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In this paper we study geodesic motion around a distorted Schwarzschild black hole. We consider both
timelike and null geodesics which are confined to the black hole’s equatorial plane. Such geodesics
generically exist if the distortion field has only even interior multipole moments, and so the field is
symmetric with respect to the equatorial plane. We specialize to the case of distortions defined by a
quadrupole Weyl moment. An analysis of the effective potential for equatorial timelike geodesics shows
that finite stable orbits outside the black hole are possible only for q ∈ ðqmin; qmax�, where qmin ≈ −0.0210
and qmax ≈ 2.7086 × 10−4, while for null equatorial geodesics a finite stable orbit outside the black hole is
possible only for q ∈ ½qmin; 0Þ. Moreover, the innermost stable circular orbits are closer to the distorted
black hole horizon than those of an undistorted Schwarzschild black hole for q ∈ ðqmin; 0Þ, and a null
innermost stable circular orbit exists for q ¼ qmin. These results show that an external distortion of a
negative and sufficiently small quadrupole moment tends to stabilize the motion of massive particles
and light.
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I. INTRODUCTION

A study of geodesics exposes geometric properties of a
curved space-time such as its isometries and hidden
symmetries, which allow for the integrability of geodesic
equations (see, e.g., Refs. [1–3] and references therein).
Moreover, an analysis of timelike and null geodesics, along
which test particles and light propagate respectively, is
useful for understanding the causal structure of a space-
time (see, e.g., Refs. [1,4–10]) and physical processes in
regions of a strong gravitational field (for example, around
astrophysical black holes and in the regions where gravi-
tational waves are present). Among such physical processes
are gravitational lensing (see, e.g., Refs. [11–15]), perias-
tron shift (see, e.g., Refs. [13,16,17]), the Lense-Thirring
effect (see, e.g., Refs. [16,18]), and gravitational spinoptics
(see, e.g., Refs. [19–22]).
There is an immense amount of literature in which

geodesic motion is studied and integrated analytically or
numerically for many different types of a gravitational
field. As a result of these studies, many interesting
phenomena, such as the existence of a photon sphere
around a black hole (see, e.g., Refs. [7,23–28]) or chaotic
motion of a test particle in a nonhomogenious vacuum pp-
wave solution [29,30], have been found. Equatorial motion
of charged particles in the vicinity of the magnetically and

tidally deformed black hole represented by the Preston-
Poisson metric was studied in Ref. [31].
This paper continues in this genre studying timelike

and null geodesics around a static distorted black hole.
Specifically we study Schwarzschild black holes distorted
by static and axisymmetric gravitational fields. These
space-times are members of the Weyl class of solutions.
Astrophysically, such distortions would be induced by
surrounding matter fields; however, these are not explicitly
included in Weyl space-times. Instead, the distortions are
induced by a divergent asymptotic infinity. As such, if we
are interested in potential astrophysical effects, we must
restrict our attention to timelike and null geodesics in the
vicinity of the black hole horizon and consider these
solutions as local static distorted black holes (see, e.g.,
Refs. [32–36]).
Our goal is to see how distortion affects the geodesics.

In this initial study, we restrict our attention to geodesics
confined to the black hole’s equatorial plane. Such geo-
desics exist generically if the distortion has reflective
symmetry across the plane. In particular, we focus on
the case of a quadrupole distortion. We demonstrate that
stable circular and bound timelike and null geodesics exist
if a quadrupole moment defining the distortion strength
takes relatively small negative values. The existence of
bound null geodesics is an interesting effect which was also
observed in a five-dimensional vacuum solution which
describes a uniform black string [37].
Recall that there is only one circular null geodesic orbit

around a Schwarzschild black hole of mass m. It is located
at r ¼ 3m, and there are no other bound null geodesics. The
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presence of a small quadrupole distortion slightly modifies
the Schwarzschild space-time in the vicinity of the black
hole horizon. As we show in this paper, such a distortion
by a negative and sufficiently small quadrupole moment
creates a “corridor of light” in the equatorial plane of the
black hole.
Besides the bound null geodesics, there are circular

stable and marginally stable null and timelike geodesics
around a distorted Schwarzschild black hole. Moreover, for
a small negative quadrupole moment, timelike innermost
stable circular orbits (ISCOs) come closer to the black hole
horizon, while for a small positive quadrupole moment,
they move away (as compared to the ISCO of an undis-
torted Schwarzschild black hole). These results may have
astrophysical applications as realistic black holes are
surrounded by external matter and fields which create
distortion effects. However, in this paper, we focus only on
a dynamical analysis of timelike and null geodesics.
The paper is organized as follows. In the next section,

we present the metric of a distorted Schwarzschild black
hole, briefly discuss its main properties, and bring it to
a computational convenient dimensionless form. Related
useful expressions are presented in the Appendix.
Section III contains equations for timelike and null geo-
desics confined to the black hole’s equatorial plane. In
Sec. IV, we restrict ourselves to a quadrupole distortion and
study properties of the effective potential of the timelike
and null geodesic motion. Section V contains our main
results, the basic properties of timelike and null geodesics.
We summarize our results in the last section.
In this paper, we use the convention of units G ¼ c ¼ 1

and the sign conventions adopted in Ref. [24].

