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Geodesic motion around a distorted static black hole
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In this paper we study geodesic motion around a distorted Schwarzschild black hole. We consider both
timelike and null geodesics which are confined to the black hole’s equatorial plane. Such geodesics
generically exist if the distortion field has only even interior multipole moments, and so the field is
symmetric with respect to the equatorial plane. We specialize to the case of distortions defined by a
quadrupole Weyl moment. An analysis of the effective potential for equatorial timelike geodesics shows
that finite stable orbits outside the black hole are possible only for ¢ € (¢min» ¢max)» Where gmin & —0.0210

and ¢, ~ 2.7086 x 10, while for null equatorial geodesics a finite stable orbit outside the black hole is
possible only for g € [y, 0). Moreover, the innermost stable circular orbits are closer to the distorted
black hole horizon than those of an undistorted Schwarzschild black hole for ¢ € (gin,0), and a null
innermost stable circular orbit exists for ¢ = ¢,,;,- These results show that an external distortion of a
negative and sufficiently small quadrupole moment tends to stabilize the motion of massive particles

and light.
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I. INTRODUCTION

A study of geodesics exposes geometric properties of a
curved space-time such as its isometries and hidden
symmetries, which allow for the integrability of geodesic
equations (see, e.g., Refs. [1-3] and references therein).
Moreover, an analysis of timelike and null geodesics, along
which test particles and light propagate respectively, is
useful for understanding the causal structure of a space-
time (see, e.g., Refs. [1,4-10]) and physical processes in
regions of a strong gravitational field (for example, around
astrophysical black holes and in the regions where gravi-
tational waves are present). Among such physical processes
are gravitational lensing (see, e.g., Refs. [11-15]), perias-
tron shift (see, e.g., Refs. [13,16,17]), the Lense-Thirring
effect (see, e.g., Refs. [16,18]), and gravitational spinoptics
(see, e.g., Refs. [19-22]).

There is an immense amount of literature in which
geodesic motion is studied and integrated analytically or
numerically for many different types of a gravitational
field. As a result of these studies, many interesting
phenomena, such as the existence of a photon sphere
around a black hole (see, e.g., Refs. [7,23-28]) or chaotic
motion of a test particle in a nonhomogenious vacuum pp-
wave solution [29,30], have been found. Equatorial motion
of charged particles in the vicinity of the magnetically and

fashoom@mun.ca
.l_cjw544@mun.ca
ibooth@mun.ca

2470-0010/2016,/93(6)/064019(13)

064019-1

tidally deformed black hole represented by the Preston-
Poisson metric was studied in Ref. [31].

This paper continues in this genre studying timelike
and null geodesics around a static distorted black hole.
Specifically we study Schwarzschild black holes distorted
by static and axisymmetric gravitational fields. These
space-times are members of the Weyl class of solutions.
Astrophysically, such distortions would be induced by
surrounding matter fields; however, these are not explicitly
included in Weyl space-times. Instead, the distortions are
induced by a divergent asymptotic infinity. As such, if we
are interested in potential astrophysical effects, we must
restrict our attention to timelike and null geodesics in the
vicinity of the black hole horizon and consider these
solutions as local static distorted black holes (see, e.g.,
Refs. [32-36]).

Our goal is to see how distortion affects the geodesics.
In this initial study, we restrict our attention to geodesics
confined to the black hole’s equatorial plane. Such geo-
desics exist generically if the distortion has reflective
symmetry across the plane. In particular, we focus on
the case of a quadrupole distortion. We demonstrate that
stable circular and bound timelike and null geodesics exist
if a quadrupole moment defining the distortion strength
takes relatively small negative values. The existence of
bound null geodesics is an interesting effect which was also
observed in a five-dimensional vacuum solution which
describes a uniform black string [37].

Recall that there is only one circular null geodesic orbit
around a Schwarzschild black hole of mass m. It is located
at r = 3m, and there are no other bound null geodesics. The
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presence of a small quadrupole distortion slightly modifies
the Schwarzschild space-time in the vicinity of the black
hole horizon. As we show in this paper, such a distortion
by a negative and sufficiently small quadrupole moment
creates a “corridor of light” in the equatorial plane of the
black hole.

Besides the bound null geodesics, there are circular
stable and marginally stable null and timelike geodesics
around a distorted Schwarzschild black hole. Moreover, for
a small negative quadrupole moment, timelike innermost
stable circular orbits (ISCOs) come closer to the black hole
horizon, while for a small positive quadrupole moment,
they move away (as compared to the ISCO of an undis-
torted Schwarzschild black hole). These results may have
astrophysical applications as realistic black holes are
surrounded by external matter and fields which create
distortion effects. However, in this paper, we focus only on
a dynamical analysis of timelike and null geodesics.

The paper is organized as follows. In the next section,
we present the metric of a distorted Schwarzschild black
hole, briefly discuss its main properties, and bring it to
a computational convenient dimensionless form. Related
useful expressions are presented in the Appendix.
Section III contains equations for timelike and null geo-
desics confined to the black hole’s equatorial plane. In
Sec. IV, we restrict ourselves to a quadrupole distortion and
study properties of the effective potential of the timelike
and null geodesic motion. Section V contains our main
results, the basic properties of timelike and null geodesics.
We summarize our results in the last section.

