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The relativistic analogue of the Hall-Vinen-Bekarevich-Khalatnikov (HVBK) hydrodynamics is derived
making use of the phenomenological method similar to that used by Bekarevich and Khalatnikov [1] in
their derivation of HVBK hydrodynamics. The resulting equations describe a finite-temperature superfluid
liquid with the distributed vorticity. The main dissipative effects, including mutual friction, are taken into
account. The proposed hydrodynamics is needed for reliable modeling of the dynamical properties of
superfluid neutron stars.
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I. INTRODUCTION

Despite the fact that superfluid flow must be irrotational,
it is well known [2–5] that in a rotating bucket a superfluid
mimics solid body rotation on average by creating arrays of
topological defects—vortex lines, near which the irrota-
tionality condition breaks down.
Hall and Vinen [6] developed in 1956 a coarse-grained

hydrodynamic equations capable of describing a superfluid
liquid with the continuously distributed vorticity. Their
equations are only valid in situations when a typical length
scale of the problem is much larger than the intervortex
spacing. Later in 1960-1961 Hall [7] and, independently,
Bekarevich and Khalatnikov [1] presented a more elabo-
rated version of these equations which is now called Hall-
Vinen-Bekarevich-Khalatnikov (HVBK) hydrodynamics.
Note that the most general phenomenological derivation
of HVBK-hydrodynamics, based upon conservation laws,
were given by the last two authors in the abbreviation
(Bekarevich and Khalatnikov). Subsequently, many authors
have repeated and analyzed their derivation in order to
generalize it and/or make it more transparent (see Donnelly
[5] and Sonin [8] for details and, especially, Refs. [9,10]).
The main conclusion of their work is that, basically, the
structure of the HVBK-hydrodynamics remains unaffected
if one is not interested in the oscillation modes related to the
elasticity of the vortex lattice [11,12].
The HVBK-hydrodynamics has received a great deal of

attention in relation to the interpretation of liquid helium II
experiments [5,8] and, somewhat unexpectedly, in relation
to the neutron star physics (see, e.g., Refs. [13–17]). Since
HVBK-equations are essentially nonrelativistic, the major-
ity of studies of superfluid neutron-star dynamics have been
performed in the nonrelativistic framework. This frame-
work is (as a rule) acceptable for a qualitative analysis of

the problem but is inadequate for obtaining the quantitative
results since neutron stars are essentially relativistic objects.
Clearly, one needs a Lorentz-covariant formulation of

HVBK-hydrodynamics. In the literature there were only a
few attempts to find such a formulation [18,19] (see also
Ref. [20], lectures [21], and references therein). The
authors of these works restrict themselves to the case of
a vanishing temperature (T ¼ 0), when there are no thermal
excitations (normal component) in the liquid and hence no
dissipative interaction (the so-called “mutual friction”)
between the superfluid and normal liquid components.
The resulting hydrodynamics, generalized subsequently to
describe superfluid mixtures [22,23], have then been
applied to model oscillations of cold (T ¼ 0) superfluid
rotating neutron stars in Ref. [24]. Note, however, that in
many physically interesting situations the approximation of
vanishing stellar temperature is not justified and leads to
qualitatively wrong results when studying neutron star
dynamics (see, e.g., Refs. [25–30] for illustration of
principal importance of finite temperature effects in some
problems). Moreover, as we argue in Appendix F, the
hydrodynamics of Refs. [18,19] is internally inconsistent,
which can have important consequences for those problems
(see Ref. [31] for an example) for which the contribution of
the vortex energy to the total energy density cannot be
neglected.1

The aim of the present study is to fill the existing gap
by deriving the self-consistent relativistic dissipative
HVBK-hydrodynamics, valid at arbitrary temperature.
Our derivation will closely follow the ideas of the original
derivation of Bekarevich and Khalatnikov [1].

1The results of Ref. [24] remain unaffected since it
(legitimately) ignores a small vortex contribution to the total
energy density.
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The paper is organized as follows. In Sec. II we
present the derivation of the well-known vortex-free
superfluid relativistic hydrodynamics. In Sec. III A we
formulate the relativistic HVBK-hydrodynamics under
the assumption that the contribution of vortices to the
total energy density of a superfluid can be neglected.
In Sec. III B this assumption is relaxed and the most
general relativistic HVBK-equations are found. Finally,
we conclude in Sec. IV.
The paper also contains a number of important appen-

dixes. In Appendix Awe present the original (nonrelativistic)
HVBK-hydrodynamics; in Appendix B we list the full
system of equations of relativistic HVBK-hydrodynamics;
in Appendix C we analyze the nonrelativistic limit of
one of the most important equations of the proposed
hydrodynamics—the superfluid equation; in Appendix D
we find the vortex contribution to the energy density; in
Appendix E we present an alternative microscopic deri-
vation of the vortex contribution to the energy-momentum
tensor (more precisely, derivation of its spatial compo-
nents); finally, in Appendix F we discuss the internal
inconsistency of the zero-temperature vortex hydrodynam-
ics of Refs. [18,19].
Unless otherwise stated, in what follows the speed of

light c, the Planck constant ℏ, and the Boltzmann constant
kB are all set to unity, c ¼ ℏ ¼ kB ¼ 1.

II. RELATIVISTIC SUPERFLUID
HYDRODYNAMICS IN THE
ABSENCE OF VORTICES

A. General equations

Neglecting vortices, relativistic superfluid hydrodynam-
ics for a one-component liquid has been studied in many
papers and is well known (see, e.g., [18,20,32–41]). Here
we present its derivation partly in order to establish
notations and partly because, as we believe, it can be of
independent interest. Our derivation adopts the same
strategy as that used by Khalatnikov [3] to derive equations
of nonrelativistic superfluid hydrodynamics.
Hydrodynamic equations include the energy-momentum

conservation

∂μTμν ¼ 0 ð1Þ

and particle conservation

∂μjμ ¼ 0; ð2Þ

where ∂μ ≡ ∂=∂xμ; Tμν is the energy-momentum tensor
(which must be symmetric) and jμ is the particle four-
current density. Here and below, unless otherwise stated,
μ, ν, and other Greek letters are space-time indices
running over 0, 1, 2, and 3. Generally, Tμν and jμ can
be presented as

Tμν ¼ ðPþ εÞuμuν þ Pgμν þ ΔTμν; ð3Þ

jμ ¼ nuμ þ Δjμ; ð4Þ

where P is the pressure given by Eq. (21) below; ε is
the energy density; n is the number density; gμν ¼
diagð−1; 1; 1; 1Þ is the space-time metric.2 Finally, uμ is
the four-velocity of the normal (nonsuperfluid) liquid
component (thermal excitations), normalized by the
condition

uμuμ ¼ −1: ð5Þ

The underlined terms in Eqs. (3) and (4) have the familiar
form of, respectively, the energy-momentum tensor and
particle current density of nonsuperfluid matter (see, e.g.,
Ref. [2]). Correspondingly, additional “superfluid” terms
ΔTμν and Δjμ characterize deviation of superfluid hydro-
dynamics from the ordinary one. Note that the thermo-
dynamic quantities introduced in Eqs. (3) and (4) do not
have any direct physical meaning unless a comoving
frame where they are measured (defined) is specified. In
what follows we define the comoving frame by the
condition uμ ¼ ð1; 0; 0; 0Þ indicating, that it is the frame
where the normal liquid component is at rest. This
definition coincides with the definition of the comoving
frame in the ordinary relativistic hydrodynamics. It
means, in particular, that the components T00 and j0 in
this frame are given by the conditions, T00 ¼ ε and j0 ¼ n,
which, in an arbitrary frame, translates into

uμuνTμν ¼ ε; ð6Þ

uμjμ ¼ −n; ð7Þ

or, in view of the expressions (3) and (4) to

uμuνΔTμν ¼ 0; ð8Þ

uμΔjμ ¼ 0: ð9Þ

As a matter of fact, we can extract even more information
about the form of jμ in the comoving frame. Since in that
frame normal component does not move, spatial compo-
nents of the current ji (i ¼ 1, 2, 3) are nonzero only
because of the motion of superfluid component. In the
nonrelativistic limit the contribution of the superfluid

2Throughout the paper we assume that the metric is flat.
Generalization of our results to arbitrary gμν is straightforward
provided that all relevant length scales of the problem (e.g.,
thermal excitation mean free path) are small enough compared
with the characteristic gravitational length scale (e.g., neutron star
radius) [42]. In the latter case general relativity effects can easily
be incorporated into hydrodynamics by replacing ordinary
derivatives in all equations with their covariant analogues.
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component in this situation would be ρsVs, where ρs is the
superfluid density and Vs ¼ ∇ϕ=m is the superfluid veloc-
ity. (Here m is the bare particle mass and ϕ is a scalar
proportional to the phase Φ of the condensate wave
function; for Bose-Einstein condensate ϕ ¼ Φ, for
Cooper-pair condensate ϕ ¼ Φ=2 [43,44].) By analogy,
in the relativistic case it is natural to introduce a superfluid
four-velocity

Vμ
ðsÞ ≡

∂μϕ

m
; ð10Þ

and assume that ji can be represented as ji ¼ mYVi
ðsÞ ¼

Y∂iϕ, where Y is some coefficient, a relativistic equivalent
of the superfluid density ρs (it is easily verified that in the
nonrelativistic limit Y ¼ ρs=ðm2c2Þ in dimensional units
[44]). Consequently, in the comoving frame one has [see
Eqs. (4) and (9)]

Δj0 ¼ 0; ð11Þ

Δji ¼ ji ¼ Y∂iϕ: ð12Þ

In an arbitrary frame this expression can be rewritten by
introducing a new four-vector, bμ, as

Δjμ ¼ Yð∂μϕþ bμÞ: ð13Þ

To satisfy Eq. (12), a spatial part of bμ should vanish in the
comoving frame, bi ¼ 0. That is, bμ and uμ should be
collinear in that frame, hence they must be collinear in all
other frames, i.e.,

bμ ¼ −Buμ; ð14Þ

where B is some scalar to be determined below. In view of
Eqs. (9) and (13) B and ϕ are interrelated by the following
equation

uμ∂μϕ ¼ −B: ð15Þ

Note that, Eq. (11) is then automatically satisfied.
Let us now introduce a new four-vector,

wμ ≡ ∂μϕ − Buμ ð16Þ

instead of ∂μϕ. Since this vector depends on the four-
gradient of the scalar ϕ, it is not arbitrary and is constrained
by the condition