II. METRIC OF A DISTORTED
STATIC BLACK HOLE

Let us begin with the Breton-Denisova-Manko static
metric representing a local static distorted black hole (see,
e.g., Refs. [32–36]),

ds2 ¼ −
�
x − 1

xþ 1

�
e2Udt2 þm2ðxþ 1Þ2ð1 − y2Þe−2Udϕ2

þm2ðxþ 1Þ2e2ðV−UÞ
�

dx2

x2 − 1
þ dy2

1 − y2

�
: ð1Þ

Here, t ∈ ð−∞;þ∞Þ is the time coordinate, x ∈ ð1;þ∞Þ
and y ∈ ½−1; 1� are the prolate spheroidal coordinates, and
ϕ ∈ ½0; 2πÞ is the azimuthal angular coordinate. The metric
functions Uðx; yÞ and Vðx; yÞ represent a distortion. They
solve the vacuum Einstein equations (A1)–(A3) and are
given in terms of the Legendre polynomials of the first
kind,

U ¼
X
n≥0

anRnPn; ð2Þ

V ¼
X
n;k≥1

nkanak
ðnþ kÞR

nþkðPnPk − Pn−1Pk−1Þ

þ
X
n≥1

an
Xn−1
l¼0

½ð−1Þn−lþ1ðxþ yÞ − xþ y�RlPl: ð3Þ

Pn ≡ Pnðxy=RÞ; R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 − 1

q
: ð4Þ

The Legendre polynomials have the following properties
useful for our calculations:

Pnð−xÞ ¼ ð−1ÞnPnðxÞ; Pnð1Þ ¼ 1; ð5Þ

dPnðxÞ
dx

¼ nPn−1ðxÞ − nxPnðxÞ
1 − x2

; ð6Þ

P2kð0Þ ¼ ð−1Þk ð2k − 1Þ!!
ð2kÞ!! ; P2kþ1ð0Þ ¼ 0;

k ¼ 0; 1; 2; 3;…;

ð2k − 1Þ!! ¼ 1 · 3 · 5 ·… · ð2k − 1Þ; ð−1Þ!! ¼ 1;

ð2kÞ!! ¼ 2 · 4 · 6 ·… · ð2kÞ; 0!! ¼ 1: ð7Þ

The black hole’s horizon is located at x ¼ 1, and the space-
time singularity is located at x ¼ −1. The metric functions
U and V calculated on the horizon are the following [38],

Uð1; yÞ ¼
X
n≥0

anyn; Vð1; yÞ ¼ 2ðUð1; yÞ − u0Þ; ð8Þ

where

u0 ¼
X
n≥0

an: ð9Þ

The multipole moments an define a distortion1 which
is due to an external static gravitational field (see, e.g.,
Refs. [34,35]). According to the terminology used in
Newtonian gravitational theory and electromagnetism,
the coefficients in the multipole expansion of the distortion
gravitational field are called interior multipole moments.2

The distortion fields U and V defined by the interior

1These multipole moments sometimes are called the Weyl
multipole moments. A relation of the Weyl multipole moments
to their relativistic analogs was discussed in Ref. [39] for the
Schwarzschild black hole distorted by an external field. The
general formalism, which includes both the Thorne [40] and
the Geroch-Hansen [41–44] relativistic multipole moments is
presented in Ref. [45]. A relation between the Thorne and
the Geroch-Hansen relativistic multipole moments is given in
Refs. [46,47].

2Note that, even though U satisfies the Laplace equation, it
is a relativistic field. In order to construct the corresponding
Newtonian analog of the field, one has to take the nonrelativistic
limit limc2→∞c

2Uðx; y; c2Þ, where c is the speed of light (see,
e.g., Refs. [48,49]).
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multipole moments are regular and smooth at the black hole
horizons. Exterior multipole moments describe deforma-
tions of the source [34,35]. They are given in terms of the
Legendre polynomials of the second kind (see, e.g.,
Refs. [35,50]). According to the Schwarzschild black hole
uniqueness theorem [51], the Schwarzschild black hole is
the only static, asymptotically flat, vacuum black hole with
a regular horizon. Thus, such deformations make the black
hole horizon singular (see, e.g., Ref. [50]).
The first term in the expansion of the distortion field U is

the monopole, and in our case it represents a background
distortion defined by a monopole moment a0. The next
term is the dipole defined by a dipole moment a1, which,
according to the black hole equilibrium condition [see
Eq. (10) below], is related to the higher order multipole
moments. The next term is the quadrupole, which is defined
by a quadrupole moment a2. Here, we shall consider only
the subleading terms in the multipole expansion of the
distortion field.
To have the horizon free of conical singularities on the

symmetry axis y ¼ �1, the multipole moments have to
satisfy the following condition:

X
n≥0

a2nþ1 ¼ 0: ð10Þ

This condition is sometimes called the black hole equilib-
rium condition [7].
If we consider that the distortion field is generated

by some material sources which satisfy the strong
energy condition, then we necessarily have (see, e.g.,
Ref. [36])

U ≤ 0; ð11Þ
which implies

u0 ≤ 0; u0 ¼
X
n≥0

a2n: ð12Þ

The expressions above define a local static distorted
black hole.
Using the coordinate transformations

x ¼ r
m
− 1; y ¼ cos θ ð13Þ

and removing the distortion by making all the multipole
moments an vanish, we derive the Schwarzschild metric
(see, e.g., Refs. [23,24]),

ds2 ¼ −
�
1 −

2m
r

�
dt2 þ

�
1 −

2m
r

�
−1
dr2 þ r2dω2;

dω2 ¼ dθ2 þ sin2θdϕ2: ð14Þ

In what follows, it is convenient to present the metric (1)
in a dimensionless form,

dS2 ¼ −
�
x − 1

xþ 1

�
e2UdT2 þ ðxþ 1Þ2ð1 − y2Þe−2Udϕ2

þ ðxþ 1Þ2e2ðV−UÞ
�

dx2

x2 − 1
þ dy2

1 − y2

�
; ð15Þ

where

ds2 ¼ Ω2dS2; Ω2 ¼ m2e−2u0 ;

t ¼ me−2u0T; U ¼ U − u0: ð16Þ

III. GEODESIC EQUATIONS

In this section, we construct equations for timelike and
null geodesics in the vicinity of a distorted static black hole.
We restrict ourselves to the geodesics lying in the equatorial
plane of the distorted black hole. As we illustrate below,
such geodesics exist only for certain types of distortion.
A geodesic equation is defined as follows:

ẍα þ Γα
βγ _xβ _xγ ¼ 0: ð17Þ

Here, the overdot stands for the derivative with respect to a
proper time τ, for timelike geodesics, or with respect to an
affine parameter λ, for null geodesics. For the space-time
(15), the Christoffel symbols are the following:

Γx
TT ¼ ðx − 1Þ

ðxþ 1Þ3 ½1þ ðx2 − 1ÞU ;x�e4U−2V;