In this paper, we use the convention of units G = ¢ = 1
and the sign conventions adopted in Ref. [24].

II. METRIC OF A DISTORTED
STATIC BLACK HOLE

Let us begin with the Breton-Denisova-Manko static
metric representing a local static distorted black hole (see,
e.g., Refs. [32-36]),

2 X=1\ s, 2 2 2Y,—2U 42
- 12(1 -
ds < 1)6 drr + m*(x + 1)*(1 — y*)e*Yd¢

dx? dy?
2 + 2]
x>—=1 1-y

+ m2(x + 1)2e2(v‘”>< (1)

Here, t € (—00, +0) is the time coordinate, x € (1, +o0)
and y € [—1, 1] are the prolate spheroidal coordinates, and
¢ € [0,2x) is the azimuthal angular coordinate. The metric
functions U(x,y) and V(x,y) represent a distortion. They
solve the vacuum Einstein equations (A1)—(A3) and are
given in terms of the Legendre polynomials of the first
kind,

U=> a,R"P,, (2)

n>0
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k
V = rGn i Rn+k(PnPk - P”_IPk_1>
nk>1 (n + k)
n_l
+) a, Y (=) x+y) —x+yR'P. (3)
n>1 =0

R=\/x*+y*-1. (4)

The Legendre polynomials have the following properties
useful for our calculations:

P, =P,(xy/R),

Py(=x) = (=1)"P,(x),  Py(1) =1, (5)

4P, () _ Py () = nxP, (1
dx 1—x2 ’ (6)
Pa0) = (0B P =0,
k=0,1,2,3, ...,
k=1 =1-3-5-...-(2k=1), (=D =1,
QN =2-4-6-...-(2k),  ON=L (7)

The black hole’s horizon is located at x = 1, and the space-
time singularity is located at x = —1. The metric functions
U and V calculated on the horizon are the following [38],

Uly) = ay",  V(Ly)=2U(1,y) —ug), (8)

n>0

where

uy = Za,,. 9)

n>0

The multipole moments «, define a distortion' which
is due to an external static gravitational field (see, e.g.,
Refs. [34,35]). According to the terminology used in
Newtonian gravitational theory and electromagnetism,
the coefficients in the multipole expansion of the distortion
gravitational field are called interior multipole moments.”
The distortion fields U and V defined by the interior

'"These multipole moments sometimes are called the Weyl
multipole moments. A relation of the Weyl multipole moments
to their relativistic analogs was discussed in Ref. [39] for the
Schwarzschild black hole distorted by an external field. The
general formalism, which includes both the Thorne [40] and
the Geroch-Hansen [41-44] relativistic multipole moments is
presented in Ref. [45]. A relation between the Thorne and
the Geroch-Hansen relativistic multipole moments is given in
Refs. [46,47].

Note that, even though U satisfies the Laplace equation, it
is a relativistic field. In order to construct the corresponding
Newtonian analog of the field, one has to take the nonrelativistic
limit lim._ . c?U(x,y, ¢?), where c is the speed of light (see,

c"—00

e.g., Refs. [48,49]).
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multipole moments are regular and smooth at the black hole
horizons. Exterior multipole moments describe deforma-
tions of the source [34,35]. They are given in terms of the
Legendre polynomials of the second kind (see, e.g.,
Refs. [35,50]). According to the Schwarzschild black hole
uniqueness theorem [51], the Schwarzschild black hole is
the only static, asymptotically flat, vacuum black hole with
a regular horizon. Thus, such deformations make the black
hole horizon singular (see, e.g., Ref. [50]).

The first term in the expansion of the distortion field U is
the monopole, and in our case it represents a background
distortion defined by a monopole moment a,. The next
term is the dipole defined by a dipole moment a;, which,
according to the black hole equilibrium condition [see
Eq. (10) below], is related to the higher order multipole
moments. The next term is the quadrupole, which is defined
by a quadrupole moment a,. Here, we shall consider only
the subleading terms in the multipole expansion of the
distortion field.

To have the horizon free of conical singularities on the
symmetry axis y = =1, the multipole moments have to
satisfy the following condition:

Za2n+1 =0. (10)

n>0

This condition is sometimes called the black hole equilib-
rium condition [7].

If we consider that the distortion field is generated
by some material sources which satisfy the strong
energy condition, then we necessarily have (see, e.g.,
Ref. [36])

U <0, (11)
which implies

MOSO9

Up = ZQZH' (12)

n>0

The expressions above define a local static distorted
black hole.
Using the coordinate transformations

x=1—1,  y=cosd (13)

m

and removing the distortion by making all the multipole
moments a, vanish, we derive the Schwarzschild metric
(see, e.g., Refs. [23,24]),

2 2 -1
ds® = —<1 - —m> dr* + <1 ——m> dr* + r*dw?,

r r
dw? = d? + sin’0dg>. (14)

In what follows, it is convenient to present the metric (1)
in a dimensionless form,
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-1
dSZ = - (%) ewdT2 + (x + 1)2(1 - yz)e_wdQ'JZ
X

dx? dy?
1)2 2(V-U) , 15
+(x+1)% x2—1+1—y2 (15)

where

ds* = Q?dS?, Q% = m?e~210,

t = me 2T, U=U~—u,. (16)

ITII. GEODESIC EQUATIONS

In this section, we construct equations for timelike and
null geodesics in the vicinity of a distorted static black hole.
We restrict ourselves to the geodesics lying in the equatorial
plane of the distorted black hole. As we illustrate below,
such geodesics exist only for certain types of distortion.