∂μðwν þ BuνÞ ¼ ∂νðwμ þ BuμÞ; ð17Þ

which is simply the statement that ∂μ∂νϕ ¼ ∂ν∂μϕ. In what
follows Eq. (17) is called the potentiality condition or
simply the superfluid equation. In terms of the new four-
vector wμ one has [see Eqs. (4) and (13)]

jμ ¼ nuμ þ Ywμ; ð18Þ

while the condition (9) transforms into

uμwμ ¼ 0: ð19Þ

Equations (1)–(3), (6), (7), and (17)–(19) are key
equations that will be used below. They should be supple-
mented by the second law of thermodynamics.
In a normal matter the energy density ε of a one-

component liquid can generally be presented as a function
of the number density n and the entropy density S. In
superfluid matter, there is an additional degree of freedom
associated with the vector wμ. One can construct two scalars
associated with wμ, namely, uμwμ and wμwμ. The first scalar
vanishes on account of (19), so that ε ¼ εðn; S; wμwμÞ.
Consequently, variation of ε can generally be written as

dε ¼ μdnþ TdSþ Λ
2
dðwμwμÞ; ð20Þ

where we defined the relativistic chemical potential
μ≡ ∂εðn; S; wμwμÞ=∂n; temperature T ≡ ∂εðn; S; wμwμÞ=
∂S; and Λ≡ 2∂εðn; S; wμwμÞ=∂ðwμwμÞ. Equation (20) is
interpreted as the second law of thermodynamics for a
superfluid liquid.
We need also to specify the pressure P. According to the

standard definition it equals to a partial derivative of the full
system energy εV with respect to volume V at constant total
number of particles, total entropy, and wμwμ [3,45],

P≡ −
∂ðεVÞ
∂V ¼ −εþ μnþ TS: ð21Þ

Using (20) and (21) one arrives at the following Gibbs-
Duhem equation for a superfluid liquid,

dP ¼ ndμþ SdT −
Λ
2
dðwμwμÞ: ð22Þ

B. Determination of ΔTμν and the
parameters B and Λ

We discussed above a general structure of the non-
dissipative hydrodynamics of superfluid liquid, which must
conserve entropy of any closed system. This means that the
entropy generation equation must take the form of the
continuity equation,

∂μSμ ¼ 0; ð23Þ

where Sμ is the entropy current density (it will be shown
below that the entropy flows with the normal liquid
component, i.e., Sμ ¼ Suμ).
Wewill findΔTμν, B, andΛ from this requirement. To do

this, we should derive the entropy generation equation from
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the hydrodynamics of the previous section. Let us consider
a combination uν∂μTμν, which vanishes in view of Eq. (1).
Using Eqs. (3), (5), (21), and (22) one obtains

0 ¼ −uμT∂μS − ST∂μuμ − μ∂μðnuμÞ − uμΛwν∂μwν

þ uν∂μΔTμν; ð24Þ

or, using Eq. (2) with jμ from Eq. (18),

T∂μðSuμÞ ¼ μ∂μðYwμÞ − uμΛwν∂μwν þ uν∂μΔTμν: ð25Þ

This equation can be further transformed to

T∂μðSuμÞ ¼ ∂μðμYwμÞ − Ywμ∂μμ − uμΛwν∂μwν

þ ∂μðuνΔTμνÞ − ΔTμν∂μuν: ð26Þ

The derivative ∂μwν in the third term on the right-hand side
of Eq. (26) can be expressed by making use of Eq. (17).
After substitution of the result a few terms vanish and we
left with

T∂μðSuμÞ ¼ wμðΛ∂μB − Y∂μμÞ þ ∂μðμYwμ þ uνΔTμνÞ
þ ∂μuνðΛwμwν þ ΛBuμwν − ΔTμνÞ: ð27Þ

To obtain Eq. (27) we used the equalities

uμ∂νuμ ¼ 0; ð28Þ

uμ∂νwμ ¼ −wμ∂νuμ; ð29Þ
following from Eqs. (5) and (19), respectively. The second
and third terms in Eq. (27) can be symmetrized by
employing Eqs. (5) and (19). As a result, Eq. (27) can
be rewritten in its final form as

T∂μðSuμÞ¼wμðΛ∂μB−Y∂μμÞ
þ∂μ½uνðΔTμν−Λwμwν−μYwμuν−μYwνuμÞ�
þ∂μuνðΛwμwνþΛBuμwνþΛBuνwμ−ΔTμνÞ

ð30Þ
or

∂μðSuμÞ¼
wμ

T
ðΛ∂μB−Y∂μμÞþðμY−ΛBÞ∂μT

T2
wμ

þ∂μ

�
uν
T
ðΔTμν−Λwμwν−μYwμuν−μYwνuμÞ

�

þ∂μ

�
uν
T

�
ðΛwμwνþΛBuμwνþΛBuνwμ−ΔTμνÞ:

ð31Þ
The right-hand side of this equation must be a four-
divergence for any ∂μuν, ∂μT, and ∂μμ. This requirement,

together with the assumption that ΔTμν should depend on
the four-velocities uμ and wμ and various thermodynamic
quantities (but not on their gradients), while B and Λ should
depend on thermodynamic quantities only, allows us
to identify the unknown parameters Λ, B, ΔTμν, and
Sμ as

Λ ¼ Y
k
; ð32Þ

B ¼ kμ; ð33Þ

ΔTμν ¼ Y

�
wμwν

k
þ μuμwν þ μuνwμ

�
; ð34Þ

Sμ ¼ Suμ; ð35Þ

where k is some constant which should be equal to 1, as
follows from the comparison with the nonrelativistic
theory.3 These equalities complete the formulation of
relativistic superfluid hydrodynamics in the absence of
vortices. One can see that the resulting energy-momentum
tensor Tμν,

Tμν ¼ ðPþ εÞuμuν þ Pgμν þ Yðwμwν þ μuμwν þ μuνwμÞ;
ð36Þ

is symmetric and satisfies the condition (6) [on account
of Eq. (19)].
Equations (20) and (22) now take the form

dε ¼ μ dnþ T dSþ Y
2
dðwμwμÞ; ð37Þ

dP ¼ n dμþ S dT −
Y
2
dðwμwμÞ; ð38Þ

while the potentiality condition (17) becomes

∂μðwνþ μuνÞ ¼ ∂νðwμþμuμÞ⇔m½∂μVðsÞν− ∂νVðsÞμ� ¼ 0:

ð39Þ
Remark 1.—It is relatively straightforward to include

dissipation into this hydrodynamics. The corresponding
corrections (the largest of them) have been first obtained in
Refs. [18,20] and have received a great deal of attention
in the recent years [34,35,37,38,40]. For the superfluid
hydrodynamics in the form discussed above they were
formulated in Ref. [35].

3Another way to verify that k can be chosen equal to 1 is to
note that both ϕ and Y are introduced into the theory through the
definition (12) of ji in the comoving frame. They can, therefore,
be simultaneously rescaled, Y → Y=k and ϕ → kϕ, without
affecting ji and other observables of the theory. This is equivalent
to choosing k ¼ 1 in Eqs. (32)–(34).
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Dissipation adds a correction τμνdiss to the energy-momen-
tum tensor Tμν (36) and also changes the relation between
the superfluid velocity Vμ

ðsÞ and the four-vector wμ, which
becomes [35]4

Vμ
ðsÞ ¼

wμ þ ðμþ ϰdissÞuμ
m

; ð40Þ

where ϰdiss is the correction depending on the bulk
viscosity coefficients ξ3 and ξ4. Both these corrections
are briefly discussed in Appendix B, where we present
the full system of equations of relativistic superfluid
HVBK-hydrodynamics.

III. RELATIVISTIC SUPERFLUID
HYDRODYNAMICS IN THE
PRESENCE OF VORTICES

A thorough discussion of vortices in the nonrelativistic
superfluid hydrodynamics can be found in many references
(see, e.g., [3,5,8,46]); a brief summary of results is given in
Appendix A. An extension of the concept of vortices to the
relativistic case is rather straightforward (see, e.g.,
Refs. [18–21,47]). When there are no vortices in the system
the wave function phase of a superfluid condensate is a
well-defined quantity everywhere so that the integralH ∂μϕdxμ over any closed loop vanishes. If there are
topological defects—vortices—in the system, this integral
should not be necessarily zero and can be a multiple of 2π
(it cannot be arbitrary in order for the wave function of the
condensate to be uniquely defined),

I
VðsÞμdxμ ¼

2πN
sm

; ð41Þ

where N is an integer; s ¼ 1 for Bose-superfluids and
s ¼ 2 for Fermi-superfluids, and we introduced the super-
fluid velocity VðsÞμ instead of ∂μϕ (sufficiently far from the
vortices, where the “hydrodynamic approach” is justified,
they are related by Eq. (10); however, in the immediate
vicinity of the vortex cores this equation is violated [43]). It
can be shown [3] that in a real superfluid it is energetically
favorable to form vortices in the form of thin lines, each
carrying exactly one quantum of circulation [i.e., an
integral (41) over a closed loop around any given vortex
line is 2π=ðsmÞ].
Equation (41) can be rewritten, using the Stokes’

theorem, as an integral over the surface encircled by the
loop,

Z
dfμνFμν ¼

2πN
s

; ð42Þ

where Fμν defines vorticity multiplied by m, Fμν ≡
m½∂μVðsÞν − ∂νVðsÞμ� (for brevity, Fμν is called “vorticity”
in what follows). In many physically interesting situations5

vortices are so densely packed on a typical length-scale of
the problem that it makes no sense to follow the evolution of
each of them in order to describe dynamics of the system as a
whole. Instead, it is more appropriate to use coarse-grained
dynamical equations which depend on quantities averaged
over the volume containing large amount of vortices.
The main parameters of such a theory are the smooth-

averaged superfluid velocity and vorticity (to be defined as
Vμ
ðsÞ and Fμν in what follows); they are analogous to,

respectively, the averaged superfluid velocity Vs and
m curlVs of the nonrelativistic theory. Note that, in view
of Eq. (42), the smooth-averaged vorticity Fμν ≠ 0 (and
Vμ
ðsÞ is not simply given by a gradient of scalar). In other

words, when there are vortices in the system, Eq. (39)
should be replaced by a weaker constraint (see below).

