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Rotating compact bodies with a disk surface layer
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The Senovilla family for a subclass of Petrov type-D stationary axisymmetric differentially rotating
perfect fluids is considered. A scheme is presented to construct from a solution an interior of a rotating
compact body satisfying dominant energy conditions and with a boundary of vanishing pressure. The
equatorial disk of the body is a surface layer due to a jump in the second fundamental form. However,
unlike previous results, the body is free from curvature singularities.
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I. INTRODUCTION

Many years ago, Senovilla [1] introduced a simple
formulation for the problem of a Petrov type-D stationary
axisymmetric differentially rotating perfect fluid, with the
4-velocity lying in the 2-planes spanned by the two
principal null directions of the Weyl tensor and with the
vanishing magnetic part of the Weyl tensor with respect to
the fluid 4-velocity. A detailed qualitative study of this
family [2] has shown that, by clever interpretation of the
coordinates, solutions could represent interiors of compact
rotating bodies with various configurations. However, all
configurations have two curvature singularities located at
the axis of symmetry. This paper presents a scheme for
constructing, from members of the family, compact rotating
bodies that are free from those curvature singularities. The
scheme avoids the singularities by restricting the solution to
two regular bounded regions of the spacetime. The two,
apparently separate, regions are glued together across a
hypersurface X that is to be identified as the equatorial disk
of the body. The first fundamental form is continuous at X.
However, the second fundamental form has a jump there,
and hence X is a surface layer. By applying an appropriate
transformation to cylindrical-like coordinates, the solution
could be interpreted as an interior of a differentially rotating
spheroid with positive pressure throughout and with a
boundary of vanishing pressure. In Sec. II, features of
Senovilla’s family are outlined. In Sec. III, the scheme for
constructing compact bodies is presented. In Sec. 1V,
properties of the surface layer are derived. Section V gives
explicit forms and properties of the subfamily of rigidly
rotating solutions. In Sec. VI, the scheme is applied to
construct rigidly rotating compact bodies. The paper ends
with some concluding remarks.

II. SENOVILLA’S FAMILY OF DIFFERENTIALLY
ROTATING SOLUTIONS

In Senovilla’s formulation, the metric is given by [1]
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dx?
ds? = — <dy2 + mh—+s2 + hdgp? — 2sdtdgp — mdt2> ,
(1)

where h, m, and s are functions of the radial coordinate x
and N is a function of the axial coordinate y. There exist
two commuting Killing vectors: 9, and d,,. For h,m > 0,
and hence mh + s> > 0, 9, is timelike, d, is spacelike, and
the signature is +2.

Without loss of generality, the axis of symmetry may be
set at x = 0, where regularity requires [2]

m0)>0.  (2)

The singularity of g,, at the axis is just a coordinate
singularity that can be removed by the gauge x — x.
The requirement of positive / in a region about the axis

of symmetry implies
H(0) 20, (3)

where a prime denotes differentiation with respect to x.
The condition of elementary flatness at the axis
reduces to

lim mh = 4. (4)

X—>

For a perfect fluid satisfying dominant energy conditions,
the field equations imply

N = coshay, a = const > 0, (5)
where a constant of integration has been set to 1. The
solution is symmetric with respect to the plane y = 0.
Some of the field equations reduce to a pair of nonlinear
differential equations:
m" ' + S//2 — 0’ (6)

(mh + s2)" +4a*> = m'h + " (7)
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This system has two equations in three functions, and hence
an additional assumption is needed to obtain a solution, as
emphasized in Ref. [1].

It has been shown in Ref. [2] that the formula for the
4-velocity and the field equations imply

h' <0, m” > 0. (8)

The remaining field equations (with 82#G = ¢ = 1) deter-
mine the angular velocity w, the pressure p, and the density
u by the formulas

w=-m"/s", (9)

p =—[(m'h + 5> + 4a*)cosh’ay — 124*],  (10)

Bl —

u=p+6a* (11)

In general, @ is a function of x (differential rotation).
Equation (11) is the fluid’s equation of state, which satisfies
the energy condition y > p.

