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Dynamical structure of pure Lovelock gravity
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We study the dynamical structure of pure Lovelock gravity in spacetime dimensions higher than four
using the Hamiltonian formalism. The action consists of a cosmological constant and a single higher-order
polynomial in the Riemann tensor. Similarly to the Einstein-Hilbert action, it possesses a unique constant
curvature vacuum and charged black hole solutions. We analyze physical degrees of freedom and local
symmetries in this theory. In contrast to the Einstein-Hilbert case, the number of degrees of freedom
depends on the background and can vary from zero to the maximal value carried by the Lovelock theory.
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I. INTRODUCTION

Lovelock-Lanczos gravity [1,2] is a natural generaliza-
tion of general relativity to higher dimensions. It provides
the most general gravity action, yielding the second-
order field equations in the metric g,,(x). In a (d + 1)-
dimensional spacetime, the action is given by

[d/2]
I[g] :/dd“xZakEk.
k=0

Each term in the sum is characterized by the coupling
constant ¢ multiplied by the dimensionally continued
Euler density £, of order k in the curvature,

(1.1)

) Rl’zk—ll/zk
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Here R%,, is the Riemann curvature tensor and 5’;:,’,‘22: is
the totally antisymmetric generalized Kronecker delta of
order k defined as the determinant of the k X k matrix
(818,72 -+ - 8,¢]. This kind of action, polynomial in curva-
ture, is of significant interest in theoretical physics because
it describes a wide variety of models. It has been shown in
Refs. [3,4] that, for arbitrary constants «;, a degeneracy
may appear in the space of solutions because the metric is
not fully fixed by the field equations. For instance, if the
action has nonunique degenerate vacua, then the temporal
component g,, of any static spherically symmetric ansatz
remains arbitrary [5]. This problem can be avoided by a
special choice of the coefficients a;. The most simple
example is given by the Einstein-Hilbert (EH) term alone,
which has the unique Minkowski vacuum. Presence of
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positive or negative cosmological constant terms gives the
theory a unique de Sitter (dS) or anti-de Sitter (AdS)
vacuum, respectively. Adding the Gauss-Bonnet term with
ay # 0 produces two different (A)dS vacua, which can
become degenerate for the critical value of the parameter
where the two vacua coincide [6].

Another way to fix the coefficients a; is to have a unique
vacuum in the theory that is degenerated, which leads to
Chern-Simons gravity in odd dimensions and Born-Infeld
gravity in even dimensions [7]. In those theories all
couplings are expressed only in terms of the gravitational
interaction and the cosmological constant. Also, choosing
the coefficients up to a certain order k = 1, ..., [d/2] = N
leads to a family of nonequivalent theories whose black
hole solutions were studied in [8] and also in [9] for the
maximal case with k = N.

Recently, another possibility has been suggested,
where instead of the full Lovelock series, only two terms
in the sum are considered in the action: the cosmological
constant and a polynomial in the curvature of order p.
These pure Lovelock (PL) gravities [10] remarkably
admit nondegenerate vacua in even dimensions, while
in odd dimensions they have a unique nondegenerate dS
and AdS vacuum. Their black hole solutions are asymp-
totically indistinguishable from the ones appearing in
general relativity [S]. This is the case even though the
action and equations of motion are free of the linear
Einstein-Hilbert term. This similar asymptotic behavior
of the two theories seems to also extend to the level of the
dynamics and a number of physical degrees of freedom in
the bulk.

The properties of PL gravity have been discussed in the
literature. The stability of PL black holes has been analyzed
in [11]. Application of gauge-gravity duality to phase
transitions in quantum field theories dual to pure Gauss-
Bonnet AdS gravity was studied in Ref. [12]. It can be
shown that in any dimension d + 1 there is a special power
p such that the black hole entropy behaves as in any
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particular lower dimension. In the case of the maximum
power, p = N, such as the five-dimensional pure Gauss-
Bonnet action, the black holes exhibit a peculiar thermo-
dynamical behavior [5,13], where temperature and entropy
bear the same relation to horizon radius as in the case for
3D and 4D, respectively. Thermodynamical parameters are
thus universal in terms of horizon radius for all odd D =
2N + 1 and even D = 2N + 2 dimensions.

Dynamical aspects of PL theory were analyzed in
Ref. [14] in terms of analogs of the Riemann and Weyl
tensors for Nth-order PL gravity. It turns out that it is
possible to define an Nth-order Riemann curvature with the
property that the trace of its Bianchi derivative yields the
same divergence-free (analogue of Einstein tensor) second-
rank tensor as the one obtained by the corresponding
Lovelock polynomial action. Thus, one can obtain the
gravitational equations for PL gravity [15,16] in the same
way as one does for the Einstein equations from the Bianchi
identity. However, there is one crucial difference, which is
that the second Bianchi identity (i.e., vanishing of the
Bianchi derivative) is only satisfied by the Riemann tensor
and not by its Nth-order analogue. The former therefore has
a direct link to the metric, while for the latter this relation is
more involved. What yields the divergence-free tensor is
the vanishing of the trace of the Bianchi derivative, and not
necessarily the derivative itself. From this perspective, PL
gravity could be seen as kinematic, which means that the
Nth-order Riemann tensor is entirely given in terms of the
corresponding Ricci tensor in all critical odd D = 2N + 1
dimensions, and it becomes dynamic in the even D =
2N + 2 dimensions. This might uncover a universal feature
of gravitational dynamics in all critical odd and even
dimensions, making it drastically different in critical odd
dimensions. More precisely, the PL. vacuum is flat with
respect to the Nth-order Riemann tensor but not relative to
the Riemann tensor. This suggests that there are no
dynamical degrees of freedom in the critical odd dimen-
sions relative to the former, but this may not be the case for
the latter.

