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Linear stability of noncommutative spectral geometry
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We consider the spectral action within the context of a four-dimensional manifold with torsion and show
that, in the vacuum case, the equations of motion reduce to Einstein’s equations, securing the linear stability
of the theory. To subsequently investigate the nonvacuum case, we consider the spectral action of an almost
commutative torsion geometry and show that the Hamiltonian is bounded from below, a result which

guarantees the linear stability of the theory.
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I. INTRODUCTION

Consider the gravitational action

Sloal = [ Vi(R+ER-alel)ats ()

where A denotes the cosmological constant, k> = 162G, a;
is a positive constant, and ||C||? = o Cyy e 1s the Weyl
invariant. This action, Eq. (1), belongs to a family of
higher-derivative theories, since it contains a fourth-order
derivative of the metric tensor, g,,, namely (8°g)*. The
presence of this higher-derivative term may give rise to an
unbounded (from below) Hamiltonian, implying the onset
of a classical instability [1-3]. Gravitational theories with
curvature invariants, as for instance shown in the action
(1) above, belong to the class of nondegenerate higher-
derivative theories plagued by the Ostrogradski instability
(linear instability). Such theories can appear naturally in the
context of fundamental theories, as for instance within one-
loop corrections of quantum theories on a curved back-
ground, or within the spectral action of almost commutative
geometry. Despite the fact that theories with higher-
derivative terms may be pathological, they may instead
improve the ultraviolet convergence of the graviton propa-
gator within a linearized theory, rendering the theory
power-counting renormalizable [1].

The linear instability of a higher-derivative nondegen-
erate theory may be removed, if one assumes the action as
an effective one [4—6] and imposes appropriate constraints
leading to a reduction of the trajectories of the degrees of
freedom, hence rendering the effective Hamiltonian
bounded from below. In this approach, a necessary but
not sufficient condition in order to remove the instability, is
that the imposed constraints must be such that they reduce
the dimensionality of the original phase space [3]. A
different approach has been suggested in Ref. [7], where
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one generalizes a higher-derivative theory into an SO(4, 2)
gauge theory, and then derives conditions such that the
equations of motion reduce, in some basis, to the vacuum
Einstein’s equations. As has been shown [7], varying all of
the connection fields, and not only the metric, Weyl gravity
transforms from a fourth-order theory into a theory of
conformal equivalence classes of solutions to general
relativity, under the requirement that torsion vanishes. In
what follows, we show the linear stability of the spectral
action for a four-dimensional manifold with torsion and in
the absence of any matter fields, adapting the approach
proposed in Ref. [7]. We subsequently extend this approach
in the nonvacuum case.

This paper is organized as follows: In Sec. II, we briefly
introduce [8—11] the concept of spectral geometry and
spectral action. In Sec. III, we review the approach
discussed in Ref. [7], and apply it to the fourth-order
gravitational theory described by the action (1). We show
that such theory does not suffer from linear instability. In
Sec. IV, we consider the spectral action of an almost
commutative torsion geometry and show that the obtained
Hamiltonian is bounded from below, hence the theory does
not suffer from linear instability even in the nonvacuum
case. We round up our conclusions in Sec. V.

II. ELEMENTS OF THE SPECTRAL ACTION

Consider a compact four-dimensional Riemannian spin
manifold M and a spinor bundle S — M. The set of smooth,
infinitely differentiable functions C* (M) forms an algebra
A under pointwise multiplication. This algebra acts on
the Hilbert space of square-integrable spinors on M,
H = L*(M, S), as multiplication operators. Then consider
the Dirac operator D, given in terms of the spin Levi-Civita
connection V5 and the Dirac gamma matrices y* as
—iy”Vﬁ. The compact Riemannian spin manifold M is
fully described [12] by the canonical spectral triple
(A, H,D). Hence, spectral data can characterize the geom-
etry of ordinary Riemannian manifolds, in the sense that the
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canonical spectral triple (A, H, D) encodes the spacetime
structure.

Let us extend the spectral triple approach for non-
commutative manifolds. Conside the finite C* algebra

Ap=CO®H® M,(C), (2)

together with a finite-dimensional Hilbert space Hy and a
self-adjoint operator Dy. The spectral triple (Ap, Hp, Df)
can be identified with a finite space of points F. Although
the finite spectral triple by itself gives an uninteresting
structure, its product with the canonical spectral triple,
namely

(C®(M) ® Ap, L*(M,S) ® Hp, ¥ @ ldr +7° ® Dp),
3)

yields a nontrivial noncommutative structure [10]. The
spectral triple (3) is called the almost commutative spectral
triple. The canonical triple encodes the spacetime structure,
while the finite spectral triple encodes the internal degrees
of freedom at each point of the four-dimensional spacetime.
The particle physics model one has in mind is encoded in
the finite-dimensional Hilbert space H. In the case of the
Standard Model, the generalized Dirac operator acting on
the Hilbert space H = L*>(M, S) ® H contains the Higgs
boson, Yukawa couplings, and neutrino masses, as well as
the Cabibbo-Kobayashi-Maskawa matrix.

