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Following previous work of ours in spherical symmetry, we here propose a new parametric framework to
describe the spacetime of axisymmetric black holes in generic metric theories of gravity. In this case, the
metric components are functions of both the radial and the polar angular coordinates, forcing a double
expansion to obtain a generic axisymmetric metric expression. In particular, we use a continued-fraction
expansion in terms of a compactified radial coordinate to express the radial dependence, while we exploit a
Taylor expansion in terms of the cosine of the polar angle for the polar dependence. These choices lead to a
superior convergence in the radial direction and to an exact limit on the equatorial plane. As a validation of
our approach, we build parametrized representations of Kerr, rotating dilaton, and Einstein-dilaton-Gauss-
Bonnet black holes. The match is already very good at lowest order in the expansion and improves as new
orders are added. We expect a similar behavior for any stationary and axisymmetric black-hole metric.
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I. INTRODUCTION

The existence of an event horizon would be indisputable
if it was obtained by the direct observation of gravitational
waves from a perturbed black hole. This is because the
gravitational response of a perturbed black hole would be
intrinsically different from that of another putative compact
object who would have essentially the same properties in
terms of electromagnetic emission (see Refs. [1,2] for the
case of gravastars).
Properties of the event horizon could probably be studied

through analysis of an electromagnetic spectrum of the
accreting matter [3]. The radio compact source Sgr A�,
which is assumed to be a supermassive black hole at the
center of our Galaxy, is the best option for such inves-
tigation of the event horizon. Recent radio observations of
Sgr A� achieved scales comparable to what should be the
size of the event horizon [4]. In the near future, very long
baseline interferometric radio observations are expected to
image the so-called black-hole “shadow” [5]—the photon
ring marking the surface where photons will have their
smallest stable orbit [6,7]. In addition to providing the
evidence for the existence of black holes, these observa-
tions could also help in testing the no-hair theorem in
general relativity [8–11] as well as testing of general
relativity itself against a number of alternative theories
of gravity.
Because of the large number of alternative theories of

gravity and some possibility that the “true” theory is yet
unknown, it is reasonable to develop a model-independent
framework which parametrizes the most generic black-hole

geometry through a finite number of adjustable quantities.
These quantities must be chosen in such a way that they can
be used to measure deviations from the general-relativistic
black-hole geometry (Kerr metric) and could be estimated
from the observational data [12]. This approach is similar in
spirit to the parametrized post-Newtonian approach (PPN)
which describes the spacetime far from the source of strong
gravity [13].
One of the first such parametrizations for black holes was

proposed by Johannsen and Psaltis [14], who expressed
deviations from general relativity in terms of a Taylor
expansion in powers ofM=r, whereM and r are the mass of
the black hole and a generic radial coordinate. While some
of the first coefficients of the expansion can be easily
constrained in terms of PPN-like parameters, an infinite
number remains to be determined from observations near
the event horizon [14]. As pointed out by Ref. [15], this
approach faces a number of difficulties:

(i) A generic metric would be described by an infinite
number of roughly equally important parameters,
making it difficult to isolate the dominant ones.

(ii) The parametrization can be employed to study small
deviations from general relativity, but fails for
essentially non-Einsteinian theories of gravity, such
as, for example, Einstein-dilaton-Gauss-Bonnet
(EDGB) gravity with large coupling constant [15].

(iii) The adoption of the Janis-Newman transformations
[16] in the Johannsen-Psaltis parametrization [14]
does not allow one to reproduce alternatives to the
Kerr spacetime, for examples in dilaton or Chern-
Simons modified gravity.
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As a result, despite the best intentions and the wide
adoption of this metric, the Johannsen-Psaltis approach
basically does not seem to be a robust and generic para-
metrization for rotating black holes.
In a previous paper of ours [17], the solution to the above

issues was proposed for arbitrary spherically symmetric
black holes in metric theories of gravity. This was achieved
by expressing the deviations from general relativity in
terms of a continued-fraction expansion via a compactified
radial coordinate defined between the event horizon and
spatial infinity. The superior convergence properties of this
expansion effectively reduced to a few the number of
coefficients necessary to approximate such spherically
symmetric metric to the precision that can be in principle
probed with near-future observations.
In this paper we extend our approach to arbitrary axially

symmetric spacetimes describing rotating black holes in
metric theories of gravity. In particular, using an asymptotic
spherical coordinate system and starting from the metric
functions as expressed on the equatorial plane, we perform
an expansion in terms of powers of cos θ, where θ is the
polar coordinate. Under appropriate choice of coordinates,
leading to the Boyer-Lindquist ones in the case of zero
deviations from the Kerr geometry, the expansion in cos θ
in the polar direction provides excellent convergence for
known black-hole metrics, such as rotating Einstein-
dilaton-Gauss-Bonnet and Johannsen-Psaltis ones.
For a number of other cases, such as Kerr, Kerr-Newman,

Sen, and others, the expansions in terms of powers of cos θ
converge to the corresponding exact solutions already at the
second order. At the same time, when the metric compo-
nents are expressed as rational functions of the radial
coordinate r, the expansion in the radial direction follows
the same behavior discussed in [17] and thus converges
rapidly with a finite and small number of terms. As a result,

with the approach introduced here, a number of black-hole
metrics, including the Kerr spacetime, are reproduced
“exactly” and in the whole space, i.e., from the event
horizon out to spatial infinity.
The paper is organized as follows: In Sec. II we describe

a general ansatz for axisymmetric black holes, which is
further constrained by a specific coordinate choice devel-
oped in Sec. III. Section IV is devoted to construction of the
generic parametrization, while in Sec. V we present the
general procedure for calculation of multipole moments
through the properties of the circular geodesic motion of
particles around black holes. Section VI is devoted to
construction of the parametrization for a dilaton rotating
black hole and we illustrate there how the parametrization
has superior convergence by computing the binding energy
for exact and parametrized (at different orders) dilaton
black-hole spacetimes. Section VII presents instead the
parametrization for an EDGB rotating black hole. Finally,
Sec. VIII summarizes our results and presents our con-
clusions. To facilitate the use of our parametrized metrics,
the Appendix provides a collection of the explicit expres-
sions of the parametrized metrics for a Kerr, dilaton, and
EDGB black hole.

II. AXISYMMETRIC BLACK HOLES

The general form of an axisymmetric line element allows
the coordinates t and ϕ to be along the direction selected
by two Killing vectors that are timelike and spacelike,
respectively. It is convenient to choose the other two
spacelike coordinates, ρ and ϑ to be mutually orthogonal
and orthogonal to the coordinates t and ϕ, such that (ρ, θ,
ϕ) are spherical coordinates at spatial infinity. In this way
the general form of the metric tensor for axially symmetric
spacetimes can be written as

ds2 ¼ −
fðρ; ϑÞ − ω2ðρ; ϑÞsin2ϑ

κ2ðρ; ϑÞ dt2 − 2ωðρ; ϑÞρsin2ϑdtdϕþ κ2ðρ; ϑÞρ2sin2ϑdϕ2 þ σðρ; ϑÞ
�
β2ðρ; ϑÞ
fðρ; ϑÞ dρ

2 þ ρ2dϑ2
�
;

ð1Þ

wherefðρ; ϑÞ, βðρ; ϑÞ, σðρ; ϑÞ, κðρ; ϑÞ, andωðρ; ϑÞ are some
dimensionless functions of the two coordinates ρ and ϑ.
A generic axisymmetric black-hole spacetime with line

element expressed by (1) is expected to have a compact
axisymmetric event horizon. Outside the horizon the intro-
duced functions fðρ; ϑÞ, βðρ; ϑÞ, σðρ; ϑÞ, κðρ; ϑÞ are finite
and positive definite, so as to avoid any “metric issue,” such
as singularities, closed time-like trajectories, etc.
Given the metric (1), it is easy to find that

ffiffiffiffiffiffi
−g

p ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgμνÞ

q
¼ βðρ; ϑÞσðρ; ϑÞρ2 sin ϑ; ð2Þ

and

gρρ ¼ fðρ; ϑÞ
β2ðρ; ϑÞ : ð3Þ

From the latter expression we conclude that the Killing
horizon (i.e., the surface defined by the null Killing vector)
is given by

fðρ; ϑÞ ¼ 0; ð4Þ

while the ergoregion is instead defined as
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0 < fðρ; ϑÞ < ω2ðρ;ϑÞsin2ϑ: ð5Þ

Since ωðρ; ϑÞ is finite at the Killing horizon, the ergo-
sphere always touches the horizon at the poles ϑ ¼ 0, π.
Further we shall consider the rotating dilaton black hole

(or Kerr-Sen) black hole [18] or axion-dilaton black hole
with zero Newman-Unti-Tamburino charge [19]) as one of
the examples. The above five functions for this black hole
are

fðρ; ϑÞ ¼ ρ2 − 2μρþ a2

ρ2
; ð6aÞ

βðρ; ϑÞ ¼ 1; ð6bÞ

σðρ; ϑÞ ¼ ρ2 þ 2bρþ a2cos2ϑ
ρ2

; ð6cÞ

κ2ðρ;ϑÞ ¼ ðρ2 þ 2bρþ a2Þ2 − a2sin2ϑðρ2 − 2μρþ a2Þ
ρ2ðρ2 þ 2bρþ a2cos2ϑÞ ;

ð6dÞ

ωðρ; ϑÞ ¼ 2ðμþ bÞa
ρ2 þ 2bρþ a2cos2ϑ

; ð6eÞ

where a≡ J=M and b are parameters of rotation
and dilaton respectively, and μ≡M − b, where M is the

black-hole mass. Clearly, when b ¼ 0, the above metric

components reduce to those of the Kerr spacetime in Boyer-

Lindquist coordinates ðρ; θ;ϕÞ.

