
happens in the sphere, in a genus-g amplitude with n
external states, the total winding number can be violated;
namely, there are in principle nonvanishing amplitudes
satisfying

Δω≡Xn
e¼1

ωe ≠ 0: ð112Þ

Then, the question is whether there is a natural upper
bound for jΔωj as a funcion of n and g. Factorizing
the n-string amplitude, and taking into account that for
g ¼ 0, n ¼ 3 one has jΔωj ≤ 1, one finds the bound
jΔωj ≤ n − 2þ 2g. To see this explicitly, consider

Δω ¼
Xn
e¼1

ωe ¼
X2g−2þn

V¼1

X3
l¼1

ωðVÞ
l ; ð113Þ

where the sum with index V in (113) runs over the

2g − 2þ n vertices (trinions) of the diagram, with ωðVÞ
l

being the winding number of the lth state ðl ¼ 1; 2; 3Þ
converging in the Vth trinion. This yields

jΔωj ≤
X2g−2þn

V¼1

����
X3
l¼1

ωðVÞ
l

���� ≤ 2g − 2þ n; ð114Þ

where we have used that on each trinion, i.e. on each 3-
puncture sphere, jΔωj ≤ 1. In particular, we conclude that
the natural bound for jΔωj in a one-loop n-string ampli-
tudes is jΔωj ≤ n. This is consistent with the result of [31],
which shows that the genus-g WZW correlation functions
that preserve the winding are described by ð2n − 2þ 2gÞ-
point Liouville correlators with n degenerate insertions.
It is natural to speculate that, as happens with the sphere,
removing a degenerate field from the dual Liouville genus-
g correlator would result in increasing the winding number
violation in 1 unit, and in principle one can iterate this
procedure ad nutum. Nevertheless, it is worth pointing out
that the upper bound (114) is kinematical and does not
mean that there are no stricter dynamical bounds in the
theory. For instance, one expects the winding number to be
conserved in the 2-point functions.

B. A general prescription

The n-string scattering amplitudes in AdS3 at g loops
is given by n-point correlation functions of the SLð2;RÞ
WZW theory on the genus-g surface. As discussed in
section IV, in a genus-g n-point function (with g ¼ 0, 1)
that involves nþ fields ~Vωi

ji;mi;m̄i
ðziÞ (with i ¼ 1; 2;…nþ),

n− ¼ n − nþ fields Vωl
−1−jl;ml;m̄l

ðzlÞ (with l ¼ nþ þ 1;

nþ þ 2;…n), and d fields ~V−2
1−k;k;kðxaÞ (with a ¼ 1;

2;…d), the amount of screening operators, s, is given by

−
Xn−
i¼1

ðji þ 1Þ −
Xnþ
l¼1

ðjl þ k=2Þ − sþ dðk=2 − 1Þ

¼ −ð1 − gÞ; ð115Þ

which, written this in terms of Liouville variables (82),
reads

Xn
i¼1

αi þ bs −
1

2b
ð2g − 2þ dþ n−Þ ¼ ð1 − gÞQ: ð116Þ

The integration over the zero mode of the fields XðzÞ and
TðzÞ, on the other hand, yields

11See subsection VD in comparison with the analysis carried
out in Ref. [16].
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Xn
i¼1

mi ¼
Xn
i¼1

m̄i ¼
k
2
ðnþ − dÞ;

Xn
i¼1

ωi ¼ d − nþ:

ð117Þ

Making contact with the formula (81) and its genus-1
generalization of Ref. [31], and demanding the amount of
degenerate fields in the Liouville correlator to match the
amount of operators ~V−2

1−k;k;kðxÞ in the WZW correlator, one
finds

n− ¼ 2 − 2g: ð118Þ

This means that the WZW correlators have to be defined
with nþ ¼ n − 2 and n− ¼ 2 at genus g ¼ 0, and with
nþ ¼ n and n− ¼ 0 at genus g ¼ 1. Then, at genus g ¼ 0,
the prescription is (111), which yields