Γx
xx ¼ −

1

x2 − 1
þ V;x − U ;x;

Γx
xy ¼ V;y − U ;y;

Γx
yy ¼ −

ðx − 1Þ
ð1 − y2Þ ½1þ ðxþ 1ÞðV;x − U ;xÞ�;

Γx
ϕϕ ¼ −ðx − 1Þð1 − y2Þ½1 − ðxþ 1ÞU ;x�e−2V;

Γy
TT ¼ ðx − 1Þ

ðxþ 1Þ3 ð1 − y2ÞU ;ye4U−2V;

Γy
xx ¼ ð1 − y2Þ

ðx2 − 1Þ ðU ;y − V;yÞ;

Γy
xy ¼ 1

xþ 1
þ V;x − U ;x;

Γy
yy ¼ y

1 − y2
þ V;y − U ;y;

Γy
ϕϕ ¼ ð1 − y2Þ½yþ ð1 − y2ÞU ;y�e−2V: ð18Þ

The space-time (15) has Killing vectors ξαðTÞ ¼ δαT and
ξαðϕÞ ¼ δαϕ. Accordingly, there are the following quantities

conserved along a geodesic:

E ≡ −ξαðTÞuα ¼
�
x − 1

xþ 1

�
e2U _T; ð19Þ
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Lϕ ≡ ξαðϕÞuα ¼ ðxþ 1Þ2ð1 − y2Þe−2U _ϕ: ð20Þ

For a massive particle, the quantity Lϕ represents the
particle’s dimensionless azimuthal angular momentum.
The interpretation of E is more complicated. For an asymp-
totically flat space-time with ξαðTÞ normalized at asymptotic

infinity, it would represent the particle’s per unit mass as
measured by a (static) observer at infinity moving with
4-velocity ξαðTÞ. However, our space-time is not asymptoti-

cally flat, and so ξαðTÞ does not have a natural scaling.
While the exterior region of the space-time can be

surgically modified to include an asymptotically flat region,
this is not sufficient to uniquely determine the scaling; the
surgery itself is not unique. Nevertheless, for any given
scaling, E is conserved, and this is enough to proceed with
the calculations. Here, we choose to work with the
(convenient) naive scaling inherited from the coordinate
system.
With the expressions (19)–(20), the dynamical system

(17) reduces to a two-dimensional one, confined to a
ðx; yÞ-plane,

ẍþ Γx
xx _x2 þ 2Γx

xy _x _yþΓx
yy _y2

þE2

�
xþ 1

x − 1

�
2

e−4UΓx
TT þ L2

ϕe
4U

ðxþ 1Þ4ð1 − y2Þ2 Γ
x
ϕϕ ¼ 0;

ð21Þ

ÿþ Γy
xx _x2 þ 2Γy

xy _x _yþΓy
yy _y2

þ E2

�
xþ 1

x − 1

�
2

e−4UΓy
TT þ L2

ϕe
4U

ðxþ 1Þ4ð1 − y2Þ2 Γ
y
ϕϕ ¼ 0:

ð22Þ

There is an additional constraint uαuα ¼ ε, where uα ¼ _xα

is 4-velocity and ε ¼ −1 for timelike and ε ¼ 0 for null
geodesics. The constraint takes the following form:

ðxþ 1Þ2e2ðV−UÞ
�

_x2

x2 − 1
þ _y2

1 − y2

�

− E2

�
xþ 1

x − 1

�
e−2U þ L2

ϕe
2U

ðxþ 1Þ2ð1 − y2Þ ¼ ε: ð23Þ

Let us now consider geodesics confined to the black
hole’s equatorial plane (y ¼ 0). In order to have y ¼ const,
one must have _y ¼ ÿ ¼ 0 along such a geodesic. According
to the expressions (18), (22), (23), and (A3), this condition
boils down to the condition

U ;yjy¼0 ¼ 0: ð24Þ

Using the expressions (2), (4), (6), and (7), we can present
this condition in an explicit form:

U ;y ¼
X
n≥0

a2nþ1xð1 − x2Þn ð2nþ 1Þ!!
ð2nÞ!! ¼ 0: ð25Þ

This condition is satisfied generically if a distortion does
not contain odd multipole moments. In other words, there
are geodesics confined to the equatorial plane if

a2nþ1 ¼ 0; n ¼ 0; 1; 2;…: ð26Þ
Note that this condition is stronger than the condition (10).
Physically, it corresponds to the intuitive requirement
that the space-time has reflective symmetry across the
equatorial plane. Without such symmetry, one would
generically expect that particles would be pulled out of
that plane.
In what follows, we shall study the equatorial geodesics.

The distortion fields satisfying the condition (26) take the
following form on the equatorial plane,

Ū ≡ Ujy¼0 ¼
X
n≥0

a2nð1 − x2Þn ð2n − 1Þ!!
ð2nÞ!! − u0; ð27Þ

V̄ ≡ Vjy¼0 ¼ −2
X
n≥1

a2nx
Xn−1
l¼0

ð1 − x2Þl ð2l − 1Þ!!
ð2lÞ!!

þ 2
X
n;k≥1

nka2na2k
ðnþ kÞ ð1 − x2Þnþk ð2n − 1Þ!!ð2k − 1Þ!!

ð2nÞ!!ð2kÞ!! ;

ð28Þ
and the geodesic equation (21) reads

ẍ −
_x2

x2 − 1
þ ðV̄;x − Ū ;xÞ_x2 þ

E2e−2V̄

x2 − 1
½1þ ðx2 − 1ÞŪ ;x�

−
L2ðx − 1Þe4Ū−2V̄

ðxþ 1Þ4 ½1 − ðxþ 1ÞŪ ;x� ¼ 0: ð29Þ

Here and in what follows, L ¼ Lϕðy ¼ 0Þ is the dimen-
sionless total angular momentum. The constraint (23)
projected on the equatorial plane is an integral of the
geodesic equation. We present the constraint in the follow-
ing archetypal form:

e2V̄ _x2 ¼ E2 −Ueff ; ð30Þ

Ueff ¼
�
x − 1

xþ 1

�
e2Ū

�
−εþ L2e2Ū

ðxþ 1Þ2
�
: ð31Þ

Here,Ueff is the effective potential of the dynamical motion
(29). We shall study its properties in the following section.

