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The Senovilla family for a subclass of Petrov type-D stationary axisymmetric differentially rotating
perfect fluids is considered. A scheme is presented to construct from a solution an interior of a rotating
compact body satisfying dominant energy conditions and with a boundary of vanishing pressure. The
equatorial disk of the body is a surface layer due to a jump in the second fundamental form. However,
unlike previous results, the body is free from curvature singularities.
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I. INTRODUCTION

Many years ago, Senovilla [1] introduced a simple
formulation for the problem of a Petrov type-D stationary
axisymmetric differentially rotating perfect fluid, with the
4-velocity lying in the 2-planes spanned by the two
principal null directions of the Weyl tensor and with the
vanishing magnetic part of the Weyl tensor with respect to
the fluid 4-velocity. A detailed qualitative study of this
family [2] has shown that, by clever interpretation of the
coordinates, solutions could represent interiors of compact
rotating bodies with various configurations. However, all
configurations have two curvature singularities located at
the axis of symmetry. This paper presents a scheme for
constructing, from members of the family, compact rotating
bodies that are free from those curvature singularities. The
scheme avoids the singularities by restricting the solution to
two regular bounded regions of the spacetime. The two,
apparently separate, regions are glued together across a
hypersurface Σ that is to be identified as the equatorial disk
of the body. The first fundamental form is continuous at Σ.
However, the second fundamental form has a jump there,
and hence Σ is a surface layer. By applying an appropriate
transformation to cylindrical-like coordinates, the solution
could be interpreted as an interior of a differentially rotating
spheroid with positive pressure throughout and with a
boundary of vanishing pressure. In Sec. II, features of
Senovilla’s family are outlined. In Sec. III, the scheme for
constructing compact bodies is presented. In Sec. IV,
properties of the surface layer are derived. Section V gives
explicit forms and properties of the subfamily of rigidly
rotating solutions. In Sec. VI, the scheme is applied to
construct rigidly rotating compact bodies. The paper ends
with some concluding remarks.

II. SENOVILLA’S FAMILY OF DIFFERENTIALLY
ROTATING SOLUTIONS

In Senovilla’s formulation, the metric is given by [1]

ds2 ¼ 1

N2

�
dy2 þ dx2

mhþ s2
þ hdϕ2 − 2sdtdϕ −mdt2

�
;

ð1Þ

where h, m, and s are functions of the radial coordinate x
and N is a function of the axial coordinate y. There exist
two commuting Killing vectors: ∂t and ∂ϕ. For h;m > 0,
and hence mhþ s2 > 0, ∂t is timelike, ∂ϕ is spacelike, and
the signature is þ2.
Without loss of generality, the axis of symmetry may be

set at x ¼ 0, where regularity requires [2]

hð0Þ ¼ 0; sð0Þ ¼ 0; mð0Þ > 0: ð2Þ

The singularity of gxx at the axis is just a coordinate
singularity that can be removed by the gauge x → x2.
The requirement of positive h in a region about the axis

of symmetry implies

h0ð0Þ ≥ 0; ð3Þ

where a prime denotes differentiation with respect to x.
The condition of elementary flatness at the axis

reduces to

lim
x→0

mh02 ¼ 4: ð4Þ

For a perfect fluid satisfying dominant energy conditions,
the field equations imply

N ¼ cosh ay; a ¼ const > 0; ð5Þ

where a constant of integration has been set to 1. The
solution is symmetric with respect to the plane y ¼ 0.
Some of the field equations reduce to a pair of nonlinear

differential equations:

m00h00 þ s002 ¼ 0; ð6Þ

ðmhþ s2Þ00 þ 4a2 ¼ m0h0 þ s02: ð7Þ*salah‑haggag@eru.edu.eg
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This system has two equations in three functions, and hence
an additional assumption is needed to obtain a solution, as
emphasized in Ref. [1].
It has been shown in Ref. [2] that the formula for the

4-velocity and the field equations imply

h00 < 0; m00 > 0: ð8Þ

The remaining field equations (with 8πG ¼ c ¼ 1) deter-
mine the angular velocity ω, the pressure p, and the density
μ by the formulas

