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We consider the spectral action within the context of a four-dimensional manifold with torsion and show
that, in the vacuum case, the equations of motion reduce to Einstein’s equations, securing the linear stability
of the theory. To subsequently investigate the nonvacuum case, we consider the spectral action of an almost
commutative torsion geometry and show that the Hamiltonian is bounded from below, a result which
guarantees the linear stability of the theory.
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I. INTRODUCTION

Consider the gravitational action

Sgr½gμν� ¼
Z ffiffiffiffiffi

jgj
p �

Λ̄þ 1

κ2
R − α0∥Cjj2

�
d4x; ð1Þ

where Λ̄ denotes the cosmological constant, κ2 ¼ 16πG, α0
is a positive constant, and ∥C∥2 ≔ CμνρσCμνρσ is the Weyl
invariant. This action, Eq. (1), belongs to a family of
higher-derivative theories, since it contains a fourth-order
derivative of the metric tensor, gμν, namely ð∂2gÞ2. The
presence of this higher-derivative term may give rise to an
unbounded (from below) Hamiltonian, implying the onset
of a classical instability [1–3]. Gravitational theories with
curvature invariants, as for instance shown in the action
(1) above, belong to the class of nondegenerate higher-
derivative theories plagued by the Ostrogradski instability
(linear instability). Such theories can appear naturally in the
context of fundamental theories, as for instance within one-
loop corrections of quantum theories on a curved back-
ground, or within the spectral action of almost commutative
geometry. Despite the fact that theories with higher-
derivative terms may be pathological, they may instead
improve the ultraviolet convergence of the graviton propa-
gator within a linearized theory, rendering the theory
power-counting renormalizable [1].
The linear instability of a higher-derivative nondegen-

erate theory may be removed, if one assumes the action as
an effective one [4–6] and imposes appropriate constraints
leading to a reduction of the trajectories of the degrees of
freedom, hence rendering the effective Hamiltonian
bounded from below. In this approach, a necessary but
not sufficient condition in order to remove the instability, is
that the imposed constraints must be such that they reduce
the dimensionality of the original phase space [3]. A
different approach has been suggested in Ref. [7], where

one generalizes a higher-derivative theory into an SO(4, 2)
gauge theory, and then derives conditions such that the
equations of motion reduce, in some basis, to the vacuum
Einstein’s equations. As has been shown [7], varying all of
the connection fields, and not only the metric, Weyl gravity
transforms from a fourth-order theory into a theory of
conformal equivalence classes of solutions to general
relativity, under the requirement that torsion vanishes. In
what follows, we show the linear stability of the spectral
action for a four-dimensional manifold with torsion and in
the absence of any matter fields, adapting the approach
proposed in Ref. [7]. We subsequently extend this approach
in the nonvacuum case.
This paper is organized as follows: In Sec. II, we briefly

introduce [8–11] the concept of spectral geometry and
spectral action. In Sec. III, we review the approach
discussed in Ref. [7], and apply it to the fourth-order
gravitational theory described by the action (1). We show
that such theory does not suffer from linear instability. In
Sec. IV, we consider the spectral action of an almost
commutative torsion geometry and show that the obtained
Hamiltonian is bounded from below, hence the theory does
not suffer from linear instability even in the nonvacuum
case. We round up our conclusions in Sec. V.

II. ELEMENTS OF THE SPECTRAL ACTION

Consider a compact four-dimensional Riemannian spin
manifoldM and a spinor bundle S → M. The set of smooth,
infinitely differentiable functions C∞ðMÞ forms an algebra
A under pointwise multiplication. This algebra acts on
the Hilbert space of square-integrable spinors on M,
H ¼ L2ðM; SÞ, as multiplication operators. Then consider
the Dirac operator D, given in terms of the spin Levi-Cività
connection ∇S and the Dirac gamma matrices γμ as
−iγμ∇S

μ. The compact Riemannian spin manifold M is
fully described [12] by the canonical spectral triple
ðA;H;DÞ. Hence, spectral data can characterize the geom-
etry of ordinary Riemannian manifolds, in the sense that the
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canonical spectral triple ðA;H;DÞ encodes the spacetime
structure.
Let us extend the spectral triple approach for non-

commutative manifolds. Conside the finite C� algebra

AF ¼ C ⊕ H ⊕ M4ðCÞ; ð2Þ

together with a finite-dimensional Hilbert space HF and a
self-adjoint operator DF. The spectral triple ðAF;HF;DFÞ
can be identified with a finite space of points F. Although
the finite spectral triple by itself gives an uninteresting
structure, its product with the canonical spectral triple,
namely

ðC∞ðMÞ ⊗ AF; L2ðM; SÞ ⊗ HF;∇ ⊗ IdF þ γ5 ⊗ DFÞ;
ð3Þ

yields a nontrivial noncommutative structure [10]. The
spectral triple (3) is called the almost commutative spectral
triple. The canonical triple encodes the spacetime structure,
while the finite spectral triple encodes the internal degrees
of freedom at each point of the four-dimensional spacetime.
The particle physics model one has in mind is encoded in
the finite-dimensional Hilbert space HF. In the case of the
Standard Model, the generalized Dirac operator acting on
the Hilbert space H ¼ L2ðM; SÞ ⊗ HF contains the Higgs
boson, Yukawa couplings, and neutrino masses, as well as
the Cabibbo-Kobayashi-Maskawa matrix.
The dynamics are given by a spectral action that sums up

all frequencies of vibration of space. The spectral action is
defined as the heat kernel trace of the operator D2:

S ¼ TrL2fðD2=Λ2Þ; ð4Þ

where f is a positive cutoff function and Λ a cutoff scale.
For the canonical spectral triple, the spectral action reads

S ∼
Z ffiffiffiffiffi

jgj
p �

f4
2π2

Λ4 þ f2
24π2

Λ2R −
fð0Þ
16π2

∥C∥2
�
d4x

þOðΛ−2Þ; ð5Þ

where

f4−k ¼
Z

∞

0

x4−k−1fðxÞdx; 0 ≤ k < 4: ð6Þ

Note that the action (5) is of the same form as the action (1),
which is a higher-derivative gravitational theory. In the case
of the almost commutative spectral triple, the spectral
action reads [6,10]