XΔω
n ¼ c−Δω

Γðdþ 1Þ
Yn
i¼1

Γð−ji − m̄iÞ
Γðji þ 1þmiÞ

Yn
i<j

jzi − zjj2βij

×
Z Yd

a¼1

d2xa
Yd
a<b

jxa − xbjk
Yd
a¼1

Yn
i¼1

jxa − zij2mi−k

×

�Yn
i¼1

VαiðziÞ
Yd
a¼1

V− 1
2b
ðxaÞ

�
L

ð119Þ

with βij ¼ k − 2mi − 2mj − kωiωj − 2miωj − 2mjωi, d ¼
n − 2 − jΔωj, b−2 ¼ k − 2, αi ¼ bðji þ k=2Þ. By construc-
tion, this exactly matches (81). At genus-1, on the other
hand, the n-point function involves n fields ~Vωi

ji;mi;m̄i
ðziÞ and

d ¼ n − jΔωj fields ~V−2
1−k;k;kðxaÞ, and it is given by the

correlator12

Z Yn−jΔωj
a¼1

d2xa

Z Ys
r¼1

d2wr

�Yn
i¼1

~Vωi
ji;mi;m̄i

ðziÞ

×
Yn−jΔωj
a¼1

~V−2
1−k;k;kðxa; Þ

Ys
r¼1

~V−1
1−k

2
;k
2
;k
2
ðyrÞ

�
M¼0

; ð120Þ

with s ¼ −
P

n
i¼1 ji − jΔωjðk − 2Þ=2 − n.

In the next subsections, we will discuss the free-field
realization of (120) on the torus.

C. The theory on the torus

In order to extend out Coulomb gas formalism to the case
of one-loop amplitudes, it is necessary to formulate the
free-field theory on the genus-1 surface: Consider a genus-
1 surface of modular parameter τ ¼ τ1 þ iτ2, with τ1;2 ∈ R.

This is defined as C=Γ, with Γ being the lattice generated
by the operations

z → zþ 1; z → zþ τ: ð121Þ

When trying to define the theory (4) on the torus, one
could be tempted to impose the invariance of the fields
under (121); however, this is too restrictive. There are
twisted sectors in the theory that, while leaving (4)
invariant, are quasiperiodic in the fields [13]. These sectors
are defined by imposing the following conditions for the
fields on the lattice,

βðzþ pþ qτÞ ¼ e2πiqλβðzÞ;
γðzþ pþ qτÞ ¼ e−2πiqλγðzÞ; ð122Þ

together with

ϕðzþ pþ qτÞ ¼ ϕðzÞ − 2πq
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðk − 2Þ

p
ImðλÞ; ð123Þ

with ðq; pÞ ∈ Z2 and λ ∈ C being an arbitrary variable
with real part ReðλÞ ¼ ðλþ λ̄Þ=2 and imaginary part
ImðλÞ ¼ ðλ − λ̄Þ=ð2iÞ. Different values of λ describe
different twisted sectors of the theory.
On the torus, there is a unique nonconstant classical

solution of the equations of motion satisfying the above
boundary conditions [13,31]. This corresponds to β0 ¼
γ0 ¼ 0 and ϕ0ðzÞ¼2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðk−2Þp

ImðzÞImðλÞ=ImðτÞ. Then
it is convenient to decompose the field ϕðzÞ in its classical
part ϕ0ðzÞ and its fluctuations ϕðzÞ − ϕ0ðzÞ. While the
correlators will be computed in terms of operators evalu-
ated on the fluctuations, an overall factor gathering the
exponential fields evaluated on the classical solution could
appear; see [31].
As we will see, the relevant contribution in the genus-g

correlators will come from the exponential part of the
vertex operators. Then the main ingredient we need is the
Green function on the torus. This is given by

∂∂̄hϕðzÞϕðwÞi ¼ −2πδð2Þðz − wÞ þ 4π

ImðτÞ ; ð124Þ

where the δð2ÞðzÞ is the periodic Dirac δ function on C with
the required identifications; namely,

δð2ÞðzÞ ¼
X

ðp;qÞ∈Z2

δð2Þðz − p − qτÞ: ð125Þ

The second term on the right-hand side of (124) is the
background charge. It stands in the Poisson equation to
cancel the charge of the single particle on the compact
surface; it corresponds to a charge density uniformly
distributed over the volume of the torus, ImðτÞ.