III. COORDINATE CHOICES AND EXPANSION
IN THE POLAR DIRECTION

The choice of functions fðρ; ϑÞ, βðρ; ϑÞ, σðρ; ϑÞ, κðρ; ϑÞ,
and ωðρ; ϑÞ for a given axisymmetric black hole is not
unique. Instead of ρ and ϑ we could in fact choose another
couple of coordinates, which are also mutually orthogonal
and orthogonal to the coordinates t and ϕ. Thus, at this
stage the coordinates are not fully fixed: a single black hole
can be represented by a number of different systems of
coordinates within the same initial ansatz (1). In the end
this would produce a nonunique parametrization, when the
same black hole could be described by a number of
different sets of parameters. To avoid such a degeneracy,
we will here impose further conditions which fix the
coordinates fully.
In order to describe how to attain such a unique

coordinate choice, let us first consider transformations
from the initial coordinates ðρ; ϑÞ to the new ones ðr; θÞ,
such that the new line element is expressed in terms of five
metric functions Nðr; θÞ, Wðr; θÞ, Kðr; θÞ, Bðr; θÞ, Σðr; θÞ,
and has the following form

ds2 ¼ −
N2ðr; θÞ −W2ðr; θÞsin2θ

K2ðr; θÞ dt2 − 2Wðr; θÞrsin2θdtdϕþ K2ðr; θÞr2sin2θdϕ2 þ Σðr; θÞ
�
B2ðr; θÞ
N2ðr; θÞ dr

2 þ r2dθ2
�
:

ð7Þ

Comparing the inverse metric components of (1) and (7)
we find the following relations

N2ðr; θÞr2sin2θ ¼ fðρ; ϑÞρ2sin2ϑ; ð8aÞ

Wðr; θÞrsin2θ ¼ ωðρ; ϑÞρsin2ϑ; ð8bÞ

K2ðr; θÞr2sin2θ ¼ κ2ðρ; ϑÞρ2sin2ϑ; ð8cÞ

N2ðr; θÞ
Σðr; θÞB2ðr; θÞ ¼

1

σðρ;ϑÞ
�
fðρ; ϑÞ
β2ðρ; ϑÞ

∂r
∂ρ

∂r
∂ρþ

1

ρ2
∂r
∂ϑ

∂r
∂ϑ

�
;

ð8dÞ

1

Σðr; θÞr2 ¼
1

σðρ; ϑÞ
�
fðρ; ϑÞ
β2ðρ; ϑÞ

∂θ
∂ρ

∂θ
∂ρþ

1

ρ2
∂θ
∂ϑ

∂θ
∂ϑ

�
; ð8eÞ

0 ¼ fðρ; ϑÞ
β2ðρ; ϑÞ

∂r
∂ρ

∂θ
∂ρþ

1

ρ2
∂r
∂ϑ

∂θ
∂ϑ : ð8fÞ

The last two equations define the relation between the
coordinates ðr; θÞ and ðρ; ϑÞ. Once one finds r and θ as
functions of ρ and ϑ through Eqs. (8e), (8f), it is possible to
find the functions Nðr; θÞ, Wðr; θÞ, Kðr; θÞ, and Bðr; θÞ
from Eqs. (8a), (8b), (8c), and (8d), respectively.
Next, we assume that the functions fðρ; ϑÞ, βðρ; ϑÞ,

σðρ;ϑÞ, κðρ;ϑÞ, and ωðρ; ϑÞ are known as series expansion
in terms of small parameter Y measuring the distance from
the equatorial plane, i.e., defined as Y ≡ cosϑ. Hence, we
have

f ¼ f0ðρÞ þ f1ðρÞY þ f2ðρÞY2 þOðY3Þ; ð9aÞ

β ¼ β0ðρÞ þ β1ðρÞY þ β2ðρÞY2 þOðY3Þ; ð9bÞ

σ ¼ σ0ðρÞ þ σ1ðρÞY þ σ2ðρÞY2 þOðY3Þ; ð9cÞ

κ ¼ κ0ðρÞ þ κ1ðρÞY þ κ2ðρÞY2 þOðY3Þ; ð9dÞ

ω ¼ ω0ðρÞ þ ω1ðρÞY þ ω2ðρÞY2 þOðY3Þ; ð9eÞ
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where the coefficients in the expansion, i.e., fi; βi; σi;…
are functions of the radial coordinate only.
Introducing now the small parameter y≡ cos θ, we can

find the corresponding new transformation ðY; ρÞ → ðy; rÞ
as a series expansion in terms of Y, namely

y ¼ Yð1þ α0ðρÞÞ½1þ α1ðρÞY þ α2ðρÞY2 þOðY2Þ�;
ð10Þ

r2 ¼ ρ2ð1þ ζ0ðρÞÞ½1þ ζ1ðρÞY þ ζ2ðρÞY2 þOðY2Þ�:
ð11Þ

A few remarks should be made here. First, if all the
coefficients αiðρÞ ¼ 0, then θ ¼ ϑ; that is, the two polar
coordinates are identical. Second, if all coefficients
ζiðρÞ ¼ 0, then also the two radial coordinates are identical,
i.e., r ¼ ρ. Finally and most important, we have here
decided to perform a generic expansion in powers of the
small parameter cos θ. This choice allows us to consider
black holes that are not reflection symmetric across the
equatorial plane. This is admittedly a bizarre possibility, but
one we want to preserve for generality. In practice, any
representation of an astrophysically reasonable black hole
would require also the reflection symmetry across the
equatorial plane, thus limiting the expansion to even
powers of cos θ. Indeed this is what we will do when
considering the parametrization of Kerr, dilaton, and
EDGB black holes in the following sections.
Without loss of generality we can assume that there are

observers at spatial infinity that are able to measure the
angular momentum J ≡ AM and massM of the black hole.
With this assumption, we are then able to define the
coordinates r and θ unambiguously.
More specifically, we first need to fix one of the five

metric functions Nðr; θÞ, Wðr; θÞ, Kðr; θÞ, Bðr; θÞ, Σðr; θÞ.
Out of the five possible choices, we prefer to fix the
function Σðr; θÞ as

Σðr; θÞ ¼ 1þ A2y2

r2
¼ 1þ A2cos2θ

r2
; ð12Þ

since this allows us to reproduce the Boyer-Lindquist
coordinates for the case of a Kerr black hole. This choice
is also compatible with asymptotic behavior of the asymp-
totically flat and axially symmetric metric of a rotating
body in the Boyer-Lindquist coordinates

ds2 ≈ −
�
1 −

2M
r

�
dt2 −

4MAsin2θ
r

dtdϕþ dr2

þ r2ðdθ2 þ sin2θdϕ2Þ: ð13Þ

In an astrophysically realistic context, at large distance
the gravitational field of a rotating object of any kind
should be essentially Newtonian, thus, hiding the details

related to the event horizon of an isolated black hole and
regime of strong gravity. The addition of extra fields to the
black-hole spacetime, e.g., scalar or electromagnetic,
would certainly change the asymptotic behavior. Yet,
backreaction of such fields onto the background geometry
is expected to be negligibly small for astrophysical black
holes, thereby, allowing us to consider an isolated black
hole as in vacuum.
A more careful analysis reveals that the condition (12) is

still insufficient to fix completely the freedom of the
coordinate choice. The reason for this is that using
Eqs. (8e) and (8f) it is possible to obtain different series
for y and r for each different choice of α0ðρÞ. Thus, the
function α0ðρÞ must be fixed in order to achieve
the uniqueness of the coordinate transformations (10).
The natural way to fix α0ðρÞ is to choose an additional
condition for the new line element in the equatorial plane
in such a way that for the zero rotation we reproduce
spherical coordinates. This can be done in various ways, but
we here choose to impose a condition on the function K on
the equatorial plane. More specifically, we first observe
that, multiplying (8b) by any constant C and adding (8c),
we obtain�

K2 þ C
r
W

�
r2sin2θ ¼

�
κ2 þ C

r
ω

�
ρ2sin2ϑ; ð14Þ

which, in turn, allows us to impose that

�
K2 −

A
r
W

�
¼ 1þ A2

r2
þOðyÞ: ð15Þ

It is not difficult to verify that the Boyer-Lindquist
coordinates fulfill the above condition. This gives us the
unambiguous coordinate choice for r and θ.
In summary, in order to transform unambiguously any

given coordinates ðρ; ϑÞ to the new coordinates ðr; θÞ we
need to
(1) define the rotation parameter A≡ J=M, where J is

the total angular momentum and M is the Arnowitt-
Deser-Misner (ADM) mass of the spacetime1;

(2) choose r and θ to be mutually orthogonal and
orthogonal to the coordinates t and ϕ;

(3) impose that the metric functions satisfy the
conditions (12) and (15), namely

Σðr; θÞ ¼ 1þ A2

r2
cos2θ; ð16Þ

1The constant M could be associated with the ADM mass at
spatial infinity if such a quantity can be properly defined.
However, because we are not limiting ourselves to asymptotically
flat spacetimes where such a quantity is defined, we here consider
the more general case in which astronomical observations at large
distances from the event horizon but not at spatial infinity can be
exploited to measure the constant M.
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K2

�
r;
π

2

�
−
A
r
W

�
r;
π

2

�
¼ 1þ A2

r2
: ð17Þ

The latter condition in fact allows us to fix the function
α0ðρÞ as

1þ α0ðρÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ0ðρÞ
κ20ðρÞ − Aω0ðρÞ=ρ − A2=ρ2

s
; ð18Þ

so that, from Eqs. (8e) and (8f), we finally find

y ¼ Yð1þ α0ðρÞÞ
�
1þ σ1ðρÞ

4σ0ðρÞ
Y þOðY2Þ

�
; ð19aÞ

r2 ¼ ρ2σ0ðρÞ
ð1þ α0ðρÞÞ2

þOðY2Þ: ð19bÞ

In analogy with what was done for the expressions (9), we
can now invert the series (19) to find the functions Yðr; yÞ
and ρðr; yÞ and thus express the metric functions N2, W,
K2, and B2 in the line element (7) as a series in terms of the
new variable y.