On the other hand, it has been argued in Ref. [17] that the
metric Lovelock theory should have the same number of
degrees of freedom as the higher-dimensional Einstein-
Hilbert gravity, namely, D(D — 3)/2. This is different than
expected from our previous discussion, which suggested
fewer physical fields. However, the number of degrees of
freedom can change with the backgrounds. For example,
Lovelock-Chern-Simons gravity has different numbers of
degrees of freedom in different sectors of the phase space
[18,19]. Because of the nonlinearity of the theory, the
symplectic matrix might have different ranks depending on
the background [20], causing more symmetries and less
degrees of freedom in some of them, which was explicitly
demonstrated in Chern-Simons supergravity [21]. The
constraints can also become functionally dependent in
certain symmetric backgrounds [22].
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Therefore, we provide a detailed analysis of the dynami-
cal structure of PL theory by explicitly performing
Hamiltonian analysis and exploring to what extent it is
similar to general relativity and whether it exhibits any
additional universal features.

II. PURE LOVELOCK GRAVITY

We focus on pure Lovelock gravity of order p in (d + 1)
dimensions, whose action consists of the unique Lovelock
term £, and the cosmological constant L,

1
I[g] =« / NS <2—,,5’£:::52‘55RZ#3 R, —2A> :
(2.1)

where a,, = —« and &, = 2xA. The gravitational constant k
has dimension of (length)?*!=27 and the cosmological
constant has dimension of (length)™”, and not
(length)~=2 as in general relativity. Varying the action with
respect to the metric g, (x), one obtains equations of
motion in the form

PGy + Ay =0, (2.2)
where A=0 or A= % and the generalized

Einstein tensor is symmetric to pth order in the curvature,

|
l-~~l/2p Mo Hop—1H2p
- Y aal glfﬂlwﬂszl/ll/z o 'Rl/zp—ll/zp .

PGt = (2.3)

The form of A given above is such that A =0 has a
Minkowski metric as a particular solution, whereas A # 0
has dS (sign +) and AdS (sign —) space of the radius ¢ as
solutions of the PL field equations.

Because of the presence of local symmetries in the
theory, not all components of the metric are physical. In
order to determine dynamically propagating fields in the
bulk, we turn to the Hamiltonian formalism, which pro-
vides a systematic method to separate physical variables
from the nonphysical ones. However, applying the canoni-
cal analysis to the PL action in the metric formalism is
technically involved, even though it only depends on
velocities. A reason for this is that it is higher order in
curvature.

On the other hand, if we write the action (2.1) in the
Palatini formalism 7 [9,T], where the metric gy and affine
connection Ffw are treated as independent fundamental
fields, then the theory naturally includes torsional degrees
of freedom. Then, the vanishing torsion would just corre-
spond to a particular solution of the field equations,
whereas in general relativity, it is the only solution. A
wider space of solutions can be avoided by introducing a
Lagrange multiplier that forces the torsion to vanish, in
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such a way that the field equations become the ones of PL.
gravity in Riemann space.

In the next section, we reformulate the PL gravity in first-
order formalism, linear in velocities, which makes it much
simpler to apply the Hamiltonian analysis.

A. First-order formalism

The fundamental fields in the first-order formalism,
vielbein ¢ (x) and spin connection w@’(x), are related to
the fields in the tensorial formalism through the relations
G = Napehel and T, = wlele,, + etd,el, where
a,b=20,1,...,d are the Lorentz indices. Note that the
change of variables (g,I") — (e, w) is not unique but is
determined up to Lorentz rotations. With the new fields, we
obtain the Riemann curvature tensor sz and the torsion
tensor 77, as

Rl‘jﬁ’ = Gﬂa)l‘fb - (9,,a)zb + 0%, ok — a)l‘jba)bc,

ub
a a a
T,, = Dye; —D,ey,

(2.4)

where D = D(w) is a covariant derivative with respect to
the spin connection acting on the Lorentz indices only,
e.g., Dyef = 0 e + wiyel.

Naively, the first-order PL action can be cast in the form

Ile,w] = /dd“x(aoﬁo +a,L,), (2.5)

where we rescaled and L; —

A = — (d+11£2k)!
—(d+1—2k)!L;, and the Euler densities now become
polynomials in R and e,

— HHan p%1 L pYdtl d+1
[:0 - €a1---ad+1€ ey Cugpy ~ € ’

1

= — Hipap R4 | pYap-192p Japst
p 2P 601"'ad+1€ R R

Hip T Hop—-1H2p = Hop+1

L

g1, d+1-2
X el ~RPe P, (2.6)

Notation for the Levi-Civita symbol e/1"#¢+1 ig given in the
Appendix. The coupling constants become

2Ax K

A ENT T T a2t

v 27)

However, the field equations obtained from the action (2.5)
after varying it in % and w@’ are, respectively,

R“Zp*l ayp Aopiy
Hop—1H2p “ H2p+1

aO(d+ 1) eal . .e“d
ap(d—f—l—Zp) Hi Ha |»

1
— Py i | pA192
0 = €44;...q, " M (217 R,z

X eyt + (2.8)
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1
— My [ RA243
0 = €4pay-a, M <2p R

aq
.. .e’ud>'

These equations are not equivalent to the PL field equa-
tions (2.2) because the Riemann spaces for which 77, =0
are not the only solutions of Eq. (2.9) when d + 1 > 4 and
p > 1. Thus, treating (e;;, wﬁh ) as independent fields
changes the dynamics of the system. In order to use
first-order formalism and, at the same time, obtain field
equations of pure Lovelock gravity, where T}, = 0 is the
unique solution, we introduce a Lagrange multiplier A°
that forces the torsion tensor to vanish through a constraint.
The new action reads

% Ra2p—2a2p—l Tllzp Aapi1
Hop—2H2p—1 + HapH1 “Hopi

(2.9)

1
Ile,w, ] = /dd“x((zoﬁo +a,L, +§Tﬁyﬂﬁ”).

(2.10)

The field 47" (x) is antisymmetric in the indices [uv].

Although the proposed action is explicitly torsionless,
it does not imply that the equations of motion give the
dynamics equivalent to the PL one. An example of the
system where the addition of the constraint 7“4, modifies
the dynamics of the theory is topologically massive gravity,
where it introduces a term involving the Cotton tensor
[23-25]. There, the term with the multiplier has nontrivial
implications on the derivation of conserved charges [26].
Therefore, the influence of a multiplier has to be well
understood on the level of the field equations.