Using Eq. (7) in Eq. (10), the pressure takes the form

p= 4_11 [(mh + s*)" + 8a®]cosh’ay — 3a°. (12)
The pressure is monotonically increasing with |y|, going to
o0 as |y| = oo. On the other hand, it is monotonically
increasing (decreasing) with x when (mh + s)" is positive
(negative).

The equipressure surfaces with p = p, = const are
given by

4(po + 3a?)
(mh + s?)" + 8a*"

(13)

cosh’ay =

In general, the pressure takes positive, zero, and negative
values.

The limit surface, where the pressure vanishes, is given
by

1242
(mh + s%)" + 8a*

Bi:y==f(x):= j:%cosh‘l\/ (14)

Then, B = B, UB_ exists on some interval x > 0 in either
of two qualitatively different cases:
(i) Case 1:

(mh + s*)"|,_y < 4a* and (mh+ s*)"|,_, >0,

(15)

in which case f(x) is decreasing with x, vanishing
when (mh + 5%)" = 4a?.
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(i) Case 2:

(mh + s%)"|,_y < 4a* and

(mh + s2)"|._, <0,
(16)

in which case f(x) is increasing with x.

In either case, B, intersects the axis of symmetry
at y=4y,:=+f(0). However, in case 2, when
(mh + 5)"|,_y = 4a®, the limit surface passes through
the origin x =y = 0.

III. CONSTRUCTION OF DIFFERENTIALLY
ROTATING COMPACT BODIES

By using the gauge sin(aY) = tanh(ay), with Y inter-
preted as an angle in [—-z/2a, /24, it has been shown [2]
that solutions of Senovilla’s family could represent interiors
of compact rotating bodies with various configurations.
However, each configuration has two curvature singular-
ities at the two points ¥ = +7/2a located, respectively, at
the north and south poles of the body.

Now, we suggest a scheme for constructing a rotating
compact body not containing the above two singular points.
The coordinates x and y will be interpreted as markers
related to the coordinate radial distances from, respectively,
the axis of symmetry and the center of the body. First, we
restrict x to an interval,

0<x<x, (17)

where the signature of the metric is maintained and a limit
surface exists. Second, we restrict y to extend from the limit
surface B, up and from B_ down, where the pressure is
positive. By this step, we avoid regions of negative
pressure, which appear as holes in some configurations
in Ref. [2]. Third, we specify a finite positive pressure p, at
the center (0, y.) where, using Eq. (13),

1 Pe + 3a?
= —cosh™!2 R . 18
Ye =5 \/(mh + 5%)" 4 8a? e (18)

Then, we restrict the solution to a region [ =1,UIl_
consisting of the two disjoint regions (with 0 < ¢ < 27)

L:0<x<x, fl)<ysu(x), (19

I_:0<x<x, —u(x) <y <—f(x). (20)
The function u(x) is a smooth monotonic function on its
domain [0, x,], the graph of which passes through the two
points (0, y.) and (x,, f(x,)), and hence lies above that of
f(x). Thus, u is required to satisfy the conditions
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FIG. 1. The region I, in case 1.

M(O) = Ye»
u(xa) = Ya = f(xa)’
u(x) > f(x) Vxe(0,x,). (21)

The compact body will be constructed, around the axis, by
joining the two regions /.. at the surface 2. :y = +u(x),
which will be identified as the equatorial disk. The body
will be bounded by the limit surfaces B, :y = +f(x),
which will be connected at the equator x = x,,y = £y,.
Smoothness of the boundary requires that B, and X, be
orthogonal at the equator. Thus, besides Eq. (21), u is
required to satisfy the additional condition

1

Y = e T )

(22)

Otherwise, u is arbitrary.

Figures 1 and 2 show a section of the region /, at
¢ = const, for a solution of cases 1 and 2 respectively.
The dotted curves are the traces of some equipressure
surfaces. The region /_ is the reflection of 7, in the
hyperplane y = 0.

ye N 5.