The dynamics are given by a spectral action that sums up
all frequencies of vibration of space. The spectral action is
defined as the heat kernel trace of the operator D:

S = Tr,2f(D?*/\?), (4)

where f is a positive cutoff function and A a cutoff scale.
For the canonical spectral triple, the spectral action reads

(S na . S2 yopn SO 0\ 4
s / lgl(z;ﬂA T MR e 117 )4

+ O(A7?), (5)

where

fak = [) Tl f0dy,  0<k<4.  (6)

Note that the action (5) is of the same form as the action (1),
which is a higher-derivative gravitational theory. In the case
of the almost commutative spectral triple, the spectral
action reads [6,10]
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S NCIE + 2 F P+ W,
, 1 1 2af,\? — ef(0)
i /w,z_VIH2__RH2_ H2
+ GG S V=15 a(0)
S T O(A™2) (7)
2a’f(0) ’

where the action of V' on the Higgs field is defined as
\Vi 1. a,a 1.
WH=0,H +5192Wﬂ0' H —EzglA”H, (8)

and the constants a, b, ¢, d and e are derived from Yukawa
mass matrices. The gauge fields A,, W, and G, belong to
the Lie algebra of the symmetry groups Uy (1), SU(2) and
SU(3), respectively.

III. FOURTH-ORDER WEYL GRAVITY

Consider the higher-derivative theory
S — /QAB/\*QBA, (9)

where Q4 stands for the SO(4, 2) curvature two-form. As
has been shown in Ref. [7], varying the above action with
respect to the connection, the higher-order equations of
motion can be reduced, in the absence of torsion, to the
vacuum second-order Einstein equations. The solutions are
conformal equivalence metrics of Ricci-flat spacetimes.
Following this approach for the generalized spectral action
which is invariant under a smaller symmetry group, i.e.
local Poincaré symmetry, we will show that in the absence
of torsion, the equations of motion combined with the
Bianchi identity lead to an integrability condition that
implies the reduction to the second-order Einstein
equations.

To generalize the action in Eq. (5) into a gauge theory
with a Poincaré symmetry, one needs to equip a manifold
with a tetrad e;’,

Guv = nabezefv (10)
and a spin connection wi” € 80(1,3), satisfying
Dyef =0 ef — Ty eq + wje.ep =0, (11)

where latin characters denote flat spacetime indices, D, is
the covariant derivative, and Iy, is an affine connection.
The curvature two-form of the spin connection, defined by

b._ b b b b
R, = 0,0)" — 0,05 + 0w’ — &f .0y, (12)
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is independent of the tetrad basis. In general, the spin
connection is not necessarily torsion free. In fact, the
curvature two-form (12) contains a torsion and its deriva-
tive. This can be shown by contracting Eq. (11) with e**:

it = ele™TY, + €40, e’

= e“e”*b(l“? +Tt,,)) +€2d, ev?
_ b1 v a b a ,o,bTv
= (ele” Il + e]0,e"") + eje I
= (ed e””rv >+e,‘ja”e”’b) +ele?T, . (13)
where T,° := F’[“ﬂ ] is the torsion tensor. The subscript
notation “()” denotes symmetrization, FZm) = % (e +T5,);
and “[]” denotes antisymmetrization, I = T(u, —T%,).
Defining
W, = eﬁe"*bl—"(w) + efd, e, (14)

we note that @’ is torsion free and the curvature (12) can be
rewritten as

—-TaT cb’

veltp

(15)

R Dab — R;,u?b + vﬂTUab

b ch
12 - vaﬂa + Tﬂach'

where V is a covariant derivative acting on a tensor v,“ as

V,v,* =0, (16)

_ T a /a ,.c
F(uv) Vg + @'y g,

and R,/ ab s the curvature two-form of the torsion-free spin
connection w/’?, defined by

/ab ,_ rab lab la . Ich la . Jab
R,[” = 0,0 — 0,0," + ww,” — wfw;”.