The action (2.10) reaches an extremum on the equations
of motion,

Se?: 0=¢ et Ha ﬂ(d+1_2 VR 2 - -
y7 — %aay-ay P P )Ry,
% R“Zp—l“Zp A2p+1

aq
Hop—i#op Ctopi1 * " Clyg

+ap(d + 1)e)! e,‘jj} + DA, (2.11)
llb . 1 JApy ards
owy’: 0= 7 Cabara,€ MR
X Ry poys T €y 1+ €l
1
+ E (ehuﬂﬁy - eaulﬁy)’ (212)
Sx: 0=T¢,. (2.13)

In addition, the curvature and torsion tensors satisfy the first
and second Bianchi identities,
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D, T4 + D,T¢, + D,T¢, = Ribe,, + R ey,
+ Rabw b,
DﬂR“bp,, + DpR"”w + D(,R“”W =0. (2.14)
When the torsion tensor vanishes, the field equation (2.12)
becomes

0= ep ¥ — ey A (2.15)

where d(d + 1)?/2 components of 3" can be solved as

2 =0. (2.16)
This result is obtained by rewriting (2.15) with the Lorentz
indices as A, — Acps = 0, and combining it with two
other expressions obtained by performing the permutation
of indices, which directly leads to 4, ;. = 0 and therefore
(2.16). Using (2.16), the last equation (2.11) is indeed
equivalent to the Lovelock field equations in Riemann
space. The Bianchi identities (2.14) in that case read

R4

_ ab __
}=0,  DyR® =0,

H 2 po)

(2.17)

oHp

III. ACTION IN THE TIMELIKE FOLIATION

The Hamiltonian formalism is not explicitly covariant
because it presents all the quantities in the timelike foliation
x* = (t,x"), where x° = ¢ € R is the temporal coordinate
and x' (i=1,...,d) are local coordinates at the spatial
section X.

In the tangent space, we decompose the indices as
a = (0,a). The vielbein ej is invertible on R x X, and
its inverse is ef. We require that e(’) # 0 and that the

d-dimensional vielbein ¢ is also invertible with the inverse

it
;€%

(3.1)

In order to introduce canonical variables in the action
(2.10), we have to define the action in configurational
space, that is, in terms of the fields e}, w/‘jb and its velocities
ey, cbzb . To this end, we have the splitting of the fields in the
timelike foliation

et = (el ed). @l > (af. o).
and similarly for the multiplier A%° — (1% = 4., A’a]) It is
worthwhile noticing that @?? transforms as a tensor of rank
2 under local Lorentz transformations on X and o¢? as the
Lorentz gauge connection.

Since L = [ dxL, the Lagrangian scalar density of
(2.10) can be written in a compact way,
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| o1 1 ”

L= Ewgbqh + 94 + Ew?hsa,, +eiS, + ET?]M{.
(3.2)
We neglect all boundary terms. In the action above, we

introduce the quantities which do not depend on velocities
and timelike components,

i pap € eiiz...idRazu3 L pp2fap-t G2p ead
ab " Hp-2 abay---ay i3 bop2izp-1 lop ig?
(3.3)
Sa = Ha + Di/uzv (34)
— i i
Sab - Hab + ebiﬂa - eai’1 ’ (35)
where
_ iy ay ay
Hu = €aqy--a,€ v (d + 1)0!061-] e,
+ 2P (441 = 2p)RUE L RO g gl
2P PR, ip-1izp ~lapii iqg |’
pa, i paads
Hub = -1 (d +1- zp)eabaz'--adel dRi2i3> T
Aop2@2p-1 pd2p  A2pt1 - dq
fopalap-1 * d1iap igpy ig " (36)

The Lagrangian (3.2) is similar to the one in Chern-Simons
theory, whose Hamiltonian analysis was studied in
Ref. [19].

IV. HAMILTONIAN ANALYSIS
IN FIVE DIMENSIONS

Let us start with the simplest case of a five-dimensional
pure Gauss-Bonnet action (d = 4, p = 2),

a
— 5 vpo; a,b ,c,d,e 2 pab ped e
I = /d x[eabcde«e” 4 7(aoeﬂe,,epeaey + 1 RMDRpge},>

1 v
+5 Tl ] (4.1)

The Lagrangian has the form (3.2) with particular tensors

[ ijkl cd e
Ly = 200" €pcaeRSg €]

_ | i
Sab - Hab + ebi’u; - eai/lbv
Sa = Ha =+ Diﬂéu

— ijkl pcde
Hab = X€pgcde€ / Rij Tklv

, a
_ ijkl b c ,d e 2 pbe pde
H, = €upeac€” <5aoei ejepe; + ZRU Rkl)’

and the multipliers are conveniently written as
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L kl
/151/ = —eY Aa,tk]'

. 1 ..
_ kl
/IL = —¢l lu,jkls X

3l (4.3)

If we denote the generalized coordinates by ¢ (x) and the
corresponding conjugated momenta by 7, (x),

g = {ef ef o " 2 2}, (4.4)
Ty = ATl Tl By Ty DY P T

s _oc - i pi
we can use the definition 7, = 7z to find 77, = L', and
x!, = AL, while all other momenta are zero. Thus, the

. . 92 . . .
Hessian matrix % is not invertible, and we cannot

express all velocities in terms of the momenta. In turn, we
get the constraints, which are called

primary constraints: @y = {¢f, dh, Bl Plys PY P }-

(4.5)
They are defined on the phase space as
@, =, ~0, ¢, =nl -2 ~0,
ab = Tap ~ 0, Do = o = L3y &0,
pé =0, pi; 0. (4.6)

The surface ®,, ~ 0 in the phase space is called the primary
constraint surface, I'p. The weak equality f(q,7) * 0on T
implies that a phase-space function f vanishes on I'p, but its
derivatives (variations) are nonvanishing. This is different
than the strong equality, f(g,7) = 0, where both f and its
variations vanish on I'p. This distinction is relevant for the
definition of the Poisson brackets, since f~ 0 does not
imply {f,---} =0.