A geodesic equation is defined as follows:

X%+ F”ﬂy)'c/")'ﬂ =0. (17)
Here, the overdot stands for the derivative with respect to a
proper time 7, for timelike geodesics, or with respect to an

affine parameter 4, for null geodesics. For the space-time
(15), the Christoffel symbols are the following:

-1
Py =S 12— Je2,

(x+1)°

I = _le_ +V.-U,,

ry,=v,-U,,

Ty = ff = 12)) [+ (x4 (V= UL,
I, === D1 =y)[1 = (x+ 1)U Je 2,

" <(xx+_ 11 >)3 (1 =y ye 72,

I, = Eiz__y j; U,-V,).

Fi)’ = ﬁ +V,-U,,

Iy = I—Lyz +V,-U,,

b = (L=2)y + (1 =y)U,Je™". (18)

The space-time (15) has Killing vectors éf'T) = 6% and
§‘<’¢) = 63‘5. Accordingly, there are the following quantities
conserved along a geodesic:

— o _ x—1 2UT
= —§(T)ua = <x+ 1>e T, (19)
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Ly=& = (4 DAL= ). (20)
For a massive particle, the quantity L, represents the
particle’s dimensionless azimuthal angular momentum.
The interpretation of £ is more complicated. For an asymp-
totically flat space-time with 5((17) normalized at asymptotic

infinity, it would represent the particle’s per unit mass as
measured by a (static) observer at infinity moving with
4-velocity f?T). However, our space-time is not asymptoti-

cally flat, and so &t does not have a natural scaling.

While the exterior region of the space-time can be
surgically modified to include an asymptotically flat region,
this is not sufficient to uniquely determine the scaling; the
surgery itself is not unique. Nevertheless, for any given
scaling, £ is conserved, and this is enough to proceed with
the calculations. Here, we choose to work with the
(convenient) naive scaling inherited from the coordinate
system.

With the expressions (19)—(20), the dynamical system
(17) reduces to a two-dimensional one, confined to a

(x,y)-plane,

K+ T2 4 205 5y +15, 572

x+1 s
+&2 ) 2 s, =0,
<x—1> T D=y
(21)
¥+ Dik? + 20 y 15y °
24U
g <x+1>2e—4u R r, =0,
r—1 T (x+ 1)*(1 = y?)? b
(22)

There is an additional constraint u“u, = &, where u* = x*
is 4-velocity and & = —1 for timelike and ¢ = 0 for null
geodesics. The constraint takes the following form:

g ).62 )')2
(x +1)2e2V “)( + 2)

x2=1 1-y
22U
o x+1 _ou E(/,e _ 5
5<x—1)e TS

Let us now consider geodesics confined to the black
hole’s equatorial plane (y = 0). In order to have y = const,
one must have y = ¥ = 0 along such a geodesic. According
to the expressions (18), (22), (23), and (A3), this condition
boils down to the condition

U,l,_o=0. (24)

Using the expressions (2), (4), (6), and (7), we can present
this condition in an explicit form:
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. 2n+ 1N
arpy1x(1 = x?)
o= g e

=0. (25)
This condition is satisfied generically if a distortion does
not contain odd multipole moments. In other words, there
are geodesics confined to the equatorial plane if

a1 =0, n=01.2,.... (26)

Note that this condition is stronger than the condition (10).
Physically, it corresponds to the intuitive requirement
that the space-time has reflective symmetry across the
equatorial plane. Without such symmetry, one would
generically expect that particles would be pulled out of
that plane.

In what follows, we shall study the equatorial geodesics.
The distortion fields satisfying the condition (26) take the
following form on the equatorial plane,

. B 2n(2n—1)!!
U=U|y= ;azn(l - x7) T

V|v =0 = —Zzaznx Z(l 2o 1)”

n>1 21 "

—uy, (27)

22 nkazndz/( —y )n+k (27’[-1)”(2]{-1)”

= (2n)!N(2k)! '
(28)
and the geodesic equation (21) reads
2 _ _ 2072V B
Foogt (VU )X*+ 2] 1+ (x> =1)U,]
_ 52();;316;” v [1—(x+ 1)U, =0. (29)

Here and in what follows, £ = £,(y = 0) is the dimen-
sionless total angular momentum. The constraint (23)
projected on the equatorial plane is an integral of the
geodesic equation. We present the constraint in the follow-
ing archetypal form:

Vi = E2 — Uy, (30)
o (x=1\ o yres
Ueff— (x+1>€ |:—8+m . (31)

Here, U,y is the effective potential of the dynamical motion
(29). We shall study its properties in the following section.

