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We critically discuss the measure of very short time intervals. By means of a Gedankenexperiment, we
describe an ideal clock based on the occurrence of completely random events. Many previous thought
experiments have suggested fundamental Planck-scale limits on measurements of distance and time. Here
we present a new type of thought experiment, based on a different type of clock, that provide further
support for the existence of such limits. We show that the minimum time interval Δt that this clock can
measure scales as the inverse of its size Δr. This implies an uncertainty relation between space and time:
ΔrΔt > Gℏ=c4; where G, ℏ, and c are the gravitational constant, the reduced Planck constant, and the
speed of light, respectively. We outline and briefly discuss the implications of this uncertainty conjecture.
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I. INTRODUCTION

The definition of a quantity or a concept in physics has
to be operational in order to clarify the terms in which
that quantity should be used and to avoid unjustified
assumption of properties that belong more to our mental
representation of that quantity than to its effective nature
(e.g. [1]).
This point of view has been particularly fruitful e.g.,

when applied to the critical discussion of the concept of
simultaneity, leading to the foundation of special relativity
(SR, [2]). Indeed, it is worth noting that an operational
definition of time is crucial in SR. In particular the setting-
up of a device that defines time in an operational way,
whose behavior is constrained by the postulate of the
invariance of the speed of light, implies directly the
heterodox phenomenon of time dilation. Such a device
is the so called Light-Clock: two plane parallel mirrors,
facing each other at a constant along time—i.e. fixed—
distance Δx, over which a light pulse bounces back and
forth beating time in equal intervals of duration
Δt ¼ Δx=c, where c is the speed of light.
In what follows we adopt the rigorously operational

definition of time as:

time≡ a physical quality that is measured

by an appropriate clock: ð1Þ

This apparently trivial (or somewhat circular) definition is
essential to point out some subtle features of this elusive
quantity. The assumptions and the limitations of any
experimental apparatus adopted to measure (define) the
quantity “time” have to be discussed carefully since they

enter directly into play when the physical properties of the
defined quantity enter into relationship with other physical
quantities.
In particular, since in general relativity (GR) time is a

local quantity, deeply linked to every spatial point, it is
desirable to keep the physical size of the device used to
measure it as small as possible, which results in the
limitations discussed in Sec. IV.
To clearly address this question, in the next section we

describe an ideal quantum device whose spatial extension
can be suitably reduced, that is, in principle, capable of
measuring arbitrarily short time intervals with any given
accuracy. Curiously, this device is based on a process that,
in some sense, is just the opposite of a strictly periodic
phenomenon, namely the (in some respect more funda-
mental) occurrence of totally random events, such as the
decay of an ensemble of noninteracting particles in an
excited state. In this case the time elapsed may be obtained
by the amount of particles that have decayed. Such a device
has been discussed in [3] as an example of a simple
microscopic clock. We dubbed this device “Quantum
Clock.” Limits, imposed on our device by quantum
mechanics (QM) and GR, result in an uncertainty relation
that we briefly discuss.
Many previous thought experiments have suggested

fundamental Planck-scale limits on measurements of dis-
tance and time (see e.g. [4] for a review). Here, we present a
new set of thought experiments, based on a different type of
clock (which was briefly alluded to in [3]), that provide
further support for the existence of such limits.

II. THE QUANTUM CLOCK

Let us consider a statistical process whose probability of
occurrence*burderi@dsf.unica.it
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dP ¼ λdt ð2Þ
is independent of time (i.e. λ constant with time).
A good example of this sort of situation is given by

radioactive decay.1 Given an amount of radioactive matter
of massM ¼ Nmp, where N is the number of particles and
mp is the mass of a single particle, it can be easily proved
that, if Eq. (2) holds, the mean variation of the number of
particles in the unit time interval is given by

dN
dt

¼ −λN ð3Þ

(see e.g. [7]). The mean number of decays in a time
Δt≪λ−1 is ΔNΔt¼λNΔt. The measured number of decays
fluctuates around the expected value with Poissonian
statistics i.e. with σ ¼ ffiffiffiffiffiffiffiffiffiffiffi