IV. PARAMETRIZATION FOR AXISYMMETRIC
BLACK HOLES

In order to obtain the proper asymptotic behavior of the
newly introduced metric function we need to ensure they
satisfy the following behavior at large distances, namely
that for r ≫ 1

N2ðr; θÞ ¼ 1 −
2M
r

þO
�
1

r2

�
; ð20aÞ

Bðr; θÞ ¼ 1þO
�
1

r

�
; ð20bÞ

Wðr; θÞ ¼ O
�
1

r2

�
; ð20cÞ

K2ðr; θÞ ¼ 1þO
�
1

r2

�
; ð20dÞ

where M is a constant to be read at a large distance.
These conditions on the metric functions obviously

imply that the metric is asymptotically flat and spherically
symmetric at large distance from the black hole.
In principle, these conditions could be violated in a
cosmology admitting violation of isotropy, such as the
Einstein-aether theory. Yet, it is evident that local physical
processes around black holes cannot be influenced by such
cosmological factors while the coupling constant of new

interactions (be it vector aether or any other field) is
negligibly small for observations of localized processes.
Now that we have performed the coordinate transforma-

tions (19) and all the functions are obtained as series
expansion in terms of the “angular” variable y ¼ cos θ, it is
necessary to introduce the parametrization for the coef-
ficients of the series which are functions of the radial
coordinate only. Also in this case there are several different
ways in which this can be accomplished. Here, however,
we will follow the powerful approach already employed in
[17] for the parametrization of a generic black-hole metric
in spherical symmetry. More specifically, we first introduce
the compact coordinate radial

x ¼ 1 −
r0
r
; ð21Þ

where r0 is the black-hole horizon radius in the equatorial
plane; i.e., r0 is the largest solution of the equation

N2ðr; π=2Þ ¼ 0: ð22Þ

Clearly x ∈ ½0; 1�, with x ¼ 0 at the black-hole horizon on
the equatorial plane (i.e., y ¼ 0) and x ¼ 1 at spatial
infinity.
Second, we consider the following expansions in terms

of the new compact coordinate x,

N2 ¼ xA0ðxÞ þ
X∞
i¼1

AiðxÞyi; ð23aÞ

B ¼ 1þ
X∞
i¼0

BiðxÞyi; ð23bÞ

W ¼
X∞
i¼0

WiðxÞyi
Σ

; ð23cÞ

K2 −
AW
r

¼ 1þ
X∞
i¼0

KiðxÞyi
Σ

; ð23dÞ

where from (16)

Σ ¼ 1þ A2

r20
ð1 − xÞ2y2: ð24Þ

Our coordinate choice (15) then fixes K0 to be

K0ðxÞ ¼ ð1 − xÞ2 A
2

r20
: ð25Þ

Third, in order to satisfy the required asymptotic
behavior (20), we define

BiðxÞ ¼ bi0ð1 − xÞ þ ~BiðxÞð1 − xÞ2; ð26aÞ
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WiðxÞ ¼ wi0ð1 − xÞ2 þ ~WiðxÞð1 − xÞ3; ð26bÞ
KiðxÞ ¼ ki0ð1 − xÞ2 þ ~KiðxÞð1 − xÞ3; ð26cÞ

A0ðxÞ ¼ 1 − ϵ0ð1 − xÞ þ ða00 − ϵ0 þ k00Þð1 − xÞ2
þ ~A0ðxÞð1 − xÞ3; ð26dÞ

Ai>0ðxÞ ¼ KiðxÞ þ ϵið1 − xÞ2 þ ai0ð1 − xÞ3
þ ~AiðxÞð1 − xÞ4: ð26eÞ

Note that the coefficients ϵi, ai0, bi0, wi0, ki0 for i ¼
0; 1; 2; 3… are fixed in such a way that the expansion (26)
matches desired asymptotic behavior near spatial infinity
(i.e., x ¼ 1). Tomake it astrophysicallymeaningful, the latter
should be expressed in the terms of the PPN expansion.
Since the tilted functions ~AiðxÞ, ~BiðxÞ, ~WiðxÞ, and ~KiðxÞ

describe the black-hole metric near its horizon, we here
express them in close analogy with what was already done
in [17], and thus parametrize them in terms of Padé
approximants in the form of continued fraction

~AiðxÞ ¼
ai1

1þ ai2x
1þai3x

1þ���

; ð27aÞ

~BiðxÞ ¼
bi1

1þ bi2x

1þbi3x
1þ���

; ð27bÞ

~WiðxÞ ¼
wi1

1þ wi2x
1þwi3x

1þ���

; ð27cÞ

~KiðxÞ ¼
ki1

1þ ki2x

1þki3x
1þ���

; ð27dÞ

where aij, bij, wij, kij for i ¼ 0; 1; 2; 3…, j ¼ 1; 2; 3… are
fixed via a comparison of the series expansions of the
metric functions near the black-hole horizon (i.e., x ¼ 0)
with their exact analytic expressions or of numerical data
when an exact solution cannot be obtained analytically.
To recap: Two different sets of coefficients appear in the

approach proposed here for the parametrization of a generic
stationary and axisymmetric black-hole metric. The first set
is given by the coefficients ai0, bi0, wi0, ki0, ϵi
(i ¼ 1; 2; 3…), which are fixed by spacetime behavior in
the asymptotic region, i.e., x → 1−. The second set is
instead given by the coefficients aij, bij, wij, kij
(j ¼ 1; 2; 3…), which are fixed by the geometry of the
black hole near its horizon, i.e., x → 0þ. Needless to say,
such a separation of parameters on “near horizon” and
“asymptotic” is essential for the comparison of the theo-
retical predictions with the observational data obtained,
either in the far region (e.g., values of PPN parameters) or
near the black hole (e.g., study of accretion flows, black
hole’s shadows, etc.). It should also be noted that the
contribution of KiðxÞ in the definition of Ai>0ðxÞ (26e)

allows us to define the asymptotic parameters ϵi and ai0, by
comparing the asymptotic expansions of the metric com-
ponent gtt. Without this contribution of KiðxÞ, we would
not be able to separate the parameters ai0 and kij into,
“asymptotic” and “near-horizon” ones, respectively.
It is important to discuss now some essential properties

of the continued fraction used in the Padé approximation in
(27), namely, the number of terms N appearing in the
continued fractions. In this scope we will consider three
different cases.
The first case is the one for which the tilted functions

~AiðxÞ, ~BiðxÞ, ~WiðxÞ, and ~KiðxÞ are fractions of two poly-
nomials of r, as it happens, for example, for any of these
functions in the case of the Kerr solution. In this case, then,
the corresponding expansion (27) contains a finite and small
number of terms. In otherwords, there exist a numberN > 0,
such that aiN ¼ 0, or biN ¼ 0, or wiN ¼ 0, or kiN ¼ 0,
respectively. In this case, all higher-order terms are obviously
not necessary andwe refer to this representation as “exact,” in
the sense that the corresponding metric can be reproduced
analytically with only a finite number of coefficients.
The second case is for when the metric functionsNðr; θÞ,

Wðr; θÞ, Kðr; θÞ, and Bðr; θÞ in (7) are not rational
functions of r. In this case, then, some or all of the
expansions (27) contain an infinite number of coefficients,
i.e., N ¼ ∞. Finally, the third case is for when even though
N is finite, there is no guarantee that an “exact” repre-
sentation will be achieved with a small number of coef-
ficients. As a result, in both of these last two cases (i.e., of
finite but large and infinite N), the metric representation
will be only approximate and limited to the first n < N
terms, setting the nth equal to zero. We will refer to such
approximated metrics obtained by truncating at the nth
term as the “approximation of the ðn − 1Þth order.”
As a corollary to the previous remark we also note that

the nth coefficient cannot always be set equal to zero in a
consistent manner. In some cases, in fact, setting a
particular coefficient to zero could imply the divergence
of the truncated continued fractions (27) for the corre-
sponding tilted function for some value of r outside the
event horizon. To solve this problem within the approxi-
mation of the (n − 1)th order, one should set the (nþ 1)th
coefficient equal to zero, and choose an arbitrary value for
the nth coefficient, so that the denominator remains positive
definite for all values of the radial coordinate outside the
event horizon (i.e., for x > 0). For convenience, in such
cases we will take the value of the nth coefficient to be
equal to unity and will refer to these cases as approxima-
tions of (n − 1)th order as well.
As a final remark we note that not all of the parameters so

far, i.e., aij, bij, wij, and kij, are effectively independent.
This is because one of the infinite number of functions, i.e.,
AiðxÞ,BiðxÞ,WiðxÞ, andKiðxÞ,must be fixedby a coordinate
choice. We have here used the condition (25), so that, taking
into account the continued fractions (27), yields
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k00 ≡ A2

r20
; k01 ≡ 0: ð28Þ

In the next section, on the other hand, wewill not assume any
particular coordinate condition of the type (28), leaving a
possibility to fix it in any alternative way.