IV. EFFECTIVE POTENTIAL

Let us now study properties of the effective potential
(31). We shall consider the case of timelike geodesics,
e = —1, and null geodesics, € = 0, separately.
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A. Effective potential for timelike geodesics

The effective potential for timelike geodesics reads

(x=1\ L2
Ueff = <x+ 1>€ |:] + (x+ 1)2 . (32)

In the absence of distortion, this potential coincides with
the effective potential for a massive test particle moving
in an equatorial plane of a Schwarzschild black hole (see,
e.g., p- 639 in Ref. [24]). Here, we shall consider a
quadrupole distortion defined by a quadrupole moment
a, = q [cf. Egs. (27) and (28)],

a:—g(2+n, (33)

2
V=-2qx+ %(XQ —1)2 (34)

Let us study properties of the corresponding effective
potential in the external to the black hole region
€ (1,+00). We have

+o00, g<0
lim Uy = 0T, lim U= 17, ¢g=0 (35)
x—17 x—-+o0o

0", ¢g>0.

The effective potential is positive and continuous in the
region. By continuity of U, we can infer that for ¢ <0
there is an even number of extrema, if any, while for g > 0
the number of extrema, if any, is odd. The next step is to
find the extrema of Ugy. An equation for the extrema
Ui = 0 is equivalent to the equation

f=Lremate ), (36)
where

(x+ 1)2[1 — gx(x*> = 1)]
[x =24 2gx(x* = 1)]

f= (37)
Thus, to find the extrema of the effective potential, we have
to study properties of the function f. We have

hmf:{_m’q¢0 (38)

lim f = —4-,
! x=-+oo +o0, q=0.

x—1"

For ¢ = 0, the function f diverges at x = 2, and for g # 0,
it diverges along the curve (see curve 1 in Fig. 1)

(2-x)
=——F" 39
1 2x(x* = 1) (39)
and vanishes along the curve (see curve 2 in Fig. 1)
1
=—— 40
q x(xz _ 1) ( )
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There is one trivial solution to Eq. (36) defined by £ =0
and Eq. (40). This solution corresponds to a particle at rest,
(x,y,¢) = const, with respect to the black hole. Such a
solution does not exist for an undistorted Schwarzschild
black hole, but it is possible in the case of a distorted
Schwarzschild black hole where the black hole’s gravita-
tional attraction is balanced by the external distortion.

The region enclosed between curves 1 and 2 defines the
values of ¢ and x for which, given appropriate values of |£|,
the extrema of U.y exist. Accordingly, the effective
potential has extrema if ¢ > ¢qp;,. Let us now define the
number of extrema. To do it, we shall study the extrema of
the function f. The equation for the extrema f, =0 is
equivalent to the equation

42 (x> = 1) + 2x(x + 1)(2x* = 5x +4)g —x + 5= 0.

(41)
Solving this equation for g, we derive
2x2 —=5x+4++/D
g+ = — 5 ’ (42)
dx(x —1)(x*=1)
D = 4x* —16x> + 13x> + 4x — 4. (43)

The branches ¢ are real if D > 0. This condition holds in
the regions x € (1,x)U(x,, +00), where x; = 1.2255,
X, & 2.7194. The branch g_ passes through the region
enclosed by the curves 1 and 2 and intersects curve 1 at
point A (see Fig. 1). Thus, it corresponds to the extrema of

0.005
q

-0.005 1

-0.010 1

-0.015 |

-0.020 1

T
2 4 6 8 10 12 14

-0.025

FIG. 1. The region enclosed between curve 1 [see Eq. (39)]
and curve 2 [see Eq. (40)] defines the values of ¢ and x for
which the extrema of U exist. Curve 1 has a minimum
(point A) at x = xp, = 1 +2cos(n/9) ~2.8794 where ¢ =
Gmin & —0.0210. Curves ¢ define the extrema of the function f.
Curve ¢_ intersects curve 1 at point A, it vanishes at x =5,
and it has a maximum (point B) at x,, ~6.5018 where
G- = Guax ~ 2.7086 x 1074,
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the function f where f > 0. In that region, this branch has
also zero value at x = 5 and an extremum (maximum) at
X = Xpax & 6.5018 where g_ = g ~ 2.7086 x 1074,

Using Fig. 1, we can deduce properties of the function f
and, consequently, properties of the effective potential.
They are as follows:

(1) ¢ < @min: The function f is negative, and thus the
effective potential does not have extrema for any
value of |£|. According to (35), it grows monoton-
ically in the region x € (1,+o0) [see Fig. 2,
plot (a)].

(i1) ¢ = gmin: The function f diverges at x = x;,.
It has one extremum (maximum) in the region
X € (Xpin, +00). The function f is negative in the
region x € (1,+o0). Accordingly, Eq. (36) has no
real solutions. Thus, the effective potential has no
extrema for any value of | £|. Its behavior is the same
as in the previous case [see Fig. 2, plot (a)].

(ili)) ¢ € (gmin, 0): The function f diverges at two points,
x =x; and x = xj;, given by roots of Eq. (39).
It has one extremum (minimum) at x € (x;,x;;),
where it is positive, and one extremum (maximum)
at x € (x;;, +o0), where it is negative. Thus,
Eq. (36) has at most two real roots for appropriate
values of |L| > |L |, Where |£ | depends on the
value of ¢. These roots merge for |L| = |Lynl-
Accordingly, the effective potential has two extrema
(maximum and minimum) which merge at the point
of inflection for |£| = |L,;,| [see Fig. 2, plot (b)].
For |L| < |Lym|, the effective potential has no
extrema.