λNΔt
p

. Therefore it is possible
to measure a time interval Δt counting λNΔt events. The
relative error on our measure is σt=Δt ¼ ϵ ¼ ðλNΔtÞ−1=2.
Whenever it is required to measure a short time interval
(Δt → 0), in order to keep the relative error below a given
threshold, say σt=Δt < ϵ0, one should keep the product
λNΔt > ϵ−20 . Providing that enough particles are available,
N can be conveniently increased up to the required
precision.
A physical device based on the process discussed above

can be built in several ways. The simplest (albeit perhaps
not practical) device consists of a given amount of mass M
of radioactive particles (corresponding to a given number of
particles N ¼ M=mp), that decay by emitting a photon,
completely surrounded by proportional counters (e.g.
Geiger–Muller counters) of quantum efficiency ∼1. We
consider this device, dubbed quantum clock hereinafter
(QmCl), for the operational definition of time. If we count a
number of decays N Δt ∼ ΔNΔt ¼ λNΔt in the QmCl the
time elapsed is

Δt ¼ N Δtmp

λM
ð4Þ

where we have expressed the number of particles in terms
of their mass. The associated relative accuracy is
ϵ ¼ σt=Δt ¼ N −1=2

Δt . Because at least one event must be
recorded by the device we have ϵ ≤ 1. Therefore in terms of
this uncertainty, and expressing mp in terms of its rest
energy Ep ¼ mpc2, the time elapsed is

Δt ¼ 1

ϵ2Mc2
×
Ep

λ
: ð5Þ

III. THE QUANTUM CLOCK AND THE
HEISENBERG UNCERTAINTY PRINCIPLE

As a quantum device, the QmCl is subject to
Heisenberg’s uncertainty relations. In particular we will
use the relation between energy and time, namely

δE × δt ≥ ℏ=2 ð6Þ

where δE and δt are the uncertainties in energy and time
coordinate of a particle, and ℏ ¼ h=ð2πÞ is the reduced
Planck constant.
In (5) the factor Ep=λ depends on the specific nature of

the radioactive substance used for the construction of the
clock. To make the QmCl independent of the particular
substance adopted, we consider the limitations imposed by
(6). Let us consider a particle of energy Ep. Conservation of
mass-energy imposes an upper limit to the uncertainty in
the decay energy δEp namely Ep ≥ δEp max where δEp max
is the maximum uncertainty obtainable in the measure of
the decay energy. The decay rate λ is the inverse of the
average decay time 1=λ ¼ τ ≥ δtmin where δtmin is the
minimum uncertainty obtainable in the measure of the time
elapsed before the decay. Since the maximum uncertainty
in the energy and the minimum uncertainty in the time
elapsed are related by the uncertainty relation (6), we have:

Ep

λ
¼ Ep × τ ≥ δEp max × δtmin ≥ ℏ=2 ð7Þ

Inserting (7) in (5) we have

Δt ≥
ℏ

2ϵ2c2
×

1

M
ð8Þ

which expresses the same lower limit for the mass of a
clock, capable to measure time intervals down to an
accuracy Δt, given by [3] [see Eq. (6) in their paper].
More recently, Ng and van Dam ([8], and reference therein)
discussed a similar relation which limits the precision of an
ideal clock [see Eq. (8) in their paper]. In the above relation
the “fuzziness” of the QM manifests itself in the inequality.
However the mass in the denominator of the second
member allows, in principle, us to build such a massive
clock that an arbitrarily short time interval can be
adequately measured with the required accuracy ϵ.

1The exponential decay law implied by Eq. (2) is, strictly
speaking false for an unstable quantum system (see e.g. [5] and
references therein). In particular the deviations at very short times
are known as quantum Zeno effect. On the other hand, Fonda,
Ghirardi and Rimini [6], with a formalism based on a definition of
an unstable state that takes into account “the fact that an unstable
system unavoidably interacts with its environment” (to use their
own words), demonstrated that, from the experimental point of
view (in the sense of its definition given by operationalism), the
resulting nondecay probability is, for all practical purposes, a
pure exponential, although there is a possible dependence of the
decay lifetime on the experimental apparatus. These modifica-
tions of the simple exponential decay law result, in general, into
an increased effective lifetime (or shortened decay rate) with
respect to the theoretical value (calculated from the moment in
which the unstable system is prepared), as compared to the
theoretical lifetime, which, ultimately, strengthens the inequality
that we propose in this paper: Eq. (11) of Sec. IV.
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IV. THE QUANTUM CLOCK
AND GENERAL RELATIVITY