¥ Biy=fey

FIG. 2. The region I, in case 2.
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Finally, the solution in / can be cast in cylindrical-like
coordinates (r, z, ¢) by applying an appropriate coordinate
transformation that maps the surface y = u(x) onto the
equatorial disk z = 0, for example,

r = x,

7=+ u(x) -y, (x,y.9) €1, (23)

whereby I, and /_ are mapped, respectively, onto the upper
(z>0) and lower (z <0) halves of the (connected)
spheroidal region (with 0 < ¢ < 27)

I': yg—ye < f(r?) —u(r*) +2* <0. (24)

Now, we examine whether the rotating body is oblate. The
proper equatorial radius is

R, = Axa N~! [u'(x) +ﬁ} dx, (25)

and the proper polar radius is

yC
R, = / N-'dy. (26)
Yo

Unless u(x) =y, = y, = const, u(x) is invertible, and the
equatorial disk may be given by x = U(y), in which case

(dU/dy)* ]2

yC
Re = Sgn(yc _ya)/ N_l |:1 +
Ya [mh + sz]x:U(y)

dy.

If the solution has a limit surface of case 1, then

Ye > Yo = f(0) > y,,

which implies R, > R,,, and hence the body is oblate.
On the other hand, if the solution has a limit surface of
case 2, then
Yo <ya and yy <y, but y. <=>y,
Hence, the body may be oblate or prolate, depending on the
specific solution.

IV. SURFACE LAYER AT THE
EQUATORIAL DISK

With the two hypersurfaces X, :y = fu(x) now iden-
tified as the hypersurface gluing the two regions 1.,
we have to examine junction conditions. The metric
tensor is obviously continuous across X.. On the other
hand, the extrinsic curvature tensors on X, imbedded in
the spacetime of Eq. (1), are given by

a b
L Ox4 Ox7.

Kt =-V S
ij »1g 85’ (951 5

(27)
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where x4 = (x, 2u(x), ¢, 1), & = (x, ¢, 1), and nF are the
unit normals pointing, respectively, into /, and out of /_,
given by

1

= +u',-1,0,0).
coshaur/1 + u(mh + 5?) ( )

n

The nonzero components of the extrinsic curvature tensors
reduce to the formulas

2a\/1 + u?(mh + s?) tanh au

2(mh + s*) cosh au

2u"(mh + s%) 4+ u'(mh + s2)’
2(mh + s%) cosh aur/1 + u'>(mh + s?)
K% - 2ahtanh au + W'u'(mh + s?)

" 2coshaur/1+ u”(mh + s?)
2astanhau + s'u/(mh +s*) |
2coshauy/T+ u?(mh + s2) “
2am tanh au + m'u' (mh + s*)

2 cosh aur/1+ u?(mh + %)

+ _
Kxx_

K§ =+

Ki =+

(28)

:t . . .
As expected by symmetry, K7; are opposite in sign so that K

is continuous if and only if it vanishes. Even with u(x)
arbitrary, the condition K = 0 leads to an overdetermined
problem. Hence, the extrinsic curvature tensor is, in general,
discontinuous, and X, is a surface layer [3]. The jump

determines the surface stress-energy tensor through the
Lanczos equation

=S = [Kyj] = g Tr[K], (29)

where g?l- is the 3-metric induced on X.

Then, the equatorial disk has surface energy density and
radial and rotational pressures, given, respectively, by

4qa sinh au

_|_

'y (w" + 8a?)] cosh au

[wu'?] cosh au
u’[l +W”/2P/2

, 30
(" +8a*)\/1 + yu? (0)

w'u' cosh au + 4asinh au
pPr=— 7 ’ (31)

vV 1+wyu

_ [wu") coshau  4asinhau

Py W[l +Wu/2]3/2 W
_u'(y'h—yh') coshau (32)

h/1 4 wu”?

where y := mh + s%.
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The matter of the surface layer is then, in general, an
anisotropic fluid. This is similar to the Bonnor solution [4]
for a rotating dust cloud with a nondust disk surface layer.

Now, to keep zero normal pressure at the boundary of the
body, the disk radial pressure, p, in Eq. (31), should vanish
at the equator. Hence, we impose the condition

, 4atanh ay,
)= G ) () )

which, using the last condition in Eq. (21), leads to
4atanh ay,f'(x,)(mh + s*)(x,) = (mh + 5%)'(x,).  (34)

This equation relates the solution parameters. It is a
restriction on the solutions that could be candidates for
our scheme.

To apply the scheme to a specific solution, we consider
the particular case of rigid rotation.