12For short, we omit the b − c ghost contribution and other
factors that are not relevant for our discussion.
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The solution to (124) is given by

hϕðzÞϕðwÞi ¼ −2 log
���� θ1ðz − wjτÞ

∂θ1ð0jτÞ e−π
ðImðz−wÞÞ2

ImðτÞ

����
≡ −2 log χðz − wjτÞ; ð126Þ

where θ1 is the Jacobi function

θ1ðzjτÞ ¼ −
X
n∈Z

eiπðnþ1
2
Þ2τþ2πiðnþ1

2
Þðzþ1

2
Þ; ð127Þ

which satisfies

θ1ðzþ τjτÞ ¼ −e−πiτ−2πizθ1ðzjτÞ;
θ1ðzþ 1jτÞ ¼ −θ1ðzjτÞ: ð128Þ

From this, it is possible to verify that function

χðzjτÞ ¼ e−
πðImðzÞÞ2
ImðτÞ

���� θ1ðzjτÞ
∂θ1ð0jτÞ

����; ð129Þ

satisfies the required periodicity conditions,

χðzþ pþ qτjτÞ ¼ χðzjτÞ; ð130Þ

and has the appropriate short distance behavior, yielding a
logarithmic dependence when z≃ 0.
With correlator (126), we can expand (120) and write13

XΔω
n ¼ c−Δω

Γðdþ 1Þ
Yn

i¼2gþ1

Γð−ji − m̄iÞ
Γðji þ 1þmiÞ

×
Z Yd

a¼1

d2xa
Yd
a<b

χðxa − xbjτÞk
Yn
i<j

χðzi − zjjτÞ2βij

×
Yd
a¼1

Yn
i¼1

χðxa − zijτÞ2mi−k

×

�Yn
i¼1

VαiðziÞ
Yn−jΔωj
a¼1

V− 1
2b
ðxaÞ

�
L

ð131Þ

with d ¼ n − jΔωj. This follows from noticing that, at
g ¼ 1,

�Yn
i¼1

e−
ffiffiffiffi
2

k−2

p
ðjiþk

2
ÞϕðziÞ

Yd
a¼1

e
ffiffiffiffi
k−2
2

p
ϕðxaÞ

�
WZW

¼
�Yn

i¼1

VαiðziÞ
Yn−jΔωj
a¼1

V− 1
2b
ðxaÞ

�
L

; ð132Þ

An overall factor jdet ∂∂̄λj−1 also appears in (120). This
comes from the β, β̄ fields, and the subscript λ refers to the

determinant on twisted differentials. It has been shown in
[13] that, surprisingly, this determinant is associated with
the quotient between the genus-1 partition function of the
WZW theory and that of a free-field theory with a back-
ground charge. This has been used in [31] to work out a
genus-1 generalization of the Hþ

3 WZW-Liouville corre-
spondence and relate the corresponding partition functions.
The one-loop string amplitudes are then given by

integrating the genus-1 correlation functions over the
inserting points of the vertex operators. Formally, one has

A ¼ 1

Z

Z
F

d2τ
2ImðτÞ

Z Yn
i¼1

d2ziXΔω
n ×… ð133Þ

where the ellipses stand for the contribution of the internal
CFT. In (133), we are integrating over the n vertex
operators, which amounts to averaging over the inserting
points of the nth operator in order to cancel out the
volume of the CKG. On the torus, the latter corresponds
to the translations, and then it generates the measureR
d2znð2ImðτÞÞ−1. In string theory, one typically integrates

over the fundamental region F 0∶ ðjτj > 1;ReðτÞ < 1=2;
ImðτÞ > 0Þ, in order to avoid redundancies under the
PSLð2;ZÞ modular transformations. In Ref. [13] the
integration over the fundamental region was discussed in
relation to the twisted sectors of the Hþ

3 WZW model. In
Ref. [2], the discussion of [13] was reconsidered taking into
account the contribution of the spectrally flowed sectors,
and the string theory one-loop partition function was shown
to be modular invariant. We will not repeat these discus-
sions here; instead, we refer to Refs. [7,13] and Ref. [31].