(17)
Denoting by 7 the set of all torsion fields, we consider a
particular subset 7 C 7, so that the torsion fields 7% €
T r satisfy the following properties:
(1) T, is antisymmetric in the a, b indices, and hence
Eq (13) implies that @), @b is also antisymmetric in a,
b, leading to metric compatlblhty, and w), b is just
the Levi-Civita connection. The reason for choosing
totally antisymmetric torsion fields is the following:
The general connection on the tangent bundle of a
manifold is compatible with the Riemannian metric
and has the same geodesics as the Levi-Civita
connection if and only if the connection is the
sum of the Levi-Civita connection and a totally
antisymmetric tensor field [13]; thus, the torsion
field is totally antisymmetric.
(2) T, vyields the curvature tensor with the same
symmetric properties as the Riemmanian curvature
tensor, i.e.
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R —R,,,, =R (18)

(19)

uvep — vucp vupo

R =R

Hvop opuvs

where R,,,, = R,,"’¢, .¢,,. Note that (18) holds
for all torsion fields Tﬂ“” € 7, while (19) is only
valid for TM“" € T . With the above properties of
the torsion fields, the Gauss-Bonnet action takes the
form we are familiar with in Riemannian geometry,
namely

1
877,'2/ \% |g|(R;wahR”yab - 4R;4aRMa + Rz)d4x
(20)

We note that the above action (20) is not valid for the
more general class of torsions studied in Ref. [14].
Let us also define a traceless tensor C ﬂy“b as

1
C/u/ab = leab — (6,[:1Rb] - e,[, R ]) + 3R€L ey]a

(21)
where R, := R#U"be’j7 and R := R,“e;. We can thus gen-
eralize the spectral action Eq. (5) as follows:

ab el(; eb

1
Sgr[eﬂ,a)“b] = /e(a2A4 +—=R,
K

- aOCW“bC”’“ab) d*x, (22)

|det(ege,,)| = V/|gl. For a
torsion field Tﬂ“" € T g, it can be shown that the linearized
theory obtained from the action (22) is equivalent to the one
derived by the spectral action with torsion [14,15] (see
Appendix B). Hence, the action (22) is linearly stable if and
only if the spectral action with torsion is linearly stable.

Let us now derive the equations of motion obtained
from the generalized action (22). The variation of the spin
connection and the tetrad give, respectively,

where e is defined as e :=

1 1
D,C" _ETﬂyacﬂaab - poye 2Tﬂ”aeae‘g, (23)
1
R, zg/w = 2qK? 0, + azA Guw» (24)
where 0, := C,,""C,% s — 5 9 C C* 4. To recover

Einstein’s equatlons from Eq. (24), we need first to set
the torsion equal to zero, so that the connection becomes
the Levi-Civita one. Thus,

v,C" ., =0, (25)
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2
R, — %gﬂ,,R’ = 200x*@,, + %a2A4gﬂb, (26)
where @), :=0,,|r_y. Since ©,, becomes the energy-
momentum tensor of the Weyl curvature, and therefore
vanishes identically in four dimensions [16], we recover
Einstein’s equations with a cosmological constant.

The vanishing divergence of the Weyl curvature,
Eq. (25), leads to the integrability condition once combined
with the trace of the Bianchi identity:

vﬂclﬂbpﬁ + (vnS;/) - V/JSI/J()') = O? (27)

where S}, = 1 (R, — £ 9, R’) denotes the Schouten tensor.
In the basis ey, we get

VS, =V,S8,,=0, (28)

which, however, is not the well-known integrability con-
dition. To get the familiar expression [17] we introduce a
new basis ef > &% := efed, where &(x) is a real-value
function. Note that the Bianchi identity holds in this new
basis, but the covariant derivative of the Weyl tensor

transforms as

6/46/”1400. = e‘z’f(V,,C/”,,pg - 6;4§C/ﬂppa)' (29)

To get the integrability condition, we consider Eq. (27) in
the basis e;; and use Eq. (29) and the field equation (25) to
obtain

0=V,C",,+(V,S,-V,5,)
= e %(V,C¥,0 — 0,6CY ) + (V,5,, - V,8,,)
= —(0,8)e % C",,, + (V,8,, - V,8.,)
= —(0,8)C" s + V,8,, =V, .. (30)

where we have used that e¢C",,, = C*,,,. Hence, the
original manifold is conformally equivalent to a Ricci flat

manifold. In other words, there exists a basis e, := ecéﬁ,
equal to 24 = e*ed such that
S/'“, =0, (31)

leading to a vanishing Ricci tensor, IA?I’W = 0. Therefore, the
equation of motion (25) is conformally equivalent to the
vacuum Einstein equations, and the theory is not plagued
by a linear instability. Defining j := & + {, the Schouten
tensor reads

Siw =S = Vu0.Z + 0,707 = 59u,0%0at,  (32)

and Eq. (31) is compatible with Eq. (26), provided that the
scalar field j satisfies
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V.02~ 0,202 - g (Va7 + 30707
1
= ZK202A49,M- (33)

In conclusion, considering the variation of the full con-
nection, the higher-order differential equations reduce to
Einstein’s equations obtained from either Eq. (25) or
from Eq. (26).