V. SUBFAMILY OF RIGIDLY
ROTATING SOLUTIONS

For the particular case of rigid rotation, @ = const, by
choosing ¢ such that the 4-velocity is proportional to 0,,
Senovilla [5] found the general solution with no higher
symmetry,

h=Cln <;) —4a%x, m=x, § = 507 = const,

Cc>0, B> 0. (35)
For our purposes, we now obtain the solution in an
equivalent form. Equations (6) and (9) give s” = wh”
and m” = —w*h”, which, using Eq. (2), respectively,
integrate to
s = w(h+ yx), m=1+px—w’h, (36)

where f and y are constants and the constant term in m has
been set to 1 by a scaling of r.

Substitution from Eq. (36) reduces Eq. (7) to the linear
differential equation in #,

(I 4+ bx)h" +bh + ¢ =0, (37)
where

b= 2w’y + p, c=4a> + 0?*y? > 4a>.  (38)
When b = 0, Eq. (37) reduces to A" = const, which leads
to the solution given in Ref. [2] with a multitransitive
isometry G, acting on timelike hypersurfaces. For
b #0, the general solution of Eq. (37) satisfying the
condition (2) is
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h_—<%>x+1n(1+bx), (39)

where, taking account of Eq. (8), the second constant of
integration has been set to 1 by a scaling of ¢.
The condition (4) implies

c=b(b-2), (40)

and hence, for ¢ > 4a2, either b > 1+ V1 +4a* or

b<1-+1+4ad*.

Using Egs. (36), (38), (39), and (40), the general solution
of the system (6) and (7), for rigid rotation with no higher
symmetry, simplifies to the form

h=(2-b)x+1In(1+ bx),
m=1+[b+ao*(b—-2-2y)]x—w?In(l + bx),
s=w[2—-b+y)x+1In(1+ bx)], (41)

which is valid for the interval

{O§x<oo, b>1+V1+4d?,

(42)
0<x<-=1/b, b<1-V1+4dada.
The static limit, when @ = 0, was given by Barnes [6].
The function m is even in w, and s is odd, as expected.
Also, m is positive. However, £ is positive and increasing
with x only on the interval

2
= 43
X < Xxp ) (43)
which is a subinterval of Eq. (42).
Substituting
b2
(mh + s?)" = b 8a? (44)
into Eq. (12) gives the pressure
1 /b*cosh’ay
= (————-12a%), 45
P=y ( 1+ bx . ) (45)

which is increasing with |y| and increasing (decreasing)
with x when b is negative (positive).

The equipressure surfaces with p = p, = const are
given by

4
cosh?ay = 7 (po + 3a*)(1 + bx). (46)

The limit surface is given by
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1 /b*cosh’ay

or, equivalently,

B:y==%f(x) :=j:écosh‘1 (%\/3(1—%[»6)). (47)

Then, B exists on some interval x > 0 in either of two
qualitatively different cases:

casel: —2v3a < b <0, (48)

in which case f(x) is decreasing with x and vanishing when
x = x; = (b* = 12a%)/(12a*b), or

case2: 2 < b <2v/3a, (49)

in which case f(x) is increasing with x.

In either case, the limit surface B intersects the axis of
symmetry x = 0 at y = +y, := +(1/a)cosh™ (2v/3a/|b|).

However, in case 2, when b = 2v/3a, the limit surface
passes through the origin x =y = 0.

The solution (5,41) has four parameters, a, b, w, and ¥,
which, using Egs. (40) and (38), should satisfy the
conditions

4> < b(b—2), (50)

b(b-2) = 4a*> + o*y>. (51)

VI. CONSTRUCTION OF RIGIDLY ROTATING
COMPACT BODIES

Now, we apply the scheme of Sec. III to the rigidly
rotating solution (5,41). In the process, we need to adjust
the parameters at hand so that all conditions are satisfied.
By choosing a solution of case 2, the solution parameters
should satisfy the conditions (49-51). On the other hand,
the scheme introduces a function u(x) and two parameters
X,,¥. which should satisfy the conditions (21,22,34,43).
The condition (43) leads to

2¢e

Bh=2) 0<ex<l. (52)