A. Hydrodynamic equations under condition that
the vortex contribution to the energy density

can be neglected

To get an insight into the problem, let us first determine
the form of large-scale hydrodynamics in the case when one
can neglect contribution of vortices to the second law of
thermodynamics and to the energy-momentum tensor.6

In the nonrelativistic theory this limit corresponds to
HVBK-hydrodynamics with λ ¼ 0 (when ℏ is formally
set to 0; see Appendix A and Remark 2 there). In this limit
vortices affect only the superfluid equation (39) [Eq. (A4)
of the nonrelativistic theory], while other equations of
Sec. II remain unchanged. Note, however, that now these
equations depend on the smooth-averaged four-velocity
Vμ
ðsÞ which is not given by simply ∂μϕ=m. Correspondingly,

the smooth-averaged quantity wμ in these equations should
now be written as [see Eq. (40) with ϰdiss ¼ 0]

wμ ¼ mVμ
ðsÞ − μuμ: ð43Þ

To find an explicit form of the smooth-averaged super-
fluid equation in the presence of vortices we will again
make use of the fact that the entropy of a closed system
cannot decrease. Employing the energy-momentum and
particle conservation laws (1) and (2) with jμ and Tμν given
by, respectively, Eqs. (18) and (36), as well as Eqs. (5),
(19), (21), (37), and (38), we arrive at the following entropy
generation equation,

4In the absence of dissipation Vμ
ðsÞ ¼ ðwμ þ μuμÞ=m, as

follows from Eqs. (10), (16), and (33).

5For example, in rotating neutron stars, the mean distance
between the neighboring vortices is ∼10−2–10−4 cm, while the
typical length-scale, the stellar radius, is ∼10 km.

6For clarity, we also ignore in what follows the standard
viscous and thermal conduction terms in the expression for Tμν

(τμνdiss ¼ 0) and in the relation (40) between Vμ
ðsÞ and wμ

(ϰdiss ¼ 0).
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T∂μðSuμÞ ¼ uνYwμFμν: ð44Þ

This equation can be derived in the same way as in Sec. II B
with the only difference that now it is obtained without
making use of the potentiality condition (39), which is not
valid in the system with the distributed vorticity (Fμν ≠ 0).
Because entropy does not decrease, one should have

uνYwμFμν ≥ 0: ð45Þ

Let us now introduce a new four-vector,

fμ ≡ uνFμν

μn
: ð46Þ

In terms of fμ Eq. (45) can be rewritten as

Wμfμ ≥ 0; ð47Þ

where we also defined

Wμ ≡ Ywμ

n
: ð48Þ

In the comoving frame [where uμ ¼ ð1; 0; 0; 0Þ], f0 ¼
F00 ¼ 0 and Eq. (47) transforms into

Wifi ≥ 0; ð49Þ

where i ¼ 1, 2, 3 is the spatial index.7 In order for the
inequality (49) to hold true the vector f ≡ ðf1; f2; f3Þ
should satisfy a number of conditions (forget for a moment
about its definition (46): (i) it must be polar; (ii) must
vanish at Fμν ¼ 0 (because the potentiality condition (39) is
valid in that case); and (iii) should depend on W ≡
ðW1;W2;W3Þ in order to satisfy Eq. (49) at arbitrary W
[note that Vs ≡ ½V1

ðsÞ; V
2
ðsÞ; V

3
ðsÞ� ¼ nW=ðYmÞ and thus is

not an independent variable; see Eqs. (43) and (48)]. These
conditions are clearly insufficient to determine the most
general form of f . However, it seems reasonable to further
require that (iv) f may only depend onW and Fμν (as noted
by Clark [9], in the nonrelativistic theory a similar
assumption was implicitly made in Ref. [1]; see Ref. [9]
for a detailed critical analysis of HVBK-hydrodynamics).
In analogy with electrodynamics, instead of the anti-

symmetric tensor Fμν ¼ m½∂μVðsÞν − ∂νVðsÞμ� it is conven-
ient to introduce an axial vector H ¼ m curlVs and a polar
vector E≡m½∂Vs=∂tþ ∇V0

ðsÞ�. Then the most general
form of f , satisfying the conditions (i)–(iv), can, in
principle, be found. The resulting expression will contain
many more kinetic coefficients (and additional terms) in
comparison to the original HVBK-expression (A13),
because now we allow f to depend not only on

H ¼ m curlVs, like in the nonrelativistic theory, but also
on the vector E.8 The physical meaning of these additional
terms is not clear and deserves a further study. However, in
the nonrelativistic limit these terms are presumably sup-
pressed in comparison to the H-dependent terms presented
in Eq. (50) below [because E ∼ 1=c → 0 at c → ∞, see
Appendix C and Eqs. (C5) and (C7) there]. Since here we
are mainly interested in the straightforward generalization
of HVBK-equations to the relativistic case, below we only
present the terms which have direct counterparts in the
nonrelativistic theory. They exclusively depend on the
vector H ¼ m curlVs, namely,

f ¼ −α½H ×W� − βe × ½H ×W� þ γeðWHÞ; ð50Þ

where e≡H=H is the unit vector in the direction of
H ¼ m curlVs; α, β, and γ are some scalars (kinetic
coefficients), which can generally depend on invariants
ofW andH. Note that the first term in the right-hand side of
Eq. (50), depending on α, is dissipationless. In contrast, the
other terms there are dissipative and to satisfy (47) the
coefficients β and γ should be positive, β, γ ≥ 0. In
appendix C it is shown that these coefficients indeed
coincide with the coefficients α, β, and γ of HVBK-
hydrodynamics.
We found the form of the four-vector fμ in the comoving

frame, fμ ¼ ð0; f Þ, where f is given by Eq. (50). Now our
aim will be to rewrite fμ in an arbitrary frame. To do this let
us introduce a four-vector Hμ, given by (in the orthonormal
basis)

Hμ ≡ ϵμνληuνm∂λVðsÞη ¼
1

2
ϵμνληuνFλη; ð51Þ

where ϵμνλη is the four-dimensional Levi-Civita tensor and
we use the antisymmetry property of the tensor Fμν in the
second equality. In the comoving frame this vector equals
Hμ ¼ ð0;HÞ ¼ ð0; m curlVsÞ. Also, assume that we have
two four-vectors, say, Bμ and Cμ, whose spatial compo-
nents B and C form a 3D-vector A ¼ B × C in the
comoving frame. Then we define the four-vector Aμ in
an arbitrary frame according to

Aμ ≡ ϵμνληuνBλCη: ð52Þ

The definitions (51) and (52) are trivial extensions of the
curl operator and cross product, defined in the comoving
frame [uμ ¼ ð1; 0; 0; 0Þ], to an arbitrary frame (see also
Refs. [48,49] for similar definitions). Using these defini-
tions, one can immediately write out a general Lorentz-
covariant expression for fμ,

7It is worth noting that, in view of Eq. (19), W0 ¼ Yw0=n also
vanishes in the comoving frame, W0 ¼ 0.

8Among the E-dependent terms which can enter the expression
for f there should be terms of the form ½E ×W� ×W, ðEWÞE,
½E ×W� × E and a number of “mixed” terms depending on both
H ¼ m curlVs and E, e.g., ½W × E�ðEHÞ andW × ½E ×H�ðEHÞ.
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fμ ¼ −αXμ − βϵμνληuνeλXη þ γeμðWλHλÞ; ð53Þ

where eμ ¼ Hμ=H with H ¼ ðHμHμÞ1=2 and Xμ ≡
ϵμνληuνHλWη.

9 The same expression can be reformulated
without making use of the Levi-Civita tensor,10

fμ ¼ α⊥μνFνλWδ⊥λδ þ β − γ

H
⊥μη⊥νσFησFλνWδ⊥λδ

þ γHWδ⊥μδ; ð54Þ

where ⊥μν ¼ gμν þ uμuν is the projection operator and

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
⊥μη⊥νσFμνFησ

r
: ð55Þ

Because fμ is now specified, Eq. (46) can now be treated
as a new superfluid equationwhich replaces the potentiality
condition (39) and generalizes it to the case of a superfluid
liquid with distributed vorticity. It can be rewritten as

uνFμν ¼ μnfμ: ð56Þ

Note that it is valid as long as one can neglect the
contribution of vortices to the energy density (i.e.,
λ ¼ 0, see Appendix D). Otherwise, the definition of the
vector Wμ should be modified [see Eq. (82) in Sec. III B].
In Appendix C we demonstrate that, in the nonrelativistic
limit, Eq. (56) reduces to Eq. (A4) with λ ¼ 0.
Remark 1.—To derive the superfluid equation (56) we

first introduced the vector fμ ¼ uνFμν=ðμnÞ and then
deduced its possible form from the condition fμWμ ≥ 0.
This is not the only way of obtaining this equation. In fact,
Eq. (56) can also be derived by introducing a vector gν ≡
WμFμν and then requiring it to satisfy a condition gνuν ≥ 0,
which follows from the constraint (45).
Remark 2.—Equation (56) imposes certain restrictions

on the possible form of the tensor Fμν. Assume that Fμν

satisfies this equation. Then it can be shown by direct
calculation that, if the coefficient γ in Eq. (54) vanishes,
then a four-vector Vμ

ðLÞ exists, given by,

Vμ
ðLÞ ¼ uμ − μnαWν⊥μν þ μnβ

H
⊥μα⊥νβFαβWν; ð57Þ

such that the combination Vν
ðLÞFμν is identically zero,

Vν
ðLÞFμν ¼ 0: ð58Þ

Equation (58) is analogous to the vorticity conserva-
tion equation (A17) of the nonrelativistic HVBK-
hydrodynamics (see Appendix A).
Remark 3.—In Appendix A we consider the strong and

weak-drag limits for superfluid equation (A4) (or (A17)) of
the nonrelativistic HVBK-hydrodynamics. Similar limits
can also be considered in relativistic hydrodynamics. In
particular, strong-drag limit corresponds to α ¼ β ¼ γ ¼ 0
in Eq. (54) so that Eq. (58) reduces to

uνFμν ¼ 0: ð59Þ

This equation describes vortex motion (vorticity transfer)
with the velocity uμ of normal liquid component. (In
ordinary nonsuperfluid hydrodynamics a similar equation
takes place, but vorticity Fμν there is expressed through the
same velocity uμ, with which it is transferred, Fμν ¼∂μðμuνÞ − ∂νðμuμÞ, see, e.g., Ref. [50].) Weak-drag limit
is described by the equation

Vν
ðsÞFμν ¼ 0 ð60Þ

and follows from Eq. (58) when α ¼ −1=ðμ2YÞ and β ¼
γ ¼ 0 (cf. the corresponding limit in the nonrelativistic
HVBK-hydrodynamics). It corresponds to a vortex motion
with the superfluid velocity Vμ

ðsÞ. Note that both these

limits were analyzed in Ref. [23] in application to zero-
temperature superfluid neutron stars.11

B. Accounting for the vortex energy

In this section we formulate the relativistic generalization
of the HVBK-hydrodynamics taking into account contri-
bution of vortices to the energy-density ε and the energy-
momentum tensor Tμν. It is convenient to formulate this
hydrodynamics in terms of the four-vectors uμ and wμ as
primary degrees of freedom. For that it is necessary to
define more rigorously what we actually mean by wμ.
In what follows we define wμ by the formula

jμ ¼ nuμ þ Ywμ; ð61Þ

where the quantities jμ, uμ, n have the same meaning as in
the previous sections [in particular, n is the number density
measured in the comoving frame where uμ ¼ ð1; 0; 0; 0Þ],

9Possible E-dependent terms in the expression for fμ (see the
footnote 8) can be obtained in a similar way by introducing a
four-vector Eν ≡ uμFμν, which reduces to ð0;EÞ in the comoving
frame.