IV. EFFECTIVE POTENTIAL

Let us now study properties of the effective potential
(31). We shall consider the case of timelike geodesics,
ε ¼ −1, and null geodesics, ε ¼ 0, separately.
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A. Effective potential for timelike geodesics

The effective potential for timelike geodesics reads

Ueff ¼
�
x − 1

xþ 1

�
e2Ū

�
1þ L2e2Ū

ðxþ 1Þ2
�
: ð32Þ

In the absence of distortion, this potential coincides with
the effective potential for a massive test particle moving
in an equatorial plane of a Schwarzschild black hole (see,
e.g., p. 639 in Ref. [24]). Here, we shall consider a
quadrupole distortion defined by a quadrupole moment
a2 ¼ q [cf. Eqs. (27) and (28)],

Ū ¼ −
q
2
ðx2 þ 1Þ; ð33Þ

V̄ ¼ −2qxþ q2

4
ðx2 − 1Þ2: ð34Þ

Let us study properties of the corresponding effective
potential in the external to the black hole region
x ∈ ð1;þ∞Þ. We have

lim
x→1þ

Ueff ¼ 0þ; lim
x→þ∞

Ueff ¼
8<
:

þ∞; q < 0

1−; q ¼ 0

0þ; q > 0:

ð35Þ

The effective potential is positive and continuous in the
region. By continuity of Ueff , we can infer that for q ≤ 0
there is an even number of extrema, if any, while for q > 0
the number of extrema, if any, is odd. The next step is to
find the extrema of Ueff . An equation for the extrema
Ueff;x ¼ 0 is equivalent to the equation

f ¼ L2e−qðx2þ1Þ; ð36Þ
where

f ¼ ðxþ 1Þ2½1 − qxðx2 − 1Þ�
½x − 2þ 2qxðx2 − 1Þ� : ð37Þ

Thus, to find the extrema of the effective potential, we have
to study properties of the function f. We have

lim
x→1þ

f ¼ −4−; lim
x→þ∞

f ¼
�−∞; q ≠ 0

þ∞; q ¼ 0:
ð38Þ

For q ¼ 0, the function f diverges at x ¼ 2, and for q ≠ 0,
it diverges along the curve (see curve 1 in Fig. 1)

q ¼ ð2 − xÞ
2xðx2 − 1Þ ð39Þ

and vanishes along the curve (see curve 2 in Fig. 1)

q ¼ 1

xðx2 − 1Þ : ð40Þ

There is one trivial solution to Eq. (36) defined by L ¼ 0
and Eq. (40). This solution corresponds to a particle at rest,
ðx; y;ϕÞ ¼ const, with respect to the black hole. Such a
solution does not exist for an undistorted Schwarzschild
black hole, but it is possible in the case of a distorted
Schwarzschild black hole where the black hole’s gravita-
tional attraction is balanced by the external distortion.
The region enclosed between curves 1 and 2 defines the

values of q and x for which, given appropriate values of jLj,
the extrema of Ueff exist. Accordingly, the effective
potential has extrema if q > qmin. Let us now define the
number of extrema. To do it, we shall study the extrema of
the function f. The equation for the extrema f;x ¼ 0 is
equivalent to the equation

4x2ðx2 − 1Þ2q2 þ 2xðxþ 1Þð2x2 − 5xþ 4Þq − xþ 5 ¼ 0:

ð41Þ

Solving this equation for q, we derive

q� ¼ −
2x2 − 5xþ 4� ffiffiffiffi

D
p

4xðx − 1Þðx2 − 1Þ ; ð42Þ

D ¼ 4x4 − 16x3 þ 13x2 þ 4x − 4: ð43Þ

The branches q� are real if D ≥ 0. This condition holds in
the regions x ∈ ð1; x1Þ∪ðx2;þ∞Þ, where x1 ≈ 1.2255,
x2 ≈ 2.7194. The branch q− passes through the region
enclosed by the curves 1 and 2 and intersects curve 1 at
point A (see Fig. 1). Thus, it corresponds to the extrema of

FIG. 1. The region enclosed between curve 1 [see Eq. (39)]
and curve 2 [see Eq. (40)] defines the values of q and x for
which the extrema of Ueff exist. Curve 1 has a minimum
(point A) at x ¼ xmin ¼ 1þ 2 cosðπ=9Þ ≈ 2.8794 where q ¼
qmin ≈ −0.0210. Curves q� define the extrema of the function f.
Curve q− intersects curve 1 at point A, it vanishes at x ¼ 5,
and it has a maximum (point B) at xmax ≈ 6.5018 where
q− ¼ qmax ≈ 2.7086 × 10−4.
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the function f where f > 0. In that region, this branch has
also zero value at x ¼ 5 and an extremum (maximum) at
x ¼ xmax ≈ 6.5018 where q− ¼ qmax ≈ 2.7086 × 10−4.
Using Fig. 1, we can deduce properties of the function f

and, consequently, properties of the effective potential.
They are as follows:

(i) q < qmin: The function f is negative, and thus the
effective potential does not have extrema for any
value of jLj. According to (35), it grows monoton-
ically in the region x ∈ ð1;þ∞Þ [see Fig. 2,
plot (a)].

(ii) q ¼ qmin: The function f diverges at x ¼ xmin.
It has one extremum (maximum) in the region
x ∈ ðxmin;þ∞Þ. The function f is negative in the
region x ∈ ð1;þ∞Þ. Accordingly, Eq. (36) has no
real solutions. Thus, the effective potential has no
extrema for any value of jLj. Its behavior is the same
as in the previous case [see Fig. 2, plot (a)].