Xqa =

Using Eq. (41), the condition (34) reduces to
(8a? 4+ 2b —2b?)x, + b(1 + bx,) In(1 + bx,) =2, (53)

which depends on a, b, € only. To adjust the parameters, we
fix € and solve (53) for a in terms of b. Then, we pick a pair
{a,b} that satisfies the conditions (49,50). That pair
determines x, and wy. Finally, the remaining condition
(22) determines y..
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As a specific example, with y, = f(x,), let us take
2 Xa
u(x) == 1/y." —x/a, a=———5>0, (54)
Y& = Va
which satisfies the conditions (21). Then, the condition (22)
reduces to
(2 = b)x, — 4a’x,> + b(1 + bx,) In(1 + bx,)

_ bx,y, sinhyy, coshy,
3a(y? - i)

(55)

which determines y.. Then, using Eq. (45), p. = p(0, y.).

We are now ready to apply the scheme. First, we restrict
x to the interval [0, x,]. Then, we restrict the solution to a
region [ =1, UI_ consisting of the two disjoint regions
(with 0 < ¢ < 27)

Li0<x<x. f)<y<ulx). (56)

I_:0<x<x, —u(x) <y <—f(x). (57)

Finally, we apply the coordinate transformation

x = ar’, y=+1/y2 -1 =2,

(x,y,¢) €1,
(58)

whereby the surface y = u(x) is mapped onto the

equatorial disk z =0 and /, and /_ are mapped, respec-

tively, onto the upper (z > 0) and lower (z < 0) halves of
the (connected) spheroidal region (with 0 < ¢ < 2x)

I': 12a* < —12a*bar?® + b*cosh?ay/y.? — r* — 72

< b*cosh’ay.. (59)

FIG. 3.

The image region I’.
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Figure 3 shows a section of the image region I’ at
¢ = const. A prime denotes the image of a surface. The
dotted curves are the traces of images of some equipressure
surfaces.

Thus, the solution could be interpreted as a compact
rigidly rotating body of perfect fluid satisfying dominant
energy conditions. The pressure and density are decreas-
ing outward. The boundary of the body is smooth. The
body has a surface layer at the equatorial disk. The
surface energy density and radial and rotational pressures
are given by Eqs. (30)—(32). The radial pressure vanishes
at the equator. The constrained parameters € and b
determine the other parameters except individual @ and
y. However, the product wy is determined so that the
angular velocity @ can arbitrarily be specified, with y
determined accordingly.

VII. CONCLUSION

The need for restricting the region of validity of an
interior solution may be demonstrated by referring to the
well-known interior Schwarzschild solution. Initially, the
pressure may be derived in the form

- 20
P = Ho 3a—1=y

0<Lax<l,

so that it takes positive, zero, and negative values; it has a
singularity at y = 1 —9a?; and a limit surface exists at
y = 1 —a?. With the mass function given, the interior is
restricted between the limit surface and the center where the
mass vanishes.

Despite the existence of a surface layer, the rotating body
is free from curvature singularities. In a sense, it is more
physically acceptable than all configurations given in
Ref. [2]. Many interior solutions with boundary surface
layers have been constructed, for example, as models of
rotating neutron stars with surface layer crust [7,8].
However, a few interior solutions with disk surface layers
have been obtained, for example, rotating dust clouds [4,9]
and a rigidly rotating charged dust cylinder [10].

Besides the rigidly rotating solution, only three
explicit solutions within Senovilla’s family have been
obtained [1,11,12] with various features. However, as
shown in Ref. [12], the solution of Ref. [1] has p < 0,
the one of Ref. [11] has p > u, and that of Ref. [12]
has no limit surface. Only those solutions satisfying
dominant energy conditions and having a limit surface
may be candidates for the application of the scheme
presented above.

It should be stressed that the function u(x) is largely
arbitrary. However, no u(x) can be found to make the
extrinsic tensor continuous across X. Nevertheless, u(x)
may be utilized to derive new solutions satisfying some
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desirable weaker conditions. More precisely, we now have
four functions, m, h, s, and u, governed by only two
equations (6), (7). Then, we may impose two additional
equations, such as the vanishing of the surface pres-
sures (31,32).
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