S ∼
Z ffiffiffiffiffi

jgj
p �

48f4
π2

Λ4 −
cf2
π2

Λ2 þ dfð0Þ
4π2

4f2
π2

Λ2 −
cfð0Þ
24π2

R

−
3fð0Þ
10π2

∥C∥2 þ 1

4
FμνFμν þ 1

4
Wa

μνWμν;a

þ Gi
μνGμν;i 1

2
j∇0

μHj2 − 1

12
RH2 −

2af2Λ2 − efð0Þ
afð0Þ H2

þ bπ2

2a2fð0ÞH
4

�
d4xþOðΛ−2Þ; ð7Þ

where the action of ∇0 on the Higgs field is defined as

∇0
μH ≔ ∂νH þ 1

2
ig2Wa

μσ
aH −

1

2
ig1AμH; ð8Þ

and the constants a, b, c, d and e are derived from Yukawa
mass matrices. The gauge fields Aμ, Wμ and Gμ belong to
the Lie algebra of the symmetry groups UYð1Þ, SU(2) and
SU(3), respectively.

III. FOURTH-ORDER WEYL GRAVITY

Consider the higher-derivative theory

S ¼
Z

ΩA
B∧�ΩB

A; ð9Þ

where ΩA
B stands for the SO(4, 2) curvature two-form. As

has been shown in Ref. [7], varying the above action with
respect to the connection, the higher-order equations of
motion can be reduced, in the absence of torsion, to the
vacuum second-order Einstein equations. The solutions are
conformal equivalence metrics of Ricci-flat spacetimes.
Following this approach for the generalized spectral action
which is invariant under a smaller symmetry group, i.e.
local Poincaré symmetry, we will show that in the absence
of torsion, the equations of motion combined with the
Bianchi identity lead to an integrability condition that
implies the reduction to the second-order Einstein
equations.
To generalize the action in Eq. (5) into a gauge theory

with a Poincaré symmetry, one needs to equip a manifold
with a tetrad eaμ,

gμν ¼ ηabeaμebν ; ð10Þ

and a spin connection ωab
μ ∈ soð1; 3Þ, satisfying

Dμeaν ≔ ∂μeaν − Γα
μνeaα þ ωa

μcecν ¼ 0; ð11Þ

where latin characters denote flat spacetime indices, Dμ is
the covariant derivative, and Γα

μν is an affine connection.
The curvature two-form of the spin connection, defined by

Rμν
ab ≔ ∂μω

ab
ν − ∂νω

ab
μ þ ωa

μcω
cb
ν − ωa

νcω
cb
μ ; ð12Þ
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is independent of the tetrad basis. In general, the spin
connection is not necessarily torsion free. In fact, the
curvature two-form (12) contains a torsion and its deriva-
tive. This can be shown by contracting Eq. (11) with eν;b:

ωab
μ ¼ eaνeσ;bΓν

μσ þ eaν∂μeν;b

¼ eaνeσ;bðΓν
ðμσÞ þ Γν

½μσ�Þ þ eaν∂μeν;b

¼ ðeaνeσ;bΓν
ðμσÞ þ eaν∂μeν;bÞ þ eaνeσ;bΓν

½μσ�

¼ ðeaνeσ;bΓν
ðμσÞ þ eaν∂μeν;bÞ þ eaνeσ;bTμ

ν
σ; ð13Þ

where Tμ
ν
σ ≔ Γν

½μσ� is the torsion tensor. The subscript

notation “()” denotes symmetrization, Γν
ðμσÞ≔

1
2
ðΓν

μσþΓν
σμÞ;

and “½�” denotes antisymmetrization, Γν
½μσ� ≔

1
2
ðΓν

μσ − Γν
σμÞ.

Defining

ω0 ab
μ ≔ eaνeσ;bΓν

ðμσÞ þ eaν∂μeν;b; ð14Þ

we note that ω0 is torsion free and the curvature (12) can be
rewritten as

Rμν
ab ¼ R0 ab

μν þ∇μTν
ab −∇νTμ

ab þ Tμ
a
cTν

cb − Tν
a
cTμ

cb;

ð15Þ

where ∇ is a covariant derivative acting on a tensor vνa as

∇μvνa ≔ ∂μvaν − Γα
ðμνÞv

a
α þ ω0a

μcvcν; ð16Þ

and R0 ab
μν is the curvature two-form of the torsion-free spin

connection ω0ab
μ , defined by

R0 ab
μν ≔ ∂μω

0ab
ν − ∂νω

0ab
μ þ ω0a

μcω
0cb
ν − ω0a

νcω
0ab
μ : ð17Þ

Denoting by T the set of all torsion fields, we consider a
particular subset T R ⊂ T , so that the torsion fields Tab

μ ∈
T R satisfy the following properties:
(1) Tμ

ab is antisymmetric in the a, b indices, and hence
Eq. (13) implies that ω0 ab

μ is also antisymmetric in a,
b, leading to metric compatibility, and ω0 ab

μ is just
the Levi-Cività connection. The reason for choosing
totally antisymmetric torsion fields is the following:
The general connection on the tangent bundle of a
manifold is compatible with the Riemannian metric
and has the same geodesics as the Levi-Cività
connection if and only if the connection is the
sum of the Levi-Cività connection and a totally
antisymmetric tensor field [13]; thus, the torsion
field is totally antisymmetric.

(2) Tν
ab yields the curvature tensor with the same

symmetric properties as the Riemmanian curvature
tensor, i.e.

Rμνσρ ¼ −Rνμσρ ¼ Rνμρσ; ð18Þ

Rμνσρ ¼ Rσρμν; ð19Þ

where Rμνσρ ¼ Rμν
abeσ;aeρ;b. Note that (18) holds

for all torsion fields Tμ
ab ∈ T , while (19) is only

valid for Tμ
ab ∈ T R. With the above properties of

the torsion fields, the Gauss-Bonnet action takes the
form we are familiar with in Riemannian geometry,
namely

χE ¼ 1

8π2

Z ffiffiffiffiffi
jgj

p
ðRμν

abRμν
ab − 4Rμ

aRμ
a þ R2Þd4x:

ð20Þ

We note that the above action (20) is not valid for the
more general class of torsions studied in Ref. [14].