A. Asymptotic properties

Following the discussion on the asymptotic properties of
the parametrized metric made with expression (13), we can
deduce the following asymptotic behavior of the line
element (7)

N2ðr; θÞ −W2ðr; θÞsin2θ
K2ðr; θÞ

¼ N2ðr; θÞ
K2ðr; θÞ − AWðr; θÞ=rþO

�
1

r3

�

¼ 1 −
2M
r

þ ðβ − γÞ 2M
r2

þO
�
1

r3

�
; ð29aÞ

Wðr; θÞ ¼ 2J
r2

þO
�
1

r3

�
¼ 2MA

r2
þO

�
1

r3

�
; ð29bÞ

B2ðr; θÞ
N2ðr; θÞ ¼ 1þ γ

2M
r

þO
�
1

r2

�
; ð29cÞ

K2ðr; θÞ ¼ 1þO
�
1

r2

�
: ð29dÞ

Note that in deriving expressions (29) we have also
introduced the PPN parameters β and γ [13] and assumed
a reflection symmetry across the equatorial plane, i.e., the
functions in (23) are taken to depend only on y2

(i ¼ 0; 2; 4…). Furthermore, adopting the classification
made by Thorne in Ref. [20], metrics of this type are
referred to as “Cartesian and mass centered to order 0”
(ACMC-0). Clearly, using expressions (29), it is possible to
read off the mass M and angular momentum J of the
spacetime. We note that although the asymptotic behavior
we have chosen is well motivated from an astrophysical
point of view, our approach is not limited by any particular
choice of asymptotic behavior and can, in principle, be
constructed also for axisymmetric black holes having
different asymptotic constraints.
Next, for a metric with the asymptotic behavior given by

expressions (29), we find that

ϵ0 ¼
2M − r0

r0
; ð30aÞ

a00 ¼ ðβ − γÞ 2M
2

r20
¼ ðβ − γÞð1þ ϵ0Þ2

2
; ð30bÞ

b00 ¼ ðγ − 1ÞM
r0

¼ ðγ − 1Þð1þ ϵ0Þ
2

; ð30cÞ

w00 ¼
2J
r20

¼ J
M2

ð1þ ϵ0Þ2
2

; ð30dÞ

ϵi ¼ 0 ¼ bi0 ¼ wi0; i > 0: ð30eÞ
The asymptotic parameters, ai0 and ki0 for i > 0, are not
fixed only byM, J, β, and γ. In particular, the parameter a20
contains also information on the quadrupole moment of the
black hole, which cannot be read off from the asymptotic
expansion. This is because the metric with components (26)
and with the parameters fixed by expressions (30) is not of
type ACMC-1 unless bi1 ¼ 0 and ki0 ¼ 0 for all i > 0. In
this latter case, a20 is related to the multipole I20 introduced
by Thorne in [20]; in particular, using expression (11.4a) of
[20], we can read off the value of a20 as

I20 ¼ −
4

3

ffiffiffiffiffiffi
4π

15

r
a20r30: ð31Þ

Note that since bi1 are parameters fixed near the black-
hole horizon, we are unable to find a general transformation
from (7) to anACMC-1 type ofmetric and cannot, therefore,
express I20 only in terms of the asymptotic parameters.
Nevertheless, as wewill show in the next section, ai0 and ki0
can be related to observable quantities in a way similar to
what was done for the Geroch-Hansen quadrupole moment
of the black hole [21]. In particular, we will compare the
orbital-plane precession frequency with the formula derived
by Ryan [22], thus obtaining a definition of the quadrupole
moment through the asymptotic parameters only.

V. CIRCULAR GEODESIC IN THE EQUATORIAL
PLANE AND MULTIPOLE MOMENTS

Following [22], we consider a circular geodesic motion
in the equatorial plane, i.e., with

dr
dt

¼ 0; θ ¼ π

2
; ð32Þ

and with orbital frequency

Ω≡ dϕ
dt

¼
−gtϕ;r þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2tϕ;r − gtt;rgϕϕ;r

q
gϕϕ;r

; ð33Þ

where we use a comma to indicate a partial derivative. The
energy per unit mass is then given by (see, e.g., [23])

E
m

¼ −gtt − gtϕΩffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gtt − 2gtϕΩ − gϕϕΩ2

q ; ð34Þ

and, after using expression (33), it can be expressed as a
function of Ω only. After replacing in (34) the parametrized
expressions for the metric functions, we can derive an
expression for the energy per logarithmic interval of fre-
quency in terms of the dimensionless variable v≡ ðΩMÞ1=3,
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ΔE
m

¼ −
1

m
dE

d logΩ
¼ −

v
3m

dE
dv

¼ v2

3
þ v4

�
−
1

2
þ 8a00
9ð1þ ϵ0Þ2

�
þ v5

40w00

9ð1þ ϵ0Þ2

þ v6
�
−
27

8
þ 6a00 þ 4k00 − 4w00A=M

ð1þ ϵ0Þ2
þ 16a200
3ð1þ ϵ0Þ4

þ 8
ϵ0 − a00 − k00 þ ~A0ð1Þ − ~K0ð1Þ

ð1þ ϵ0Þ3
�
þOðv7Þ; ð35Þ

where

~A0ð1Þ ¼
a01

1þ a02
1þ a03

1þ���

; ð36Þ

~K0ð1Þ ¼
k01

1þ k02
1þ k03

1þ���

: ð37Þ

In a similar way, we can obtain a series expansion of the
periastron precession frequency Ωr and orbital-plane pre-
cession frequency Ωθ defined as [22]

Ωr ≡Ω −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
A2
EGϕϕ;rr þ 2AEALGtϕ;rr þ A2

LGtt;rr

2grr

s
; ð38Þ

Ωθ≡Ω−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
A2
EGϕϕ;θθþ2AEALGtϕ;θθþA2

LGtt;θθ

2gθθ

s
; ð39Þ

where

AE ≡ −gtt − gtϕΩ ¼ N2

K2
þWsin2θ

�
rΩ −

W
K2

�
; ð40Þ

AL ≡ gtϕ þ gϕϕΩ ¼ rK2sin2θ

�
rΩ −

W
K2

�
; ð41Þ

Gαβ ≡ gαβ
g2tϕ − gttgϕϕ

¼ gαβ
N2r2sin2θ

; α; β ¼ t;ϕ: ð42Þ

Collecting terms, we can express the normalized peri-
astron precession and orbital-plane precession frequencies
respectively as

Ωθ

Ω
¼ −v2

2ϵ2
ðϵ0 þ 1Þ2 þ v3

4ðw00 − w20Þ
ðϵ0 þ 1Þ2 þ v4

�
−
2ðk20 þ k00 − w20A=MÞ

ðϵ0 þ 1Þ2 −
4a20

ðϵ0 þ 1Þ3 þ
6ϵ22 − 32ϵ2a00
3ðϵ0 þ 1Þ4

�
þOðv5Þ; ð43Þ

Ωr

Ω
¼ v2

�
3 −

2a00
ðϵ0 þ 1Þ2 þ

b00
2ðϵ0 þ 1Þ

�
−

8w00v3

ðϵ0 þ 1Þ2 þ v4
�
9

2
−

3b00
2ðϵ0 þ 1Þ −

8a00 þ 6k00 − 6w00A=M
ðϵ0 þ 1Þ2

−
5b200

8ðϵ0 þ 1Þ2 þ
5b00a00

3ðϵ0 þ 1Þ3 −
26a200

3ðϵ0 þ 1Þ4þ
12ða00 þ k00 þ k01 − ϵ0 − ~A0ð1ÞÞ

ðϵ0 þ 1Þ3 þ
~B0ð1Þ

ðϵ0 þ 1Þ2
�
þOðv5Þ; ð44Þ

where

~B0ð1Þ ¼
b01

1þ b02
1þ b03

1þ���

: ð45Þ

We can now compare expressions (43) and (44) with the
corresponding ones obtained by Ryan in general relativity
[22], i.e.,

ΔE
m

¼ v2

3
−
v4

2
þ v5

20S1
9M2

0

þ v6
�
−
27

8
þM2

M3
0

�
þOðv7Þ;

ð46aÞ

Ωθ

Ω
¼ v3

2S1
M2

0

þ v4
3M2

2M3
0

þOðv5Þ; ð46bÞ

Ωr

Ω
¼ 3v2 − v3

4S1
M2

0

þ v4
�
9

2
−
3M2

2M3
0

�
þOðv5Þ; ð46cÞ

where M0 ¼ M, S1 ¼ J, and M2 ¼ Q are the first three
Geroch-Hansen multipole moments: the ADM mass, the
angular momentum, and the quadrupole moment,
respectively.
Bearing in mind that

w00 ¼
2J
r0

; ⇔
J
M2

¼ 2w00

ðϵ0 þ 1Þ2 ; ð47Þ
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we obtain [cf. Eqs. (30) for β ¼ γ ¼ 1]