In GR time is a local quantity in the sense that, in
general, the metric implies time coordinate factors (namely
the factors in front of the time coordinate interval) which
may be different in different points of space. If a non-
uniform gravitational field is present (e.g. the gravitational
field outside a spherical mass distribution, Schwarzschild
metric), the proper time of an observer at rest in a place
where the gravitational field is quite intense (e.g. at a few
Schwarzschild’s radii from the center of the mass distri-
bution), is shorter than the time interval measured by a
clock located where the gravitational field is less intense
(i.e. at several Schwarzschild’s radii from the center of the
mass distribution). Because of its spatial extension, a clock
defined by (8) is capable of measuring a sort of “average”
time interval over the region defined by its size. Since we
measure time counting events which may occur randomly
in any point of the clock, the size of the region over which
we are measuring the time is identified with the entire size
of the clock. In other words a spatial uncertainty, corre-
sponding to the finite size of the clock, is associated with
the measure of time. To minimize this uncertainty (provid-
ing that the single particles are so weakly interacting with
each other that their behavior is unaffected by the proximity
of neighbors) it is possible to compress the QmCl in order
to make its spatial extension as small as possible.
However the presence of the clock mass affects the

structure of space-time. In particular, the hoop conjecture
(see e.g. [9]) states that a piece of matter of massM, around
which—in every direction—it is possible to place a circular
hoop of length 2πRSch, unavoidably undergoes gravita-
tional collapse (RSch ¼ 2GM=c2 is the Schwarzschild
radius, G is the gravitational constant).
In the following, we will assume that the volume in

which the QmCl is compressed is spherically symmetric
and coincident with a sphere. The assumption of a spherical
clock is not merely a simplification, but an important issue
whose consequences will be discussed in Sec. V.
If the QmCl were compressed in a spherical volume

whose circumferential radius is smaller than its
Schwarzschild radius it would face the gravitational col-
lapse and it would not be useable as a device to measure
time intervals because the products of the decays (e.g. the
photons of the example discussed above) cannot escape
outside the Schwarzschild radius to bring the information
that time is flowing in that region of space.
This implies that the smallest possible radius for the

QmCl is its Schwarzschild radius, R > RSch or

1

M
>

2G
c2R

: ð9Þ

The condition above has been discussed in the literature as
a necessary lower limit on the size of a massive clock.

In particular Amelino-Camelia proposed an equation for a
lower bound on the uncertainty in the measurement of a
distance in which the condition above is included [10,11].
Inserting (9) into (8) gives

ΔtR >
1

ϵ2
Gℏ
c4

; ð10Þ

where R ¼ Δr is the radius of the QmCl (i.e. the uncer-
tainty on the exact position of the radioactive decay events).
Because, as we noted in Sec. II, ϵ ≤ 1, we can write

ΔrΔt >
Gℏ
c4

: ð11Þ

The equation above quantifies the impossibility to simul-
taneously determine spatial and temporal coordinates of an
event with arbitrary accuracy.

V. DISCUSSION

Several thought experiments have been proposed to
explore fundamental limits in the measurement process
of time and space intervals (see e.g. [4] for an updated and
complete review). In particular Mead [12] “postulate the
existence of a fundamental length” (to use his own words)
and discussed the possibility that this length is the Planck
length, lmin ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Gℏ=c3