Let us also define a traceless tensor Cμν
ab as

Cμν
ab ≔ Rμν

ab − ðe½aμ Rb�
ν − e½aν R

b�
μ Þ þ 1

3
Re½aμ e

b�
ν ; ð21Þ

where Rμ
a ≔ Rμν

abeνb and R ≔ Rμ
aeaμ. We can thus gen-

eralize the spectral action Eq. (5) as follows:

Sgr½eaμ;ωab
ν � ¼

Z
e

�
α2Λ4 þ 1

κ2
Rμν

abeμaeνb

− α0Cμν
abCμν

ab

�
d4x; ð22Þ

where e is defined as e ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij detðeaμea;νÞj

p ¼ ffiffiffiffiffijgjp
. For a

torsion field Tμ
ab ∈ T R, it can be shown that the linearized

theory obtained from the action (22) is equivalent to the one
derived by the spectral action with torsion [14,15] (see
Appendix B). Hence, the action (22) is linearly stable if and
only if the spectral action with torsion is linearly stable.
Let us now derive the equations of motion obtained

from the generalized action (22). The variation of the spin
connection and the tetrad give, respectively,

DμCμν
ab −

1

2
Tμ

ν
αC

μα
ab ¼ −

1

4α0κ
2
Tμ

ν
αe

μ
aeαb; ð23Þ

Rμν −
1

2
gμνR ¼ 2α0κ

2Θμν þ
κ2

2
α2Λ4gμν; ð24Þ

where Θμν ≔ Cμα
abCν

α
ab − 1

4
gμνCμν

abCμν
ab. To recover

Einstein’s equations from Eq. (24), we need first to set
the torsion equal to zero, so that the connection becomes
the Levi-Cività one. Thus,

∇μC0μν
ab ¼ 0; ð25Þ
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R0
μν −

1

2
gμνR0 ¼ 2α0κ

2Θ0
μν þ

κ2

2
α2Λ4gμν; ð26Þ

where Θ0
μν ≔ ΘμνjT¼0. Since Θ0

μν becomes the energy-
momentum tensor of the Weyl curvature, and therefore
vanishes identically in four dimensions [16], we recover
Einstein’s equations with a cosmological constant.
The vanishing divergence of the Weyl curvature,

Eq. (25), leads to the integrability condition once combined
with the trace of the Bianchi identity:

∇μC0μ
νρσ þ ð∇σS0νρ −∇ρS0νσÞ ¼ 0; ð27Þ

where S0μν ≔ 1
2
ðR0

μν − 1
6
gμνR0Þ denotes the Schouten tensor.

In the basis eaμ, we get

∇σS0νρ −∇ρS0νσ ¼ 0; ð28Þ

which, however, is not the well-known integrability con-
dition. To get the familiar expression [17] we introduce a
new basis eaμ ↦ ~eaμ ≔ eξeaμ, where ξðxÞ is a real-value
function. Note that the Bianchi identity holds in this new
basis, but the covariant derivative of the Weyl tensor
transforms as

~∇μ
~C0μ

νρσ ¼ e−2ξð∇μC0μ
νρσ − ∂μξC0μ

νρσÞ: ð29Þ

To get the integrability condition, we consider Eq. (27) in
the basis ~eaμ and use Eq. (29) and the field equation (25) to
obtain

0 ¼ ~∇μ
~C0μ

νρσ þ ð ~∇σ
~S0νρ − ~∇ρ

~S0νσÞ
¼ e−2ξð∇μC0μ

νρσ − ∂μξC0μ
νρσÞ þ ð ~∇σ

~S0νρ − ~∇ρ
~S0νσÞ

¼ −ð∂μξÞe−2ξC0μ
νρσ þ ð ~∇σ

~S0νρ − ~∇ρ
~S0νσÞ

¼ −ð∂μξÞ ~C0μ
νρσ þ ~∇σ

~S0ρν − ~∇ρ
~S0σν; ð30Þ

where we have used that e−2ξC0μ
νρσ ¼ ~C0μ

νρσ . Hence, the
original manifold is conformally equivalent to a Ricci flat
manifold. In other words, there exists a basis êaμ ≔ eζ ~eaμ,
equal to êaμ ¼ eξþζeaμ such that

Ŝ0μν ¼ 0; ð31Þ

leading to a vanishing Ricci tensor, R̂0
μν ¼ 0. Therefore, the

equation of motion (25) is conformally equivalent to the
vacuum Einstein equations, and the theory is not plagued
by a linear instability. Defining χ̄ ≔ ξþ ζ, the Schouten
tensor reads

Ŝ0μν ¼ S0μν −∇μ∂νχ̄ þ ∂μχ̄∂μχ̄ −
1

2
gμν∂αχ̄∂αχ̄; ð32Þ

and Eq. (31) is compatible with Eq. (26), provided that the
scalar field χ̄ satisfies

∇μ∂νχ̄ − ∂μχ̄∂νχ̄ − gμν

�
∇α∂αχ̄ þ 1

2
∂αχ̄∂αχ̄

�

¼ 1

4
κ2α2Λ4gμν: ð33Þ

In conclusion, considering the variation of the full con-
nection, the higher-order differential equations reduce to
Einstein’s equations obtained from either Eq. (25) or
from Eq. (26).