To simplify our notation, we write the arguments of the
phase-space functions symbolically, assuming that all
quantities are defined at the same instant, x* = x0 =1,

0 0
A:A 5 B,:B ,, 8i:_'7 8’2—,
(%) (') o P = o
§=6(F-%), 5% =55h— 5980 (4.7)

The fundamental Poisson brackets (PBs) that are differ-
ent than zero are

{ed, 7} = 63645,
{wib 7} = 8588,
{45, p} = 63615,

{4, plby = 8¢576. (4.8)

The symplectic matrix Q,,y of the primary constraints
reads

PHYSICAL REVIEW D 93, 064009 (2016)
{ @y, Py} = Quind, (4.9)
and it is antisymmetric, Qyny = —Qpuys. The only (inde-

pendent) submatrices of the symplectic matrix that are
different than zero are

{¢ab’ cd) — gzabcd(s - _8a2€ g leabcdeTk[(s
{¢ub’ } Qabca = _2a2€l'lkl€uhcde k;) s
{¢h. P} = 6,836 (4.10)

The canonical Hamiltonian, H, = z,,g" — L, defined on
Fp 18
elS, — 1 A”

1
HC(p’ CI) = _7wth8ab

5 (4.11)

and the total Hamiltonian, defined on the full phase space
I, is obtained by introducing the indefinite multipliers
uM(x),

Hr(p,q,u) = He(p,q) + uM@y(p,q), (4.12)
where uM = {u¢, u¢, uf®, us®, vi, v}, Evolution of any

quantity A(g(x), z(x)) = A(x) in the phase space is given by

/d?c’({A HL} + uM{A, B, )

/d?c’{A HY ). (4.13)

This allows us to identify some field velocities with the
Hamiltonian multipliers,
ab ab

. _ ca .l”_ U
o =ut’, e =ut, A =vd,

A=vi.  (4.14)
Consistency of the theory requires that the primary
constraints remain on the constraint surface during their

evolution, that is,

These consistency conditions will either solve some multi-
pliers or lead to the secondary constraints, or they will be
identically satisfied.

When the symplectic matrix has zero modes and
{®y,Hc} #0, the consistency conditions lead to the
secondary constraints,

P =8,~0, (4.16)
Pip = Sap ~ 0. (4.17)
Py = T4~ 0. (4.18)
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Other consistency conditions solve Hamiltonian multi-
pliers, such as p¢ =~ 0, which gives

l/l;l = D[E? - w?bebi. (419)
On the other hand, from ¢’a ~ 0 we solve the multiplier,

i ijkl b ,c ,d e de (,,bc bc
Uy = —€apeae€’ ' [20ap €] €jere + Ry (”j — D;w; )]

+ bl + DAy (4.20)
Using the Bianchi identities, D€ ;4. = 0 and the property
that any totally antisymmetric tensor of rank 6 defined in
five dimensions must vanish, that is,

— €pcdef€aj T €cdefaCpj = €defab€cj T €cfabcCd)

— €fabcdCej + €abcde€fj = O’
the last consistency condition for ¢, becomes

0R @l ® eqly — epdly — Mley; + Aeq.  (4.21)
One can show, in a similar way as for Eq. (2.16), that the
constraints (4.17) and (4.21) are now equivalent to zero
multipliers A}, ~ 0 and Ay ~ 0.

So far, we have found the following,

secondary constraints: S, ~ 0, T} =0,

Am0, A0, (4.22)

and we determined the multipliers u¢ and v',. The functions

{u%, u®, u, vi} remain arbitrary. A submanifold I's ¢ T

defines the secondary constraint surface, where all con-
straints discovered so far vanish.

To ensure that the secondary constraints 1 evolve on the
constraint surface I'g, we require that /1'a = ¢!, and /1;’ =Y
vanish. This leads to v/, = 0, which by Eq. (4.20) can be

equivalently expressed as

i ijkl b ,c ,d e de(,,bc bc\] ~
Xa = —€avcac€”’" [20age7 eSefef + ay R (u}® — D) ~ 0

3)

and v =0. (4.

[\

Before we continue, we notice that the pairs of con-
jugated variables (4, p), which are constraints, have PBs
whose right-hand side (symplectic form) is invertible on I's.
Thus, they are second-class constraints that do not generate
any symmetry but represent redundant, nonphysical quan-
tities. They can be eliminated by defining the reduced phase
space I'* with the Poisson brackets replaced by the Dirac
brackets,

PHYSICAL REVIEW D 93, 064009 (2016)
Y = (4B + [ a4 400 B)
—{A, pi (") HA4(»), B'}
P A0 0. )

-5 AP, Y. (424)

It is straightforward to check (and it is a general property
of the Dirac brackets) that the use of {, }* turns the weak
equality into the strong equality on I'™*,

A =0,

ij _
/111 - ’

on I'™,

on I'™*,

pi =0,

pi; =0, (4.25)
* =0 and {li/,pﬁg *=0 on I'*. The
remaining generalized coordinates of the space I'* are
(eg, a),‘jb , q, 7, ), and their Dirac brackets remain unmodi-
fied (they are equal to the Poisson brackets). From now on,
we drop the star from the Dirac brackets.

Let us analyze the consistency condition of S,. Using
R} = Dyub¢ — Djub® and éf = uf, we get

because {4, p/}

S _ ijkl b ,c ,d e be pde
Sa = €apeac€’ ' [20agD;ef €S efe] + a,D;URY]

+ o, (20age] eSefes + arRIRE)], (4.26)

where we denoted

Ut = u® — D;ws® (4.27)
and used [D;, Do} = Rﬁ’]fwtf" - Rf}fa),fb. It can be
recognized from the Lagrangian formalism that U =
RY because the Hamiltonian prescription treats all time
derivatives as new functions. Next, we use a combinatorial

identity, valid for any completely antisymmetric tensor
chef ,

0= DteacdefZCdef
- (ede‘«’fwma + 2€ahdefa)lcb + 2€ucdhfwteh)26def.
For a particular choice of X/ = 20a, e{ e edes+

azR{-}Csz , we obtain that S, does not leave the surface
["g during its evolution,

S, =-Dy' — w,,'S) ~0. (4.28)
Furthermore, we also have to require the same for the
torsion tensor,

T?j = Dilxtja- — Djl/l? —+ u?bebj — quebi ~ 0.