10Equation (54) is the most general expression for fμ valid for
arbitrary Wμ. However, the four-vector Wμ, introduced in this
section (cf. the definition ofWμ in Sec. III B), satisfies a condition
uμWμ ¼ 0 [see Eqs. (19) and (48)], which allows one to simplify
Eq. (54) in this particular case and write

fμ ¼ α⊥μνFνλWλ þ β − γ

H
⊥μη⊥νσFησFλνWλ þ γHWμ:

11In the “weak-drag” equation (33) of Ref. [23] one finds the
total neutron current density instead of the superfluid velocity
Vμ
ðsÞ. This is not surprising since the authors of Ref. [23] work in

the limit T ¼ 0, when all particles (neutrons) are paired and move
with one and the same superfluid velocity Vμ

ðsÞ.
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while the parameter Y is defined by the second law of
thermodynamics [see Eq. (64) below], Y ¼ 2∂ε=∂ðwμwμÞ.
[It is straightforward to show that it is always possible to
define wμ by Eq. (61) such that the coefficients Y in
Eq. (61) and Y in Eq. (64) will indeed coincide.] A
definition (61) implies that the conditions (9) and (19)
must be satisfied automatically.
After defining wμ, the superfluid velocity Vμ

ðsÞ of our

smooth-averaged hydrodynamics can be defined by
Eq. (43), Vμ

ðsÞ ¼ ðwμ þ μuμÞ=m.12 (We again ignore here

a viscous dissipative correction ϰdiss, which has the same
form [35] as in the vortex-free case and does not affect our
derivation; it can easily be included in the final equations,
see Appendix B.)
Next, we present the energy-momentum tensor in the

form

Tμν ¼ ðPþ εÞuμuν þ Pgμν þ Yðwμwν þ μuμwν þ μuνwμÞ
þ τμν; ð62Þ

where P is defined by Eq. (21) and τμνð¼ τνμÞ is the
symmetric vortex contribution to Tμν, which will be
determined below [without this contribution Eq. (62)
coincides with (36)]. Because ε is the total energy density
in the comoving frame (including the contribution of
vortices), Tμν should satisfy condition (6) which, in view
of Eq. (19), translates into

uμuντμν ¼ 0: ð63Þ
Finally, the most important step in building up the

relativistic HVBK-hydrodynamics is to postulate the form
of the second law of thermodynamics in the presence of
vortices. Obviously, one can write

dε ¼ μdnþ TdSþ Y
2
dðwμwμÞ þ dεvortex; ð64Þ

where dεvortex is the term responsible for the vortex
contribution to dε, while other terms are the same as in
the vortex-free superfluid hydrodynamics [see Eq. (37)].
Before guessing a possible form of dεvortex let us

derive the entropy generation equation. Using equations
of this section together with Eqs. (1), (2), (5), (19), and
(21), one gets

T∂μðSuμÞ ¼ uνYwμFμν − uμ∂μεvortex þ uν∂μτ
μν; ð65Þ

where13

Fμν ≡m½∂μVðsÞν − ∂νVðsÞμ� ¼ ∂μðwν þ μuνÞ
− ∂νðwμ þ μuμÞ: ð66Þ

The first term in the right-hand side of Eq. (65) is the same
as in Eq. (44), the second and third terms are induced by the
vortex-related terms in Eqs. (62) and (64).
Now let us specify dεvortex. In the absence of vortices the

energy density ε depends on three scalars, n, S, and wμwμ.
When vortices are present a new dynamical quantity
Fμν ≠ 0 appears and the (smooth-averaged) energy density
ε can depend on its various invariants. In fact, it is possible
to compose many different scalars from the quantities Fμν,
uμ, wμ, and their derivatives. One can single out one or few
of them on the basis of physical arguments or intuition. As
it is argued in Appendix D, it is a good approximation to
treat εvortex as a function of only one additional invariant
H ¼ ðHμHμÞ1=2, where Hμ is given by Eq. (51) and equals
ð0; m curlVsÞ in the comoving frame. Correspondingly,
H ¼ mjcurlVsj is analogous to the invariant ω ¼ jcurlVsj
of the nonrelativistic theory (see Appendix A). If ε depends
on H, one can write

dεvortex ¼
∂ε
∂HdH ¼ λ

2mH
dðHμHμÞ; ð67Þ

where the partial derivative is taken at constant n, S,
and wμwμ; λ≡m∂ε=∂H is the relativistic analogue
of the parameter λ of the nonrelativistic theory (see
Appendix D); both parameters coincide in the nonrelativistic
limit.
Equation (67) can be rewritten as

dεvortex ¼
Γ
2
ðOαβdFαβ þ 2FαβFαγuβduγÞ; ð68Þ

where we used Eq. (55) together with the identity
uμuνFμν ¼ 0, and defined14

Γ≡ λ

mH
; ð69Þ

Oαβ ≡⊥αγ⊥βδFγδ: ð70Þ

In what follows we will be interested in the quantity
−uμ∂μεvortex, which appears in the entropy generation
equation (65). Using Eq. (68), it is given by

12This way of reasoning is similar to that of Bekarevich &
Khalatnikov [1]. In a purely phenomenological approach it is not
obvious, however, that the superfluid velocity Vμ

ðsÞ defined in this
manner will coincide with the velocity, whose vorticity is directly
related to the area density of vortex lines and satisfies, for
example, the “continuity equation” for vortices [see Eq. (58)].
The fact that both definitions coincide follows from the self-
consistency of the resulting hydrodynamics [in particular,
Eq. (58) remains to be satisfied, see below]. This conclusion
can also be verified by a microscopic consideration similar to that
presented in Appendixes D and E.

13If ϰdiss were nonzero, one would have a combination Fμν −∂μðϰdissuνÞ þ ∂νðϰdissuμÞ instead of Fμν in Eq. (65).
14Note that Oαβ can also be presented in the form, Oαβ ¼

1
2
ϵδηαβuηϵδabcuaFbc (a, b, and c are the space-time indices).

M. E. GUSAKOV PHYSICAL REVIEW D 93, 064033 (2016)

064033-8



−uμ∂μεvortex ¼ −
Γ
2
uμOαβ∂μFαβ − ΓuμuδFαδFαν∂μuν:

ð71Þ

The first term in the right-hand side of Eq. (71) can be
transformed as

−
Γ
2
uμOαβ∂μFαβ ¼ uνFμν∂αðΓOμαÞ − ∂μðuνΓOμαFναÞ

þ ∂μuνðΓOμαFναÞ: ð72Þ

To obtain this expression we used the identity [see Eq. (66)]

∂μFαβ ¼ ∂αFμβ þ ∂βFαμ ⇔ ϵiklm∂kFlm ¼ 0; ð73Þ

and the fact that both tensors Fμν and Oμν are
antisymmetric.
In turn, the second term in the right-hand side of Eq. (71)

can be rewritten as

−ΓuμuδFαδFαν∂μuν ¼ −Γ½uμuδFαδFαν

þ uμuνuβuγFαβFαγ�∂μuν

¼ −Γuμuγ⊥νβFαβFαγ∂μuν

¼ −Γuμuγ⊥νβFαβFαγ∂μuν

þ ∂μðΓuνuμuγ⊥νβFαβFαγÞ; ð74Þ

where the underlined terms equal zero [because of Eq. (28)
and the equality uν⊥νβ ¼ 0] and are added here in order to
symmetrize the tensor τμν and to satisfy the condition (63),
see below. Using Eqs. (72) and (74), one obtains

−uμ∂μεvortex ¼ uνFμν∂αðΓOμαÞ
− ∂μ½uνðΓOμαFνα − Γuμuγ⊥νβFαβFαγÞ�
þ ∂μuνðΓOμαFνα − Γuμuγ⊥νβFαβFαγÞ

¼ uνFμν∂αðΓ⊥μγ⊥αδFγδÞ
− ∂μ½uνðΓ⊥δαFμδFνα − ΓuμuνuγuβFαβFαγÞ�
þ ∂μuνðΓ⊥δαFμδFνα − ΓuμuνuγuβFαβFαγÞ;

ð75Þ

where in the second equality we make use of the definition
(70) for Oαβ. Returning now to the entropy generation
equation (65), one can present it in the form

T∂μðSuμÞ
¼ uνFμν½Ywμ þ ∂αðΓ⊥μγ⊥αδFγδÞ�
− ∂μ½uνðΓ⊥δαFμδFνα − ΓuμuνuγuβFαβFαγ − τμνÞ�
þ ∂μuνðΓ⊥δαFμδFνα − ΓuμuνuγuβFαβFαγ − τμνÞ ð76Þ

or

∂μðSuμÞ

¼ uνFμν

T
½Ywμ þ ∂αðΓ⊥μγ⊥αδFγδÞ�

− ∂μ

�
uν
T
ðΓ⊥δαFμδFνα − ΓuμuνuγuβFαβFαγ − τμνÞ

�

þ ∂μ

�
uν
T

�
ðΓ⊥δαFμδFνα − ΓuμuνuγuβFαβFαγ − τμνÞ:

ð77Þ

Neglecting dissipation, the right-hand side of this equation
should be a four-divergence at arbitrary ∂μuν, ∂μT, wμ, Γ,
etc. This allows us to find15

uνFμν½Ywμ þ ∂αðΓ⊥μγ⊥αδFγδÞ� ¼ 0 and ð78Þ

τμν ¼ τμνvortex ¼ Γ⊥δαFμδFνα − ΓuμuνuγuβFαβFαγ: ð79Þ

The first of these equations is similar to a nondissipative
version, uνYwμFμν ¼ 0, of the condition (45), analyzed in
the previous section. It will clearly give us a (nondissipa-
tive) superfluid equation generalized to the case when the
terms depending on Γ ¼ λ=ðmHÞ [see Eq. (69)] cannot be
neglected. A more general form of this equation will be
discussed a little bit later.
The second of these equations, Eq. (79), is the vortex

energy-momentum tensor τμνvortex. As it should be, it is
symmetric and satisfies the condition (63). Moreover, in the
nonrelativistic limit (when u0 ≈ 1 and ui ≪ 1) its time
components τi0 coincide with the energy-density current q
(see equation 16.35 in the monograph by Khalatnikov [3]),
while its spatial components coincide with the nonrelativ-
istic vortex stress tensor [the last term in the right-hand side
of Eq. (A12)]. To demonstrate the latter property it is
instructive to rewrite Eq. (79) in terms of the vectorHμ. One
can verify that