IV. HAMILTONIAN ANALYSIS OF THE THEORY
INTERACTING WITH MATTER FIELDS

Let us now assume that the gravitational action is defined
in a four-dimensional globally hyperbolic manifold, of the
structureR × Σ, where Σ is a Cauchy surface; i.e. any curve
parametrized by t ∈ R intersects Σ only once [18].
Consequently, if one picks the time direction along a
normal vector on a Cauchy surface, there is no closed
timelike curve in the manifold. More importantly, the
existence of a Cauchy surface at any instant of time allows
us to define the Poisson bracket, which is important for
setting the Hamiltonian formalism.
Global hyperbolicity also allows us to choose a coor-

dinate system ft; xig such that the spatial coordinates are
orthogonal to the time coordinate, i.e. gti ¼ 0. Let us
choose a flat spacetime basis fe0; eIg with I ∈ f1; 2; 3g,
such that the time direction is preserved:

e0 ¼ e0t dt and eI ¼ eIidx
i: ð34Þ

In the previous section we have avoided the linear insta-
bility by conformally reducing the equations of motion (25)
to the vacuum Einstein equations. The same method can be
extended to the nonvacuum case as long as Lmatter is not a
function of the spin connection, as for instance for the
Lagrangian of a gauge field. Note, however, that there
are matter fields whose Lagrangian depends on the spin
connection, as for example

LH ¼ 1

2
j∇0

μHj2 − 1

12
RH2 − μ2H2 þ λH4; ð35Þ

Lψ ¼ iψ̄ðeμaγaDμ −mÞψ ; ð36Þ

where∇0
μH¼∂μHþ½Bμ;H� andDμψ ≔ ð∂μ þ 1

4
ωab
μ ΣabÞψ ,

for Σab ≔ 1
2
ðγaγb − γbγaÞ. Such Lagrangians lead to the

equations of motion

∇μC0μν
ab ¼

δLmatter

δωab
ν

����
T¼0

≠ 0: ð37Þ

In such a case one cannot get the integrability condition
using the same trick as previously, and hence one cannot
argue the cure of the linear instability following the
approach of Sec. II. To show that there is no instability,
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we will check directly that the Hamiltonian is bounded
from below.
Without loss of generality, let us turn off the gauge fields

and the cosmological constant, since they do not depend on
the spin connection. By adding the Higgs field and a
massive fermionic field into the action (22), we get

Sgr½eaμ;ωab
ν � þ SH;ψ

¼
Z

d4xe

�
1

κ2
Rμν

abeμaeνb − α0Cμν
abCμν

ab þ LH;ψ

�
:

ð38Þ
The canonical momenta are

πβcd ¼ −4α0Ctβ
cd þ

�
2

κ2
−
H2

6

�
et½ce

β
d�; ð39Þ

pt
0 ¼ 0; pi

I ¼ 0; ð40Þ

where πβcd, p
t
0 and pi

I stand for the canonical momenta of
ωβ

cd, e0t and eIi , respectively. Notice that the map πabβ ↦

∂tω
ab
β is not invertible for an arbitrary choice of the spin

connection; therefore, the Hamiltonian is not well defined.
To construct a well-defined Hamiltonian, let us consider a
subset of spin connections such that each element can be
decomposed into ωμ

ab ¼ Ωμ
ab þ ~ωμ

ab and the following
two conditions are satisfied:

(i)
Cμν

ab ¼ ∂μΩν
ab − ∂νΩμ

ab þ Ωμ
a
cΩν

cb − Ων
a
cΩμ

cb:

ð41Þ

(ii) ðΩac
½μ ~ω b

ν�c þ ~ω½μacΩ b
ν�cÞeμbeνa ¼ 0. ð42Þ

We will call (i) and (ii) the “splitting conditions,” since
they make the scalar curvature independent of Ωμ

ab. To see
this, we rewrite the curvature R ¼ Rμν

abeμaeνb in terms of Ω
and ~ω. Thus,

Rμν
ab ¼ ∂μΩν

ab − ∂νΩμ
ab þΩμ

a
cΩν

cb −Ων
a
cΩμ

cb

þ ∂μ ~ων
ab − ∂ν ~ωμ

ab þ ~ωμ
a
c ~ων

cb − ~ων
a
c ~ωμ

cb

− 2ðΩ½μac ~ω b
ν�c þ ~ω½μacΩ b

ν�cÞ: ð43Þ

Assuming the validity of the conditions (i) and (ii) above,
the scalar curvature reads

R ¼ Rμν
abeμaeνb

¼ Cμν
abeμaeνb þ ð∂μ ~ω

ab
ν − ∂ν ~ω

ab
μ þ ~ωμ

a
c ~ων

cb

− ~ων
a
c ~ωμ

cbÞeμaeνb − 2ðΩ½μac ~ω b
ν�c þ ~ω½μacΩ b

ν�cÞeμaeνb
¼ ð∂μ ~ων

ab − ∂ν ~ωμ
ab þ ~ωμ

a
c ~ων

cb − ~ων
a
c ~ωμ

cbÞeμaeνb:
ð44Þ

Note that the considered subset of spin connections is not
empty, since it contains connections of all conformal Ricci
flat geometry. Moreover, the splitting conditions hold
automatically in the linearized theory. To prove this state-
ment, let hμν denote the metric perturbation. The condition
(ii) is clearly satisfied, since Ωμ

a
c ~ων

cbeμaeνb is of order
higher than Oðh2Þ. For condition (i), one chooses the
transverse traceless metric perturbation h̄μν which satisfies
the Laplace equation

□h̄μν ¼ 0; ð45Þ

where □ denotes the flat-space d’Alembertian. The Weyl
tensor is

Cμνσρ ¼
1

2
ð∂σ∂νh̄μρ þ ∂ρ∂μh̄νσ − ∂ρ∂νh̄μσ − ∂σ∂μh̄νρÞ

¼ ημλ∂σΓ̄λ
νρ − ημλ∂ρΓ̄λ

νσ; ð46Þ

where Γ̄λ
νρ ≔ 1

2
ηλμð∂νh̄ρμ þ ∂ρh̄νμ − ∂μh̄νρÞ. Then, using

the definition of the spin connection, one can rewrite the
Weyl tensor in terms of the derivative of Ωab

μ , and therefore
the condition (i) is satisfied.
Defining

Πβ
cd ≔

∂L
∂ð∂tΩcd

β Þ and ~πβcd ≔
∂L

∂ð∂t ~ω
cd
β Þ ; ð47Þ

where L is the Lagrangian density of the action (38), and
assuming the splitting conditions, one can then show that