(iv) g = 0: The function f diverges at x = 2. It has one
extremum (minimum) at x € (2, +o00), where it is
positive. Thus, Eq. (36) has at most two real roots for
appropriate values of |£| > |Lyin| = 2V/3. These
roots merge for |£| = |Lyn|- Accordingly, the ef-
fective potential has two extrema (maximum and
minimum) which merge at the point of inflection for
|L| = |Lmin| [see Fig. 2, plot (c)]. For |£| < | Lyl
the effective potential has no extrema.

(V) q € (0, gmay): The function f diverges at one point
x = x;. It has two extrema (maximum and mini-
mum) at x € (x;,+o0), where it is positive. Thus,
Eq. (36) has at most three real roots for appropriate
values of |£| € (|Luminls |Limax|)s Where |L,| and
|£max] depend on the value of g. Accordingly, the
effective potential has three extrema (two maxima
and one minimum). The first maximum and the
minimum merge at the point of inflection for
|£] = |Lyin|- The minimum and the second maxi-
mum merge at the point of inflection for
|£| = | Lmax|- This behavior of the effective potential
is illustrated in Fig. 2, plot (d). For |£| < | Lyl or
|L| > |Lmax|, the effective potential has only one
extremum (maximum).

PHYSICAL REVIEW D 93, 064019 (2016)

(Vi) g = ¢max: The function f diverges at one point
x = x;. It has an inflection point at x € (x;, +0),
where it is positive. One can show that Eq. (36) has
one real root in the region x € (x;,+oo) for any
value of | £|. Accordingly, the effective potential has
only one extremum (maximum). For |£| ~ 3.3708,
the effective potential has an inflection point at
X = Xpmax- This behavior of the effective potential is
illustrated in Fig. 2, plot (e).

(Vil) g > @max: The function f has no extrema. It diverges
at one point x = x; and monotonically decreases
from +oo to —oo in the region x € (x;, +o0). Thus,
Eq. (36) has one real root for any value of |L]|.
Accordingly, the effective potential has one ex-
tremum (maximum). The behavior of the effective
potential is illustrated in Fig. 2, plot (f).

Thus, we see that the effective potential may allow
(depending on the value of |L]|) for stable and marginally
stable circular orbits (ISCOs) and finite motion outside the
black hole only for ¢ € (¢umins Imax)-

B. Effective potential for null geodesics

For null geodesics, the effective potential reads

_ =1 s
Ueff = mﬁ e L{. (44)

Considering again a quadrupole distortion as in (33), let us
now study properties of the effective potential in the region
external to the black hole x € (1, +00). We have

400, g<0

45
0", g=0. (43)

lim Ueff = 0+, lim Ueff =
x—1T xX—>+0o0

The effective potential is again positive and continuous in
this region. In this case, the continuity of U implies that
there is an even number of extrema for ¢ <0 and an
odd number of extrema for g > 0. Again, we seek the
extrema of U.g. An equation for the extrema U, = 0 is
equivalent to

x—2+2gx(x*—1) =0, (46)

which does not depend on the value of L. This is precisely
the condition where the function f defined in (37) diverges.
It is equivalent to (39), which is illustrated by curve 1 in
Fig. 1. From this curve, we can see that the effective
potential has extrema if ¢ > ¢q.;,. Using Fig. 1, we
deduce properties of the effective potential in the region
€ (1,+00). They are the following:
(1) g < qmin: No real roots of (46) exist. Thus, the
effective potential does not possess any extrema and
grows monotonically [see Fig. 3, plot (a)].
(i) g = qmin: There is one real root of (46) at x = x;,-
Thus, the first derivative (as well as the second one)
of the effective potential vanishes at one point
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FIG.2. The effective potential for timelike geodesics. Plot (a): ¢ < gpin, |£] = 10. Curve 1: ¢ = —0.0250; curve 2: ¢ = qin- Plot (b):
q € (gmin,0), ¢ ® —0.0052. Curve 1: |£| = 10; curve 2: |£| = 4.5625. The inflection point A is at x = 3.46. Plot (¢): ¢ = 0. Curve I:
|£] = 1 4 2+/3; curve 2: |£| = 2+/3. The inflection point A is at x = 5. Plot (d): g € (0, ¢ma)> ¢ = 0.0001. Curve 1: |£| ~ 3.5691;
curve 2: L]~ 3.4327. The inflection point A is at x = 5.2092; curve 3: |£|~ 3.7055. The inflection point B is at x = 11.7595.
Plot (€): ¢ = gmax- Curve 1: |£| ~ 3.3708. The inflection point A is at x = x,,,, & 6.5018; curve 2: |£| ~ 2.8708; curve 3: |£| ~ 3.8708.
Plot (f): ¢ > gmax»> |£] = 5. Curve 1: ¢ = @y curve 2: g = 0.01.
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The effective potential for null geodesics with £ = 1. Plot (a): ¢ < ¢in,» ¢ = —0.0250.Plot(b): ¢ = ¢pi,- The inflection point

A s at x = xp, & 2.8794. Plot (¢): ¢ € (¢min,0), ¢ = —0.01. Plot(d): ¢ > 0. Curve 1: ¢ = 0; curve 2: ¢ = 0.01.