ω ¼ −m00=s00; ð9Þ

p ¼ 1

4
½ðm0h0 þ s02 þ 4a2Þcosh2ay − 12a2�; ð10Þ

μ ¼ pþ 6a2: ð11Þ

In general, ω is a function of x (differential rotation).
Equation (11) is the fluid’s equation of state, which satisfies
the energy condition μ > p.
Using Eq. (7) in Eq. (10), the pressure takes the form

p ¼ 1

4
½ðmhþ s2Þ00 þ 8a2�cosh2ay − 3a2: ð12Þ

The pressure is monotonically increasing with jyj, going to
∞ as jyj → ∞. On the other hand, it is monotonically
increasing (decreasing) with x when ðmhþ s2Þ000 is positive
(negative).
The equipressure surfaces with p ¼ p0 ¼ const are

given by

cosh2ay ¼ 4ðp0 þ 3a2Þ
ðmhþ s2Þ00 þ 8a2

: ð13Þ

In general, the pressure takes positive, zero, and negative
values.
The limit surface, where the pressure vanishes, is given

by

B�∶ y ¼ �fðxÞ ≔ � 1

a
cosh−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12a2

ðmhþ s2Þ00 þ 8a2

s
: ð14Þ

Then, B ¼ Bþ∪B− exists on some interval x ≥ 0 in either
of two qualitatively different cases:

(i) Case 1:

ðmhþ s2Þ00jx¼0 < 4a2 and ðmhþ s2Þ000jx¼0 > 0;

ð15Þ

in which case fðxÞ is decreasing with x, vanishing
when ðmhþ s2Þ00 ¼ 4a2.

(ii) Case 2:

ðmhþ s2Þ00jx¼0 ≤ 4a2 and ðmhþ s2Þ000jx¼0 < 0;

ð16Þ

in which case fðxÞ is increasing with x.
In either case, B� intersects the axis of symmetry

at y ¼ �y0 ≔ �fð0Þ. However, in case 2, when
ðmhþ s2Þ00jx¼0 ¼ 4a2, the limit surface passes through
the origin x ¼ y ¼ 0.

III. CONSTRUCTION OF DIFFERENTIALLY
ROTATING COMPACT BODIES

By using the gauge sinðaYÞ ¼ tanhðayÞ, with Y inter-
preted as an angle in ½−π=2a; π=2a�, it has been shown [2]
that solutions of Senovilla’s family could represent interiors
of compact rotating bodies with various configurations.
However, each configuration has two curvature singular-
ities at the two points Y ¼ �π=2a located, respectively, at
the north and south poles of the body.
Now, we suggest a scheme for constructing a rotating

compact body not containing the above two singular points.
The coordinates x and y will be interpreted as markers
related to the coordinate radial distances from, respectively,
the axis of symmetry and the center of the body. First, we
restrict x to an interval,

0 ≤ x ≤ xa; ð17Þ

where the signature of the metric is maintained and a limit
surface exists. Second, we restrict y to extend from the limit
surface Bþ up and from B− down, where the pressure is
positive. By this step, we avoid regions of negative
pressure, which appear as holes in some configurations
in Ref. [2]. Third, we specify a finite positive pressure pc at
the center ð0; ycÞ where, using Eq. (13),

yc ¼
1

a
cosh−12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pc þ 3a2

ðmhþ s2Þ00 þ 8a2

s
> y0: ð18Þ

Then, we restrict the solution to a region I ¼ Iþ∪I−
consisting of the two disjoint regions (with 0 ≤ ϕ < 2π)

Iþ∶ 0 ≤ x ≤ xa; fðxÞ ≤ y ≤ uðxÞ; ð19Þ

I−∶ 0 ≤ x ≤ xa; −uðxÞ < y ≤ −fðxÞ: ð20Þ

The function uðxÞ is a smooth monotonic function on its
domain ½0; xa�, the graph of which passes through the two
points ð0; ycÞ and ðxa; fðxaÞÞ, and hence lies above that of
fðxÞ. Thus, u is required to satisfy the conditions
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uð0Þ ¼ yc;