ϵ2 ¼ 0 ¼ w20 ¼ a00 ¼ b00; ð48Þ

−
3Q
2M3

¼ 2ðk20 þ k00Þ
ðϵ0 þ 1Þ2 þ 4a20

ðϵ0 þ 1Þ3 : ð49Þ

The expression for the quadrupole moment Q through
the values of the coefficients as fixed at spatial infinity
can be obtained only after measuring the orbital-plane
precession frequency (43). Note that in the case in
which ϵ2 ¼ 0, such a frequency (43) does not depend on
the PPN parameters that are related to the coefficient a00
[the fifth term in Eq. (43) is automatically zero in this case].
This property suggests that the expression (49) derived in
general relativity remains the same also for non-Einsteinian
theories. Indeed, as we will discuss in Sec. VII, it provides
the correct answer for the Einstein-dilaton-Gauss-Bonnet
black holes. On the other hand, the expressions for the
energy per logarithmic frequency interval (35) and for the
orbital-plane precession frequency (44), allow us to obtain
those higher-order PPN parameters that are encoded, within
our formalism, in the values of the coefficients ~A0ð1Þ,
~B0ð1Þ, and ~K0ð1Þ.
On the basis of these considerations we conclude that the

quadrupole moment of the black hole in our parametrized
metric can be measured by fitting the equatorial-plane
precession frequency for a circular orbit (43). Quite
generically, the latter depends on three coefficients that
are fixed asymptotically: a20, k00, and k20 (w20 ¼ 0 to
match the results by Ryan [22]). In general relativity,
similar coefficients M�

2 and B0 were introduced in
Ref. [24] and are related to these coefficients as

a20 ¼ −3
M�

2

r30
¼ −3

M�
2ðϵ0 þ 1Þ3
8M3

; ð50Þ

k00 ¼
M2 þ 4B0

r20
¼ ðϵ0 þ 1Þ2

�
1

4
þ B0

M2

�
; ð51Þ

k20 ¼ 0: ð52Þ

In particular, for the Kerr metric one has that

M�
2 ¼ −

2Ma2

3
⇔a20 ¼

2Ma2

r30
¼ a2ðϵ0 þ 1Þ3

4M2
; ð53Þ

B0 ¼ −
M2 − a2

4
⇔k00 ¼

a2

r20
¼ a2ðϵ0 þ 1Þ2

4M2
: ð54Þ

Note that unlike in [24], the value of k00 is fixed here by our
coordinate choice. One could choose coordinates such that
k00 would assume a different value, but this would not alter
the final value of Q, as it is easy to verify after substituting

the corresponding values of a20 and k20 in (49). As a result,
with our choice of coordinates leading to expressions (28),
we will always have k00 ¼ a2=r20, so that the quadrupole
moment is completely determined by the coefficient a20.

VI. PARAMETRIZED REPRESENTATION FOR
THE ROTATING DILATON BLACK HOLE

This section is dedicated to the explicit calculation of the
coefficients needed for the representation of the parame-
trized metric that approximate the rotating dilaton black-
hole spacetime (6) [19]. This is an important test of our
approach and an example of a metric that is more complex
than the Kerr solution.
We first substitute (6c)–(6e) in (18) and taking into

account that A ¼ a for a dilaton black hole, we find that

α0ðρÞ ¼ 0; ð55Þ

while from expressions (8) obtain the relations

y ¼ Y; ð56aÞ
r2 ¼ ρðρþ 2bÞ; ð56bÞ

N2 ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ r2

p
− bÞ2 − 2μð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ r2

p
− bÞ þ a2

r2
; ð56cÞ

W ¼ 2aðμþ bÞð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ b2

p
− bÞ

rðr2 þ a2y2Þ ; ð56dÞ

B2 ¼
�
dρ
dr

�
2

¼ r2

b2 þ r2
; ð56eÞ

K2 ¼
�
1þ a2y2

r2

�−1��
1þ a2

r2

�
2

−
a2ð1 − y2Þ

r2
N2

�
:

ð56fÞ

These expressions coincide up to Oða2Þ with the slowly
rotating metric already described in [17]. Furthermore,
since N does not depend on y, the relation

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμþ bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − a2

q
Þ2 − b2

r
ð57Þ

defines the event horizon and reduces to expression (55) of
[17] when terms of Oða2Þ are neglected.
By comparing the series expansion of (23) and (56) near

spatial infinity (i.e., x ¼ 1) we find that

ϵ0 ¼
2bþ 2μ − r0

r0
; ð58aÞ

a00 ¼
2bðbþ μÞ

r20
; ð58bÞ
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b00 ¼ 0; ð58cÞ

w00 ¼
2aðbþ μÞ

r20
; ð58dÞ

which, by comparison with (30), give correct values
for the ADM mass M and the angular momentum J,
namely

M ¼ μþ b; J ¼ Ma; ð58eÞ
and reproduce the same PPN coefficients as for the non-
rotating case [17],

β ¼ μþ 2b
μþ b

¼ 1þ b
M

; γ ¼ 1: ð58fÞ

We also we find that

a20 ¼
2a2ðμþ bÞ

r30
¼ 2Ma2

r30
; ð58gÞ

while all the other asymptotic parameters are zero, except
for k00, which is given by

k00 ¼
a2

r20
: ð58hÞ

From expression (49), we find the expected result that
the quadrupole moment is given by

Q ¼ −
a20r30 þMðk00 þ k20Þr20

3
¼ −Ma2 ¼ −

J2

M
; ð59Þ

for any value of b.
Finally, by comparing the series expansion of (23) and

(56) near x ¼ 0 we find that

a01 ¼
2ðμþ bÞð2b2 þ r20 þ ð2r0 − 3bÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 þ b2

p
Þ

r20
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 þ b2

p
− 3

r20 þ a2

r20
; ð60aÞ

a21 ¼ −
a4 þ 2a2ðμþ bÞðbþ r0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 þ b2

p
Þ

r40
; ð60bÞ

a11 ¼ 0 ¼ a31 ¼ a41 ¼ a51;…; ð60cÞ

b01 ¼
r0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r20 þ b2
p − 1; ð60dÞ

b11 ¼ 0 ¼ b21 ¼ b31 ¼ b41 ¼ b51;…; ð60eÞ

w01 ¼
2aðμþ bÞðbþ r0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 þ b2

p
Þ

r30
; ð60fÞ

w11 ¼ 0 ¼ w21 ¼ w31 ¼ w41 ¼ w51;…; ð60gÞ

k21 ¼
a4 − 2a2ðμþ bÞð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r20 þ b2
p

− bÞ
r40

; ð60hÞ

k01 ¼ 0 ¼ k11 ¼ k31 ¼ k41 ¼ k51;…; ð60iÞ

and so on. Clearly, a01, b01, and w01 coincide with the
corresponding parameters of the slowly rotating dilaton
black hole.
As a final remark, we reinforce a statement already made

in Sec. IV. While the line element of the Kerr spacetime can
be reproduced exactly within the proposed parametrization
with a finite number of terms of the Padé expansion, this
does not seem to be possible for the dilaton black hole,
whose metric functions are not a ratio of polynomials in
powers of r, but rather contain square roots of polynomials.

A. Testing the parametrization in the equatorial
plane: The binding energy

Although the parametrization suggested here can be used
for generic investigations of the physics of black holes, our
main interest is to find a general parametrization for a
rotating black-hole spacetime which allows us to model
processes connected to electromagnetic emission from
matter accreting onto the supermassive black-hole candi-
date at the center of our Galaxy [25]. Because of this, it is
important to test the ability of our parametrization in
describing accurately radiative processes near the event
horizon and, for instance, the formation of a shadow. This
will be the focus of a forthcoming companion paper [26],
but some preliminary estimate can already be presented
here in terms of the calculation of the simplest basic
quantity entering in the physics of accretion flows onto
black holes: the binding energy of a particle moving on a
circular orbit.
In this scope, we calculate the energy of the particle at

the innermost stable circular orbit (ISCO) and thus the
binding energy as the amount of energy released by the
particle going over from a given stable circular orbit located
at r0 over to the ISCO at rISCO, i.e.,

BE ¼ 1 −
EðrISCOÞ
Eðr0Þ

; ð61Þ

where the initial circular orbit r0 is normally considered to
be at spatial infinity but needs not be. The binding energy
of massive test particles is rather sensitive to the black-hole
properties and in Ref. [27] it was calculated for a number of
deformed black-hole spacetimes. We here recall that in the
case of an extremal Kerr black hole it equals ≃3.8% for
counterrotating particles and ≃42% for corotating ones,
while it is ≃5.7% for a Schwarzschild black hole. The
binding energy also increases above 40%, when the dilaton
b ranges from 0 to 1.
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Defining the four-momentum of a massive particle as

pα ≡m
dxα

ds
; ð62Þ

where s is an invariant affine parameter, we also recall that
in a stationary, axisymmetric metric there are three integrals
of motion which can be related to the particle’s rest massm,
to its energy E ¼ −pt, and its angular momentum L ¼ pϕ.
The normalization condition on the four-momentum

pαpα ¼ −m2 ð63Þ

leads to the following relation in the equatorial plane

m2grr

�
dr
ds

�
2

¼ VeffðrÞ; ð64Þ

where the effective potential is defined as

VeffðrÞ≡ −ðgttE2 − 2gtϕELþ gϕϕL2 þm2Þ
����
θ¼π=2

¼ K2ðr; π=2Þ
N2ðr; π=2Þ

�
E −

Wðr; π=2Þ
K2ðr; π=2Þ

L
r

�
2

− L2

r2K2ðr; π=2Þ −m2: ð65Þ

The energy E and momentum L of a particle on a circular
orbit at radial position r can then be determined from the
requirements that