D. Exponentiation

In conclusion, we have presented a Coulomb gas
representation of n-point correlation functions in the
SLð2;RÞ WZW model which is suitable to compute
three-level and one-loop scattering amplitudes of winding
string states in AdS3 space. This is a refined version of the
free-field formalism of Ref. [7], which has shown to
describe correctly the maximally winding violating proc-
esses [6,17]. Here, we have extended such formalism in two
directions: On the one hand, we have explained how to
compute the next-to-maximally winding violating process.
On the other hand, he have proposed a prescription to
extend the computation to the genus-1 Riemann surface. A
central role in such prescription is played by the dimension-
(1, 1) operator (100), which we have identified as the
object that controls the winding number conservation. This
follows from interpreting the degenerate fields that appear
in the Hþ

3 WZW-Liouville correspondence from the AdS3
world-sheet point of view. That is, our prescription follows
from writingWZW correlation functions as the convolution
of Liouville field theory correlation functions. This is
consistent with the exponentiation of the operator (100),13Here we are omitting irrelevant factors.
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which therefore can be thought of as a perturbation of the
action. Explicitly, the genus-g correlation functions (with
g ¼ 0, 1) result to be given by

Yn
i¼3−2g

cΓð−ji − m̄iÞ
Γð1þ ji þmiÞ

�
exp

�Z
~V−2
1−k;k;kðxÞd2x

�

×
Y2−2g
l¼1

Vωl
−1−jl;ml;m̄l

ðzlÞ
Yn

i¼3−2g

~Vωi
ji;mi;m̄i

ðziÞ
�

WZW

; ð134Þ

where the different terms in the expansion of the perturba-
tion describe process with different total winding number.
It isworth noticing that, in addition to operator ~V−2

1−k;k;kðxÞ,
in (134) one can consider its complex conjugate,

ΛðxÞ ¼ c−1=2βðxÞe
ffiffiffiffi
k−2
2

p
ϕðxÞe−i

ffiffi
k
2

p
XðxÞ × H:c:; ð135Þ

which is also a dimension-(1, 1) operator with regular OPE
with the currents J3ðzÞ, J̄3ðz̄Þ. In contrast to ~V−2

1−k;k;kðxÞ,ΛðxÞ
does not belong neither to representation (27) nor (36).
Nevertheless, being the complex conjugate to (100), it can be
added to the action in order to compose the real interaction
term:

2

c

Z
d2xββ̄e

ffiffiffiffi
k−2
2

p
ϕ cos ð

ffiffiffiffiffiffiffiffi
k=2

p
XÞ: ð136Þ

This interaction term has evident resemblance to the
interaction term in the sine-Liouville theory, which has
been conjectured to be T-dual to the SLð2;RÞ=Uð1ÞWZW
theory [15,37]. It is possible to argue that this is more than
a reminiscence: The presence of operator (136) in the
action together with the possibility of neutralizing
the contribution of the β-γ system by resorting to the
conjugate representation (36), leads to the realization of

sine-Liouville correlators if one identify the exponential
part of operators as ~Vω

j;m;m̄ ↔ ~Vωþ1
−j−k

2
;m−k

2
;m̄−k

2

. To see this

explicitly, notice that in the expansion of the exponential
of the interaction term (136), the contribution with dþ
operators (100) and d− operators (135) yields the charge
conservation conditions,

Xn
i¼1

ji þ
k
2
nþ s −

ðk − 2Þ
2

ðdþ þ d−Þ ¼ 1 − g; ð137Þ

together with

Xn
i¼1

mi ¼
k
2
ðn − dþ þ d−Þ;

Xn
i¼1

ωi ¼ nþ dþ − d−;

ð138Þ

which exactly parallels the realization of sine-Liouville
correlation functions [16,38] after making ðj; m; m̄;ωÞ →
ð−j − k=2; m − k=2; m̄ − k=2;ωþ 1Þ. It would be interest-
ing to further explore this in connection with the Fateev-
Zamolodchikov-Zamolodchikov conjecture, cf. [35,37].
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