‘ (4.29)
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With the help of Eq. (4.19), we rewrite the last equation as

0~ 1% ~ R ey + U, — U (4.30)

ij
Here, the vielbein projects the Lorentz indices to the
spacetime ones, U“); = = Uthe,; ;- The above equation gives
30 algebraic equatlons in 40 unknown functions U<,
which can be decomposed into 16 4 24 components

(U9, UZ). The final solution is

1 1 , -
[l]] R eb, 2Rn] = U [i] = O,ER tij |-

(4.31)

In that way, the 6 + 4 coefficients (U° ‘_’[l]]) become

i
completely determined by the consistency of T and T[k,]
Since U“; = R, the above relation just represents the
first B1anch1 identity for the components (¢ij) rederived in
the Hamiltonian way.

The 20 components of Tf‘j that do not solve the
corresponding multipliers are exactly the ones that are
symmetric in the first two indices,

T(ki)j ~ (eakT?j + eaiTZj>

e A

1
Rysij + Ui + zRitkj + Uiy =0,  (4.32)

22
(Y

which vanish due to the known Ujj. Thus, these compo-
nents do not lead to new conditions. We conclude that 30
equations T,“J = 0 solve only 10 antisymmetric components
u;‘b and the remaining 20 equations do not give anything
new—they are automatically satisfied.

Thanks to the relation (4.31) and because the curvature

R?jb satisfies the first Bianchi identity, we can collect all first
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0=n8¢ . jk),
0= Btlj = eb, ’J

ljk -

-2U%

- (4.33)

This has an important consequence on the number of
linearly independent multipliers U¢. Namely, we can
prove that

1
R/waﬂ - Raﬂ/w = 5 (B/waﬂ + Bﬂ;wa - Baﬂuv - BD(Xﬂﬂ) = 0’

(4.34)
so the Riemann curvature is symmetric, R, 3 = Ryp,,, OF
Rtitj = Rtjti’ Rtijk = Rjktis Rijkl = Rklij‘ (4-35)

The Ilast relation in (4.35) does not give any further
information because it is just the Bianchi identity on X.
The first one, instead, shows that not all coefficients
U,ij = eq,Uj; are independent because U ;; are symmetric,
Uyj = U,], = ea,ebiR,j . The second condition in (4.35) is
equivalent to

Ujii = (4.36)

ab
ateblek ’

in a way that is consistent with (4.31). The only remaining
unknown multipliers are 10 symmetric components U,

leading to the final expression for U%” as

ab __ ap ,bv
U =U,,e"e
ta ,jb th ,j d ,ja ,kb
=Uyj (e’ —e®el?) + eqeqR e,
U”'j - Utji' (437)

From the point of view of the irreducible components

Bianchi identities in a covariant way, B,,qs = R,yap) =0,  of U¢, we can see the 10 components of U «(ij) as the only
where the components of the tensor B are unsolved part in the table below.
MultiplierUmj: Ut[ij] U,kk SUnj AUkij SUkij TUkij
40 components : 6 1 9 4 4 16
Solved by: T?]» arbitrary ~arbitrary  T|;;) Bianchi Bianchi

As it is well known, the irreducible components of the
rank-2 tensor U,;; are as follows: its antisymmetric part
Uyjijj the trace U +F and the symmetric traceless component
SUyj = Uyij) —59;;Un”. On the other hand, the irreduc-
ible components of the rank-3 tensor U are as follows:
its vectorial component (trace) U; = U jkj , also written as
SU ijk = 9ijUr + gixUj, the axial-vector component
AU, = Upjyy and the tensorial one "U = U-AU - 5U.

The last equation to analyze is y’, ~0. It can be

combined together with H, = 0 into

Xe=(Haxt)

*
= €ubcde€ Mvaf (Saoebecege[ej _ngRg/ej> ~ 0’

4
(4.38)
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in which we recognize the generalized Einstein equations
with cosmological constant (2.2). In contrast to the
Einstein-Hilbert case [27,28], the multipliers in Eq. (4.23)
cannot be fully solved because they are nonlinear in the
fields, causing ambiguities. In fact, if we write it as

205 gpeae€ ™ RE UL = —40ag€ gpeqc€’ el eSelef,
(4.39)
then the rank of the matrix QY = —2a,€,pcq.€"F R

explicitly depends on the background considered. More
concretely, replacing the solution for the multiplier (4.37) in
(4.39), we obtain a set of algebraic equations

MU, = AL or MU = A, (4.40)

where the matrix of the system is obtained by symmetriza-
tion of

2052

ijm __ ij La,th,mc _ mn ijkl
M" = -QY, elee —Hgﬂne Pae MR . (4.41)

abc™ p

The nonhomogeneous part of the system is

= |€‘ (120005;4 - a2eﬂm,w,{e"ijRMklR,j”m). (442)
In the context of Eq. (4.40), M is the 20 x 10 matrix that acts
on the 10-component column U. When the rank of M is
maximal, that is, 10, then all components of U can be
determined. This is the case for AdS space, as we show
below. A situation is completely different in flat space, where
the equation becomes homogeneous (A = 0) and the rank of
M = 0 is zero. In that case, all 10 components of the vector
U,(jm) remain arbitrary. In the EH case this matrix always
has maximal rank because it does not depend on the
curvature. In higher-dimensional PL gravity, M is again
polynomial in the curvature and may have different ranks. It
is a generic feature of Lovelock gravity, and it has already
been noted for the Lovelock-Chern-Simons case [19].