τμνvortex ¼ ΓH2gμν − ΓHμHν

þ ΓHδðFνδuμ þFμδuν −HδuμuνÞ; ð80Þ

where H ¼ ðHμHμÞ1=2 [see also Eq. (55)] and Fμν ¼
1=2ϵμνγδFγδ is the tensor dual to the vorticity tensor Fμν.
In the nonrelativistic limit the spatial part of this tensor
equals τikvortex ≈ ΓðH2δik −HiHkÞ [i, k ¼ 1, 2, 3] and

15Unfortunately, detailed analysis shows that Eqs. (78) and
(79) do not follow unambiguously from Eq. (77). To obtain them
unambiguously one needs to require, in addition, that the spatial
components τij of the tensor τμν are independent of the compo-
nents F0i of the vorticity tensor in the comoving frame (i.e., τij
there depend onH ¼ m curlVs only). This additional assumption
is confirmed by the results of independent microscopic consid-
eration (see Appendix E and Remark 1 below in this section).
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indeed reduces to the nonrelativistic expression [see
Eq. (A12)], because in this limit H ≈ m curlVs ¼ mω in
the laboratory frame and Γ ¼ λ=ðmHÞ ¼ λ=ðm2ωÞ.
Now, if we allow for the dissipation in the system, τμν

will acquire a dissipative correction τμνdiss, so that τμν ¼
τμνvortex þ τμνdiss and Eq. (77) can be rewritten as

∂μSμ ¼
uνFμν

T
½Ywμ þ ∂αðΓ⊥μγ⊥αδFγδÞ� − ∂μ

�
uν
T

�
τμνdiss;

ð81Þ

where Sμ ≡ Suμ − uντ
μν
diss=T is the entropy current density.

Following the consideration of Sec. III A, let us introduce
the four-vectors fμ ≡ uνFμν=ðμnÞ [cf. Eq. (46)] and Wμ,16

Wμ ≡ 1

n
½Ywμ þ ∂αðΓ⊥μγ⊥αδFγδÞ�; ð82Þ

and assume that, in the comoving frame [uμ ¼ ð1; 0; 0; 0Þ],
the vector fμ depends only on W and Fμν [see the
corresponding discussion after Eq. (48) in Sec. III A].
Then, positive definiteness of the right-hand side of
Eq. (81) means independent satisfaction of two conditions,

Wμfμ ≥ 0; and ð83Þ

−
1

T
∂μuντ

μν
diss þ

1

T2
∂μTuντ

μν
diss ≥ 0: ð84Þ

The first condition allows us to determine fμ, which has the
same form as in Eq. (54), but with Wμ given by Eq. (82).17

With this new fμ, the superfluid equation acquires the
same form (56) as in the previous section [note also that
Remark 2 of Sec. III A remains fully applicable as well].
The second condition allows us to specify the dissipative
correction τμνdiss. This correction can be found in the same
way as it was done in Ref. [35]; it includes standard viscous
and thermal conduction terms, and is presented (together
with the viscous correction ϰdiss) in Appendix B, where a
complete set of relativistic HVBK-equations is given.
The hydrodynamic equations obtained here fully

describe dynamics of superfluid liquid in the system with
vortices and are equivalent, in the nonrelativistic limit, to
the ordinary HVBK-hydrodynamics (see Appendix C).
Remark 1.—There is another, less general, way of

deriving the tensor τμνvortex by direct averaging of the

“microscopic” tensor Tμν [see Eq. (36)] over a volume
containing large amount of vortices. It can be shown that
the results of both approaches coincide (see, in particular,
Appendix E, where the spatial part of the tensor τμνvortex is
obtained in this way).
Remark 2.—Zero-temperature limit of the hydrodynamics

described above can be obtained if we put T ¼ 0, S ¼ 0, and
Y ¼ n=μ (the latter condition is the relativistic analogue of
the condition ρs ¼ ρ valid at T ¼ 0). Since there are no
thermal excitations at T ¼ 0 (except in the vortex cores), we
also need to specify what we mean by “the normal-liquid
velocity” uμ, which does not have a direct physical meaning
in this limit. In the nonrelativistic theory the correct super-
fluid equation valid at T ¼ 0 will be obtained if we put
Vn ¼ Vs þ ð1=ρÞcurl λe (see Appendix A, where the same
notations are used). This velocity coincides with the vortex
velocity VL [see Eq. (A18)]. The relativistic generalization
of this expression can be written as

uμ ¼ m
μ
Vμ
ðsÞ þ

1

n
⊥μ

ν∂αðΓ⊥νγ⊥αδFγδÞ; ð85Þ

which should be considered as an implicit18 definition of uμ.
It satisfies the three conditions:

(i) First, it is easily checked that with this definition uμ

is correctly normalized, uμuμ ¼ −1.
(ii) Second, one can demonstrate that, with the defini-

tion (85) one has uνWμFμν ¼ 0 [see Eq. (82) where
Wμ is defined], i.e., the system entropy remains
constant [see Eq. (77) with τμν ¼ τμνvortex].

(iii) Finally, one can verify that the right-hand side of the
superfluid equation (56) vanishes in view of the
expression (85), which implies

uνFμν ¼ 0: ð86Þ

One sees (see Remark 3 in Sec. III A) that, as in the
nonrelativistic case, the vortex velocity coincides
with uμ at T ¼ 0. Formula (86) is the new superfluid
equation valid at T ¼ 0; uμ in this equation can (in
principle) be found by solving Eq. (85) and should
be considered as a function of Vμ

ðsÞ.
Remark 3.—It can be shown, that the energy-momentum

conservation, ∂μTμν ¼ 0, which is a superfluous equation
in the system with the only one independent velocity field
Vμ
ðsÞ, is automatically satisfied provided that (86) holds true.

The resulting system of zero-temperature relativistic
HVBK-equations is thus self-consistent.
Remark 4.—It would be interesting to compare the

zero-temperature version of the relativistic HVBK-
hydrodynamics discussed here with the results available
in the literature. However, as it is argued in Appendix F,

16It is interesting to note that the “current density” ~jμ defined as
~jμ≡nuμþnWμ ¼ jμþ∂αðΓ⊥μγ⊥αδFγδÞ is conserved, ∂μ

~jμ ¼ 0,
because ∂μ∂αðΓ⊥μγ⊥αδFγδÞ ¼ 0 due to antisymmetry of Fγδ.

17Clark’s analysis [9] of the nonrelativistic HVBK-
hydrodynamics shows that, generally, there can be six indepen-
dent kinetic coefficients instead of three coefficients α, β, and γ,
introduced in Ref. [9]. The same consideration applies also to our
expression for fμ, which is not the most general one (but
equivalent to that of Ref. [3], see Appendix C).

18It is implicit because the right-hand side of Eq. (85) also
depends on uμ.
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we have strong concerns about self-consistency/validity of
the existing formulations [18,19] of such hydrodynamics.
Thus, no such comparison will be made in the present
paper.

IV. CONCLUSIONS

We have generalized the nonrelativistic Hall-Vinen-
Bekarevich-Khalatnikov (HVBK) hydrodynamics [1,6] to
the relativistic case. The corresponding equations are
summarized in Appendix B. The main difference of the
proposed hydrodynamics from the formulations of
Refs. [18–20] is that it accounts for the presence of thermal
excitations (i.e., is valid at T ≠ 0) and allows for the
interaction between the normal and superfluid liquid
components (mutual friction).
As a by-product of our work we demonstrate that the

previous zero-temperature formulations of the relativistic
vortex hydrodynamics [18,19] are internally inconsistent
(see Appendix F) and should be modified.
The most natural application of the relativistic HVBK-

hydrodynamics formulated here is to neutron stars, which
are relativistic objects whose cores are composed of various
baryon species (neutrons, protons, etc.) that can be in
superfluid/superconducting state. However, to directly
apply this hydrodynamics to neutron stars one should first
generalize it to the case of superfluid mixtures as well as to
allow for the possible presence of the magnetic field and the
related topological defects—Abrikosov vortices. These
issues were successively addressed, in the nonrelativistic
framework, in Refs. [51–54]. The relativistic generaliza-
tion of the corresponding equations to the superfluid/
superconducting mixtures without an external magnetic
field is straightforward; the formulation of the full system
of magneto-hydrodynamic equations is more complicated.
We continue to work in this direction and hope to present
the first results soon.
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APPENDIX A: HVBK-HYDRODYNAMICS

We present here the main equations of dissipative Hall-
Vinen-Bekarevich-Khalatnikov hydrodynamics. We refer
to Refs. [1,3,5–7,10] for more details. Hydrodynamic
equations in the presence of vortices take the form
(i, k ¼ 1, 2, 3)

∂tρþ divj ¼ 0; ðA1Þ

∂tji þ ∂kΠik ¼ 0; ðA2Þ

∂tSþ divSVn ¼
R
T
; ðA3Þ

∂tVs þ ðVs∇ÞVs þ ∇
�
μ̆ −

1

2
jVs − Vnj2

�
¼ F; ðA4Þ

dE0 ¼ μ̆dρþ TdSþ ρsðVs − VnÞdðVs − VnÞ
þ dEvortex; ðA5Þ

and consist of, respectively, continuity equation, momen-
tum conservation, entropy generation equation, superfluid
equation, and the second law of thermodynamics. Here
ρ ¼ mn is the density; m is the particle mass; ρs is the
superfluid density; j is the mass current density; Πik is the
stress tensor; Vn and Vs are the normal and superfluid
velocities, respectively; R is the dissipative function; and F
is a force to be specified below. Further, μ̆ is the non-
relativistic chemical potential; in the nonrelativistic limit
the chemical potential μ, introduced in Sec. II, is related to
μ̆ by the formula μ̆ ¼ ðμ −mc2Þ=m; E0 is the nonrelativ-
istic energy density as measured in the inertial frame
moving with the velocity Vn. Finally, the last term in
Eq. (A5) is responsible for the vortex contribution to the
energy density and is approximately given by [3,10]

dEvortex ¼ ÊvortexdNvortex; ðA6Þ

where

Êvortex ¼ ρs
ϰ2

4π
ln
b
a

ðA7Þ

is the vortex (kinetic) energy per unit length and

Nvortex ¼
ω

ϰ
ðA8Þ

is the area density of vortices. In Eqs. (A7) and (A8)
ω≡ curlVs; ϰ ¼ 2πℏ=ðsmÞ (s ¼ 1 for Bose- and s ¼ 2 for
Fermi-superfluids); a is the radius of a vortex core; b ¼
1=ðπNvortexÞ1=2 ¼ ϰ1=2=ðπωÞ1=2 is the quantity of the order
of the intervortex distance. Taking into account these
definitions, Eq. (A6) can be rewritten as

dEvortex ¼ λdω; ðA9Þ
where

λ≡ ρs
ϰ

4π
ln
b
a
¼ ρs

ϰ

4π
ln

ϰ1=2

aπ1=2ω1=2 : ðA10Þ

Hydrodynamic Eqs. (A1)–(A5) should be supplemented
by the expressions for j, Πik, F, and R. Ignoring the thermal
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diffusivity and viscosity terms (which have the standard
form, like in the vortex-free case [1,3]), one has

j ¼ ρsVs þ ρnVn; ðA11Þ

Πik ¼ Pδik þ ρsVi
sVk

s þ ρnVi
nVk

n þ
�
λωδik − λ

ωiωk

ω

�
;