Πβ
cd ¼ −4α0Ctβ

cd; ð48Þ

~πβcd ¼ 2

�
1

κ2
−
H2

12

�
et½ce

β
d�: ð49Þ

From the definition of the canonical momentum, we get
the constraints Πt

cd ¼ 0 and ~πtcd ¼ 0, which are primary
first-class constraints and can be solved using the gauge-
fixing conditions Ωt

ab ¼ 0, gijDiΩj
ab ¼ 0 and ~ωt

ab ¼ 0,
gijDi ~ωj

ab ¼ 0. The remaining constraints

ϕt
0 ≔ pt

0 ¼ 0; ð50Þ

ϕi
I ≔ pi

I ¼ 0; ð51Þ

ϕc ≔ Πi
cde

d
i ¼ 0; ð52Þ

φj
c ≔ Πj

cde
d
0 − 4α0Cij

cdedi ¼ 0; ð53Þ

ϕj
cd ≔ ~πjcd − 2

�
1

κ2
−
H2

12

�
et½ce

j
d� ¼ 0 ð54Þ
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are primary second-class constraints, and are also obtained
from the definition of the canonical momentum. (We refer
the reader to Ref. [19] for more details on a constrained
Hamiltonian system.)
In what follows, let P, Q stand for the canonical

variables and the symbol “≈” denote the equality holding
on the surface spanned by all constraints, called the
“constraint surface” for short. Imposing all constraints,
the Hamiltonian reads

H ¼ PI∂tQI − L

¼ Πi
cd∂tΩcd

i þ ~πicd∂t ~ω
cd
i þ pβ

c∂tecβ þ pH
_H þ pψ _ψ − L

≈ −
1

8α0
Πi

cdΠcd
i þ α0Cij

cdCij
cd

−
�
1

κ2
−
H2

12

�
Rij

cdeice
j
d þHH;ψ

≈ −
1

4α0
Πi

0IΠi
0I þ α0Cij

IJCij
IJ

−
�
1

8α0
Πi

IJΠIJ
i − 2α0Cij

0ICij
0I

�

−
�
1

κ2
−
H2

12

�
Rij

cdeice
j
d þHH;ψ

≈ −
1

4α0
Πi

0IΠi
0I þ α0Cij

IJCij
IJ

−
�
1

κ2
−
H2

12

�
Rij

cdeice
j
d þHH;ψ ; ð55Þ

where pH and pψ are the canonical momenta of the scalar
field and the fermion field, respectively. Note that the term
½ 1
8α0

Πi
IJΠIJ

i − 2α0Cij
0ICij

0I� vanishes due to the symmetry
(19) of the curvature tensor.
Denote the set of second-class primary constraints by

ΦA ≔ fϕt
0;ϕ

i
I ;ϕc;φ

j
c;ϕ

j
cdg and define a new Hamiltonian

density as

Htot ≔ Hþ uAΦA; ð56Þ
where uA are Lagrange multipliers. All constraints need to
satisfy the consistency condition

0 ≈ _ΦA ¼ fΦA;Htotg; ð57Þ

where Htot ¼
R
Htoted3x on some equal time surface Σt.

By imposing the consistency condition on the constraints
ϕc, φ

j
c, ϕt

0 and ϕ
i
I, one obtains the secondary constraint (the

full details can be found in Appendix C)

χ ≔
1

2α0
Πk

0IΠ0I
k þ 2α0Cij

lkCij
lk þ iψ̄ðγIeiIDiψ − 2mψÞ

− 2μ2H2 þ 2λH4

¼ 0: ð58Þ

Using the constraint (58), the Hamiltonian reads

H ≈ 2α0CijlkCijlk −
1

2
iψ̄γIeiIDiψ −

�
1

κ2
−
H2

12

�
Rij

IJeiIe
j
J

þ 1

2
gttp2

H −
1

2
gij∂iH†∂jH

≈HC2 þHGR; ð59Þ

where HC2 and HGR are defined, respectively, as

HC2 ≔ 2α0CijlkCijlk −
1

2
iψ̄γIeiIDiψ ; ð60Þ

HGR ≔−
�
1

κ2
−
H2

12

�
Rij

IJeiIe
j
J þ

1

2
gttp2

H −
1

2
gij∂iH†∂jH:

ð61Þ

It is easy to show thatHC2 is bounded from below, since the
first term is positive definite and the second one is
proportional to the Hamiltonian of a massless fermion.
To show that HGR is also bounded from below, let us
recall the gauge-fixing condition ωt

ab ¼ 0, which implies
Tt

ab ¼ 0, since torsion is independent of the Levi-Cività
spin connection. Using Eq. (15), we deduce that

Rti
0I ¼ R0 0I

ti þ∇tTi
0I −∇iTt

0I þ Tt
0
JTi

JI − Ti
0
JTt

JI

¼ R0 0I
ti ; ð62Þ

while for Tμ
ab ∈ T R, the scalar curvature obtained by

contracting Eq. (15) reads

R ¼ R0 − ∥T∥2: ð63Þ

Hence,

Rij
IJeiIe

j
J ¼R−2Rti

0Iet0e
i
I

¼R0−∥T∥2−2R0 0I
ti et0e

i
I

¼ðR0−2R0
ti
0Iet0e

i
IÞ− ð3Tt

IJTt
IJþTi

I
KTj

KJeiIe
j
JÞ

¼R0 IJ
ij eiIe

j
J−Ti

I
KTj

KJeiIe
j
J; ð64Þ

which implies that HGR can be rewritten as

HGR ≈ −
�
1

κ2
−
H2

12

�
R0IJ
ij e

i
Ie

j
J þ

1

2
gttp2

H −
1

2
gij∂iH†∂jH

þ
�
1

κ2
−
H2

12

�
Ti

I
KTK J

j eiIe
j
J; ð65Þ

with a prime 0 referring to torsion-free quantities.
Assuming the Higgs field does not exceed the Planck
mass, i.e. H2 < 12=κ2, and noting that for the metric of
signature ðþ;−;−;−Þ,
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TijkTljk ¼ gilgjmgknTijkTlmn