We are interested in the A # 0 backgrounds, where
black hole solutions exist. We restrict our theory to the
part of the phase space where the rectangular 20 x 10

matrix M Z(j m) (x) has maximal rank, 10, for all x. In that
case, only the left inverse of M exists, which is the 10 x 20
matrix A?k[)i(x) of the rank 10 defined by

= 58y + 857 (4.43)

1 a i(jm)
2 A(kl)iM“

The matrix A depends on e and a),’jb. Then Eq. (4.40) can
be solved and the multipliers are

PHYSICAL REVIEW D 93, 064009 (2016)
Ulij - A?l])kA]‘; (444)

To show that the chosen subspace contains a nonempty
set of solutions, we consider the AdS background

_ | o
R;wa[)’ = _ﬁ (g/,mgy[)’ - gu(lQﬂﬂ)? (445)
with @y = 54z and @, = —1. Then
crilim) _ 4 im=jn —ij=nm 2—in— jm
= @59 (GG + GG — 257 ™),
(4.46)
where (/g = det[g,,] is the determinant of the spatial

background induced metric g, ;= gij and its inverse
is Wyl = gii — ‘1;]_3”

Now we linearize Eq. (4.40) around this background,
ie., (M+6M)(U+V)=A+5A, where 8U,(j) = V.-
We multiply the zero order, M U = A, by &¢ and obtain

- 5apl? gy 1

j = % (4>§ = —ﬁgzzgijv

(4.47)

where we replaced the values of the constants a;. We also
used the identity |2|> = —g = —3,,*)3.

Projecting MU = A by &¢, we find that (4.47) is
satisfied. One can obtain the same result from the definition
U,,] = Rm] coming from Egs. (4.27) and (4.45).

The linear order equation, MV + SMU = §A, projected
by e reads

;(Jm)vtjm = (!

"o

(4.48)

where we defined Ci, = —6M\""T,;,, + e5Ai. After
replacing the matrix M [see Eq. (4.46)], we find

iy e
Vilu= V) = 5= G (4.49)

In that way, all 10 symmetric multipliers U = U + V are
uniquely solved in the AdS background with

. 2 1
V. |e|l’p <C1 __5tck>

' =57 (€39 (4.50)

It is straightforward to check that the remaining equations,
Y '")V,jm = Ci, are automatically satisfied. Therefore, we
explicitly find the matrix A?kl)i in the AdS background.

It is easy to prove in a similar way that the static black
holes also belong to the chosen region of the phase space
where the left inverse Aflkl)i exists. Namely, as in AdS
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space, the black hole curvature R’;/”j has each component
proportional to &, with different factors. An explicit check

confirms that M has maximal rank for static pure Gauss-
Bonnet black holes.

With all constraints identified and the Hamiltonian
multipliers solved, we can obtain the information about
the degrees of freedom and local symmetries in the theory
in a particular class of backgrounds, where M has maximal
rank during the whole evolution of the fields.

V. DEGREES OF FREEDOM AND SYMMETRIES

The next step in the Hamiltonian analysis is to separate
first- and second-class constraints. The first-class con-
straints generate local symmetries, and the second-class
constraints eliminate nonphysical fields not related to the
symmetries. If there are N first-class and N, second-class
constraints in the phase space with N generalized coor-
dinates, then a physical number of degrees of freedom is
given by the Dirac formula

1

N*=N=Ni=3N,. (5.1)

Thus, determination of a class of constraints is of essential
importance for identification of the physical fields living on
the reduced phase space I'*. Furthermore, first-class con-
straints are related to the existence of indefinite multipliers
in a theory, and their numbers should match since each
first-class constraint appearing in the Hamiltonian is
multiplied by an arbitrary function. Let us recall from
the previous section that the solved multipliers are
{us, U, vl =0, vJ =0}, and the unsolved ones u4”
and u¢ are related to the local symmetries, Lorentz trans-
formations and diffeomorphisms. In addition, we do not
know the explicit form of all multipliers U¢” because U 1ij)
depends on the background. It is then expected that we will
not be able to obtain a closed, background-independent
form of all generators.

To find first-class constraints, it is helpful to write the
total Hamiltonian density H; with solved multipliers
because it is known that this is a first-class quantity (it
commutes with all constraints); therefore, only first-class
constraints will naturally appear as combinations of other
constraints. Thus, replacing the solutions (4.19), (4.23) and
(4.27) in Hy, we obtain the Hamiltonian density

1
H = _Ew?b‘]ab

1 . .
+ EU?”qﬁ;b +9,D',

ab 7’
etJ, +u,ﬂa+2u T,

(5.2)

where the constraints (H,, H,;,) are replaced by the new
ones (J,, Jup),

PHYSICAL REVIEW D 93, 064009 (2016)

Jap = Hap — eaiﬂﬁ, + epimy + Di¢51b
= —emﬂ'z + ebiﬂ-il + D[ﬂzba

The total divergence D' = efr), +1wi’¢i, can be
neglected, as it contributes only to a boundary term in
the total Hamiltonian.

The functions (J,, J,;,) are not guaranteed yet to be first
class because we still have to replace U¢?. But to evaluate
U - ¢, we have to choose a particular background for U,(;),
so we will not write it explicitly, as we prefer to keep the
background-independent expressions. A more detailed
analysis shows that after using Eqgs. (4.37) and (4.44),
the multipliers can be written as

1 :
SUP by

: Alglegel g,

l/)
1 -
— e <2 Rycjpeeieldy, — A A’gg”equﬁ’ab)

1
= _EwtabAJab —€?AJH, (54)
so, in general, this expression can affect the generators J,
and J,;, because Afij) . 1s a function of ef and ¢’ . The first-

class generators that appear in the Hamiltonian (5.2) are
Tap=Jup +AJy, and T, =J,+ AJ,. Note that these
corrections contain the nonlinear R* terms and the back-
ground-dependent A(e, w). This is similar to what happens
in the R + T2 + R? theory [29]. Because of the complexity
of the problem, in the next step we will not account for the
U - ¢ term.