ðA12Þ

F ¼ −ω × ðVn − VsÞ þ αω × ðj − ρVn þ curl λeÞ
þ βe × ½ω × ðj − ρVn þ curl λeÞ�
− γe½ωðj − ρVn þ curl λeÞ�; ðA13Þ

R ¼ −½Fþ ω × ðVn − VsÞ�ðj − ρVn þ curl λeÞ: ðA14Þ

Here ρn ¼ ρ − ρs is the normal density; e≡ ω=ω is the unit
vector along ω ¼ curlVs; P ¼ −E0 þ μ̆ρþ TS is the
pressure; α, β, and γ are kinetic coefficients describing
interaction of vortices with the normal liquid component
(mutual friction). The term in Eq. (A13), depending on α, is
nondissipative, as opposed to the terms proportional to β
and γ. The coefficients β and γ should be positive in order
for the dissipative function R to be positive-definite, β > 0
and γ > 0. HVBK-equations, described above, deserve a
few remarks.
Remark 1.—Following [4,10,45], the second law of

thermodynamics (A5) is written in a reference frame where
the normal liquid component is at rest, Vn ¼ 0. This is in
contrast with Refs. [1,3] where it is written in a reference
frame of a superfluid component, Vs ¼ 0 (see, e.g.,
Ref. [10] for a more detailed discussion). As a result,
definitions of chemical potential and energy density are
slightly different in Refs. [1,3]. Namely, it can be shown
that their chemical potential μ̆Kh and the energy density
E0Kh are related to our μ̆ and E0 by the formulas [10]

μ̆Kh ¼ μ̆ −
1

2
ðVs − VnÞ2; ðA15Þ

E0Kh ¼ E0 þ
1

2
ρðVs − VnÞ2 − ρsðVs − VnÞ2: ðA16Þ

At the same time, it is easy to verify that the pressure in
both approaches is the same, PKh ¼ P. Because the super-
fluid equation (A4) depends on μ̆, it (formally) differs from
the corresponding equation of Refs. [1,3], which is
expressed through μ̆Kh.
Remark 2.—As follows from Eqs. (A7) and (A10),

Êvortex → 0 and λ → 0 at ℏ → 0. In this limit, correspond-
ing to a continuously distributed vorticity (like in the
ordinary nonsuperfluid hydrodynamics), contribution of
vortices to the total energy and momentum of the liquid can
be neglected [but the “mutual friction” terms in Eq. (A4),
depending on α, β, and γ, will generally survive].

The situation when one can set λ ¼ 0 in all equations
described above is common; the hydrodynamic equations
in this limit are often used, e.g., in modeling superfluid
dynamics of rotating neutron stars [13,14].
Remark 3.—In the absence of a (generally weak)

longitudinal force, γ ¼ 0, superfluid equation (A4) can
be rewritten in an elegant way [3]. Taking the curl of this
equation, one obtains

∂tω ¼ curlðVL × ωÞ; ðA17Þ

where

VL ¼ Vn − αðj − ρVn þ curl λeÞ
− βe × ðj − ρVn þ curl λeÞ: ðA18Þ

Equation (A17) describes translation of the vector ω with
the velocity of the vortex lines VL.
Two extreme regimes of motion of the vortex lines are of

interest. Assume that it is possible to neglect the terms
depending on λ and β in Eqs. (A17) and (A18). Then, in the
strong-drag regime VL ¼ Vn and vortices are completely
entrained by the motion of the normal liquid component.
This regime corresponds to α ¼ 0. In the weak-drag regime
the situation is opposite. Interaction with the normal
excitations is so weak that vortices move with the super-
fluid component, VL ¼ Vs. Equation (A17) then takes
the form of a standard vorticity equation of ordinary
hydrodynamics,

∂tω ¼ curlðVs × ωÞ: ðA19Þ

As follows from Eq. (A18), the weak-drag limit is realized
if α ¼ −1=ρs.

APPENDIX B: RELATIVISTIC
HVBK-HYDRODYNAMICS:
SUMMARY OF RESULTS

Here we present the full system of hydrodynamic
equations which reduces to HVBK-hydrodynamics in the
nonrelativistic limit. For the reader’s convenience, this
appendix is made self-contained.
The main ingredients of the relativistic superfluid

HVBK-hydrodynamics are the four-velocity of thermal
excitations uμ, normalized by the condition uμuμ ¼ −1, and
the four-vector wμ, which is defined by Eq. (B11) (see
below). This four-vector is orthogonal to uμ,

uμwμ ¼ 0; ðB1Þ

and is related to the superfluid velocity Vμ
ðsÞ by the formula

Vμ
ðsÞ ¼

wμ þ ðμþ ϰdissÞuμ
m

; ðB2Þ
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where m is the bare particle mass; μ is the relativistic
chemical potential; and ϰdiss is the viscous dissipative
correction to be specified below [see Eq. (B14)].
Another important parameter of this hydrodynamics is
the vorticity tensor,

Fμν ¼ m½∂μVðsÞν − ∂νVðsÞμ�: ðB3Þ

The relativistic HVBK-hydrodynamics consists of the
particle and energy-momentum conservations,

∂μjμ ¼ 0; ðB4Þ

∂μTμν ¼ 0; ðB5Þ

the second law of thermodynamics [note that all the
thermodynamic quantities are measured in the comoving
frame, where uμ ¼ ð1; 0; 0; 0Þ],

dε ¼ μdnþ TdSþ Y
2
dðwμwμÞ þ λ

m
dH; ðB6Þ

and the superfluid equation

uνFμν ¼ μnfμ: ðB7Þ
In Eqs. (B4)–(B7) n, T, and S are the number density,

temperature, and entropy density, respectively; Y is the
relativistic analogue of the superfluid density [35,44]; λ has
the same meaning as the corresponding quantity of the
nonrelativistic HVBK-hydrodynamics (see Appendixes A
and D); and

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
⊥μη⊥νσFμνFησ

r
; ðB8Þ

where ⊥μν ¼ gμν þ uμuν. Further, fμ equals

fμ ¼ α⊥μνFνλWδ⊥λδ þ β − γ

H
⊥μη⊥νσFησFλνWδ⊥λδ

þ γHWδ⊥μδ; ðB9Þ
where α, β, and γ are the mutual friction parameters (the
same as in the nonrelativistic HVBK-hydrodynamics, see
Appendix A); and

Wμ ≡ 1

n
½Ywμ þ ∂αðΓ⊥μγ⊥αδFγδÞ� ðB10Þ

with Γ≡ λ=ðmHÞ.
It remains to specify the particle current density jμ and

the energy-momentum tensor Tμν in Eqs. (B4) and (B5),

jμ ¼ nuμ þ Ywμ; ðB11Þ

Tμν ¼ ðPþ εÞuμuν þ Pgμν þ Yðwμwν þ μuμwν þ μuνwμÞ
þ τμνvortex þ τμνdiss: ðB12Þ

Here P ¼ −εþ μnþ TS is the pressure; and τμνvortex is the
vortex contribution to Tμν,

τμνvortex ¼ Γ⊥δαFμδFνα − ΓuμuνuγuβFαβFαγ: ðB13Þ

Finally, the dissipative corrections ϰdiss and τμνdiss in
Eqs. (B2) and (B12) are given by [35]

ϰdiss ¼ −ξ3∂μðYwμÞ − ξ4∂μuμ; ðB14Þ

τμνdiss ¼ −κð⊥μγuν þ⊥νγuμÞð∂γT þ Tuδ∂δuγÞ

− η⊥μγ⊥νδ

�
∂δuγ þ ∂γuδ −

2

3
gγδ∂εuε

�

− ξ1⊥μν∂γðYwγÞ − ξ2⊥μν∂γuγ: ðB15Þ

In these equations κ and η are, respectively, the thermal
conductivity and shear viscosity coefficients; ξ1;…; ξ4 are
the bulk viscosity coefficients (ξ1 ¼ ξ4; ξ21 ≤ ξ2ξ3; κ, η,
ξ2, ξ3 ≥ 0).