(iii) q ∈ ðqmin; 0Þ: The function f diverges at two points,
x ¼ xI and x ¼ xII , given by roots of Eq. (39).
It has one extremum (minimum) at x ∈ ðxI; xIIÞ,
where it is positive, and one extremum (maximum)
at x ∈ ðxII;þ∞Þ, where it is negative. Thus,
Eq. (36) has at most two real roots for appropriate
values of jLj > jLminj, where jLminj depends on the
value of q. These roots merge for jLj ¼ jLminj.
Accordingly, the effective potential has two extrema
(maximum and minimum) which merge at the point
of inflection for jLj ¼ jLminj [see Fig. 2, plot (b)].
For jLj < jLminj, the effective potential has no
extrema.

(iv) q ¼ 0: The function f diverges at x ¼ 2. It has one
extremum (minimum) at x ∈ ð2;þ∞Þ, where it is
positive. Thus, Eq. (36) has at most two real roots for
appropriate values of jLj > jLminj ¼ 2

ffiffiffi
3

p
. These

roots merge for jLj ¼ jLminj. Accordingly, the ef-
fective potential has two extrema (maximum and
minimum) which merge at the point of inflection for
jLj ¼ jLminj [see Fig. 2, plot (c)]. For jLj < jLminj,
the effective potential has no extrema.

(v) q ∈ ð0; qmaxÞ: The function f diverges at one point
x ¼ xI . It has two extrema (maximum and mini-
mum) at x ∈ ðxI;þ∞Þ, where it is positive. Thus,
Eq. (36) has at most three real roots for appropriate
values of jLj ∈ ðjLminj; jLmaxjÞ, where jLminj and
jLmaxj depend on the value of q. Accordingly, the
effective potential has three extrema (two maxima
and one minimum). The first maximum and the
minimum merge at the point of inflection for
jLj ¼ jLminj. The minimum and the second maxi-
mum merge at the point of inflection for
jLj ¼ jLmaxj. This behavior of the effective potential
is illustrated in Fig. 2, plot (d). For jLj < jLminj or
jLj > jLmaxj, the effective potential has only one
extremum (maximum).

(vi) q ¼ qmax: The function f diverges at one point
x ¼ xI. It has an inflection point at x ∈ ðxI;þ∞Þ,
where it is positive. One can show that Eq. (36) has
one real root in the region x ∈ ðxI;þ∞Þ for any
value of jLj. Accordingly, the effective potential has
only one extremum (maximum). For jLj ≈ 3.3708,
the effective potential has an inflection point at
x ¼ xmax. This behavior of the effective potential is
illustrated in Fig. 2, plot (e).

(vii) q > qmax: The function f has no extrema. It diverges
at one point x ¼ xI and monotonically decreases
from þ∞ to −∞ in the region x ∈ ðxI;þ∞Þ. Thus,
Eq. (36) has one real root for any value of jLj.
Accordingly, the effective potential has one ex-
tremum (maximum). The behavior of the effective
potential is illustrated in Fig. 2, plot (f).

Thus, we see that the effective potential may allow
(depending on the value of jLj) for stable and marginally
stable circular orbits (ISCOs) and finite motion outside the
black hole only for q ∈ ðqmin; qmax�.

B. Effective potential for null geodesics

For null geodesics, the effective potential reads

Ueff ¼
ðx − 1Þ
ðxþ 1Þ3 L

2e4Ū : ð44Þ

Considering again a quadrupole distortion as in (33), let us
now study properties of the effective potential in the region
external to the black hole x ∈ ð1;þ∞Þ. We have

lim
x→1þ

Ueff ¼ 0þ; lim
x→þ∞

Ueff ¼
�þ∞; q < 0

0þ; q ≥ 0:
ð45Þ

The effective potential is again positive and continuous in
this region. In this case, the continuity of Ueff implies that
there is an even number of extrema for q < 0 and an
odd number of extrema for q ≥ 0. Again, we seek the
extrema of Ueff . An equation for the extrema Ueff;x ¼ 0 is
equivalent to

x − 2þ 2qxðx2 − 1Þ ¼ 0; ð46Þ
which does not depend on the value of L. This is precisely
the condition where the function f defined in (37) diverges.
It is equivalent to (39), which is illustrated by curve 1 in
Fig. 1. From this curve, we can see that the effective
potential has extrema if q ≥ qmin. Using Fig. 1, we
deduce properties of the effective potential in the region
x ∈ ð1;þ∞Þ. They are the following:

(i) q < qmin: No real roots of (46) exist. Thus, the
effective potential does not possess any extrema and
grows monotonically [see Fig. 3, plot (a)].

(ii) q ¼ qmin: There is one real root of (46) at x ¼ xmin.
Thus, the first derivative (as well as the second one)
of the effective potential vanishes at one point
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FIG. 2. The effective potential for timelike geodesics. Plot (a): q ≤ qmin, jLj ¼ 10. Curve 1: q ¼ −0.0250; curve 2: q ¼ qmin. Plot (b):
q ∈ ðqmin; 0Þ, q ≈ −0.0052. Curve 1: jLj ¼ 10; curve 2: jLj ≈ 4.5625. The inflection point A is at x ¼ 3.46. Plot (c): q ¼ 0. Curve 1:
jLj ¼ 1þ 2

ffiffiffi
3

p
; curve 2: jLj ¼ 2

ffiffiffi
3

p
. The inflection point A is at x ¼ 5. Plot (d): q ∈ ð0; qmaxÞ, q ¼ 0.0001. Curve 1: jLj ≈ 3.5691;

curve 2: jLj ≈ 3.4327. The inflection point A is at x ≈ 5.2092; curve 3: jLj ≈ 3.7055. The inflection point B is at x ≈ 11.7595.
Plot (e): q ¼ qmax. Curve 1: jLj ≈ 3.3708. The inflection point A is at x ¼ xmax ≈ 6.5018; curve 2: jLj ≈ 2.8708; curve 3: jLj ≈ 3.8708.
Plot (f): q ≥ qmax, jLj ¼ 5. Curve 1: q ¼ qmax; curve 2: q ¼ 0.01.
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(point of inflection) when x ¼ xmin ≈ 2.8794 [see
Fig. 3, plot (b)].