IV. HAMILTONIAN ANALYSIS OF THE THEORY
INTERACTING WITH MATTER FIELDS

Let us now assume that the gravitational action is defined
in a four-dimensional globally hyperbolic manifold, of the
structure R x X, where X is a Cauchy surface; i.e. any curve
parametrized by r €& R intersects X only once [18].
Consequently, if one picks the time direction along a
normal vector on a Cauchy surface, there is no closed
timelike curve in the manifold. More importantly, the
existence of a Cauchy surface at any instant of time allows
us to define the Poisson bracket, which is important for
setting the Hamiltonian formalism.

Global hyperbolicity also allows us to choose a coor-
dinate system {#,x'} such that the spatial coordinates are
orthogonal to the time coordinate, i.e. g; = 0. Let us
choose a flat spacetime basis {e°, e/} with I € {1,2,3},
such that the time direction is preserved:

e’ =e%r and el = eldx'. (34)

In the previous section we have avoided the linear insta-
bility by conformally reducing the equations of motion (25)
to the vacuum Einstein equations. The same method can be
extended to the nonvacuum case as long as L, 1S NOt a
function of the spin connection, as for instance for the
Lagrangian of a gauge field. Note, however, that there
are matter fields whose Lagrangian depends on the spin
connection, as for example

1 1
Ly = 3 |V, H|* - ERH2 —W?H? +H*,  (35)
L, = iy(eay"D, — my, (36)

where V), H=0,H+[B,,H| and D,y = (9, + ;0% Z )y,
for .4 =3 (Ya¥p — ¥p7a)- Such Lagrangians lead to the
equations of motion

5[: matter

yny —
vﬂC” ab — S
@, T=0

£0. (37)

In such a case one cannot get the integrability condition
using the same trick as previously, and hence one cannot
argue the cure of the linear instability following the
approach of Sec. II. To show that there is no instability,
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we will check directly that the Hamiltonian is bounded
from below.

Without loss of generality, let us turn off the gauge fields
and the cosmological constant, since they do not depend on
the spin connection. By adding the Higgs field and a
massive fermionic field into the action (22), we get

Sgr[eZv a)fb] + SH,l//

1
= /d4xe< 2RW“ ey — agC, "0 C" —l—EHJ,,).

(38)
The canonical momenta are
5 2 H? p
g = —4ayC? 4 + (g <5 /¢ [/{1]7 (39)
ph=0, pr=0, (40)

where n:f - Po and p stand for the canonical momenta of
a)ﬁCd, ) and e!, respectively. Notice that the map ﬂ/, —
a,w/“,b is not invertible for an arbitrary choice of the spin
connection; therefore, the Hamiltonian is not well defined.
To construct a well-defined Hamiltonian, let us consider a
subset of spin connections such that each element can be
decomposed into @, = Q% + @,*" and the following
two conditions are satisfied:

W =0,0%-0,0,%+0, Q-0
(41)

(i1) ac b ~oac by H v
Q@ + @, Q) )e,eq = 0. (42)

We will call (i) and (ii) the “splitting conditions,” since
they make the scalar curvature independent of Qﬂ“b . To see
this, we rewrite the curvature R = R ab gk ov ;, in terms of
and @. Thus,

— aﬂgyah _ abgﬂah + ancgyd) _ Qyucgﬂcb
+ aﬂd)yuh _ ay&)ﬂuh + Cb a bech _ Cbbaca)ﬂch
- 2(Q[ﬂaca)v[])c + &)[ﬂmglf]}c) (43)

Assuming the validity of the conditions (i) and (ii) above,
the scalar curvature reads

R=R, ”be"ez
— C (aﬂd)yab _ aud)ﬂab + &) a &)UCb
2(Q,“@ l]" + a)[ﬂ“CQD’]’( )ehey,

cb ~ (‘b) H v

eaeb

- C’bya(d}ﬂch)

= (9,

Taat’

ehel —

~ ab ~ a7
- 0,0, + @, @, — 0, @,

PHYSICAL REVIEW D 93, 064034 (2016)

Note that the considered subset of spin connections is not
empty, since it contains connections of all conformal Ricci
flat geometry. Moreover, the splitting conditions hold
automatically in the linearized theory. To prove this state-
ment, let i, denote the metric perturbation. The condition
(ii) is clearly satisfied, since Q, @, cb eqely is of order
higher than O(h?). For condition (i), one chooses the
transverse traceless metric perturbation I_a,w which satisfies
the Laplace equation

Uh,, =0, (45)

Hv

where [] denotes the flat-space d’Alembertian. The Weyl
tensor is

1 - _
Cuvop = > (0,0,h,, + 0,0,h,, — O 8D o — 050, h, o)
= ’7,4,1801:1/},) - nﬂ/{apf%m (46)
where T7,:=1 (ayhpﬂ + d,h,, — d,h,,). Then, using

the definition of the spin connectlon, one can rewrite the
Weyl tensor in terms of the derivative of Q,‘jb, and therefore
the condition (i) is satisfied.