APPENDIX C: SUPERFLUID EQUATION
IN THE NONRELATIVISTIC LIMIT

Equations of the relativistic HVBK-hydrodynamics are
summarized in Appendix B. Our aim here will be to
demonstrate that the “superfluid” equation [Eq. (B7)] of
this hydrodynamics reduces to its nonrelativistic counter-
part (A4) in the nonrelativistic limit. In what follows we use
dimensional units. In these units Eq. (B7) becomes

uνFμν ¼
μn
c3

fμ: ðC1Þ

Spatial components of Eq. (C1) can be rewritten as
(i, j ¼ 1, 2, 3)

u0Fi0 þ ujFij ¼
μn
c3

fi; ðC2Þ

or, in view of (B3),

mu0½∂iVðsÞ0−∂0VðsÞi�þmuj½∂iVðsÞj−∂jVðsÞi� ¼
μn
c3

fi; or

ðC3Þ

∂iVðsÞ0 ¼ ∂0VðsÞi −
uj

u0
½∂iVðsÞj − ∂jVðsÞi� þ

μn
mc3u0

fi:

ðC4Þ

On the other hand, it follows from the orthogonality
condition (B1), that

uμVðsÞμ ¼ −
μ

mc
⇒ VðsÞ0 ¼ −

μ

mcu0
−
uj

u0
VðsÞj; ðC5Þ
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where we made use of the definition (B2), which takes the
form (in dimensional units and neglecting the dissipative
correction ϰdiss)

Vμ
ðsÞ ¼

wμ þ μuμ

mc
: ðC6Þ

Substituting Eq. (C5) into (C4), one obtains

∂0VðsÞi −
uj

u0
½∂iVðsÞj − ∂jVðsÞi� þ

μn
mc3u0

fi

¼ −∂i

�
μ

mcu0

�
− ∂i

�
uj

u0
VðsÞj

�
: ðC7Þ

Now, introducing the nonrelativistic chemical potential μ̆ ¼
ðμ −mc2Þ=m (see Appendix A) and taking into account
that uμ is expressed through the velocity Vn of the normal
component as

uμ ¼
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

n=c2
p ;

Vn

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

n=c2
p

�
; ðC8Þ

one arrives at the following equation, valid at jVnj, jVsj≪c
[we recall that Vs ≡ ðV1

ðsÞ; V
2
ðsÞ; V

3
ðsÞÞ],

∂tVs þ curlVs × Vn þ ∇
�
μ̆ −

1

2
V2

n þ VnVs

�
¼ −

μn
mc2

fi;

ðC9Þ

or, taking into account that∇ðV2
s Þ=2¼ðVs∇ÞVs−curlVs×Vs

and μ ≈ mc2,

∂tVs þ ðVs∇ÞVs þ ∇
�
μ̆ −

1

2
jVs − Vnj2

�

¼ −curlVs × ðVn − VsÞ − nfi: ðC10Þ

This equation is very similar to Eq. (A4), but to draw a final
conclusion we need also to analyze the spatial part fi of the
four-vector fμ [see Eq. (B9)]. In the nonrelativistic limit it
is given by Eq. (50),

f ¼ −αm½curlVs ×W� − βme × ½curlVs ×W�
þ γmeðW curlVsÞ; ðC11Þ

where W is the spatial part of the four-vector Wμ [see
Eq. (B10)], which is, in the dimensional form,

Wμ ¼ 1

n
½cYwμ þ ∂αðΓ⊥μγ⊥αδFγδÞ�: ðC12Þ

The spatial component of the first term here equals, in the
nonrelativistic limit, cYwμ ¼ ρsðVs − VnÞ=m (see Eq. (C6)
and note that Y ¼ ρs=ðm2c2Þ at c → ∞ [35,44]).

The last term in Eq. (C12), which equals ∂αðΓOμαÞ, can
be rewritten as [see Eq. (70) for the definition of Oμα and
the footnote 14]

∂αðΓOμαÞ ¼ ∂α

�
Γ
2
ϵδημαuηϵδabcuaFbc

�
: ðC13Þ

In the nonrelativistic limit the only terms here that survive
are those with η ¼ 0 and a ¼ 0. Because both ∂αu0 and
∂αu0 are of the order of 1=c2 (see Eq. (28), one may treat uη
and ua in Eq. (C13) as constants (u0 ≈ 1 and u0 ≈ −1). In
this way one finds (i ¼ 1, 2, 3),

∂αðΓOiαÞ ¼ ϵiαδ∂α

�
Γ
1

2
ϵδbcFbc

�

¼ m curlðΓ curlVsÞ ¼
curlðλeÞ

m
; ðC14Þ

where we employed Eq. (69), and used the fact that H ¼
mjcurlVsj [see Eq. (51)]. Returning then to the vector W,
one can write

W ¼ 1

mn
½ρsðVs − VnÞ þ curlðλeÞ�: ðC15Þ

Substituting now Eqs. (C11) and (C15) into Eq. (C10), one
verifies that it coincides with the superfluid equation (A4)
of nonrelativistic HVBK-hydrodynamics.

APPENDIX D: ENERGY OF A RELATIVISTIC
VORTEX AND THE EXPRESSION FOR dεvortex

Let us consider a homogeneous system without vortices.
We assume that all the thermodynamic parameters, as well
as the velocities of normal uμ and superfluid Vμ

ðsÞ0 ¼∂μϕ0=m components are constants in time and space.
All the quantities related to this (unperturbed) system will
be denoted by the subscript “0”.
In what follows we shall work in the coordinate frame

in which uμ ¼ ð1; 0; 0; 0Þ [hereafter, the normal-liquid
coordinate frame]. In that frame the quantity wμ

ð0Þ ¼
∂μϕ0 − μ0uμ can be represented as wμ

ð0Þ ¼ ð0; ∂iϕ0Þ on

account of Eq. (19) [i ¼ 1, 2, 3 is the spatial index].
Correspondingly, the energy density T00

ð0Þ is given simply by

ε0 ¼ ε0ðS0; n0; wμð0Þw
μ
ð0ÞÞ [see Eq. (36)], which is generally

a function of the entropy density S0, the number density n0,
and the scalar wμð0Þw

μ
ð0Þ.

Now let us adiabatically perturb the system by creating a
straight vortex, assuming that the total number of particles
remains unchanged. Denoting the correction due to the
vortex as ϕV, one finds for the perturbed system (in the
normal-liquid frame): wμ ¼ ð0; ∂iϕ0 þ ∂iϕVÞ and T00 ¼
εðn; S; wμwμÞ. The vortex energy can be defined as the
difference between the energies of the perturbed and
unperturbed systems,
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EV ¼
Z

dVðT00 − T00
ð0ÞÞ

¼
Z

dV½εðS; n; wμwμÞ − ε0ðS0; n0; wμð0Þw
μ
ð0ÞÞ�; ðD1Þ

where the integration is performed over the system volume
V. As it will be clear from the subsequent consideration, the
main contribution to EV comes from the region far from the
vortex, where SðrÞ, nðrÞ, and wμðrÞwμðrÞ only weakly
deviate from, respectively, S0, n0, and wμð0Þw

μ
ð0Þ.

Consequently, one can expand the function under the
integral in Eq. (D1) and present EV as

EV ≈
Z

dV
∂ε
∂S ½SðrÞ − S0� þ

Z
dV

∂ε
∂n ½nðrÞ − n0�

þ
Z

dV
∂ε

∂ðwμwμÞ ½w
μwμ − wμ

ð0Þwμð0Þ�

≈ T0

Z
dV½SðrÞ − S0� þ μ0

Z
dV½nðrÞ − n0�

þ Y0

2

Z
dV½wμwμ − wμ

ð0Þwμð0Þ�; ðD2Þ

where in the second equality use has been made of the
second law of thermodynamics (37). Since the total entropy
and particle number in the perturbed and unperturbed
systems are the same by construction,19 the first two
integrals vanish, so that

EV ≈
Y0

2

Z
dV½wμwμ − wμ

ð0Þwμð0Þ�

¼ Y0

2

Z
dV½∂iϕV∂iϕV þ 2∂iϕV∂iϕ0�: ðD3Þ

Because ∂iϕ0 is constant and ∂iϕV is symmetric [see
Eq. (D6) below], the contribution into the integral from the
second term in Eq. (D3) vanishes and we finally arrive at
the following formula for EV,

EV ≈
Y0

2

Z
dV∂iϕV∂iϕV: ðD4Þ

In the nonrelativistic limit (D4) reduces to the standard
expression for the vortex energy,

EV ¼ ρs0
2

Z
dVV2

sV; ðD5Þ

if we note that the superfluid velocity induced by the
vortex, VsV, is related to the scalar ϕV by the condition
VsV ¼ ∇ϕV=m and that in the nonrelativistic limit the
superfluid density ρs0 ¼ m2Y0.
To take an integral in Eq. (D4) one needs to specify ∂iϕV.

If the straight vortex is at rest in the normal-liquid frame
and ∂iϕ0 ¼ 0 then, as follows from the symmetry argu-
ments [see Eq. (41)], it induces the velocity field given
simply by20

∂iϕV ¼ eφ
sr

; ðD6Þ

where eφ is the unit vector in the azimuthal direction (φ is
the polar angle) and s ¼ 1 or 2 is the quantity defined after
Eq. (41). In reality, however, we deal with a nonstationary
problem: the vortex can move with some velocity in the
normal-liquid frame and ∂iϕ0 does not necessary vanish. In
the nonrelativistic theory it is argued (e.g., Ref. [3]) that
Eq. (D6) remains a good approximation for ∂iϕV even in
this case. The latter result can be extended to the fully
relativistic case if we assume that the background super-
fluid velocity ∂iϕ0 (and hence the vortex velocity) are
much smaller than the speed of light c in the normal-liquid
frame. In an arbitrary frame this requirement means that the
difference between the spatial components of normal and
background superfluid velocities should be much smaller
than the speed of light c. This condition is not very
restrictive and, for example, is satisfied in the superfluid
matter of neutron stars, where superfluidity is destroyed
long before the velocity difference becomes comparable
to c [56].
Substituting (D6) into (D4) and performing an integra-

tion, one arrives at the following expression for the vortex
energy per unit length (we suppress the subscript “0” from
here on),

ÊV ¼ πY
s2

ln
b
a
; ðD7Þ

where a is the radius of the vortex core and b is an
“external” radius of the order of the intervortex spacing
(as in the nonrelativistic theory). The radius b is related to
the number of vortices NV per unit area by the standard
formula (cf. Ref. [3]),

πb2 ¼ 1

NV
: ðD8Þ

On the other hand, as follows from Eq. (41) and the Stokes’
theorem [see also Eq. (42)], NV is related to the smooth-
averaged vorticity (defined in the normal-liquid frame) by
the expression

19This is not strictly true because formula (D2) does not
include integration over the volume in the immediate vicinity of
the vortex core, where the hydrodynamic approach is not
applicable. However, the entropy and the number of particles
contained in that volume are small (proportional to the radius a of
the vortex core squared), hence their contribution to the total
entropy and particle number can be neglected.

20To obtain Eq. (D6) we choose a circle in 3D centered at the
vortex line as the integration contour in Eq. (41).
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NV ¼ smjεijk∂jVðsÞkj
2π

: ðD9Þ

To obtain this formula an integration is performed over the
surface whose boundary is the contour specified in the
footnote 20.
Using Eqs. (D8) and (D9), one obtains the following

expression for the vortex energy density εvortex,

εvortex ¼
ÊV

πb2

¼ mY
2s

ln

�
b
a

�
jεijk∂jVðsÞkj≡ λjεijk∂jVðsÞkj; ðD10Þ

where we introduced the parameter λ≡ ½mY=ð2sÞ� lnðb=aÞ,
which only weakly (logarithmically) depends on b (and, as
a consequence, weakly depends on jεijk∂jVðsÞkj). Note that
εvortex is the quantity which is determined, by definition, in
the normal-liquid frame. It is thus a Lorentz-invariant
quantity and it is useful to rewrite it in an explicitly
Lorentz-invariant form. One can do this with the help of
the four-vector Hμ [see Eq. (51)],

εvortex ¼
λ

m

ffiffiffiffiffiffiffiffiffiffiffiffi
HμHμ

p
: ðD11Þ

Consequently, the differential of this energy density due to
a variation of Hμ is given by

dεvortex ¼
λ

2mH
dðHμHμÞ; ðD12Þ

where H ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
HμHμ

p
and we neglected, as in the non-

relativistic theory, the dependence of λ onHμ. This formula
coincides with the expression (67) for dεvortex used in
the text.
Remark 1.—Presence of vortices not only adds an

additional term (D12) to the second law of thermodynamics
(64) but also renormalizes the particle chemical potential μ,
which is now approximately given by [see Eq. (D11)]

μ ¼ μold þ
∂εvortex
∂n ¼ μold þ

H
m
∂λ
∂n ; ðD13Þ

where μold is the chemical potential in the absence of
vortices.