(point of inflection) when x = x;, & 2.8794 [see
Fig. 3, plot (b)].
(iii)) ¢ € (gmin,0): There are two real roots of (46). The
effective potential has a maximum at x € (1, x.;,)
and a minimum at x € (x;,, +o0) [see Fig. 3,
plot (¢)].
(iv) g = 0: There is one root, x = 2, of (46) where the
effective potential has a maximum [see Fig. 3,
plot (d)].
(v) g > 0: There is one real root of (46) at x € (1,2)
where the effective potential has a maximum [see
Fig. 3, plot (d)].
Thus, we see that the effective potential will allow for an
ISCO and bound orbits of null geodesics outside the black
hole only for g € [gmin,0)-

V. EQUATORIAL GEODESICS

Let us now study equatorial geodesics. We shall consider
the case of timelike geodesics, € = —1, and null geodesics,
e = 0, separately.

A. Equatorial timelike geodesics

One can see an effect of the distortion field on equatorial
timelike geodesics on the example of ISCOs. It is well
known that in the case of an undistorted Schwarzschild
black hole s, = 6m, which, according to the transforma-
tion (13), corresponds to X, = 5. Due to the distortion
field, r., changes its value. In the case of a quadrupole
distortion, the change is defined by both the sign and the
value of a quadrupole moment g. According to the plots
presented in Fig. 2, we see that for ¢ € (quin, 0), Xisco < 5,
while for g € (0, ¢gmax)s Xisco > 5. There are no ISCOs
for ¢ > Gax-

Let us now study the kinematics of a massive particle in
the limit ¢ — ¢ . Let us calculate the linear velocity
of a massive particle in an equatorial circular orbit as
measured by a stationary observer located at the same
radius. In the coordinate basis, the 4-velocity of the particle
is given by

u* =y(1,0,0,Q), (47)
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where y is the gamma factor and

:¢ _ L=

Tlho E@+1p°

(48)

is the angular velocity of the particle. The tetrad related to
the observer reads

65 = v_gTT6£v efcl = VYxx o
e =, /GyyCus el = /g¢¢52. (49)

In the observer’s frame, the particle’s 4-velocity is
=7(1,0,0,9). (50)

From this, we find that the linear velocity of the particle in a
circular orbit measured by the stationary observer located at
the same radius is

. Lx=-DV2

Using the expression (30) for a circular orbit (x = 0) and
the expressions (32) and (36), we derive

. sign(L)VF
x+12+f

<

(52)

This expression implies that the observed velocity
approaches the speed of light (# — £1) when f diverges.
This corresponds to curve 1 in Fig. 1. Thus, bounded
timelike geodesics do not exist along this curve which
includes ¢ = G-

Let us now find the corresponding values of x,s-, defined
by the range ¢ € (¢umins gmax)- According to Figs. 1 and 2,
plot (b) the minimal value of x, ., corresponds

to q= qmm [Cf Eq (42)]7

Xiscomn = 1M x(

4-= G

_)=1+2cos(n/9) ~ 2.879%4.
(53)
Using the transformation (13), we find

Fiscomn = 2m[1 + cos(z/9)] ~ 3.8794m. (54)
This value is approximately 29% larger than the radius
of the photon sphere of the Schwarzschild black hole,
rphoton = 3m.

In order to see the effect of distortion in an invariant way,
let us calculate the proper distance from the ISCO to the
black hole horizon #,,;, and the ISCOs circumference C,,-
We consider adiabatic distortion so that the distorted black
hole horizon area

PHYSICAL REVIEW D 93, 064019 (2016)
Aj, = 16am?e (55)

is constant, which is equal to the horizon surface area of
an undistorted Schwarzschild black hole. We define the
proper distance from the ISCO to the black hole horizon
and its circumference in units of the radius r;, correspond-
ing to the area A,

AN\ 1/2
ry = <4—7h[> = 2me™", (56)

Using the metric (1), where we put t = const, y = 0, and
¢ = const, and the expressions (8), we derive the proper
distance #,;, from the black hole horizon (x = 1) to the
ISCO (x = Xi5comn)s

xlSCOm\n
m1n =

~ 2.2722, (57)

X+ ‘Imm X 4x+l + mm( 2_ 1)

where we used the expressions (27) and (28) for a quadru-
pole distortion. In the absence of distortion, we derive

Csn = / dx

The proper distance form the distorted black hole’s horizon
to the corresponding ISCO is 37% less than that of an
undistorted Schwarzschild black hole.

Let us now calculate the circumference C,;, of the ISCO.
Using the metric (1), where we put ¢t = const, y = 0, and
X = Xiscomn» and the expression (27), we derive

=V6+= ln(5+2\/— )~ 3.5957.

(58)

Conin = 7T(Xisc0omn + 1)6"‘“%(x‘scom,n2+1) ~ 11.0575. (59)
In the absence of distortion, one has

Cs = 61 ~ 18.8496. (60)
The circumference of the distorted black hole’s ISCO is
41% less than that of an undistorted Schwarzschild
black hole.

As a summary, we conclude that, due to the negative
quadrupole distortion of the minimal value ¢ = g, the
distorted black hole’s ISCO is closer to the horizon, and its
circumference becomes less than that of an undistorted
Schwarzschild black hole.