uðxaÞ ¼ ya ≔ fðxaÞ;
uðxÞ > fðxÞ ∀ x ∈ ð0; xaÞ: ð21Þ

The compact body will be constructed, around the axis, by
joining the two regions I� at the surface Σ�∶y ¼ �uðxÞ,
which will be identified as the equatorial disk. The body
will be bounded by the limit surfaces B�∶y ¼ �fðxÞ,
which will be connected at the equator x ¼ xa; y ¼ �ya.
Smoothness of the boundary requires that B� and Σ� be
orthogonal at the equator. Thus, besides Eq. (21), u is
required to satisfy the additional condition

u0ðxaÞ ¼ −
1

f0ðxaÞðmhþ s2ÞðxaÞ
: ð22Þ

Otherwise, u is arbitrary.
Figures 1 and 2 show a section of the region Iþ at

ϕ ¼ const, for a solution of cases 1 and 2 respectively.
The dotted curves are the traces of some equipressure
surfaces. The region I− is the reflection of Iþ in the
hyperplane y ¼ 0.

Finally, the solution in I can be cast in cylindrical-like
coordinates ðr; z;ϕÞ by applying an appropriate coordinate
transformation that maps the surface y ¼ uðxÞ onto the
equatorial disk z ¼ 0, for example,

r2 ¼ x; z ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uðxÞ − y

p
; ðx; y;ϕÞ ∈ I�; ð23Þ

whereby Iþ and I− are mapped, respectively, onto the upper
ðz ≥ 0Þ and lower ðz < 0Þ halves of the (connected)
spheroidal region (with 0 ≤ ϕ < 2π)

I0∶ y0 − yc ≤ fðr2Þ − uðr2Þ þ z2 ≤ 0: ð24Þ

Now, we examine whether the rotating body is oblate. The
proper equatorial radius is

Re ¼
Z

xa

0

N−1
�
u0ðxÞ þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mhþ s2
p

�
dx; ð25Þ

and the proper polar radius is

Rp ¼
Z

yc

y0

N−1dy: ð26Þ

Unless uðxÞ ¼ yc ¼ ya ¼ const, uðxÞ is invertible, and the
equatorial disk may be given by x ¼ UðyÞ, in which case

Re ¼ sgnðyc − yaÞ
Z

yc

ya

N−1
�
1þ ðdU=dyÞ2

½mhþ s2�x¼UðyÞ

�
1=2

dy:

If the solution has a limit surface of case 1, then

yc > y0 ¼ fð0Þ > ya;

which implies Re > Rp, and hence the body is oblate.
On the other hand, if the solution has a limit surface of

case 2, then

y0 < ya and y0 < yc; but yc <¼> ya:

Hence, the body may be oblate or prolate, depending on the
specific solution.

IV. SURFACE LAYER AT THE
EQUATORIAL DISK

With the two hypersurfaces Σ�∶y ¼ �uðxÞ now iden-
tified as the hypersurface gluing the two regions I�,
we have to examine junction conditions. The metric
tensor is obviously continuous across Σ�. On the other
hand, the extrinsic curvature tensors on Σ�, imbedded in
the spacetime of Eq. (1), are given by

K�
ij ¼ −∇bn�a

∂xa�
∂ξi

∂xb�
∂ξj ; ð27Þ

yc

y0

xa,ya

: y u x

B : y f x

FIG. 1. The region Iþ in case 1.

yc

y0
xa,ya

: y u x

B : y f x

FIG. 2. The region Iþ in case 2.
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where xa� ¼ ðx;�uðxÞ;ϕ; tÞ; ξi ¼ ðx;ϕ; tÞ, and n�a are the
unit normals pointing, respectively, into Iþ and out of I−,
given by

n�a ¼ 1

cosh au
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u02ðmhþ s2Þ

p ð�u0;−1; 0; 0Þ:

The nonzero components of the extrinsic curvature tensors
reduce to the formulas

K�
xx ¼ ∓ 2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u02ðmhþ s2Þ

p
tanh au

2ðmhþ s2Þ cosh au

∓ 2u00ðmhþ s2Þ þ u0ðmhþ s2Þ0
2ðmhþ s2Þ cosh au

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u02ðmhþ s2Þ

p
K�

ϕϕ ¼ ∓ 2ah tanh auþ h0u0ðmhþ s2Þ
2 cosh au

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u02ðmhþ s2Þ

p
K�

ϕt ¼ � 2as tanhauþ s0u0ðmhþ s2Þ
2 cosh au

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u02ðmhþ s2Þ

p ¼ K�
tϕ

K�
tt ¼ � 2am tanh auþm0u0ðmhþ s2Þ

2 coshau
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u02ðmhþ s2Þ

p : ð28Þ

As expected by symmetry,K�
ij are opposite in sign so thatK

is continuous if and only if it vanishes. Even with uðxÞ
arbitrary, the condition K ¼ 0 leads to an overdetermined
problem. Hence, the extrinsic curvature tensor is, in general,
discontinuous, and Σ� is a surface layer [3]. The jump

½Kij� ¼ Kþ
ij − K−

ij ¼ 2Kþ
ij

determines the surface stress-energy tensor through the
Lanczos equation

−Sij ¼ ½Kij� − g3ijTr½K�; ð29Þ
where g3ij is the 3-metric induced on Σ.
Then, the equatorial disk has surface energy density and

radial and rotational pressures, given, respectively, by

σ ¼ ½ψu02�0 coshau
u0½1þ ψu02�3=2 þ

4a sinh auffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ψu02

p
þ u0½ψðψ 00 þ 8a2Þ�0 cosh au

ðψ 00 þ 8a2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ψu02

p ; ð30Þ

pr ¼ −
ψ 0u0 cosh auþ 4a sinhauffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ψu02
p ; ð31Þ

pϕ ¼ −
½ψu02�0 cosh au
u0½1þ ψu02�3=2 −

4a sinh auffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ψu02

p
−
u0ðψ 0h − ψh0Þ cosh au

h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ψu02

p ; ð32Þ

where ψ ≔ mhþ s2.

The matter of the surface layer is then, in general, an
anisotropic fluid. This is similar to the Bonnor solution [4]
for a rotating dust cloud with a nondust disk surface layer.
Now, to keep zero normal pressure at the boundary of the

body, the disk radial pressure, pr in Eq. (31), should vanish
at the equator. Hence, we impose the condition

u0ðxaÞ ¼ −
4a tanh aya

ðmhþ s2Þ0ðxaÞ
; ð33Þ

which, using the last condition in Eq. (21), leads to

4a tanh ayaf0ðxaÞðmhþ s2ÞðxaÞ ¼ ðmhþ s2Þ0ðxaÞ: ð34Þ

This equation relates the solution parameters. It is a
restriction on the solutions that could be candidates for
our scheme.
To apply the scheme to a specific solution, we consider

the particular case of rigid rotation.

V. SUBFAMILY OF RIGIDLY
ROTATING SOLUTIONS

For the particular case of rigid rotation, ω ¼ const, by
choosing t such that the 4-velocity is proportional to ∂t,
Senovilla [5] found the general solution with no higher
symmetry,

h ¼ C ln

�
x
B

�
− 4a2x; m ¼ x; s ¼ s0 ¼ const;

C ≥ 0; B > 0: ð35Þ

For our purposes, we now obtain the solution in an
equivalent form. Equations (6) and (9) give s00 ¼ ωh00

and m00 ¼ −ω2h00, which, using Eq. (2), respectively,
integrate to

s ¼ ωðhþ γxÞ; m ¼ 1þ βx − ω2h; ð36Þ

where β and γ are constants and the constant term in m has
been set to 1 by a scaling of t.
Substitution from Eq. (36) reduces Eq. (7) to the linear

differential equation in h,

ð1þ bxÞh00 þ bh0 þ c ¼ 0; ð37Þ

where

b ≔ 2ω2γ þ β; c ≔ 4a2 þ ω2γ2 > 4a2: ð38Þ

When b ¼ 0, Eq. (37) reduces to h00 ¼ const, which leads
to the solution given in Ref. [2] with a multitransitive
isometry G4 acting on timelike hypersurfaces. For
b ≠ 0, the general solution of Eq. (37) satisfying the
condition (2) is
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h ¼ −
�
c
b

�
xþ lnð1þ bxÞ; ð39Þ

where, taking account of Eq. (8), the second constant of
integration has been set to 1 by a scaling of ϕ.
The condition (4) implies

c ¼ bðb − 2Þ; ð40Þ

and hence, for c > 4a2, either b > 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a2

p
or

b < 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a2

p
.