The temporal components of the fields, ¢’ and e¢, are
Lagrangian multipliers because they are not dynamical, and
in the Hamiltonian notation, they are arbitrary functions
multiplying the constraints. Therefore, the Hamiltonian
(5.2) can be seen as the extended Hamiltonian, which
contains constraints of all generations, both primary and
secondary. Furthermore, since only first-class constraints
are associated with indefinite multipliers, we can identify
them as

first-class constraints: 7., J p, Ty, 7.y

and there are N; = (5+10) x2 =30 of them. With
respect to the second-class constraints, from (4.22) we
know that T;‘j ~ 0 is satisfied, but some components of the
torsion tensor are first class and some are second-class
constraints. They cannot be separated explicitly. For
example, 10 functions H,, are linear combinations of
T;. This means, in order to define 7, in terms of H,,
we had to change the basis of the constraints. In doing so, it
is important that the regularity conditions are satisfied,
ensuring that all constraints are linearly independent on the
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phase space because they have the maximal rank of the
Jacobian with respect to the phase-space variables. In our
case, we replaced the initial set of 30 constraints T7; by a
new one (H,;, 7 ). Then, the regularity conditions require

that mank[%((:‘;‘fgv 1))] = 30, what means that there must be

20 second-class constraints 7 ,. We denote them by 7, =

{Tﬁ‘j} regardless of their tensorial properties, to remember
that they are redundant torsional components which do not
generate any local symmetry. Thus, we represented 77, by

an equivalent set of the 10 + 20 constraints (’Hab,f"f’j).
Then we can identify the remaining set of constraints as

intes T i i
second-class constraints: T73;, ¢y, ¢,

and there are N, = 20+ 20 + 40 = 80 of them. Then,
counting the degrees of freedom is straightforward: for
N =25+ 50 =75 dynamical fields (e,‘j, a);jb) the Dirac
formula (5.1) gives the number of degrees of freedom

N* =5. (5.5)
This is the same number as in the five-dimensional
Einstein-Hilbert theory, and the maximal number that a
PL gravity can contain. One of these degrees of freedom is
the radial one. This can be proved by performing the
Hamiltonian analysis of the action in minisuperspace
approximation, which involves only the relevant degrees
of freedom, similar to Ref. [21]. Fundamental fields in this
approximation are the most general ones among g,, and
T,,, that have the same isometries. The identified radial
degree of freedom corresponds to the metric component
9 = _1/ 9rr-

If the rank of M in (4.40) is smaller than maximal, then
some functions U,;;y remain arbitrary, reflecting the fact
that there are more local symmetries in the theory and less
degrees of freedom. In the extreme case, when the rank of
M is zero, all U,(;;) are indefinite, so there are 10 additional
local symmetries because second-class constraints are
converted into the first class; thus, N; — N, + 10 =40
and N, - N, — 10 =70. This implies that in the flat
background the theory has N*—lO—F%lO:O degrees of
freedom. Indeed, in Ref. [30], the PL gravity with A =0
was studied in five dimensions, and it was pointed out that
it is kinematic. However, it was also shown that the LL term
alone did not admit a linear approximation, and it was
suggested that a linear Finstein-Hilbert term would make
the theory more physical. In our case, the cosmological
term has this purpose. In general, the number of degrees of
freedom in five-dimensional PL gravity varies in the range

0<N* LS. (5.6)

Let us analyze the local symmetries and their generators.

The first-class constraint G ~ 0 acts on the fundamental

PHYSICAL REVIEW D 93, 064009 (2016)

field g through the smeared generator G[A] = [ d*xAG, and
the field transforms as g = {g, G[4]}. In our case, the
generator for all first-class constraints is

. 1
G[A,A,e,é}—/d“x [EA“b(Jab—ea,ﬂ,ﬁ—i—ebtﬂ;)
1 ab _t a a .t
_EDOA ﬂ'ab+€ Ja—D()G T,

1 ~ 1. ~
:/d4x<§A“bJa,,—§A“b7r;b—|—€“Ja—é“n';>,
(5.7)

where we redefined J,, = J,, —e,7, + e,m, and
J,=>J,+ a)mbzrﬁ7 in order to covariantize the e - 7 term.
It is equivalent to the redefinition of the multipliers, so that

T _ t t c ot c ot
Jab - Jab — €47y, + epy + W, — W Tges

Jo=J,+ 7. (5.8)
The parameters A and é@ are required by Castellani’s
construction of the generators [31] (for an alternative
method, see [32,33]) to replace the independent parameters
by the first-class constraints 7/, and z,. A reason for this is
that in the Hamiltonian formalism, all PB are taken at the
same time, and the time derivatives of parameters are
treated as the new, independent functions; for example,
DA is linearly independent of A“’. In addition, the
Castellani method gives a procedure to determine these
parameters in a way that recovers covariance of the
Lagrangian theory. Direct calculation shows that, up to
the background-dependent term U - ¢, the given generators
indeed satisfy Castellani’s conditions.

The gauge transformations generated by GIA, Ae, é|
have the form

a _ Aab a
oe; = Aey, — D, e,

Swit = —D, A (5.9)
The A“’(x) is recognized as a Lorentz gauge parameter.
The local transformations with the parameter e“(x) are
related to the diffeomorphisms on shell, and their explicit
form cannot be written because it depends on the
background.

The nonvanishing brackets between the constraints

{ja,,ja,n;,ﬂ;b, T, @i, @i, } contain the Lorentz algebra

{jabv j/cd} = (Naad ve + Mped ad = Nacd ba = nbdjm')a’
(5.10)

where the brackets with jab vanish weakly with all other
constraints, so they are explicitly first class,
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{jab’ ”/ct} = (77 nac”;;)év

{jabv ﬂ/ctd} - (nad”bc + nbcﬂgd nacﬂzfj - nbdﬂtac)é’
{jabﬂjlc} - (thf _nac‘lb)5

{jabv ¢ICI} - (nbc¢a 7]ac¢27)5
{jab ¢/¢id} - (nad¢bL + nbc¢ad nacq%d - nbd(rbizc)&’
{Jab’T/C = ( al] 621Tbij)6' (511)

For completeness, we also list the other nonvanishing
brackets among the constraints,

~ 15&0 ii
{Ja"];y =~ 4a, Qajbij(s’
where Qabu —Q;jbcdefed and, by introducing K', =

kl
4a2€l] €abcde® j k[ + ”Iabﬂc - nacﬂb’

{Ja 7} = (apt = Naet} )5,

{Ta, i} = =120 ]e|(elel, — e} el))s,
(T #5c} = Q0,.0,6+ Ky 6.