Let us now consider the case of positive quadrupole
moment g € (0, gyin]- According to Figs. 1 and 2, plots (d)
and (e), the maximal value of x,,, can be arbitrary large
within the validity of the local black hole model (see the
discussion at the end of the Conclusion). Indeed, one can
infer that for ¢ - 0" and an appropriate value of |£| the
point of inflection corresponding to a merger between
the minimum and the second maximum of the effective
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potential can be arbitrary far from the black hole horizon.
On the other side, the x-coordinate of the point of inflection
corresponding to a merger between the first maximum and
the minimum of the effective potential approaches the value
of x = 5. In what follows, we shall consider the point of
inflection corresponding to the maximal value of ¢ = g«
and define its x-coordinate as Xxy,.,. Using the results of
the previous section and the transformation (13), we find

Xiscoma & 6.5018, (61)

and
Tiscomn X 1.5018m. (62)

This value is approximately 25% larger than the radius of
the ISCO of the Schwarzschild black hole, r., = 6m.

Let us now calculate the proper distance ¢ ,,,, from the
black hole horizon (x = 1) to the ISCO (x = Xj4com,) and
the ISCO circumference C,,. Replacing ¢, With ¢nax
and Xigcomn With Xiscome 10 the expressions (57) and (59), we
derive

Crnax = 4.4927, (63)
and
Crax ~ 23.7062. (64)

The proper distance from the distorted black hole’s horizon
to the corresponding ISCO is 25% greater and the ISCO
circumference is 26% greater than those of an undistorted
Schwarzschild black hole.

B. Equatorial null geodesics

We will now examine the effect of the distortion field
on equatorial null geodesics. In the case of an undistorted
Schwarzschild black hole, no stable circular orbits exist.
Circular orbits of radius r = 3 m corresponding to x = 2 by
transformation (13) are possible but are unstable. However,
in the presence of a quadrupole distortion, stable circular
orbits exist, and the radii of these orbits are defined by the
value of the quadrupole moment g. According to the plots
presented in Fig. 3, we see that for ¢ € [g,;,, 0) bounded
orbits exist.

According to Figs. 1 and 3, plots (b) and (c), the value of
Xisco corresponds to g = ¢, Which can be found from
Eq. (39). The result is

Xisco = Xmin = 1 + 2COS(7Z/9) ~ 2.8794. (65)
Using the transformation (13), we find
Tsco = 21’}1[1 + COS(ﬂ/g)] ~ 3.8794m. (66)

As was the case for timelike geodesics, the minimum
proper distance from the horizon to the ISCO 7, is given
by (57), and the minimum circumference C,;, of the ISCO
is given by (59).

PHYSICAL REVIEW D 93, 064019 (2016)

T T T

FIG. 4. Bounded photon orbit with a periastron shift for
g =-0.01 and £ = 1. The orbit’s parameters are x.;, =4,
Xmax & 7.6308, and 4 € [0, 700]. The arrows illustrate the initial
and final points of the orbit.

Due to the negative quadrupole distortion of the minimal
value ¢ = ¢pin, the ISCO of null geodesics is the limiting
orbit for ISCOs of a massive test particle approaching the
speed of light (see the previous subsection).

A bounded photon orbit corresponding to the effective
potential in Fig. 3, plot (c) is shown in Fig. 4.

In the case of a positive quadrupole moment g > 0,
no stable circular orbits exist. However, according to
Figs. 1 and 3, plot (d), there exists an unstable circular
orbit approaching x =1 for arbitrarily large ¢g. This
corresponds to the horizon of the distorted black
hole r = 2m.

VI. CONCLUSION

In this paper, we studied timelike and null geodesics
in the vicinity of a local static distorted black hole. We
restricted ourselves to geodesics lying in the equatorial
plane. Such geodesics exist if there are no odd interior
multipole moments in the distortion field. This corresponds
to a space-time having reflective symmetry across the
equatorial plane. We considered a quadrupole distortion
defined by the quadrupole moment g.

As aresult of our study, we found that there are ISCOs
and bound orbits of timelike geodesics for ¢ € (¢ins Imax)»
where gpin & —0.0210 and g, ~2.7086 x 107*. For
q € (¢min,0), the corresponding ISCOs are located
closer to the black hole horizon than the ISCO of a
Schwarzschild black hole of the mass m, which is at
r==6m. The closest ISCO is defined by g — gy,
which is at rgeom, & 3.8794 m. This value is approxi-
mately 29% larger than the radius of the photon
sphere of the Schwarzschild black hole, rphoton = 3 m.
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We also calculated the proper distance to the distorted
black hole horizon and the circumference for the
closest ISCO and found that the proper distance is
37% less and the circumference is 41% less than those
corresponding to the ISCO of the Schwarzschild black
hole.

For positive values of the quadrupole moment
q € (0, gmax)» the effective potential has three extrema,
two maxima and one minimum. Thus, one class of ISCOs
corresponds to a merger between the minimum and the
second maximum of the effective potential. As a result,
such ISCOs can be located arbitrarily far from the black
hole horizon within the region of validity of our solution
(see the last paragraph of this section). Another class of
ISCOs corresponds to a merger between the first maximum
and the minimum of the effective potential. As a
result, such ISCOs are located close to a distorted black
hole horizon. We calculated that for ¢ = ¢, there is
the farthest ISCO of the second class located at
Tiscomas = 1.5018 m. This value is approximately 25% larger
than the radius of the ISCO of a Schwarzschild
black hole of the mass m, ry., = 6 m. We calculated the
proper distance to the distorted black hole horizon and the
circumference for this ISCO and found that the proper
distance is 25% greater and the circumference is 26%
greater than those corresponding to the ISCO of the
Schwarzschild black hole.