VeffðrÞ ¼ 0; V 0
effðrÞ ¼ 0; ð66Þ

where 0 indicates a derivative in the radial direction. Once
the expressions for LðrÞ and EðrÞ have been obtained in
this way, the position of the ISCO is computed from the
additional condition V 00

effðrÞ ¼ 0 and then to compute
the value of the energy at the ISCO EðrISCOÞ, and hence
the binding energy as in expression (61).2

Table I reports the binding energies as computed at
different orders in the radial (continued-fraction) expansion
for a nonrotating black hole with a dilaton field b. The last
column refers to the exact solution, i.e., to the metric (6).
Clearly, the convergence in the spherically symmetric case
is excellent and the first order is sufficient to obtain a
relative error which is ∼10−4 in the most extreme case of
b ¼ 1. This relative error in the binding energy further
reduces to ∼10−6 when considering the expansion at fourth
order; clearly these uncertainties are far smaller than what is
to be expected from astronomical observations.

TABLE I. Binding energies as computed at different orders in the radial (continued-fraction) expansion for a nonrotating black hole
with a dilaton field b. The last column refers to the exact solution.

b First order Second order Third order Exact

0.00 5.719095841793664 5.719095841793664 5.719095841793664 5.719095841793664
0.02 5.771085348147105 5.771085348949989 5.771069849415838 5.771085349099403
0.20 6.207254764244374 6.207261486774459 6.207262811802919 6.207262810978281
0.50 6.832236606077545 6.832430295600210 6.832473869879982 6.832473613387891
1.00 7.676903064196137 7.678772618393546 7.679324761207151 7.679311080887710

TABLE II. The same as in Table I, but for a rotating dilaton black hole with a ¼ 0.5μ (upper rows) and a ¼ 0.95μ (lower rows). The
left columns refer to corotating particles, while the right ones to counterrotating particles. For all the cases considered, the polar
expansion was kept at the order in cos2 θ (i.e., at cos4 θÞ, since higher orders are zero for a dilaton black hole.

a=μ b First order Second order Third order Fourth order Exact First order Second order Third order Fourth order Exact

0.50 0.00 8.2118 8.2118 8.2118 8.2118 8.2118 4.5142 4.5142 4.5142 4.5142 4.5142
0.50 0.02 8.2676 8.2675 8.2675 8.2675 8.2675 4.5611 4.5611 4.5611 4.5611 4.5611
0.50 0.20 8.7368 8.7317 8.7318 8.7318 8.7318 4.9555 4.9568 4.9568 4.9568 4.9568
0.50 0.50 9.4142 9.3873 9.3881 9.3881 9.3881 5.5239 5.5315 5.5311 5.5311 5.5311
0.50 1.00 10.3402 10.2568 10.2610 10.2612 10.2613 6.2972 6.3230 6.3217 6.3214 6.3214

0.95 0.00 19.0144 19.0144 19.0144 19.0144 19.0144 3.8362 3.8362 3.8362 3.8362 3.8362
0.95 0.02 19.0083 19.0084 19.0084 19.0084 19.0084 3.8791 3.8791 3.8791 3.8791 3.8791
0.95 0.20 19.0140 19.0115 19.0098 19.0097 19.0097 4.2405 4.2430 4.2429 4.2428 4.2428
0.95 0.50 19.2262 19.1424 19.1284 19.1269 19.1270 4.7629 4.7767 4.7757 4.7755 4.7755
0.95 1.00 19.9278 19.4719 19.4191 19.4121 19.4133 5.4763 5.5219 5.5184 5.5170 5.5171

2We recall that, as already noted in [17] in the slowly rotating
regime, the position of the ISCO does not depend on the
function B.
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The convergent behavior is only slightly less good when
rapid rotation is introduced. This is collected in Table II,
which refers to a rotating dilaton black hole with a ¼ 0.5μ
(upper rows) and a ¼ 0.95μ (lower rows), and where the
left columns refer to corotating particles, while the right
ones to counterrotating particles. In particular, at second
order the errors are about ∼10−4 and ∼10−3 and for
a ¼ 0.5μ, b ¼ 1 and a ¼ 0.95μ, b ¼ 1, respectively. We
note that as the binding energy of a quasiextreme rotating
dilaton black hole reaches its maximum of 42% for
a≃ 0.99999μ, reproducing this limiting value with the
parametrization would apparently require an expansion up
to very high orders in the radial direction. However, since in
the equatorial plane the Kerr spacetime (i.e., b ¼ 0) is
reproduced exactly already at the first order of the con-
tinued fraction, the value of binding energy coincides with
the exact binding energy.

VII. PARAMETRIZED REPRESENTATION FOR
ROTATING EDGB BLACK HOLES

While a rotating dilaton black hole corresponds to an
essentially Einsteinian theory of gravity with an extra field,

a theory containing higher-curvature corrections represents
a genuinely non-Einsteinian gravitational theory. In higher
than four dimensions, the second order in curvature term
(or Gauss-Bonnet term) is the dominating one. In a four-
dimensional (D ¼ 4) spacetime as the one considered here,
the Gauss-Bonnet term is invariant and leads to solutions of
the Einstein equations that are not affected unless the
dilaton is coupled to the system. Although an exact solution
is unknown for such D ¼ 4 rotating dilaton-Gauss-Bonnet
black holes, an approximate metric has been deduced in the
regime of slow rotation [28].
In this case the solution has two small parameters

χ ≡ a
M

¼ J
M2

; ζ≡ 16πα2

βM4
; ð67Þ

where α and β are the two coupling constants Einstein-
dilaton-Gauss-Bonnet theory, with the first one being
related to the coupling of higher curvature, while the
second one accounts for the coupling with the scalar field.
After some algebra, the metric functions up to the order
Oðχ3; ζ2Þ are given by [28]

fðρ; ϑÞ ¼ 1 −
2M
ρ

þM2χ2

ρ2
þ ζ

�
−
80M7

3ρ7
þ 32M6

5ρ6
þ 22M5

5ρ5
þ 26M4

3ρ4
þ M3

3ρ3

�

þ χ2ζ

�
−
80M11

ρ11
þ 7336M10

45ρ10
−
20422M9

315ρ9
þ 1917M8

245ρ8
−
253756M7

11025ρ7
þ 838039M6

110250ρ6
−
18551M5

5250ρ5
−
3048M4

875ρ4
−
M3

6ρ3

þ cos2ϑ

�
240M11

ρ11
−
6136M10

15ρ10
þ 9214M9

21ρ9
−
26233M8

245ρ8
þ 30316M7

3675ρ7
−
1497089M6

36750ρ6
þ 11201M5

1750ρ5
þ 3019M4

875ρ4

��
;

ð68Þ

β2ðρ; ϑÞ ¼ 1 − ζ

�
48M6

ρ6
þ 128M5

5ρ5
þ 14M4

ρ4
þ 8M3

3ρ3
þM2

ρ2

�

þ χ2ζ

�
−
720M10

ρ10
þ 28688M9

45ρ9
þ 2102M8

15ρ8
þ 616M7

5ρ7
−
907M6

45ρ6
þ 139M5

15ρ5
þ 5M4

ρ4
þ 4M3

3ρ3
þ M2

2ρ2

þ cos2ϑ

�
2160M10

ρ10
−
26288M9

15ρ9
þ 1658M8

5ρ8
−
208M7

5ρ7
þ 2767M6

15ρ6
þ 11M5

ρ5
þ 2M4

ρ4

��
; ð69Þ

σ2ðρ; ϑÞ ¼ 1þM2χ2cos2ϑ
ρ2

− χ2ζð3cos2ϑ − 1ÞQðρÞ; ð70Þ

ωðρ; ϑÞ ¼ 2M2χ

ρ2

�
1þ ζ

�
40M6

3ρ6
−
24M5

5ρ5
−
3M4

ρ4
−
14M3

3ρ3
−
3M2

10ρ2

��
; ð71Þ

κ2ðρ; ϑÞ ¼ 1þM2χ2

ρ2
þ 2M3χ2sin2ϑ

ρ3
− χ2ζð3cos2ϑ − 1ÞQðρÞ; ð72Þ

where

QðρÞ≡ 4463M3

2625ρ3
þ 2074M4

525ρ4
þ 266911M5

36750ρ5
þ 12673M6

1575ρ6
−
12371M7

735ρ7
−
3254M8

105ρ8
−
2536M9

45ρ9
þ 80M10

ρ10
: ð73Þ
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The event horizon in these coordinates is a sphere with
radius