¼
X3
i;j;k¼1

giigjjgkkTijkTijk ≤ 0; ð66Þ

one concludes that the last term on the rhs of Eq. (65),
which can be written as ð 1

κ2
− H2

12
ÞTijkTljk, is negative

definite, and therefore unbounded from below. In contrast,
the first two terms on the rhs of Eq. (65) are just the
canonical Hamiltonian of the Palatini action in the presence
of a scalar field interaction term [20], leading to the
classical dynamics of the Einstein-Hilbert action in the
presence of the scalar field. We hence conclude that HR is
bounded from below if and only if torsion vanishes.
Finally, let us check whether the result agrees with

Sec. II. In the vacuum case, the constraint (58) becomes

χ ≔
1

2α0
Πk

0IΠ0I
k þ 2α0Cij

lkCij
lk ¼ 0: ð67Þ

Since Πk
0IΠ0I

k and Cij
lkCij

lk are positive definite, the
constraint (67) implies that both terms have to vanish,
and hence the Hamiltonian reads

H ≈HGR ≈ −
1

κ2
Rij

cdeice
j
d: ð68Þ

Hence, the Hamiltonian does not depend on the Weyl
tensor, in agreement with the fact that the vacuum case
reduces to Einstein gravity. Clearly, then, this Hamiltonian
will give the same dynamics as Einstein’s equations in
vacuum.
The above analysis can be easily applied in the spectral

action. In the simple vacuum case and considering a torsion
field Tμ

ab ∈ T R, the third-order differential equations can
be reduced to the second-order Einstein equations.
Therefore, in this case the theory does not suffer from a
linear instability. In the case of an almost commutative
torsion geometry and considering only matter fields whose
Lagrangians do not depend on the spin connection, one can
still guarantee the stability of the theory employing the
method discussed in Sec. II. Moreover, if fermions and
conformal invariant scalar fields are present, the linear
stability will still hold, provided that the splitting con-
ditions (41) and (42) are satisfied.

V. CONCLUSIONS

Noncommutative spectral geometry is a theoretical
framework that can offer a purely geometric explanation
for the StandardModel of particle physics. The gravitational
sector of the theory has terms beyond the Einstein-Hilbert
action, and in particular it contains higher-derivative
terms. Hence, one may wonder whether this gravitational
theory may be plagued by linear instabilities, namely the

appearance of negative energy modes. We have addressed
this question here in two steps.
We have first considered the simple vacuum case and

shown that by introducing a particular type of torsion, one
can apply the method presented in Ref. [7] and reduce the
fourth-order differential equations into those of second
order derived from vacuum general relativity, if and only if
the torsion field vanishes. We have then considered the
spectral action of an almost commutative torsion geometry.
For this latter case we have shown that one cannot obtain
the integrability condition in the presence of either fermion
fields or scalar fields. We have, however, argued that there
exists a class of almost commutative torsion geometry that
leads to a Hamiltonian which is bounded from below, and
hence argued that the theory does not suffer from a local
instability.
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APPENDIX A: SPIN CONNECTION

The covariant derivative of a spinor ψ or a tensor Va
ν can

be expressed through the spin connection ωab
μ as

DμVa
ν ¼ ∂μVa

ν − Γσ
μνVa

σ þ ωμ
a
bV

b
ν ; ðA1Þ

Dμψ ¼ ∂μψ þ 1

4
ωμ

abΣabψ ; ðA2Þ

respectively, where Σab ¼ 1
2
ðγaγb − γbγaÞ and Γσ

μν stands
for the affine connection defined as

Γσ
μν ¼ eν;beσaωab

μ − eν;b∂μeσ;b: ðA3Þ

The latter, Eq. (A3), can be rewritten as Dμeaν ¼ 0, dubbed
as the tetrad postulate. Note that the validity of the tetrad
postulate does not require us to assume
(1) Metric compatibility: ωab

μ þ ωba
μ ¼ 0.

(2) Torsion-free: Γσ
½μν� ¼ 0.

If the spin connection is metric compatible, then one
can decompose the curvature two-form into an
irreducible representation of an orthogonal group as
follows:

Rμν
ab ¼ Cμν

ab þ ðe½aμ Rb�
ν − e½aν R

b�
μ Þ − 1

3
Re½aμ e

b�
ν ; ðA4Þ

where Ra
μ ¼ Rμα

abeαb and R ¼ Rμν
abeμaeνb. Hence, in the

coordinate basis, one has
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Rμνρσ ¼ Rμν
abea;ρeb;σ

¼ Cμν
abea;ρeb;σ þ ðe½aμ Rb�

ν − e½aν R
b�
μ Þea;ρeb;σ

−
1

3
Re½aμ e

b�
ν ea;ρeb;σ

¼ Cμνρσ þ ðgμ½ρRσ�ν − gν½ρRσ�μÞ −
1

3
Rgμ½ρgσ�ν: ðA5Þ

Assuming also that the spin connection is torsion free, one
concludes that Cμνρσ, Rμν and R become the Weyl tensor,
the Ricci tensor and the Ricci scalar, respectively.

APPENDIX B: EQUIVALENT
LINEARIZED ACTIONS

We will show that the linearized theories obtained from
the action (22) and the spectral action with torsion [14] are
equivalent. First, let us write down the spectral action with
torsion, which we will denote by STS. For a torsion tensor
Tμνσ ∈ T R, we have by definition that

0 ¼ Rμνρσ − Rρσμν ¼ ðdTÞμνρσ − 2
�
∇ρTσμν þ∇σTρμν

	
;

ðB1Þ
and

0 ¼ Rμρ − Rρμ ¼ gνσðRμνρσ − RρσμνÞ ¼ 2∇σTσ
ρμ: ðB2Þ

Hence, the spectral action (modulo the Euler characteristic
number) is reduced to

STS ∼ f4Λ4a0ðD2Þ þ f2Λ2a2ðD2Þ þ fð0Þa4ðD2Þ

∼
Z ffiffiffiffiffi

jgj
p

d4x

�
α2Λ4 þ 1

κ2
ðR0 − ∥T∥2Þ − α0∥C0∥2

�
:

ðB3Þ
Note that the torsion tensor Tμνσ ≔ 3 ~Tμνσ, where ~Tμνσ

denotes the torsion defined in Ref. [14]. To compare Sgr
with STS, we will write explicitly the torsion terms which
are contained in Sgr. Consider the square of the traceless
tensor Cμν

ab defined in Eq. (A4):

∥C∥2 ¼ ∥Rμνρσ∥2 − 2∥Rμν∥þ
1

3
R2

¼ ∥R0
μνρσ∥2 þ

1

4
∥dT∥2 −

1

3
R0∥T∥2 þ 4BðTÞ þ 1

3
∥T∥4 − 2

�
∥R0

μν∥þ
1

3
∥T∥4 −

1

2
R0∥T∥2 þ 2BðTÞ

�

þ 1

3
ðR02 − 2R0∥T∥2 þ ∥T∥4Þ

¼ ∥C0∥2 þ 1

4
∥dT∥2; ðB4Þ

where BðTÞ ≔ −R0
μνTμσρTν

σρ þ 1
4
R0∥T∥2 and the curvature scalar R is R ¼ R0 − ∥T∥2. Substituting ∥C∥2 and R in the

action (22), we get

Sgr ¼
Z ffiffiffiffiffi

jgj
p �

α2Λ4 þ 1

κ2
ðR0 − ∥T∥2Þ − α0

�
∥C0∥2 þ 1

4
∥dT∥2

��
d4x: ðB5Þ

Using Eq. (B1), we rewrite ∥dT∥2 as

∥dT∥2 ¼ ðdTÞμνρσðdTÞρσμν
¼ 4ð−∇ρTσμν þ∇σTρμνÞð−∇μTνρσ þ∇νTμρσÞ
¼ 16∇ρTσμν∇μTνρσ

¼ 16∇μðTνρσ∇ρTσμνÞ − 16Tνρσ∇μ∇ρTσμν

¼ 16∇μðTνρσ∇ρTσμνÞ þ 16Tνρσ∇ρ∇μTσμν − 16Tνρσ½∇μ;∇ρ�Tσμν

¼ 16∇μðTνρσ∇ρTσμνÞ − 32Tνρσ

�
R0μ

ρσα −
1

2
δμσR0

ρα

�
Tα

μν: ðB6Þ

Note that to obtain the last line, we have used the fact that the divergent of a torsion field vanishes [Eq. (B2)] and the
identity

½∇μ;∇ν�Vρσα ¼ R0 β
μνρ Vβσα þ R0 β

μνσ Vρβα þ R0 β
μνα Vρσβ: ðB7Þ

Thus, on a boundaryless manifold, the action Sgr reads
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Sgr ¼
Z ffiffiffiffiffi

jgj
p �

α2Λ4 þ 1

κ2
ðR0 − ∥T∥2Þ − α0∥C0∥2�d4xþ 2

Z ffiffiffiffiffi
jgj

p
Tνρσ

�
R0μ

ρσα −
1

2
δμσR0

ρα

�
Tα

μνd4x

¼ SST þ 2

Z ffiffiffiffiffi
jgj

p
Tνρσ

�
R0μ

ρσα −
1

2
δμσR0

ρα

�
Tα

μνd4x: ðB8Þ

Since the terms in the integrand appearing on the rhs of
Eq. (B8) are of order Oðω3Þ, they can be discarded in the
linearized theory. Thus, the actions Sgr and STS lead to
theories which are equivalent in linear order (similar
calculation can show that the spectral action given by
Ref. [15] yields the same linearized theory as the action Sgr
and STS).

APPENDIX C: SOLVING THE CONSTRAINTS

For a constrained Hamiltonian system, the time evolu-
tion of any phase-space function fðPðxÞ; QðxÞÞ is defined
by the Poisson bracket of f with the Hamiltonian:

ffðxÞ;Htotg ¼
Z

d3yffðxÞ; eHtotðyÞgx0¼y0

×
Z

d3yd3z

�∂fðxÞ
∂QðzÞ

∂eHtotðyÞ
∂PðzÞ

−
∂fðxÞ
∂PðzÞ

∂eHtotðyÞ
∂QðzÞ

�
x0¼y0

: ðC1Þ

The consistency condition requires that the constraints not
have a time evolution on the constraint surface.
At this point, let us make a remark that will be useful

later. Denoting by ΦA the set of second-class primary
constraints, one has

0 ¼ _ΦA ¼ fΦA; eHtotg ¼ fΦA; eHþ euBΦBg
¼ fΦA; eHg þ euBfΦA;ΦBg þ uBfΦA; egΦB

≈ e

�
1

e
fΦA; eHg þ uBfΦA;ΦBg

�
; ðC2Þ

where uB’s stand for Lagrange multipliers. Hence, if the
quantity ð1e fΦA; eHg þ uBfΦA;ΦBgÞ is weakly equal to
zero, then the consistency condition is satisfied. From
Eq. (C2) one may either obtain the Lagrange multiplier
uB or a new constraint, which is not a linear combination
of the primary constraints. This new constraint is
called the secondary constraint, and we will define it
by χ ¼ 0.
In what follows, we will derive the constraint (58). Note

that we use the identities

δeμa ¼ − eμbe
ν
aδebν ; ðC3Þ

δe ¼ eeμaδeaμ ¼ −eeaμδe
μ
a: ðC4Þ

Let us first reduce the number of unknown Lagrange
multipliers by imposing the consistency condition on the
constraints ϕc ¼ 0 and φj

c ¼ 0.
(1) 0 ¼ _ϕc ¼ fϕc; eHtotg: Using Eq. (C2), the consis-

tency condition implies

0 ≈ fϕc;Hg þ u0t fϕc;ϕt
0g þ uIifϕc;ϕi

Ig
þ wa

jfϕc;φ
j
ag: ðC5Þ

Contraction with ect ¼ ðe0t ; 0; 0; 0Þ then yields

0 ≈ fectϕc;Hg þ u0t ect fϕc;ϕt
0g þ uIie

c
t fϕc;ϕi

Ig
þ wa

j e
c
t fϕc;φ

j
ag

≈ fe0tϕ0;Hg þ u0t fe0tϕ0;ϕt
0g − u0tϕ0fe0t ;ϕt

0g
þ uIife0tϕ0;ϕi

Ig þ wj
ae0t fϕ0;φa

jg
≈ fe0tϕ0;Hg þ u0t fe0tϕ0;ϕt

0g þ uIife0tϕ0;ϕi
Ig

þ wa
j e

0
t fϕ0;φ

j
ag: ðC6Þ

(2) 0 ¼ _φj
J ¼ fφj

J; eHtotg:

0 ≈ fφj
J;Hg þ u0t fφj

J;ϕ
t
0g þ uIifφj

J;ϕ
i
Ig

− ucfϕc;φ
j
Jg: ðC7Þ

Contraction with eJj then yields

0 ≈ feJjφj
J;Hg þ u0t feJjφj

J;ϕ
t
0g þ uIifeJjφj

J;ϕ
i
Ig

− uceJjfϕc;φ
j
Jg: ðC8Þ

Combining Eqs. (C6) and (C8) and using
eJjφ

j
J ¼ e0tϕ0, one gets

uceJj ¼ −wJ
je

c
t : ðC9Þ

Defining the scalar C ≔ 1
3
wJ
je

j
J, one then obtains

ua ¼ −Ceat ; wJ
j ¼ CeJj : ðC10Þ

As a consequence of (C10), the total Hamiltonian is
reduced to

Htot¼H−Ceat ϕaþCeJjφ
j
Jþu0tϕt

0þuIiϕ
i
Iþuabj ϕj

ab

¼Hþu0tϕt
0þuIiϕ

i
I þuabj ϕj

ab: ðC11Þ
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Next, to obtain the constraint Eq. (58), we analyze the consistency of the constraints ϕt
0 ¼ 0 and ϕi

I ¼ 0.
(3) 0 ¼ _ϕt

0 ¼ fϕt
0; eHtotg: We have

0 ¼ 1

e
fϕt

0; eHg þ uafpt
0;ϕag þ wa

jfpt
0;φ

j
ag þ uabj fpt

0;ϕ
j
abg

≈ fpt
0;Hg þ 1

e
Hfpt

0; eg − 2u0Jj

�
1

κ2
−
H2

12

�
ðet0Þ2ejJ

≈
1

2α0
et0Πi

0KΠ0K
i þ fpt

0;HH;ψg − et0H − 2u0Jj

�
1

κ2
−
H2

12

�
ðet0Þ2ejJ

≈
3

4α0
et0Πi

0KΠ0K
i − α0et0Cij

IJCij
IJ þ

�
1

κ2
−
H2

12

�
et0R

IJ
ij e

i
Ie

j
J þ ðfpt

0;HH;ψg − et0HH:ψÞ − 2u0Jj

�
1

κ2
−
H2

12

�
ðet0Þ2ejJ:

ðC12Þ

Multiplying the above equation, Eq. (C12), with e0t , we obtain

≈
3

4α0
Πi

0KΠ0K
i − α0Cij

IJCij
IJ þ

�
1

κ2
−
H2

12

�
RIJ
ij e

i
Ie

j
J þ ðe0t fpt

0;HH;ψg −HH:ψ Þ − 2u0Jj

�
1

κ2
−
H2

12

�
et0e

j
J: ðC13Þ

(4) 0 ¼ _ϕk
K ¼ fϕk

K; eHtotg: We have

0 ¼ 1

e
fpk

K; eHg þ uafpk
K;ϕag þ wa

jfpk
K;φ

j
ag þ uabj fpk

K;ϕ
j
abg

≈ fpk
K;Hg þ 1

e
Hfpk

K; eg − 2u0Jj

�
1

κ2
−
H2

12

�
et0e

k
Je

j
K

≈
1

2α0
Πk

0IΠ0I
j e

j
K þ 4α0emKC

kl
IJCml

IJ − 2

�
1

κ2
−
H2

12

�
Rij

IJeiIe
k
Je

j
K þ fpk

K;HH;ψg − ekKH − 2u0Jj

�
1

κ2
−
H2

12

�
et0e

k
Je

j
K

≈
1

2α0
Πk

0IΠ0I
j e

j
K þ 1

4α0
ekKΠi

0IΠ0I
i þ 4α0

�
emKC

kl
IJCml

IJ −
1

4
ekKC

ij
IJCij

IJ

�

− 2

�
1

κ2
−
H2

12

��
Rij

IJeiIe
k
Je

j
K −

1

2
ekKRij

IJeiIe
j
J

�
þ fpk

K;HH;ψg − ekKHH;ψ − 2u0Jj

�
1

κ2
−
H2

12

�
et0e

k
Je

j
K: ðC14Þ

Contracting with eKk , we obtain

0 ≈
5

4α0
Πk

0IΠ0I
k þ α0Cij

IJCij
IJ þ

�
1

κ2
−
H2

12

�
Rij

IJeiIe
j
J þ eKk fpk

K;HH;ψg − 3HH;ψ − 2u0Jj

�
1

κ2
−
H2

12

�
et0e

j
J: ðC15Þ

Combining Eqs. (C15) and (C13), we have a constraint equation

0 ≈
1

2α0
Πk

0IΠ0I
k þ 2α0Cij

lkCij
lk þ

1

4α0
Πk

IJΠIJ
k þ 4α0Cij

0ICij
0I þ eKk fpk

K;HH;ψg − e0t fpt
0;HH;ψg − 2HH;ψ

≈
1

2α0
Πk

0IΠ0I
k þ 2α0Cij

lkCij
lk þ iψ̄ðγIeiIDiψ − 2mψÞ − 2μ2H2 þ 2λH4 ¼ ∶χ; ðC16Þ

which is not a linear combination of the primary constraints. In conclusion, χ ¼ 0 is a secondary constraint, which
arises from the consistency condition.
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