In addition to the ISCOs and bound orbits, there are also
(unstable) “static points” where a massive particle can stay
at rest with respect to the distorted black hole. These points
are defined by curve 2 in Fig. 1. Note that there is only
one point for a given value of g. Due to the axial symmetry,
this point corresponds to a “static ring” around a distorted
Schwarzschild black hole.

We found that for ¢ € [gp,, 0) there is a null ISCO as
well as bound null geodesic orbits lying in the equatorial
plane of a distorted Schwarzshild black hole. The ISCO
exists for ¢ = gy, and it is located at rzc, &~ 3.8794 m.
The proper distance from this ISCO to the distorted black
hole horizon is 37% less and its circumference is 41% less
than these of the ISCO of a timelike geodesics of a
Schwarzschild black hole of mass m. We illustrated the
existence of bound orbits of null geodesics lying in the
equatorial plane of the distorted black hole in Fig. 4.
These orbits have a periastron shift. They create a corridor
of light around a distorted black hole, in its equato-
rial plane.

The existence of the ISCO and bound orbits of null
geodesics, as well as ISCOs of timelike geodesics which
are located closer to the distorted black hole horizon than
the ISCO of a Schwarzschild black hole, can be intui-
tively explained by the Newtonian picture. In Newtonian
gravity, a gravitational potential of which the multipole
expansion is dominated by an interior quadrupole
moment gy can be modelled by two equal pointlike

PHYSICAL REVIEW D 93, 064019 (2016)

masses u located on the z-axis at the distance d from
the origin and an infinitesimally thin ring of the mass M
and radius R located at the plane perpendicular to the
z-axis and centred at the origin. In this case, we have
gy = M/(2R?*) = 2u/d>. Thus, if the contribution of the
pointlike masses to the gravitational field is greater
than that of the ring, then gy < 0; otherwise, gy > 0.
If gy < 0, then there is a net force acting on a particle
and directed toward the z-axis. This force creates the
potential barrier at some distance from the black
hole horizon, as in the plots (a) and (b) in Fig. 2 and
(a), (b), and (c) in Fig. 3. The other potential barrier,
which is closer to the black hole horizon, is due to the
angular motion. In a similar way, one can explain the
existence of the static ring for ¢ € (0, g.,)- In this case,
gy > 0, and the contribution of the ring to the gravita-
tional potential is greater than that of the pointlike
masses. As a result, there is a net force directed to the
ring, outward from the black hole. This force balances
the black hole’s gravitational pull at the static ring
around the black hole.

In order to justify the distortion in this way, its
contribution to the space-time curvature in the vicinity
of the distorted black hole horizon should be small
compared to that of the black hole. To estimate a
contribution of the distortion to the space-time curvature,
let us consider the quadrupole distortion at the black hole
horizon, on the equatorial plane. On a static black
hole horizon, the Kretschmann scalar curvature invariant
is Kl|,i0, = 12K2, where K is the Gaussian curvature
of the horizon two-dimensional spacelike surface (for
details, see, e.g., Refs. [32,33,52-54]). For the metric
(15), K =(1+2g)exp(2g), and for |g| < 1, one has
K ~ 1+ 4q + 6¢°. This suggests that for ¢ € [Gmin» Gmax)
our interpretation is justified. Such a distortion slightly
modifies the space-time geometry in the vicinity of the
black hole’s horizon and results in the deformation
of the timelike and null geodesics.

Note that the presence of an extra spatial dimension has a
similar effect on null geodesics around a uniform black
string [37]. As it was shown in Ref. [37], due to the extra
fifth (compact) spatial dimension, a photon acquires a
positive test mass. As a result, the corresponding effective
potential is exactly the same as that for a massive test
particle moving around a Schwarzschild black hole in its
equatorial plane. However, the photon’s mass is propor-
tional to the speed of propagation of the photon in the
fifth dimension. Thus, bound orbits of null geodesics are
not confined to an equatorial plane of the Schwarzschild
black hole.

In this paper, we have restricted our attention to geo-
desics in the equatorial plane. However, it would be
interesting to study general timelike and null geodesics
around a distorted Schwarzschild black hole as well as
those around a distorted Kerr black hole.
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APPENDIX: EINSTEIN EQUATIONS

In this Appendix, we present the vacuum Einstein
equations R,, =0 for the metric (1). These equations
reduce to the following equations for the distortion fields
U(x,y) and V(x,y) in the prolate spheroidal coordinates:

(1=-x)U = 2xU,— (1 =y)U,, +2yU, =0, (Al)

PHYSICAL REVIEW D 93, 064019 (2016)

1= 2
= ﬁww S - (1= )0
—-2y(x* - 1)U, U, +2xU - 2yU ), (A2)
v, = (xz—lyz)w ~ 1[0 = YU = (1 =)0
+2x(x* = 1)(1-y))U U,
+2y(x* = 1)U, +2x(1 = y})U ). (A3)

The functions (2)—(4) solve these equations (see, e.g.,
Refs. [34,35]).
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