ρ0 ¼ 2M

�
1 −

χ2

4
−
49ζ

80
−
277χ2ζ

1920

�
þOðχ4; ζ2Þ: ð74Þ

We note that the new coordinates (A ¼ Mχ) are

y ¼ Y þOðχ2ζÞ; r ¼ ρþOðχ2ζÞ;
where the correction ∝ χ2ζ can be found as a series
expansion with respect to Y. Moreover, we have found
that ∀ρ > 2M, and the following conditions are satisfied

jα8ðρÞj > jα6ðρÞj > jα4ðρÞj ð75Þ

and

jζ8ðρÞj > jζ6ðρÞj > jζ4ðρÞj; ð76Þ

which can be interpreted as a signal of the absolute
convergence of the series for all jYj ≤ 1.
The relation between the coordinates ðy; rÞ and ðY; ρÞ is

given by

y ¼ Y
�
1þ χ2ζ

�
40M9

3ρ9
−
24M8

5ρ8
−
3M7

ρ7
−
14M6

3ρ6
−
3M5

10ρ5
þOðY2Þ

��
; ð77Þ

r2 ¼ ρ

�
1þ χ2ζ

�
80M10

ρ10
−
3736M9

45ρ9
−
2246M8

105ρ8
−
7961M7

735ρ7
þ 27373M6

1575ρ6
þ 288961M5

36750ρ5
þ 2074M4

525ρ4
þ 4463M3

2625ρ3
þOðY2Þ

��
;

ð78Þ

so that the location of the horizon in the equatorial plane is given by

r0 ¼ 2M

�
1 −

χ2

4
−
49ζ

80
þ 128171χ2ζ

588000

�
þOðχ4; ζ2Þ: ð79Þ

As a result of the coordinate transformations (77) and (78), we obtain

N2 ¼ 1 −
2M
r

þM2χ2

r2
þ ζ

�
M3

3r3
þ 26M4

3r4
þ 22M5

5r5
þ 32M6

5r6
−
80M7

3r7

�

− χ2ζ

�
3267M3

1750r3
þ 5017M4

875r4
þ 136819M5

18375r5
þ 35198M6

18375r6
−
3818M7

735r7
−
4504M8

245r8
þ 16M9

5r9

�

þ χ2ζ

�
3019M4

875r4
þ 6388M5

875r5
−
155394M6

6125r6
−
47878M7

1225r7
−
17952M8

245r8
þ 2040M9

7r9
−
128M10

5r10

�
y2 þOðχ3; ζ2; y4Þ; ð80aÞ

B2 ¼ 1 − ζ

�
M2

r2
þ 8M3

3r3
þ 14M4

r4
þ 128M5

5r5
þ 48M6

r6

�

þ χ2ζ

�
M2

2r2
þ 4142M3

875r3
þ 2949M4

175r4
þ 245724M5

6125r5
þ 6028M6

105r6
þ 12792M7

245r7
−
96M8

5r8

�

− χ2ζ

�
4463M3

875r3
þ 1724M4

175r4
þ 97318M5

6125r5
−
8924M6

175r6
−
43584M7

245r7
−
3056M8

7r8
þ 896M9

5r9

�
y2 þOðχ3; ζ2; y4Þ; ð80bÞ

W ¼ 2M2χ

r2

�
1 − ζ

�
3M2

10r2
þ 14M3

3r3
þ 3M4

r4
þ 24M5

5r5
−
40M6

3r6

��
þOðχ3; ζ2; y4Þ; ð80cÞ

K2 ¼ 1þM2χ2

r2
þW

Mχ

r
−
2M3χ2

r3
y2

− χ2ζ

�
4463M3

875r3
þ 2074M4

175r4
þ 127943M5

6125r5
þ 4448M6

525r6
−
2326M7

245r7
−
2792M8

35r8
þ 16M9

15r9

�
y2 þOðχ4; ζ2; y4Þ: ð80dÞ
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Also in this case, by comparing with the series expansion
(23) near spatial infinity (i.e., x ¼ 1) we find that

ϵ0 ¼
2M − r0

r0
; ð81aÞ

a00 ¼ 0 ¼ b00; ð81bÞ

w00 ¼
2M2χ

r20
; ð81cÞ

k00 ¼
M2χ2

r20
; ð81dÞ

thus implying that the mass, angular momentum, and PPN
coefficients of an EDGB black hole obey the same relations
as the ones for a Kerr black hole. In addition, it is possible
to derive that

a20 ¼
2M3χ2

r30

�
1þ 4463

1750
ζ

�
þOðχ4; ζ2Þ

¼ χ2

4

�
1þ 61429ζ

14000

�
þOðχ4; ζ2Þ; ð81eÞ

while all of the other asymptotic parameters are zero.
The expression for the quadrupole moment can be

derived from expression (49) and yields

Q ¼ −
a20r30 þMðk00 þ k20Þr20

3
;

¼ −M3χ2
�
1þ 4463

2625
ζ

�
þOðχ4; ζ2Þ; ð82Þ

which coincides with the expression for the quadrupole
moment found in [28]. We should notice that our result was
obtained without the use of ACMC-1 coordinates.
Finally, by comparing the series expansions near the

black-hole horizon (i.e., x ¼ 0) we find that

a01 ¼ −
17ζ

60

�
1 −

324899χ2

166600

�
þOðχ4; ζ2Þ; ð83aÞ

b01 ¼ −
361ζ

240

�
1 −

51659χ2

176890

�
þOðχ4; ζ2Þ; ð83bÞ

w01 ¼ −
63χζ

160
þOðχ3; ζ2Þ; ð83cÞ

k21 ¼ −
χ2

4

�
1þ 438867ζ

49000

�
þOðχ4; ζ2Þ; ð83dÞ

while the other coefficients ai1, bi1, and ki1 are of order
Oðχ2ζÞ, e.g.,

a21 ¼
447731

392000
χ2ζ þOðχ4; ζ2Þ; ð83eÞ

b21 ¼
175629

196000
χ2ζ þOðχ4; ζ2Þ: ð83fÞ

In summary, we have shown that it is possible to obtain
a full representation of a rotating EDGB black hole within
the parametrized-metric approach introduced here. Such a
representation is specified by the metric expressions (26),
(27) with coefficients given by (81) and (83).

VIII. CONCLUSIONS

We have constructed a parametrization for a general
stationary and axisymmetric black hole which could be
used for the analysis of physical processes near rotating
black holes. Our approach is based on a double expansion
in the polar and radial directions of a generic stationary and
axisymmetric metric. The polar expansion is handled via
the introduction of a series of powers of the elevation from
the equatorial plane, i.e., cos θ, while the radial expansion
follows the continued-fraction approach in terms of a
compactified radial coordinate that has been successfully
developed in [17] for a spherically symmetric spacetime.
Since the parametrization uses quite general assumptions

about the spacetime of a black hole, such as the presence of
Killing vectors along the time and azimuthal coordinates,
the absence of closed timelike curves and similar pathol-
ogies of the geometry, etc., our approach is essentially
independent of any particular metric theory of gravity.
We have shown the validity and effectiveness of our

approach by reproducing accurately and with a small
number of parameters three relevant and commonly used
rotating black-hole spacetimes, namely:

(i) a Kerr black hole, which is reproduced “exactly” in
the whole space already at second order in the polar
expansion [i.e., at Oðcos2θÞ] and at first order in the
radial expansion;

(ii) a rotating dilaton black hole, which again is repro-
duced “exactly” at second order in the polar ex-
pansion and can be expanded to the desired accuracy
with the expansion in the radial direction;

(iii) a Gauss-Bonnet-dilaton black hole, which is repro-
duced approximately but at any desired accuracy.

The accuracy of the parametrization has been validated
after comparing the values of the binding energy for test
particles moving on circular geodesic orbits around a
dilaton black hole with the exact ones. Even in the most
extreme (and realistic) cases considered, e.g., for a spin of
a ¼ 0.95μ and a dilaton field b ¼ 1, the relative errors
already at the second order are ∼10−3, and further decrease
as the order of the continued fraction is increased.
Moreover, even for near-extremal rotation, the convergence
of the continued fraction is still very good, being excellent
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in the equatorial plane, where it is reached already at the
few first orders of the Padé approximation.
An important question which we have not addressed

here, but that is investigated in detail in a companion paper
[26], is about how many orders of the polar and radial
expansions are needed for an accurate description of
physical processes outside the equatorial plane of the black
hole. Although a precise answer obviously depends on the
particular spacetime under consideration, some general
statements can be made already here. In particular, when
considering the shadow cast by various black-hole metrics,
we have found that the radial expansion through the Padé
approximation is always convergent. Furthermore, the
polar expansion leads to the exact solution at the second
order for Kerr and dilaton black holes, while higher-order
convergence is observed for EDGB black holes and the
Johannsen-Psaltis metric. We expect therefore that the
parametrized approach presented here will be useful not
only to study generic black-hole solutions, but also to
interpret the results that will soon be made of the radio
emission from the center of our Galaxy.
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APPENDIX: EXPLICIT LOWEST-ORDER
METRIC EXPRESSION