(iii) q ∈ ðqmin; 0Þ: There are two real roots of (46). The
effective potential has a maximum at x ∈ ð1; xminÞ
and a minimum at x ∈ ðxmin;þ∞Þ [see Fig. 3,
plot (c)].

(iv) q ¼ 0: There is one root, x ¼ 2, of (46) where the
effective potential has a maximum [see Fig. 3,
plot (d)].

(v) q > 0: There is one real root of (46) at x ∈ ð1; 2Þ
where the effective potential has a maximum [see
Fig. 3, plot (d)].

Thus, we see that the effective potential will allow for an
ISCO and bound orbits of null geodesics outside the black
hole only for q ∈ ½qmin; 0Þ.

V. EQUATORIAL GEODESICS

Let us now study equatorial geodesics. We shall consider
the case of timelike geodesics, ε ¼ −1, and null geodesics,
ε ¼ 0, separately.

A. Equatorial timelike geodesics

One can see an effect of the distortion field on equatorial
timelike geodesics on the example of ISCOs. It is well
known that in the case of an undistorted Schwarzschild
black hole rISCO ¼ 6m, which, according to the transforma-
tion (13), corresponds to xISCO ¼ 5. Due to the distortion
field, rISCO changes its value. In the case of a quadrupole
distortion, the change is defined by both the sign and the
value of a quadrupole moment q. According to the plots
presented in Fig. 2, we see that for q ∈ ðqmin; 0Þ, xISCO < 5,
while for q ∈ ð0; qmax�, xISCO > 5. There are no ISCOs
for q > qmax.
Let us now study the kinematics of a massive particle in

the limit q → qþmin. Let us calculate the linear velocity v̂
of a massive particle in an equatorial circular orbit as
measured by a stationary observer located at the same
radius. In the coordinate basis, the 4-velocity of the particle
is given by

uα ¼ γð1; 0; 0;ΩÞ; ð47Þ

FIG. 3. The effective potential for null geodesics with L ¼ 1. Plot (a): q < qmin, q ¼ −0.0250.Plot(b): q ¼ qmin. The inflection point
A is at x ¼ xmin ≈ 2.8794. Plot (c): q ∈ ðqmin; 0Þ, q ¼ −0.01. Plot(d): q ≥ 0. Curve 1: q ¼ 0; curve 2: q ¼ 0.01.
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where γ is the gamma factor and

Ω ¼
_ϕ
_T

����
y¼0

¼ L
E

ðx − 1Þ
ðxþ 1Þ3 e

4Ū ð48Þ

is the angular velocity of the particle. The tetrad related to
the observer reads

eT̂α ¼ ffiffiffiffiffiffiffiffiffiffi
−gTT

p
δTα ; ex̂α ¼

ffiffiffiffiffiffi
gxx

p
δxα;

eŷα ¼ ffiffiffiffiffiffi
gyy

p
δyα; eϕ̂α ¼ ffiffiffiffiffiffiffi

gϕϕ
p

δϕα : ð49Þ

In the observer’s frame, the particle’s 4-velocity is

uα̂ ¼ eα̂αuα ¼ γ̂ð1; 0; 0; v̂Þ: ð50Þ

From this, we find that the linear velocity of the particle in a
circular orbit measured by the stationary observer located at
the same radius is

v̂ ¼ L
E
ðx − 1Þ1=2
ðxþ 1Þ3=2 e

2Ū : ð51Þ

Using the expression (30) for a circular orbit (_x ¼ 0) and
the expressions (32) and (36), we derive

v̂ ¼ signðLÞ ffiffiffi
f

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ 1Þ2 þ f

p : ð52Þ

This expression implies that the observed velocity
approaches the speed of light (v̂ → �1) when f diverges.
This corresponds to curve 1 in Fig. 1. Thus, bounded
timelike geodesics do not exist along this curve which
includes q ¼ qmin.
Let us now find the corresponding values of xISCO defined

by the range q ∈ ðqmin; qmax�. According to Figs. 1 and 2,
plot (b), the minimal value of xISCO corresponds
to q ¼ qþmin [cf. Eq. (42)],

xISCOmin ¼ lim
q−→qþmin

xðq−Þ ¼ 1þ 2 cosðπ=9Þ ≈ 2.8794:

ð53Þ

Using the transformation (13), we find

rISCOmin ¼ 2m½1þ cosðπ=9Þ� ≈ 3.8794m: ð54Þ

This value is approximately 29% larger than the radius
of the photon sphere of the Schwarzschild black hole,
rphoton ¼ 3m.
In order to see the effect of distortion in an invariant way,

let us calculate the proper distance from the ISCO to the
black hole horizon lmin and the ISCOs circumference Cmin.
We consider adiabatic distortion so that the distorted black
hole horizon area

Ah ¼ 16πm2e−2u0 ð55Þ

is constant, which is equal to the horizon surface area of
an undistorted Schwarzschild black hole. We define the
proper distance from the ISCO to the black hole horizon
and its circumference in units of the radius rh correspond-
ing to the area Ah,

rh ¼
�
Ah

4π

�
1=2

¼ 2me−u0 : ð56Þ

Using the metric (1), where we put t ¼ const, y ¼ 0, and
ϕ ¼ const, and the expressions (8), we derive the proper
distance lmin from the black hole horizon (x ¼ 1) to the
ISCO (x ¼ xISCOmin),

lmin ¼
1

2

Z
xISCOmin

1

dx

ffiffiffiffiffiffiffiffiffiffiffi
xþ 1

x − 1

r
e
qmin
2
ðx2−4xþ1Þþq2

min
4
ðx2−1Þ2

≈ 2.2722; ð57Þ
where we used the expressions (27) and (28) for a quadru-
pole distortion. In the absence of distortion, we derive

lSch ¼
1

2

Z
5

1

dx

ffiffiffiffiffiffiffiffiffiffiffi
xþ 1

x − 1

r
¼

ffiffiffi
6

p
þ 1

2
ln ð5þ 2

ffiffiffi
6

p
Þ ≈ 3.5957:

ð58Þ

The proper distance form the distorted black hole’s horizon
to the corresponding ISCO is 37% less than that of an
undistorted Schwarzschild black hole.
Let us now calculate the circumference Cmin of the ISCO.