p
¼ lPlanck, which resulted in limi-

tations in the measure of arbitrarily short time intervals
originating relations similar to (11) of Sec. IV. Moreover in
a subsequent paper [12], Mead discussed an in principle
observable spectral broadening, consequence of the postu-
late the existence of a fundamental length of the order of
Planck length. More recently, in the framework of string
theory a space-time uncertainty relation has been proposed
which has the same structure of the uncertainty relation
discussed in this paper ([13,14], see e.g. [15] for a
discussion of the possible role of a space-time uncertainty
relation in String Theory). The relation proposed in String
Theory constraints the product of the uncertainties in the
time interval cΔT and the spatial length ΔXl to be larger
than the square of the string length lS, which is a parameter
of the string theory. However, to use the same words of
Yoneya [15], this relation is “speculative and hence rather
vague yet.” Indeed, in the context of field theories,
uncertainty relations between space and time coordinates
similar to that proposed here have been discussed as an
ansatz for the limitation arising in combining Heisenberg’s
uncertainty principle with Einstein’s theory of gravity [16].
In 1995 Garay [17] postulated and discussed, in the context
of quantum gravity, the existence of a minimum length of
the order of the Planck length, but followed the idea that
this limitation may have a similar meaning to the speed
limit defined by the speed of light in special relativity, in
line with what was already pointed out previously (see
e.g. [18] and references therein). In the framework of the
so-called quantum loop gravity (see e.g. [19,20], and [21]
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for a review) a minimal length appears characteristically in
the form of a minimal surface area ([22,23]): indeed the
area operator is quantized in units of l2

Planck [24]. It has been
sometimes argued that this minimal length might conflict
with Lorentz invariance, because a boosted observer could
see the minimal length further Lorentz contracted, however
this problem is solved in loop quantum gravity since the
minimal area does not appear as a fixed property of
geometry, but rather as the minimal (nonzero) eigenvalue
of a quantum observable that has the same minimal area
l2
Planck for all the boosted observers. What changes con-

tinuously in the boost transformation is the probability
distribution of seeing one or the other of the discrete
eigenvalues of the area (see e.g. [25]).
In this paper the analysis of a thought experiment

designed to explore fundamental limits of clocks has
brought us to consider the uncertainty relation between
space and time expressed in Eq. (11). Herewe briefly outline
some of the implications of this equation. To this aim it is
useful to represent space (indeed circumferential distance
since the “size” of theQmCl is limited by assuming the hoop
conjecture) and time intervals in a standard space-time
diagram.We choose the space and time units in order to have
c ¼ 1, or cΔt as the ordinate. In this representation the
bisector defines the null intervals, separating the timelike
intervals, above the bisector, from the spacelike intervals,
below. The relation (11) of Sec. IV, namely

ΔrcΔt >
Gℏ
c3

ð12Þ

defines an hyperbola in this plane whose asymptotes
are the Δr and cΔt axes and whose vertex is located
at ðΔrÞvertex ¼ ðcΔtÞvertex ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Gℏ=c3

p
.

The following considerations can be made:
(i) The minimum (measurable) spatial circumferential

distance is the Planck length. This is because a
proper space distance is defined for spacelike
intervals and the minimum circumferential distance
coordinate “Δr” of the points below the bisector is
ðΔrÞmin ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Gℏ=c3

p
, which is the Planck length. It

is important to note that the assumption of a QmCl
of spherical shape, made Sec. IV, means that, in
principle, it is possible to measure a spatial coor-
dinate with an accuracy better than the Planck
length. In particular, it is possible to measure the
coordinate position of an object (e.g. the x coor-
dinate of its center of mass) to much better precision
if the object is big enough and extended enough
along the other coordinates (i.e. in the y-z plane).
Indeed it is conceivable to build an object (our clock)
with different length in each dimension, say Δx, Δy,
and Δz, and to violate the uncertainty relation
proposed for one of these lengths. However a
firm upper limit should exist since the hoop
conjecture establishes that the collapse of the

object/clock should be unavoidable once Δr ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δx2 þ Δy2 þ Δz2

p
≤ 2GM=c2, where M is the

mass of the clock/object. Thus, the assumption of
a QmCl of spherical shape, shows that it is impos-
sible to measure a “size” Δr≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δx2 þ Δy2 þ Δz2
p

smaller than Planck length.2

(ii) The minimum (measurable) time interval is the
Planck time. This is because a proper time interval
is defined for timelike intervals and the minimum
“Δt” coordinate of the points above the bisector is
ðΔtÞmin ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Gℏ=c5

p
, which is the Planck time.