We are aware that the derivation of the parametrized
metric expressions can appear as intricate. To facilitate the
use of our parametrized metrics, we provide here a
collection of the explicit expressions of the parametrized
metrics for a Kerr, dilaton, and EDGB black hole. In each
case we do not necessarily report the highest-order expres-
sion of the expansion. Rather, we report the orders that
strike a compromise between readability and accuracy.
Hence, depending on the various cases, the expressions
reported here are either already contained in the main text
or are reported here for the first time.
We start with a brief summary of the basic expressions of

the metric in terms of the expansion coefficients and how
the latter are constrained. Hereafter we will consider the
line element (7)

ds2 ¼ −
N2ðr; θÞ −W2ðr; θÞsin2θ

K2ðr; θÞ dt2 − 2Wðr; θÞrsin2θdtdϕþ K2ðr; θÞr2sin2θdϕ2 þ Σðr; θÞ
�
B2ðr; θÞ
N2ðr; θÞ dr

2 þ r2dθ2
�
;

ðA1Þ

assume reflection symmetry across the equatorial plane, and neglect coefficients of higher orders. We then find

N2ðr; θÞ ¼
�
1 −

r0
r

��
1 −

ϵ0r0
r

þ ða00 − ϵ0 þ k00Þr20
r2

þ a01r30
r3

�
þ

�ðk20 þ ϵ2Þr20
r2

þ ðk21 þ a20Þr30
r3

þ a21r40
r4

�
cos2θ;

ðA2Þ

Bðr; θÞ ¼ 1þ b00r0
r

þ b01r20
r2

þ
�
b20r0
r

þ b21r20
r2

�
cos2θ; ðA3Þ

Σðr; θÞ ¼ 1þ A2

r2
cos2θ; ðA4Þ

Wðr; θÞ ¼ 1

Σðr; θÞ ½
w00r20
r2

þ w01r30
r3

þ
�
w20r20
r2

þ w21r30
r3

�
cos2θ�; ðA5Þ

K2ðr; θÞ ¼ 1þ AWðr; θÞ
r

þ 1

Σðr; θÞ
�
k00r20
r2

þ
�
k20r20
r2

þ k21r30
r3

�
cos2θ

�
: ðA6Þ
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In the expressions above, the values of the coefficients can
be constrained either by the asymptotic behavior of themetric
(i.e., ϵ0, k00, w00, ϵ2, b20, w20, k20, and a20), or by the
conditions of the metric near the black-hole event horizon
(i.e., a01, a21, k21, w01, w21, b01, and b21). More specifically,
the three coefficients ϵ0, k00, and w00 can be expressed in
terms of radius of the event horizon on the equatorial plane r0,
of the asymptotic massM, and of the rotation parameter A as

ϵ0 ¼
2M − r0

r0
; k00 ¼

A2

r20
; w00 ¼

2MA
r20

:

In order to restore spherical symmetry at large distances
at the first PPN order, the coefficients ϵ0 and b20 must
vanish, while the coefficient k20 must vanish to maintain an
asymptotic spherical symmetry at the second PPN order,
i.e., in order to have

gϕϕ ¼ ðr2 þ a2Þsin2θ þO
�
1

r

�
: ðA7Þ

Furthermore, if we exclude the rather exotic situation in
which the angular momentum of the black hole depends on
the polar angle θ, i.e., on the position of the observer relative
to the equatorial plane, then also the coefficient w20 must
vanish aswell.As a result, the following additional conditions
can be imposed on the coefficients ϵ2, b20, w20, and k20 for
astrophysically realistic black-hole solutions (30e)

ϵ2 ¼ 0 ¼ b20 ¼ w20 ¼ k20:

Similar considerations apply also to the coefficients a00 and
b00, which must vanish if one wants to match the first-order
PPN parameters of general relativity, i.e., if β ¼ γ ¼ 1
[cf. Eqs. (30b) and (30c)]. Of course, these coefficients could
be taken to be nonzero if more exotic black-hole spacetimes
are investigated. Last but surely not least, the coefficient a20
is related to the black hole’s quadrupole moment and is
given (59)

Q ¼ −
a20r30 þMA2

3
:

Next, we turn to the coefficients a01, a21, b01, b21, k21,
w01, and w21, which describe the near-horizon behavior of
the metric. In particular, the coefficients a21 and k21
describe deformations of the event horizon and, if the
latter is assumed to be spherical, must satisfy the condition

a20 þ a21 þ k21 ¼ 0:

The coefficients b01 and b21, on the other hand, correspond
to deformations of the grr metric function and are not
expected to play an important role in the dynamics of matter
near the event horizon.3 Finally, the coefficientsw01 andw21

are related to the rotational deformations of themetric, while
a01 gives the PPN potential of the system. Table III offers a
synthetic summary of the various properties of the coef-
ficients, of their values, and how they are constrained.

1. Parametrized Kerr metric

We first discuss the explicit form of the parametrized
metric for a Kerr black hole as obtained at first order in the
radial direction and at second order in the polar direction [i.e.,
at Oðcos2θÞ]. After setting M and A to be, respectively, the
mass and the specific angular momentum, i.e.,
A ¼ a ¼ J=M, we obtain that the event horizon is defined as

r0 ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
;

while the asymptotic coefficients have values

a00 ¼ 0 ¼ b00;

a20 ¼
2Ma2

r30
:

On the other hand, the strong-field coefficients are given by

TABLE III. Summary of the properties of the various coefficients appearing in the lowest-order expression of the
parametrized axisymmetric metric (A1)–(A6). For each coefficient we report the regime where it is constrained, its
value (when available), and the physical significance.

Parameter(s) Constrained Value Description

ϵ0, k00, w00 Asymptotically � � � Related to black-hole mass and angular momentum
ϵ2, b20, w20, k20 Asymptotically 0 For astrophysically realistic black holes
a00, b00 Asymptotically 0 From current PPN estimates
a20 Asymptotically � � � Related to the quadrupole moment
a01 Event horizon � � � Related to the deformation of gtt
a21, k21 Event horizon � � � Related to the deformation of event horizon
w01, w21 Event horizon � � � Related to the rotational deformations of the metric
b01, b02 Event horizon � � � Related to the deformation of grr

3The properties of processes occurring on the equatorial plane,
such as those related to the position of ISCO or to the form of the
effective potential for particle motion (65), do not depend on the
functions Bðr; θÞ, and thus on the coefficients b01 and b21.
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a01 ¼ 0 ¼ w01 ¼ w21 ¼ b01 ¼ b21;

a21 ¼ −
a4

r40
; k21 ¼

a4

r40
−
2Ma2

r30
:

Using this parametrization it is possible to reproduce theKerr
metric in Boyer-Lindquist coordinates exactly.

2. Parametrized dilaton black-hole metric

Next, we turn to the explicit form of the parametrized
metric for a rotating dilaton black hole as obtained when
truncating at first order in the radial direction and at second
order in the polar direction. After setting

M ¼ μþ b; A ¼ a ¼ J=M;

the location of the event horizon is given by

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμþ bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − a2

q
Þ2 − b2

r
;

while the first coefficients are given by

ϵ0 ¼
2bþ 2μ − r0

r0
; k00 ¼

a2

r20
; w00 ¼

2ðbþ μÞa
r20

:

The asymptotic coefficients are set to be

a00 ¼
2bðbþ μÞ

r20
; b00 ¼ 0; a20 ¼

2a2ðbþ μÞ
r30

;

while the strong-field ones are determined to be

a01 ¼
2ðμþ bÞ½2b2 þ r20 þ ð2r0 − 3bÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 þ b2

p
�

r20
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 þ b2

p
− 3

r20 þ a2

r20
;

a21 ¼ −
a4 þ 2a2ðμþ bÞðbþ r0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 þ b2

p Þ
r40

;

k21 ¼
a4 − 2a2ðμþ bÞð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r20 þ b2
p

− bÞ
r40

;

w01 ¼
2aðμþ bÞðbþ r0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 þ b2

p Þ
r30

;

w21 ¼ 0; b01 ¼
r0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r20 þ b2
p − 1; b21 ¼ 0:

3. Parametrized EDGB black-hole metric

Finally, we turn our attention to the parametrization
of an EDGB black hole as obtained when truncating at
first order in the radial direction and at second order in
the polar direction. After settingM to be the mass A ¼ Mχ,
and taking into account that ζ ¼ 16πα2=ðβM4Þ, the
position of the event horizon in the equatorial plane is
given by

r0 ¼ 2M

�
1 −

χ2

4
−
49ζ

80
þ 128171χ2ζ

588000

�
þOðχ4; ζ2Þ

and depends on ζ. The asymptotic coefficients are given by

a00 ¼ b00 ¼ 0;

and by

a20 ¼
χ2

4

�
1þ 61429ζ

14000

�
þOðχ4; ζ2Þ;

thus implying violation of the Kerr expression for the
quadrupole moment [cf. Eq. (82)]. Finally, the strong-field
coefficients are found to be

a01 ¼ −
17ζ

60

�
1 −

324899χ2

166600

�
þOðχ4; ζ2Þ;

a21 ¼
447731

392000
χ2ζ þOðχ4; ζ2Þ;

k21 ¼ −
χ2

4

�
1þ 438867ζ

49000

�
þOðχ4; ζ2Þ;

w01 ¼ −
63χζ

160
þOðχ3; ζ2Þ;

w21 ¼ Oðχ3; ζ2Þ;

b01 ¼ −
361ζ

240

�
1 −

51659χ2

176890

�
þOðχ4; ζ2Þ;

b21 ¼
175629

196000
χ2ζ þOðχ4; ζ2Þ:
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