Defining

oL oL
Hf i=———— and ﬁ‘f =
T 00,25 < 00,m5)

(47)

where L is the Lagrangian density of the action (38), and
assuming the splitting conditions, one can then show that

Hfd = —40‘0Ctﬂ cd> (48)

- H?
Tog = 2(; ) el (49)

From the definition of the canonical momentum, we get
the constraints II’ , = 0 and 7!, = 0, which are primary
first-class constraints and can be solved using the gauge-
fixing conditions Q,*” =0, ¢/ D;Q;*> = 0 and @,** = 0,
¢D;@;* = 0. The remaining constraints

¢y =po =0, (50)

¢} = p; =0, (51)

¢, = H’de =0, (52)

@l = Hcdeo 40yCY g = 0, (53)

. » 1 H? .
L=#y=2(a=T5 ) =0 (9
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are primary second-class constraints, and are also obtained
from the definition of the canonical momentum. (We refer
the reader to Ref. [19] for more details on a constrained
Hamiltonian system.)

In what follows, let P, Q stand for the canonical
variables and the symbol “~” denote the equality holding
on the surface spanned by all constraints, called the
“constraint surface” for short. Imposing all constraints,
the Hamiltonian reads

H:PIGQI—
=11 ;0,9 + 71 0,05 +paeﬂ+pHH+p.,,l// L

1
~ _STCOHIMHM + agCY .4 C;°

1 H?
- (F—E>R Cdelecli + HH,I//

1 . .
=L + aCY Y
400
I _. .
- |:8—a0 H}JH{J - 2a0C1101Cij01:|

1 H?
cd
_(F_§>R» elel +Hy,

1
N_—l—Il ]HO +a0CU]JC

4ag
1 H?
- (=5 Rurteel + M (59)

where py and p,, are the canonical momenta of the scalar
field and the fermion field, respectively. Note that the term
[ﬁl’[} I =20y Cli;C;;"] vanishes due to the symmetry
(19) of the curvature tensor.
Denote the set of second-class primary constraints by
A= {ph, P, P, o, ¢’} and define a new Hamiltonian
density as

Huop 1= H + 1, P2, (56)

where u, are Lagrange multipliers. All constraints need to
satisfy the consistency condition

0% & = (@4 ). (57)

where Hy, = [ Hoed®x on some equal time surface X,.
By imposing the consistency condition on the constraints

be, L, Pt and @i, one obtains the secondary constraint (the
full details can be found in Appendix C)

1
= 2o — 0§11 + 200 C;; ' CY  + iy (y' e} Dy — 2myy)

—2u*H?* + 2)H*
=0. (58)
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Using the constraint (58), the Hamiltonian reads

ijilk [ 1 7 i
H~2a,C C,»ﬂk—izyfy e;Dy — 212 R;; e,eJ

1 |
+ zgnl?%/ - EgljaiHTajH

~ He + Her, (59)

where H 2 and Hgr are defined, respectively, as

iy 1 )
Heo i=200CT*C iy — Eiq‘/y’e’,Diw, (60)

Her =—

1 H? | 1 .
<p - E) R;Y eje) + Eg”p%" - Egl]aiHTajH-

(61)
Itis easy to show that H - is bounded from below, since the
first term is positive definite and the second one is
proportional to the Hamiltonian of a massless fermion.
To show that Hgg is also bounded from below, let us
recall the gauge-fixing condition @,*” = 0, which implies

T,“* = 0, since torsion is independent of the Levi-Civita
spin connection. Using Eq. (15), we deduce that

R 0ol __ R! 07 + v T 0/ V[Tt 07 + TtOJTi JI _ TiOJTt JI

— RIOI (62)

ti

while for T”“b € Ty, the scalar curvature obtained by
contracting Eq. (15) reads

R=R—|T| (63)
Hence,

12 0 1 i
R;; elej R—2R," e e;

=R —||T|>-2R,ele}
= (R =2R,% elel) — (3T T, + T (T X eie))

—R’”e,ej T/ (T X ete], (64)

which implies that Hgg can be rewritten as

1 H? 1 1
Heor ~ —<?——>R/”e,ej + = 9upy ——9’18 H'0,H

12 2
1 H? o
+ <F_ 12>T kT5 ejel, (65)

with a prime ' referring to torsion-free quantities.