(iii) The uncertainty relation cannot be violated by using
the phenomenon of length contraction predicted by
special relativity. As the spatial length in the
direction of motion (with speed modulus v) is
contracted by the inverse of the Lorentz factor
γ−1 ¼ ½1 − ðv=cÞ2�1=2, it would in principle be
possible to imagine to build a clock capable of
measuring time intervals of duration Δt whose
proper length along a given direction, say the x
axis, is such that its size (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δx2 þ Δy2 þ Δz2

p
) is

slightly above the minimum Δr determined by (11).
It is then possible to observe the clock from a
reference system in which the clock moves at
uniform speed v along the x axis. If the speed is
high enough, the length of the clock in the direction
of motion is so Lorentz contracted that its size falls
below the minimum above. Time dilation, by the
Lorentz factor γ ¼ ½1 − ðv=cÞ2�−1=2, prevents the
violation of the uncertainty relation.

(iv) The uncertainty relation holds in Schwarzschild
metric [26] since:

ds2 ¼ ð1 − RSch=rÞc2dt2 − ð1 − RSch=rÞ−1dr2
− r2ðdθ2 þ sin2 θdϕ2Þ; ð13Þ

where ds is the infinitesimal interval, r is the
circumferential radius, θ and ϕ are the angles of a
spherical coordinate system.

Although relation (11) has the structure of an uncertainty
relation, and therefore does not contain a minimum spatial
length or a minimum time duration explicitly, the timelike
and spacelike classification of the intervals, determined by
special relativity, when combined with (11), implies (in a
somewhat unexpected way) the existence of minimal
space-time “quanta” equal to the product of the Planck
length and time, respectively. In other words, Eq. (11)
would mean that Nature manifests the existence of “atoms”
of space and time (whose size does not require the
introduction of any extra parameter in the theory) only
whenever space and time are simultaneously probed down

2We thank L. Susskind (private communication) for pointing
out this subtle although important question.
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to the smallest scale. No intrinsic discreteness character-
izes, individually, space or time coordinates, which are the
continuous and smooth components of the fabric of space-
time. Discreteness naturally emerges in the operational
definition of a simultaneous measure of space and time
whether the limitations imposed by the uncertainty prin-
ciples of QM and the formation of an event horizon
(occurring—according to GR—during complete gravita-
tional collapse) are taken into account, together with the
universal hyperbolic character of the “local”metric implied
by SR. Indeed QM, GR, and SR enter in the uncertainty
relation through their fundamental constants, ℏ, G, and c.
We finally note that in the limits ℏ → 0 and c → ∞ (that

means in the classical limit), there is no uncertainty relation
between space and time, as expected. A similar discussion
on the role of ℏ, c, andG in determining a spatial resolution
limit can be found in [17].

VI. CONCLUSIONS

In this paper, bymeans of a gedankenexperiment, we have
argued on the existence of a space-time uncertainty relation
expressed by Eq. (11). This relation does not depend on
parameters defined within a specific theory but only on
fundamental constants, since the previously discussed
“free” parameter of string theory l2

S is naturally replaced
byGℏ=c3 in our QmCl, without postulating the existence of
any fundamental length. We argue that an uncertainty
relation between space and time arises naturally if we take
into account: (i) the uncertainty principles of quantum
mechanics; (ii) the well-known result of GR that gravita-
tional collapse—and the subsequent formation of an event
horizon—is unavoidable once a given amount of mass-
energy is concentrated into a spatial extension smaller than
thevolume encompassed by the Schwarzschild radius of that
amount of mass-energy. Fundamental (minimal) space
length and time interval emerge in a natural way, when this
uncertainty relation is considered within the local
Minkowskian structure of space-time.

Canonical commutation relations imply the Heisenberg
uncertainty principles [27]: the product of the standard
deviations of two operators that do not commute is greater
or equal to the modulus of the average value of the operator
built from the commutator of the two operators [28]. It is
therefore possible to develop QM adopting the Heisenberg
uncertainty principles (and the commutation relations
associated) as the postulates over which the whole quantum
theory is built. This justifies the view, shared by many
physicists, that the Heisenberg uncertainty relations should
be considered as fundamental laws of Nature (see e.g. [29]).
In a similar way, we argue that it would be possible to
develop the foundations of a mathematical theory of
gravity, which will be fully consistent with the postulates
of the quantum theory, starting from the uncertainty relation
between space and time discussed above.
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