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It has been shown that the Gupta-Bleuler method of quantization can be used to impose the Lorentz
gauge condition in static space-times but not in cosmological space-times. This implies that the Gupta-
Bleuler approach fails in general in nonstatic space-times. More recently, however, the Dirac method of
quantizing constrained dynamical systems has been successfully employed to impose the Lorentz gauge in
conformally flat space-times. In this paper we generalize this result by using Dirac’s method to impose the
Lorentz gauge in a general space-time region where the metric is expressed in synchronous coordinates.
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I. INTRODUCTION

Dirac’s approach to quantizing constrained dynamical
systems [1,2] can be applied directly to the problem of
quantizing the source-free electromagnetic field. In this
approach a gauge fixing term is added to the Lagrangian of
the system. This breaks the gauge invariance of the
Lagrangian as well as modifies the canonical momenta
and the Hamiltonian. The gauge condition is directly
enforced through constraints on the dynamic field
variables.
To quantize the system the dynamic field variables are

promoted to time-independent operators, while the Poisson
brackets between dynamic field variables are replaced by
commutators in the usual way. A wave function is intro-
duced that evolves according to the Schrodinger equation
using the modified Hamiltonian and is annihilated when
acted on by the constraints.
The advantage of quantizing the electromagnetic field

using Dirac’s approach is that the Lorentz gauge con-
dition can be imposed directly on the wave function. In
the more popular Gupta-Bleuler formalism the Lorentz
gauge condition is enforced more weakly by requiring
only that the expectation value of the Lorentz gauge
constraint vanish. It has been shown that one can use the
Gupta-Bleuler approach to quantize the electromagnetic
field in static space-times [3] but not in cosmological
space-times [4]. This implies that the Gupta-Bleuler
method fails in general in nonstatic space-times.
Recently the Dirac approach has been used to quantize
the source-free electromagnetic field in general confor-
mally flat space-times [5].
In this paper we apply the Dirac approach to a fully

general synchronous space-time metric. This is of particular
interest as any general metric can, at least locally, be
reexpressed as a synchronous metric through a coordinate
transformation [6]. Lastly, we define transverse and longi-
tudinal components of the dynamic field variables as
straightforward covariant extensions of their Minkowski

definitions. We show that only the transverse components
of the dynamic field variables contribute weakly to the
Hamiltonian and, under a certain assumption, to the energy-
momentum tensor of the electromagnetic field. This shows
that, in contrast to the Gupta-Bleuler approach, Dirac’s
method of quantization can be used in a general space-time
region where the metric can be expressed in synchronous
coordinates.

II. DIRAC QUANTIZATION IN SYNCHRONOUS
COORDINATES

Consider a three-dimensional spacelike slice Σ through
the space-time without a boundary. Let the coordinates on
the surface be denoted by xk (there may be more than
one coordinate patch) and consider geodesics that pass
through Σ and are orthogonal to Σ. A point P in the
neighborhood of Σ is labeled by the proper time along
the geodesic from the surface to P and by the coordinates
xk at the point the geodesic intersects the Σ. This
coordinate system will break down if geodesics that pass
through different points on Σ eventually cross. Therefore,
these synchronous coordinates will, in general, only be
defined in a neighborhood of Σ. In this neighborhood the
metric takes the form

ds2 ¼ −dt2 þ hijðt; xÞdxidxj: ð1Þ
The Lagrangian will be taken to be the Lorentz gauge-

fixed Lagrangian

L ¼ −
1

4

ffiffiffi
g

p
FμνFμν −

1

2

ffiffiffi
g

p ð∇μAμÞ2: ð2Þ

To obtain Maxwell’s theory from this Lagrangian the
constraint ∇μAμ ¼ 0 must be imposed.
The canonical momental density, ∂L

∂ _Aμ
, is given by

Πμ ¼ −
ffiffiffi
h

p
½Ftμ þ gtμ∇νAν�: ð3Þ
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After integration by parts the Hamiltonian density,
H ¼ Πμ _Aμ − L, that follows is

H ¼ 1

2

ΠμΠμffiffiffi
h

p þ
�
ð3Þ∇kAk −

1

2
hkl _hklAt

�
Πt − At∂kΠk

þ 1

4

ffiffiffi
h

p
FijFij; ð4Þ

where ð3Þ∇k is the covariant derivative on the three-dimen-
sional surface.
Our first constraint, given by the Lorentz condition, is

χ1 ¼
Πtffiffiffi
h

p ≈ 0: ð5Þ

The symbol ≈ denotes a weak equality, requiring that the
constraint be imposed after any Poisson brackets have been
evaluated. For consistency we also require that

_χ1 ¼ fχ1; Hg þ ∂χ1
∂t ≈ 0; ð6Þ

where H ¼ R
Hd3x. For this consistency condition to be

satisfied we require the additional secondary constraint

χ2 ¼
∂kΠkffiffiffi

h
p ¼ ð3Þ∇k

�
Πffiffiffi
h

p k
�
≈ 0: ð7Þ

It is interesting to note that Πkffiffi
h

p is a vector under the
following transformation on the surface:

t̄ ¼ t x̄k ¼ x̄kðxlÞ: ð8Þ

Applying the same consistency condition to χ2 we find that
_χ2 ≈ 0, thus there are no further constants. Both χ1 and χ2
are first-class since fχ1; χ2g ¼ 0. The Hamiltonian density
can be reexpressed in terms of our two constraints as

H ¼ 1

2

ΠkΠkffiffiffi
h

p þ 1

4

ffiffiffi
h

p
FijFij þ Ωχ1 −

ffiffiffi
h

p
Atχ2; ð9Þ

where Ω ¼ Πt=2þ
ffiffiffi
h

p ½ð3Þ∇kAk þ 1
2
hkl _hklAt�.