Assuming the Higgs field does not exceed the Planck
mass, i.e. H> < 12/k?, and noting that for the metric of
signature (+,—,—, —),

064034-6
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T; jkTU k= gilgj mgk" T, Jjk Tinn

3
= Z 99" T iy <0, (66)
k=1

one concludes that the last term on the rhs of Eq. (65),
which can be written as (K—lz—lf—;)T,-jkTUk, is negative
definite, and therefore unbounded from below. In contrast,
the first two terms on the rhs of Eq. (65) are just the
canonical Hamiltonian of the Palatini action in the presence
of a scalar field interaction term [20], leading to the
classical dynamics of the Einstein-Hilbert action in the
presence of the scalar field. We hence conclude that Hj, is
bounded from below if and only if torsion vanishes.
Finally, let us check whether the result agrees with
Sec. II. In the vacuum case, the constraint (58) becomes

1 ..
X = 2—%H]61H21 + Zaocijlkcl][k =0. (67)

Since II§,I1Y’ and C;;/*C) are positive definite, the
constraint (67) implies that both terms have to vanish,
and hence the Hamiltonian reads

1 .
H~ HGR ~ —pRideEZ‘eii. (68)

Hence, the Hamiltonian does not depend on the Weyl
tensor, in agreement with the fact that the vacuum case
reduces to Einstein gravity. Clearly, then, this Hamiltonian
will give the same dynamics as Einstein’s equations in
vacuum.

The above analysis can be easily applied in the spectral
action. In the simple vacuum case and considering a torsion
field T”“b € T g, the third-order differential equations can
be reduced to the second-order Einstein equations.
Therefore, in this case the theory does not suffer from a
linear instability. In the case of an almost commutative
torsion geometry and considering only matter fields whose
Lagrangians do not depend on the spin connection, one can
still guarantee the stability of the theory employing the
method discussed in Sec. II. Moreover, if fermions and
conformal invariant scalar fields are present, the linear
stability will still hold, provided that the splitting con-
ditions (41) and (42) are satisfied.

V. CONCLUSIONS

Noncommutative spectral geometry is a theoretical
framework that can offer a purely geometric explanation
for the Standard Model of particle physics. The gravitational
sector of the theory has terms beyond the Einstein-Hilbert
action, and in particular it contains higher-derivative
terms. Hence, one may wonder whether this gravitational
theory may be plagued by linear instabilities, namely the

PHYSICAL REVIEW D 93, 064034 (2016)

appearance of negative energy modes. We have addressed
this question here in two steps.

We have first considered the simple vacuum case and
shown that by introducing a particular type of torsion, one
can apply the method presented in Ref. [7] and reduce the
fourth-order differential equations into those of second
order derived from vacuum general relativity, if and only if
the torsion field vanishes. We have then considered the
spectral action of an almost commutative torsion geometry.
For this latter case we have shown that one cannot obtain
the integrability condition in the presence of either fermion
fields or scalar fields. We have, however, argued that there
exists a class of almost commutative torsion geometry that
leads to a Hamiltonian which is bounded from below, and
hence argued that the theory does not suffer from a local
instability.
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APPENDIX A: SPIN CONNECTION

The covariant derivative of a spinor y or a tensor V¢ can

be expressed through the spin connection co,‘jb as

D,Vi=0,Vy =T}, Ve + a)ﬂ“be, (A1)

1
Dyl// = aul// +-o abzabw’ (A2)

4 H

respectively, where 2., =1 (y,75 — 757,) and I}, stands
for the affine connection defined as

T

v — eu,beijzwﬁb - ev,bauemb' (A3)
The latter, Eq. (A3), can be rewritten as D,e; = 0, dubbed
as the tetrad postulate. Note that the validity of the tetrad
postulate does not require us to assume

(1) Metric compatibility: @@ + wb® = 0.

(2) Torsion-free: Fﬁw] =0.
If the spin connection is metric compatible, then one
can decompose the curvature two-form into an
irreducible representation of an orthogonal group as
follows:

a a 1 a
R = Cout® + (el'RY) = R _§ReL (a4

where R4 = R,,*’e} and R = R, "¢}, Hence, in the
coordinate basis, one has
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— ab
R/wpa - R/w ea,peb,a

= Cﬂyahea,peb,a + (el[laRll/’] - el[/aRz])ea,peb,o-

I
- gRe,[, ef]ea!peb.l7

1
= C/wpa + (gu[pRa]u - gu[pRO'],u) - gRgu[pgzr]u (AS)

Assuming also that the spin connection is torsion free, one
concludes that C,,,,, R, and R become the Weyl tensor,
the Ricci tensor and the Ricci scalar, respectively.