Using the metric (1), where we put t ¼ const, y ¼ 0, and
x ¼ xISCOmin, and the expression (27), we derive

Cmin ¼ πðxISCOmin þ 1Þeqmin
2
ðxISCOmin

2þ1Þ ≈ 11.0575: ð59Þ
In the absence of distortion, one has

CSch ¼ 6π ≈ 18.8496: ð60Þ
The circumference of the distorted black hole’s ISCO is
41% less than that of an undistorted Schwarzschild
black hole.
As a summary, we conclude that, due to the negative

quadrupole distortion of the minimal value q ¼ qþmin, the
distorted black hole’s ISCO is closer to the horizon, and its
circumference becomes less than that of an undistorted
Schwarzschild black hole.
Let us now consider the case of positive quadrupole

moment q ∈ ð0; qmin�. According to Figs. 1 and 2, plots (d)
and (e), the maximal value of xISCO can be arbitrary large
within the validity of the local black hole model (see the
discussion at the end of the Conclusion). Indeed, one can
infer that for q → 0þ and an appropriate value of jLj the
point of inflection corresponding to a merger between
the minimum and the second maximum of the effective
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potential can be arbitrary far from the black hole horizon.
On the other side, the x-coordinate of the point of inflection
corresponding to a merger between the first maximum and
the minimum of the effective potential approaches the value
of x ¼ 5. In what follows, we shall consider the point of
inflection corresponding to the maximal value of q ¼ qmax
and define its x-coordinate as xISCOmax. Using the results of
the previous section and the transformation (13), we find

xISCOmax ≈ 6.5018; ð61Þ
and

rISCOmax ≈ 7.5018m: ð62Þ
This value is approximately 25% larger than the radius of
the ISCO of the Schwarzschild black hole, rISCO ¼ 6m.
Let us now calculate the proper distance lmax from the

black hole horizon (x ¼ 1) to the ISCO (x ¼ xISCOmax) and
the ISCO circumference Cmax. Replacing qmin with qmax
and xISCOmin with xISCOmax in the expressions (57) and (59), we
derive

lmax ≈ 4.4927; ð63Þ
and

Cmax ≈ 23.7062: ð64Þ
The proper distance from the distorted black hole’s horizon
to the corresponding ISCO is 25% greater and the ISCO
circumference is 26% greater than those of an undistorted
Schwarzschild black hole.

B. Equatorial null geodesics

We will now examine the effect of the distortion field
on equatorial null geodesics. In the case of an undistorted
Schwarzschild black hole, no stable circular orbits exist.
Circular orbits of radius r ¼ 3m corresponding to x ¼ 2 by
transformation (13) are possible but are unstable. However,
in the presence of a quadrupole distortion, stable circular
orbits exist, and the radii of these orbits are defined by the
value of the quadrupole moment q. According to the plots
presented in Fig. 3, we see that for q ∈ ½qmin; 0Þ bounded
orbits exist.
According to Figs. 1 and 3, plots (b) and (c), the value of

xISCO corresponds to q ¼ qmin which can be found from
Eq. (39). The result is

xISCO ¼ xmin ¼ 1þ 2 cosðπ=9Þ ≈ 2.8794: ð65Þ
Using the transformation (13), we find

rISCO ¼ 2m½1þ cosðπ=9Þ� ≈ 3.8794m: ð66Þ
As was the case for timelike geodesics, the minimum

proper distance from the horizon to the ISCO lmin is given
by (57), and the minimum circumference Cmin of the ISCO
is given by (59).

Due to the negative quadrupole distortion of the minimal
value q ¼ qmin, the ISCO of null geodesics is the limiting
orbit for ISCOs of a massive test particle approaching the
speed of light (see the previous subsection).
A bounded photon orbit corresponding to the effective

potential in Fig. 3, plot (c) is shown in Fig. 4.
In the case of a positive quadrupole moment q > 0,

no stable circular orbits exist. However, according to
Figs. 1 and 3, plot (d), there exists an unstable circular
orbit approaching x ¼ 1 for arbitrarily large q. This
corresponds to the horizon of the distorted black
hole r ¼ 2m.

VI. CONCLUSION

In this paper, we studied timelike and null geodesics
in the vicinity of a local static distorted black hole. We
restricted ourselves to geodesics lying in the equatorial
plane. Such geodesics exist if there are no odd interior
multipole moments in the distortion field. This corresponds
to a space-time having reflective symmetry across the
equatorial plane. We considered a quadrupole distortion
defined by the quadrupole moment q.
As a result of our study, we found that there are ISCOs

and bound orbits of timelike geodesics for q∈ðqmin;qmax�,
where qmin ≈ −0.0210 and qmax ≈ 2.7086 × 10−4. For
q ∈ ðqmin; 0Þ, the corresponding ISCOs are located
closer to the black hole horizon than the ISCO of a
Schwarzschild black hole of the mass m, which is at
r ¼ 6m. The closest ISCO is defined by q → q−min,
which is at rISCOmin ≈ 3.8794m. This value is approxi-
mately 29% larger than the radius of the photon
sphere of the Schwarzschild black hole, rphoton ¼ 3m.