To quantize the theory we promote the dynamic varia-
bles, Aμ and Πμ, to time-independent operators that satisfy

½Aμð~xÞ; Aνð~yÞ� ¼ ½Πμð~xÞ;Πνð~yÞ� ¼ 0 ð10Þ

and

½Aμð~xÞ;Πνð~yÞ� ¼ iδνμδð~x; ~yÞ; ð11Þ

where ½� denotes the commutator and we have set ℏ ¼ 1. A
state vector is introduced which satisfies the Schrodinger
equation

i
d
dt

jΨi ¼ HjΨi: ð12Þ

The constraints are then imposed on the wave function as
follows:

χ1jΨi ¼ 0 and χ2jΨi ¼ 0: ð13Þ
We have chosen the operator ordering of the Hamiltonian

such that the last two terms vanish upon application of our
two constants and thus do not affect the equations of
motion.

III. DECOMPOSITION OF THE
HAMILTONIAN INTO TRANSVERSE

AND LONGITUDINAL MODES

The Hamiltonian can be split as follows:

H ¼
Z �

1

2

ΠkΠkffiffiffi
h

p þ 1

4

ffiffiffi
h

p
FijFij

�
d3x

þ
Z

½Ωχ1 −
ffiffiffi
h

p
Atχ2�d3x: ð14Þ

The second term weakly vanishes and can therefore be
ignored since it vanishes when acting on physical states.
We decompose the dynamic variables into transverse and
longitudinal components,

Ak ¼ AðTÞ
k þ ð3Þ∇kU and Πk ¼ Πk

ðTÞ þ ð3Þ∇kð
ffiffiffi
h

p
VÞ;
ð15Þ

where U and V are scalars that satisfy ð3Þ∇2U ¼ ð3Þ∇kAk

and ð3Þ∇2ð ffiffiffi
h

p
VÞ ¼ ð3Þ∇kΠk (we assume that solutions

exist). The transverse components then satisfy ð3Þ∇kAðTÞ
k ¼

ð3Þ∇kΠk
ðTÞ ¼ 0. The non-weakly-vanishing term of the

Hamiltonian can, after integration by parts, be decomposed
into transverse and longitudinal components:

HðTÞ ¼
Z �

1

2

ΠðTÞ
k Πk

ðTÞffiffiffi
h

p þ 1

4

ffiffiffi
h

p
FijFij

�
d3x ð16Þ

and

HðLÞ ¼ −
1

2

Z
Vð3Þ∇2V

ffiffiffi
h

p
d3x; ð17Þ

where ð3Þ∇2V ¼ ð3Þ∇k
ð3Þ∇kV and Fij only contains the

transverse components of the vector potential. In perform-
ing integration by parts we have dropped a surface term at
infinity (if Σ extends to infinity). This will be valid if it does
not contribute to the classical equations of motion, which
will be the case if the fields drop off sufficiently rapidly at
infinity. From (7) and (15) it is easy to see that the
constraint χ2 can be written as
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χ2 ¼ ð3Þ∇2V ≈ 0: ð18Þ
We can therefore conclude that HðLÞ ≈ 0 and that only

the transverse components of dynamic variables contribute
to the Hamiltonian.
Consider, in the classical theory, a surface of constant

time, t ¼ t0, with Vt0ð~xÞ ¼ Vð~x; t0Þ on the surface. Under
certain conditions it is possible to prove that ð3Þ∇2Vt0 ¼ 0

implies that Vt0 ¼ constant. Now this constant may vary
from one surface to another implying that Vð~x; tÞ ¼ fðtÞ,
where fðtÞ is a function of time not of ~x. If Σ extends to
infinity fðtÞ will vanish, since the fields vanish at infinity.
Assuming that we can take the secondary constraint to be
Vð~x; tÞ ≈ fðtÞ we find that the longitudinal part of Πk

weakly vanishes. This constraint can then be taken over to
the quantum theory.

IV. THE ENERGY-MOMENTUM TENSOR

The energy-momentum tensor,

Tμν ¼ 2ffiffiffi
g

p δL
δgμν

; ð19Þ

satisfies

Tμν ≈ Tμν
Maxwell; ð20Þ

where Tμν
Maxwell is the energy-momentum tensor of

Maxwell’s theory. It can be shown that Tμν contains only
transverse degrees of freedom, weakly, if Vð~x; tÞ ≈ fðtÞ.

Here we have ordered the operators so that the constraints
appear on the right-hand side of all expressions. It can also
be shown that H ≈ −

R
Tt

t

ffiffiffi
h

p
d3x.

V. CONCLUSION

We have used Dirac’s approach to quantizing con-
strained dynamical systems to quantize the source-free
electromagnetic field in the Lorentz gauge in a general
space-time expressed in synchronous coordinates. This
generalizes the results of [5]. Consistency of the time
evolution of the Lorentz constraint was ensured through the
additional constraint ∂kΠk=

ffiffiffi
h

p ¼ 0. The two constraints
are maintained under time evolution and impose the
Lorentz condition in a general synchronous coordinate
system. Any metric can be written in the form of Eq. (1) in a
neighborhood around a non-null hypersurface through the
space-time [6]. This generalizes the quantization procedure
to restricted regions of more general space-times. We also
found that only the transverse components of the dynamic
field variables contribute weakly to the Hamiltonian and,
assuming Vð~x; tÞ ≈ fðtÞ, to the energy-momentum tensor
of the source-free electromagnetic field.
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