APPENDIX B: EQUIVALENT
LINEARIZED ACTIONS

We will show that the linearized theories obtained from
the action (22) and the spectral action with torsion [14] are
equivalent. First, let us write down the spectral action with
torsion, which we will denote by Stg. For a torsion tensor

T s € Tg, we have by definition that

1
”(j”2 = ”R/wpallz - 2”R/u/” + §R2

PHYSICAL REVIEW D 93, 064034 (2016)
0= Ryupo = Roge = (1,10 = 2(V, T+ VT ).
(B1)
and

0=R, — Ry =" Rupo — Roow) = 2V,1°,,. (B2)

Hvpoe /m"pw)

Hence, the spectral action (modulo the Euler characteristic
number) is reduced to

Sts ~ fal*ag(D?) + f,A%ay(D*) + f(0)ay(D?)
1
~ / Vgld*x <02A4 +F(R/ —ITII?) - 0!0||C/||2)-

(B3)

Note that the torsion tensor 7, = 3TW,, where T,M
denotes the torsion defined in Ref. [14]. To compare S,
with Stq, we will write explicitly the torsion terms which

are contained in Sg,. Consider the square of the traceless
tensor C,,*" defined in Eq. (A4):

1 1 1 1 1
= (IR}l + 1 ld71* - gR’IITII2 +4B(T) +3 I7N* - 2<”R;/w“ t3 Ir* - ER’IITII2 + 2B(T)>

1
3 (R =2RITI +|IT)

1
= I + 5 4TI,

(B4)

where B(T) := —R,, T#*’T",, + 1R'||T||* and the curvature scalar R is R = R’ — ||T||>. Substituting ||C||* and R in the

action (22), we get

1 1
Sgr = / Vgl [02A4 + p(R/ = ITI1*) = a (”C/“2 3 ||dT||2>] d*x. (BS)
Using Eq. (B1), we rewrite ||dT||* as
4T \I* = (dT),,,,(dT )™
= A=V, Ty + ¥, T )(—VHTH0 1 G TH07)
— 16V, 7,,, VAT
= 16V (T"V, T,,,) — 16T°ViV T, ,
— 16VH (T, T,,,) + 16T%°V ViT,,, — 16T°[V* V,]T,,,
1
— 16VH(T"°V,T,,) — 327" <R’zm - 55’;R;,a> T, (B6)

Note that to obtain the last line, we have used the fact that the divergent of a torsion field vanishes [Eq. (B2)] and the

identity
[Vﬂ ’ VU] Vpaa =

Thus, on a boundaryless manifold, the action S, reads

R;tvp g Vjoa + RLW g Vopa + RI/‘”“ g Vpop-

(B7)
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1 1
Sgr = / \% |g| |:a2A4 + p (R/ - ”T”2) - aOllclllz]d4x + 2/ \% |g|TD/m <R/%6a - E%R;m) Ta;u/d4x

1
= SST + 2/ \/l—g_|Tvp0 (R/me - §5£R2a> T“m,d“x.

Since the terms in the integrand appearing on the rhs of
Eq. (B8) are of order O(w?), they can be discarded in the
linearized theory. Thus, the actions S, and Syg lead to
theories which are equivalent in linear order (similar
calculation can show that the spectral action given by
Ref. [15] yields the same linearized theory as the action Sy,
and Stg).

APPENDIX C: SOLVING THE CONSTRAINTS

For a constrained Hamiltonian system, the time evolu-
tion of any phase-space function f(P(x), Q(x)) is defined
by the Poisson bracket of f with the Hamiltonian:

{f(x)a Htot} = /d3y{f(x), eHIOt(y)}x():yU
e /d3yd3z<8f(x) &H—lm(}’)

00(z) OP(z)
Jf (x) OeHtot(y)
ToPG) 90() ) )

The consistency condition requires that the constraints not
have a time evolution on the constraint surface.

At this point, let us make a remark that will be useful
later. Denoting by ®4 the set of second-class primary
constraints, one has

0=" = {®4 eH )} = {P, eH + eup®B}
={D1, eH} + eupg{®*, OB} + uz{d*, e} o8

ze(é{@AJﬂi}+1@{¢ﬂdﬁ}>, ()

where up’s stand for Lagrange multipliers. Hence, if the
quantity (2{®, eH} + up{®*, ®#}) is weakly equal to
zero, then the consistency condition is satisfied. From
Eq. (C2) one may either obtain the Lagrange multiplier
up or a new constraint, which is not a linear combination
of the primary constraints. This new constraint is
called the secondary constraint, and we will define it
by y =0.