APPENDIX E: SPATIAL PART OF THE
TENSOR τμνvortex FROM THE MICROSCOPIC

AVERAGING PROCEDURE

Here we briefly demonstrate how to obtain the spatial
part of the tensor τμνvortex from the “microscopic” tensor Tμν

[see Eq. (36)]. In the comoving frame [i.e., in the frame in
which uμ ¼ ð1; 0; 0; 0Þ] the spatial components of the
tensor Tμν equal

Tij ¼ Pgij þ Ywiwj ¼ Pgij þ Y∂iϕ∂jϕ: ðE1Þ
In the system with vortices ϕ ¼ ϕ0 þ ϕV (the notations are
the same as in Appendix D). Assume that we have a bunch
of vortices with locally constant density, which are directed
along the axis z. Let us introduce a notion of the “Wigner-
Seitz cell”—a cylinder of radius b surrounding each vortex
line. We then average the tensor Tij out over one such
Wigner-Seitz cell. Since we neglect interaction between
vortices, the neighboring vortices “do not interfere” when
averaging Eq. (E1). The result can be written as

hTiji ¼ 1

πb2Δz

Z
dVTij

¼ hPigij þ hYi∂iϕ0∂jϕ0 þ hY∂iϕV∂jϕVi; ðE2Þ
where angle brackets mean averaging over the Wigner-
Seitz cell; Δz ∼ b is a height of cylinder (the actual value of
Δz is not important); and dV is the volume element. Note
that the main contribution to hYi comes from the region far
from the vortex core, where Y can be considered as constant
(the dependence of Y on ∂iϕV is weak). This means that
hYi ≈ Y0, where Y0 is the value of Y at a distance ∼b from
the vortex (or, equivalently, the value of Y in the system
without vortices; see Appendix D). Similarly, one can also
replace Y with Y0 when taking other averages.
The cross-terms hY∂iϕ0∂jϕVi and hY∂jϕ0∂iϕVi in

Eq. (E2) vanish on account of the symmetry of the problem.
Clearly, the only “interesting” (nonstandard) contribution
to hTμνi comes from the last term in Eq. (E2), which can be
identified as the vortex tensor, i.e., τijvortex ¼ hY∂iϕV∂jϕVi.
To find this tensor, let us write ∂iϕV in Cartesian coor-
dinates (x, y, z) using Eq. (D6),

∂xϕV ¼ −
sinφ
sr

; ðE3Þ

∂yϕV ¼ cosφ
sr

; ðE4Þ

∂zϕV ¼ 0; ðE5Þ
where the axes x and y are located in the plane
perpendicular to the axis z (and all the three axes cross
at the vortex line). Using Eqs. (E3)–(E5) it is easily verified
that the only nonzero components of the vortex tensor are
τxxvortex and τyyvortex; they are given by

τxxvortex ¼ τyyvortex

¼ hY∂xϕV∂xϕVi

¼ 1

πb2Δz

Z
dz rdr dφY

sin2φ
s2r2

≈
Y0

s2b2
ln
b
a

¼ λjϵijk∂jVðsÞkj; ðE6Þ
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where λ is defined by the same formula as in Appendix D
and we used Eqs. (D8) and (D9) to obtain the last equality.
Making 3D rotation, τijvortex can generally be presented as
(H ¼ m curlVs)

τijvortex ¼
λ

m
H −

λ

m
HiHj

H
: ðE7Þ

This tensor exactly coincides with the spatial part of the
tensor τμνvortex, written in the comoving frame and presented
in Sec. III B [see Eq. (80) there]. Interestingly, the same
tensor τijvortex can be determined from the purely thermo-
dynamic arguments following the method of Ref. [57].

APPENDIX F: INCONSISTENCY OF THE
ZERO-TEMPERATURE VORTEX

HYDRODYNAMICS OF REFS. [18,19]

Here we shall demonstrate that the vortex hydrodynam-
ics of Ref. [18] is internally inconsistent and hence the
energy-momentum tensor Tμν of that hydrodynamics
should be modified. Since Ref. [19] obtained the same
expression21 for Tμν (although some of its other equations
are different due to some unexplained reason), it suffers
from the same inconsistency problem. Thus, we shall not
discuss Ref. [19] in what follows. The notations used in this
section differ from those adopted in other parts of the paper
and coincide with the notations of Ref. [18].
Let us consider the formula (77) of Ref. [18]. It gives the

energy-momentum tensor Tμν for the superfluid liquid
with the distributed vorticity at T ¼ 0. This tensor can
be written as

Tμ
ν ¼ c2

μ0

∂Φ
∂μ0 v

μvν þ
ωμων

ω

∂Φ
∂ω −

�
Φ − ω

∂Φ
∂ω

�
δμν ; ðF1Þ

where μ0 is the invariant chemical potential; Φ is the
invariant pressure; vμ is the superfluid velocity normalized
by the condition vμvμ ¼ μ20=c

2 (see Eq. (54) of Ref. [18]);
and δμν is the Kronecker symbol. Finally, ω ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−ωμω
μ

p
,

where the four-vector ωμ is the generalization of curlVs to
the relativistic case; it is given by the formula (74) of
Ref. [18]. Below we assume that the metric is flat and
equals gμν ¼ ðc2;−1;−1;−1Þ (see a formula after Eq. (27)
in Ref. [18]).
Consider a tensor Tμν in the coordinate frame in which

vμ ¼ ðμ0=c2; 0; 0; 0Þ. In this frame the time component of
the four-vector ω0 vanishes, ω0 ¼ 0 (see Eq. (74) of
Ref. [18]), hence the energy density ε, given by the
component T0

0 of the tensor Tμ
ν, equals

ε ¼ T0
0

¼ c2

μ0

∂Φ
∂μ0

μ20
c2

−
�
Φ − ω

∂Φ
∂ω

�

¼ −Φþ μ0
∂Φ
∂μ0 þ ω

∂Φ
∂ω : ðF2Þ

This expression can be rewritten if one introduces the mass
density ρ ¼ m0n, where m0 is the mass of a free particle
and n is the number density. As follows from the for-
mula (76) of Ref. [18] for jμ (jμ is the density of the mass
4-flux), in the chosen coordinate frame ρ ¼ j0 ¼ ∂Φ=∂μ0,
thus equation (F2) can be represented as

ε ¼ −Φþ μ0ρþ ω
∂Φ
∂ω : ðF3Þ

This formula seems to be incorrect (contradicts other
equations of Ref. [18]). The simplest way to demonstrate
this is to look at the nonrelativistic limit of the vortex
hydrodynamics of Ref. [18]. In this limit Eq. (F3) should
reduce to the corresponding nonrelativistic expression for
the energy density if we set to zero the superfluid velocity
Vs in the latter expression (in other words, we consider a
point in space in which Vs ¼ 0 at some particular moment
of time).
The nonrelativistic expression for the energy density was

obtained in Ref. [1] and is presented in the monograph by
Khalatnikov [3] on p. 101,

E0 ¼ −Pþ TSþ μ̆Khρþ ðVn − VsÞj0; ðF4Þ

where E0 is the nonrelativistic energy density measured in
the frame in whichVs ¼ 0 (not to be confused withE0 from
Appendix A); P is the pressure defined as in Ref. [3]; μ̆Kh is
the nonrelativistic chemical potential, which equals μ̆Kh ¼∂E0=∂ρ (in the monograph by Khalatnikov [3] this
potential is denoted by μ); j0 ¼ ρnðVn − VsÞ; ρn is the
normal density. In our case we have T ¼ 0, thus j0 ¼ 0 and
(F4) can be rewritten as

E0 ¼ −Pþ μ̆Khρ: ðF5Þ

The nonrelativistic energy E0 and the pressure P are related
to their relativistic counterparts by the formulas

ε ¼ E0 þ ρc2;

Φ ¼ P; ðF6Þ

where the last equality is needed to reproduce the correct
nonrelativistic stress tensor Πik from Eq. (F1). Moreover,
μ0 can be presented as μ0 ¼ c2 þ δμ0, where δμ0 is a small
correction. As a result, one obtains that the formula (F3)
transforms to the form21See Appendix B of that reference.
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E0 ¼ −Pþ δμ0ρþ ω
∂Φ
∂ω : ðF7Þ

Comparing (F5) and (F7) one sees that

δμ0 ¼
1

ρ

�
μ̆Khρ − ω

∂Φ
∂ω

�
; ðF8Þ

i.e., δμ0 ≠ μ̆Kh. In other words, the “invariant” chemical
potential μ0 is not simply given by the partial derivative
∂ε=∂ρ, where ε is the energy density measured in the frame
in which vμ ¼ ðμ0=c2; 0; 0; 0Þ. This is a strange result (in
which frame is then μ0 specified as a derivative of the
energy density with respect to the mass density?) that

contradicts, in particular, the nonrelativistic superfluid
equation (80) presented in Ref. [18]. In order to make
the Eq. (80) of Ref. [18] compatible with the corresponding
equation of nonrelativistic HVBK-hydrodynamics (written
for a point in space in which Vs ¼ 0 at some particular
moment of time; see the equation 16.40 of the monograph
[3] by Khalatnikov with ρs ¼ ρ and β0 ¼ β ¼ γ ¼ 0), it is
necessary to have ∇v0 ¼ ∇μ̆Kh, i.e., δμ0 ¼ μ̆Kh (since in
the chosen reference frame v0 ¼ μ0 ¼ c2 þ δμ0), in contra-
diction with (F8).
We come to conclusion that the vortex hydrodynamics of

Ref. [18] (and hence Ref. [19]) is internally inconsistent:
Eq. (F3) is not correct (the last term in its right-hand side is
superfluous), which means that the energy-momentum
tensor (F1) should be modified.
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