FIG. 4. Bounded photon orbit with a periastron shift for
q ¼ −0.01 and L ¼ 1. The orbit’s parameters are xmin ¼ 4,
xmax ≈ 7.6308, and λ ∈ ½0; 700�. The arrows illustrate the initial
and final points of the orbit.
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We also calculated the proper distance to the distorted
black hole horizon and the circumference for the
closest ISCO and found that the proper distance is
37% less and the circumference is 41% less than those
corresponding to the ISCO of the Schwarzschild black
hole.
For positive values of the quadrupole moment

q ∈ ð0; qmax�, the effective potential has three extrema,
two maxima and one minimum. Thus, one class of ISCOs
corresponds to a merger between the minimum and the
second maximum of the effective potential. As a result,
such ISCOs can be located arbitrarily far from the black
hole horizon within the region of validity of our solution
(see the last paragraph of this section). Another class of
ISCOs corresponds to a merger between the first maximum
and the minimum of the effective potential. As a
result, such ISCOs are located close to a distorted black
hole horizon. We calculated that for q ¼ qmax there is
the farthest ISCO of the second class located at
rISCOmax ≈ 7.5018m. This value is approximately 25% larger
than the radius of the ISCO of a Schwarzschild
black hole of the mass m, rISCO ¼ 6m. We calculated the
proper distance to the distorted black hole horizon and the
circumference for this ISCO and found that the proper
distance is 25% greater and the circumference is 26%
greater than those corresponding to the ISCO of the
Schwarzschild black hole.
In addition to the ISCOs and bound orbits, there are also

(unstable) “static points” where a massive particle can stay
at rest with respect to the distorted black hole. These points
are defined by curve 2 in Fig. 1. Note that there is only
one point for a given value of q. Due to the axial symmetry,
this point corresponds to a “static ring” around a distorted
Schwarzschild black hole.
We found that for q ∈ ½qmin; 0Þ there is a null ISCO as

well as bound null geodesic orbits lying in the equatorial
plane of a distorted Schwarzshild black hole. The ISCO
exists for q ¼ qmin, and it is located at rISCO ≈ 3.8794m.
The proper distance from this ISCO to the distorted black
hole horizon is 37% less and its circumference is 41% less
than these of the ISCO of a timelike geodesics of a
Schwarzschild black hole of mass m. We illustrated the
existence of bound orbits of null geodesics lying in the
equatorial plane of the distorted black hole in Fig. 4.
These orbits have a periastron shift. They create a corridor
of light around a distorted black hole, in its equato-
rial plane.
The existence of the ISCO and bound orbits of null

geodesics, as well as ISCOs of timelike geodesics which
are located closer to the distorted black hole horizon than
the ISCO of a Schwarzschild black hole, can be intui-
tively explained by the Newtonian picture. In Newtonian
gravity, a gravitational potential of which the multipole
expansion is dominated by an interior quadrupole
moment qN can be modelled by two equal pointlike

masses μ located on the z-axis at the distance d from
the origin and an infinitesimally thin ring of the mass M
and radius R located at the plane perpendicular to the
z-axis and centred at the origin. In this case, we have
qN ¼ M=ð2R3Þ − 2μ=d3. Thus, if the contribution of the
pointlike masses to the gravitational field is greater
than that of the ring, then qN < 0; otherwise, qN ≥ 0.
If qN < 0, then there is a net force acting on a particle
and directed toward the z-axis. This force creates the
potential barrier at some distance from the black
hole horizon, as in the plots (a) and (b) in Fig. 2 and
(a), (b), and (c) in Fig. 3. The other potential barrier,
which is closer to the black hole horizon, is due to the
angular motion. In a similar way, one can explain the
existence of the static ring for q ∈ ð0; qmax�. In this case,
qN > 0, and the contribution of the ring to the gravita-
tional potential is greater than that of the pointlike
masses. As a result, there is a net force directed to the
ring, outward from the black hole. This force balances
the black hole’s gravitational pull at the static ring
around the black hole.
In order to justify the distortion in this way, its

contribution to the space-time curvature in the vicinity
of the distorted black hole horizon should be small
compared to that of the black hole. To estimate a
contribution of the distortion to the space-time curvature,
let us consider the quadrupole distortion at the black hole
horizon, on the equatorial plane. On a static black
hole horizon, the Kretschmann scalar curvature invariant
is KjHorizon ¼ 12K2, where K is the Gaussian curvature
of the horizon two-dimensional spacelike surface (for
details, see, e.g., Refs. [32,33,52–54]). For the metric
(15), K ¼ ð1þ 2qÞ expð2qÞ, and for jqj ≪ 1, one has
K ≈ 1þ 4qþ 6q2. This suggests that for q ∈ ½qmin; qmax�
our interpretation is justified. Such a distortion slightly
modifies the space-time geometry in the vicinity of the
black hole’s horizon and results in the deformation
of the timelike and null geodesics.
Note that the presence of an extra spatial dimension has a

similar effect on null geodesics around a uniform black
string [37]. As it was shown in Ref. [37], due to the extra
fifth (compact) spatial dimension, a photon acquires a
positive test mass. As a result, the corresponding effective
potential is exactly the same as that for a massive test
particle moving around a Schwarzschild black hole in its
equatorial plane. However, the photon’s mass is propor-
tional to the speed of propagation of the photon in the
fifth dimension. Thus, bound orbits of null geodesics are
not confined to an equatorial plane of the Schwarzschild
black hole.
In this paper, we have restricted our attention to geo-

desics in the equatorial plane. However, it would be
interesting to study general timelike and null geodesics
around a distorted Schwarzschild black hole as well as
those around a distorted Kerr black hole.
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APPENDIX: EINSTEIN EQUATIONS

In this Appendix, we present the vacuum Einstein
equations Rμν ¼ 0 for the metric (1). These equations
reduce to the following equations for the distortion fields
Uðx; yÞ and Vðx; yÞ in the prolate spheroidal coordinates:

ð1 − x2ÞU;xx − 2xU;x − ð1 − y2ÞU;yy þ 2yU;y ¼ 0; ðA1Þ

V;x ¼
ð1 − y2Þ
ðx2 − y2Þ ðx½ðx

2 − 1ÞU2
;x − ð1 − y2ÞU2

;y�

− 2yðx2 − 1ÞU;xU;y þ 2xU;x − 2yU;yÞ; ðA2Þ

V;y ¼
1

ðx2 − y2Þ ðyðx
2 − 1Þ½ðx2 − 1ÞU2

;x − ð1 − y2ÞU2
;y�

þ 2xðx2 − 1Þð1 − y2ÞU;xU;y

þ 2yðx2 − 1ÞU;x þ 2xð1 − y2ÞU;yÞ: ðA3Þ

The functions (2)–(4) solve these equations (see, e.g.,
Refs. [34,35]).
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