In what follows, we will derive the constraint (58). Note
that we use the identities

(C3)

Sely = — ehelel,

_ _ i
oe = eeaée,‘j = —eeﬁéea.

(C4)

(B8)

I
Let us first reduce the number of unknown Lagrange
multipliers by imposing the consistency condition on the
constraints ¢. = 0 and ¢! = 0.
(1) 0=¢.={¢., eHy}: Using Eq. (C2), the consis-
tency condition implies
0~ {e- H} + u{de. 4} + ui{de. 4}
+wi{ge. pa}. (C5)
Contraction with ef = (¢?,0,0,0) then yields

0~ {efgpe. M} + ulei{¢pe. po} + ulef{pe, by}
+wief{ge, pl}
~ {e?f/)o, H} + “9{6%50, 4’6} - M9¢0{€9, ¢6}
+uf{edo. i} + wied (o, 0}
~{eldo. H} + uf{eddo. py} + ul{elo. i} }

+ W?e?{d)o’(ﬂé}- (Co)
2) 0= ¢} ={g). eHi}:
0~ {), 1} + ud{@), b} + ul{@). )}
- uc{d’c’ (p§} (C7)

Contraction with ejf then yields
0~ {efg). 1} + up{ely). ¢} + ul{e]w). b7}
- ucej{(pcv (ﬂ§}

Combining Eqs. (C6) and (C8) and using
elgy = e}, one gets

(C8)

u‘e] = —wj

jef. (C9)

J )

Defining the scalar C := {w e), one then obtains

J

u® = —Ce?, Wf = Cejj-.

(C10)

As a consequence of (C10), the total Hamiltonian is
reduced to

Huow=H=Ceithy + Cejp) + uly+ i + 5",

j Pab
=H+udphy+ ul i+ use),. (C11)
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Next, to obtain the constraint Eq. (58), we analyze the consistency of the constraints ¢, = 0 and ¢ =0.
(3) 0= ¢y = {¢p)), eHo }: We have

1 . ‘
0 = —{¢0. eH} + u{pp, da} +wi{ph, wut + u®{po. ¢}

t 1 t 0J 1 A t\2,J
z{pO,H}—Q—ZH{pO,e}—Zuj =TT (ef)*e)

1 . L
~ 2—%€6H6KH9K +{po- Huy} — egH — ZM?] <F - E) (e} e

3 : . 1 H? | i |
s E661'1(’)1<1'I?1’< —apefCi1 7 CYpy + (K 12)eoR Leie) + ({Ph My} — ehHpy) — 2u (ﬁ _ ﬁ) (eh)2el.

Multiplying the above equation, Eq. (C12), with ¢, we obtain

3 Hl HOK C IJCl'/' 1 H2 RIJ 0f H H 2 0J 1 H2 el J C13
E —aply; T+ 2 12 6161 (et{Po’ H,x//}_ H.l//)_ u; < 12 eper- )

4 0=¢k = {@%, eH,o }: We have

1 . ,
0 = E{pllc(’ eH} + ua{p]]((7 ¢a} + W?{pllc(v (ﬂé} + u?b{p];(a i;b}

2
~ { Pk H}-i-l'H{pk e} —2u¥ 1A el ekel
K e K i\ @7 12 )ik

1 : 1 H? L 1 H? .
~ 2—%1—1611—[?13% + dageg CM, Cpt =2 (P - E) R ejeler + {pi. Huy} — e H —2uY’ <P - E) ehekel
1 1 1
EH(];IHOI + 4_081(1_[611_[01 + 4(10 (e,(CklUle” - ZeKCUIJCt]L,>
1 H2 1 . 1 H2
- 2<K—2 - E) (R Heiekel — EeKR ”e,ej) +{Pk-Huy} — kM —2uY (F - E) eekel. (C14)
Contracting with eX, we obtain
ONSHkHOI c. Ui s R.eiol Kfpk 1 3N 24 s t ) Cl15
N4_a0 o1t Yk +a0 ij IJ+ P_E ij eIeJ+ek{pKv H,l//}_ Hy — Mj P_E 6061' ( )

Combining Egs. (C15) and (C13), we have a constraint equation

1 1
0 2—0Hk HOI —|— 2a0C lkcjlk +4—H H[J + 4(10C OICUOI + ef{p’},'HH.v,} - e?{pf),’HH’y,} - ZHH,I//

1 - .
~ 5 TIGTR + 200 Cy " Cly + i (v e Diyy = 2myr) = 2P H? + 20H* = 1y, (C16)
0

which is not a linear combination of the primary constraints. In conclusion, y = 0 is a secondary constraint, which
arises from the consistency condition.
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