Using Eqs. (36), (38), (39), and (40), the general solution
of the system (6) and (7), for rigid rotation with no higher
symmetry, simplifies to the form

h ¼ ð2 − bÞxþ lnð1þ bxÞ;
m ¼ 1þ ½bþ ω2ðb − 2 − 2γÞ�x − ω2 lnð1þ bxÞ;
s ¼ ω½ð2 − bþ γÞxþ lnð1þ bxÞ�; ð41Þ

which is valid for the interval

�
0 ≤ x < ∞; b > 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a2

p
;

0 ≤ x < −1=b; b < 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a2

p
:

ð42Þ

The static limit, when ω ¼ 0, was given by Barnes [6].
The function m is even in ω, and s is odd, as expected.

Also, m is positive. However, h is positive and increasing
with x only on the interval

x < xh ≔
2

bðb − 2Þ ; ð43Þ

which is a subinterval of Eq. (42).
Substituting

ðmhþ s2Þ00 ¼ b2

1þ bx
− 8a2 ð44Þ

into Eq. (12) gives the pressure

p ¼ 1

4

�
b2cosh2ay
1þ bx

− 12a2
�
; ð45Þ

which is increasing with jyj and increasing (decreasing)
with x when b is negative (positive).
The equipressure surfaces with p ¼ p0 ¼ const are

given by

cosh2ay ¼ 4

b2
ðp0 þ 3a2Þð1þ bxÞ: ð46Þ

The limit surface is given by

B∶ x ¼ FðyÞ ≔ 1

b

�
b2cosh2ay

12a2
− 1

�

or, equivalently,

B∶ y ¼ �fðxÞ ≔ � 1

a
cosh−1

�
2a
jbj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þ bxÞ

p �
: ð47Þ

Then, B exists on some interval x ≥ 0 in either of two
qualitatively different cases:

case 1∶ − 2
ffiffiffi
3

p
a < b < 0; ð48Þ

in which case fðxÞ is decreasing with x and vanishing when
x ¼ x1 ≔ ðb2 − 12a2Þ=ð12a2bÞ, or

case 2∶ 2 < b ≤ 2
ffiffiffi
3

p
a; ð49Þ

in which case fðxÞ is increasing with x.
In either case, the limit surface B intersects the axis of

symmetry x ¼ 0 at y ¼ �y0 ≔ �ð1=aÞcosh−1ð2 ffiffiffi
3

p
a=jbjÞ.

However, in case 2, when b ¼ 2
ffiffiffi
3

p
a, the limit surface

passes through the origin x ¼ y ¼ 0.
The solution (5,41) has four parameters, a, b, ω, and γ,

which, using Eqs. (40) and (38), should satisfy the
conditions

4a2 < bðb − 2Þ; ð50Þ

bðb − 2Þ ¼ 4a2 þ ω2γ2: ð51Þ

VI. CONSTRUCTION OF RIGIDLY ROTATING
COMPACT BODIES

Now, we apply the scheme of Sec. III to the rigidly
rotating solution (5,41). In the process, we need to adjust
the parameters at hand so that all conditions are satisfied.
By choosing a solution of case 2, the solution parameters
should satisfy the conditions (49–51). On the other hand,
the scheme introduces a function uðxÞ and two parameters
xa; yc which should satisfy the conditions (21,22,34,43).
The condition (43) leads to

xa ¼
2ϵ

bðb − 2Þ ; 0 < ϵ < 1: ð52Þ

Using Eq. (41), the condition (34) reduces to

ð8a2 þ 2b − 2b2Þxa þ bð1þ bxaÞ lnð1þ bxaÞ ¼ 2; ð53Þ

which depends on a, b, ϵ only. To adjust the parameters, we
fix ϵ and solve (53) for a in terms of b. Then, we pick a pair
fa; bg that satisfies the conditions (49,50). That pair
determines xa and ωγ. Finally, the remaining condition
(22) determines yc.
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As a specific example, with ya ¼ fðxaÞ, let us take

uðxÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yc2 − x=α

q
; α ≔

xa
yc2 − ya2

> 0; ð54Þ

which satisfies the conditions (21). Then, the condition (22)
reduces to

ð2 − bÞxa − 4a2xa2 þ bð1þ bxaÞ lnð1þ bxaÞ

¼ bxaya sinh ya cosh ya
3aðy2c − y2aÞ

; ð55Þ

which determines yc. Then, using Eq. (45), pc ¼ pð0; ycÞ.
We are now ready to apply the scheme. First, we restrict

x to the interval ½0; xa�. Then, we restrict the solution to a
region I ¼ Iþ∪I− consisting of the two disjoint regions
(with 0 ≤ ϕ < 2π)

Iþ∶ 0 ≤ x ≤ xa; fðxÞ ≤ y ≤ uðxÞ; ð56Þ

I−∶ 0 ≤ x ≤ xa; −uðxÞ < y ≤ −fðxÞ: ð57Þ

Finally, we apply the coordinate transformation

x ¼ αr2; y ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yc2 − r2 − z2

q
; ðx; y;ϕÞ ∈ I�;

ð58Þ

whereby the surface y ¼ uðxÞ is mapped onto the
equatorial disk z ¼ 0 and Iþ and I− are mapped, respec-
tively, onto the upper ðz ≥ 0Þ and lower ðz < 0Þ halves of
the (connected) spheroidal region (with 0 ≤ ϕ < 2π)

I0∶ 12a2 ≤ −12a2bαr2 þ b2cosh2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yc2 − r2 − z2

q
≤ b2cosh2ayc: ð59Þ

Figure 3 shows a section of the image region I0 at
ϕ ¼ const. A prime denotes the image of a surface. The
dotted curves are the traces of images of some equipressure
surfaces.
Thus, the solution could be interpreted as a compact

rigidly rotating body of perfect fluid satisfying dominant
energy conditions. The pressure and density are decreas-
ing outward. The boundary of the body is smooth. The
body has a surface layer at the equatorial disk. The
surface energy density and radial and rotational pressures
are given by Eqs. (30)–(32). The radial pressure vanishes
at the equator. The constrained parameters ϵ and b
determine the other parameters except individual ω and
γ. However, the product ωγ is determined so that the
angular velocity ω can arbitrarily be specified, with γ
determined accordingly.

VII. CONCLUSION

The need for restricting the region of validity of an
interior solution may be demonstrated by referring to the
well-known interior Schwarzschild solution. Initially, the
pressure may be derived in the form

p ¼ μ0

�
2α

3α −
ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p − 1

�
; 0 ≤ y ≤ 1;

0 ≤ α ≤ 1;

so that it takes positive, zero, and negative values; it has a
singularity at y ¼ 1 − 9α2; and a limit surface exists at
y ¼ 1 − α2. With the mass function given, the interior is
restricted between the limit surface and the center where the
mass vanishes.
Despite the existence of a surface layer, the rotating body

is free from curvature singularities. In a sense, it is more
physically acceptable than all configurations given in
Ref. [2]. Many interior solutions with boundary surface
layers have been constructed, for example, as models of
rotating neutron stars with surface layer crust [7,8].
However, a few interior solutions with disk surface layers
have been obtained, for example, rotating dust clouds [4,9]
and a rigidly rotating charged dust cylinder [10].
Besides the rigidly rotating solution, only three

explicit solutions within Senovilla’s family have been
obtained [1,11,12] with various features. However, as
shown in Ref. [12], the solution of Ref. [1] has p < 0,
the one of Ref. [11] has p > μ, and that of Ref. [12]
has no limit surface. Only those solutions satisfying
dominant energy conditions and having a limit surface
may be candidates for the application of the scheme
presented above.
It should be stressed that the function uðxÞ is largely

arbitrary. However, no uðxÞ can be found to make the
extrinsic tensor continuous across Σ. Nevertheless, uðxÞ
may be utilized to derive new solutions satisfying some
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FIG. 3. The image region I0.
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desirable weaker conditions. More precisely, we now have
four functions, m, h, s, and u, governed by only two
equations (6), (7). Then, we may impose two additional
equations, such as the vanishing of the surface pres-
sures (31,32).
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