{ja,Ti'I;} =R’ aijo,

(T2, ¢} = —585%0,6 + (! .8, — 0 818,

icYj jcvi

{#h,. TS} = (—eadsis, + eady5])5. (5.12)

As already mentioned, the symplectic form in PL gravity

is nonlinear in the curvature so its rank depends on the

particular background. This implies that the second-class

constraints cannot, in general, be separated from the first-

class constraints. The constraints whose brackets do not

vanish explicitly on the constraint surface are the ones
given by Eq. (5.12).

VI. HAMILTONIAN ANALYSIS OF PL GRAVITY
IN (d + 1) DIMENSIONS

In this section we only give the main results of the
Hamiltonian analysis in d 4+ 1 dimensions and point out
the differences with respect to the five-dimensional case.
The generalized coordinates ¢, momenta 7, and primary
constraints have the form (4.4)—(4.6), where now the
indices run in the wider range i=1,...,d and
a=20,...,d. The symplectic matrix has the components

ijkige-i ayas
Qabcd - 4( - l)ﬂpej ! deabcda4~~~adRi4i5

Arp2Qap—1 ntap  Aopyl ead

lapaizp-1  kiyp iapyi g’
Q ﬂ 61113 l”(;‘ R®4 . dap-182p JAopi1 - 4q
abc — abcas--aq N iyiy p-102p ~ I2py1 ig’
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where 5, = =-2>r(d+1- 2p)pa,, is a real constant. The

matrix Q . 1s identically zero only in the Einstein-Hilbert

abc
gravity (p = 1). In general (p > 1), the matrix Qabc 4 only
weakly vanishes for the PL gravity (2.10). The phase-space
functions £, S,and S,;, in higher dimensions become

_ 1 .
’Cilb = _d+ 1 _2p iljbce;’
Sa - th + Dilé,
Sab = Hab + ebi’% - eai’%w (62)
where
1 ij c
Hab = 2Qaln Tl]’
o 1
Ho=(d+ 1)a0€aa1“‘lldellmldezl o e;l; B 4p lejth?]C
(6.3)

Using the Hamiltonian (4.11) and (4.12), we find the
following secondary constraints from the condition of

vanishing pf;, ¢y and ¢,

T ~0, S, ~0, (6.4)

Sap ® eyl — eidi ~ 0. (6.5)

The requirement of vanishing qﬁ’a and p¢ solves the multi-
pliers vi, and u¢,

. . 1 . iy
vl = el + EQ’gdaUcd w? Ay +DiAd =0,  (6.6)

uf = Dief — af’ey;, (6.7)

where it was convenient to define U’ = u%’ — D, and

. L a
— iy-ig | _ ( ) a ., et
2h = €abaya,€ d(d + 1age;; €
d zpﬂ G203 pdads Aoplopy1 | Gapi2 - dg
P iyi3 1415 Iapizpt i2p12 ig*
(6.8)

In odd-dimensional spaces with d = 2p, the last line in Z; b
vanishes. This is the case of five-dimensional pure Gauss-
Bonnet gravity analyzed in the previous sections.

We ask that the constraint ¢/, ~0 vanishes during
its time evolution in (d + 1)-dimensional spacetime,
leading to
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i oY diol ., Ol i, ol ‘
d)ab ~ 2 @y (chaeb,/ chbea./ + Qabced] Qab.decj)

+ e hl — el — A ey; + A ey (6.9)

However, the first line identically vanishes due to the
combinatorial identity

+ (_l)dJrleabcal---ad_leadj =0, (610)

and the second line of (6.9) with Eq. (6.5) can be
equivalently written as A, ~# 0 and A7 ~ 0, so that we find

secondary constraints : S, & 0,

A0,

Tl.“ij,

2~ (6.11)

Next, we require that the secondary constraints also
evolve on the constraint surface. Thus, the requirement of
vanishing /I’af and A’a solves the multipliers v =0 and
vl = 0, but because the form of v/, is already known from
Eq. (6.6), we obtain the algebraic equation for the multi-
pliers Ujd,

‘ 1
0ryl = el + - QF, USe.

2 cda™ j (612)

By replacing U?b = Rfl-b, we can prove that the above

expression combined with 7, is equivalent to the
Lagrangian equations,

~ ol A A lg L0 A2 A
O"‘)(it - (Ha’)dz) - (d+ l)aoeau,--ude il ”Ielll Cu; Cug

a
S (A 1= 2p)e Moy R

PHYSICAL REVIEW D 93, 064009 (2016)

Further calculation can be simplified by observing that,
as in five dimensions, the pairs of conjugated constraints,
(AL, p?) and (4d, pb), are second class. This means they
can be eliminated from the phase space by defining the
reduced phase space I'*, where the Poisson brackets are
replaced by the Dirac brackets (4.24). The coordinates of
the space I'* are (e, wzb , g, 4y, ), and their Dirac brackets
are equal to the Poisson brackets. From now on, we drop
the star in the Dirac brackets and continue working on I'™*.

The evolution of &, can be obtained, after the long, but
straightforward calculation, with the help of the identity
0 = Degypg,...q,;» Which implies

b pa1ax yi1iz
i R, Qbalaz

oy P RS
+ (d - zp)Q%?]‘;zaa R e{] .

iri3

(6.14)

Then, we find that S, never leaves the constraint surface,

S,~ =Dy, —w,,'H, ~0. (6.15)
. . . 4 i (d+Dd(d=1)
Finally, the consistency condition of 77, gives “—5—

. : d’(d+1 :
algebraic equations for % unknown functions U“;; =

ab
Uj €his
0~ T~ R{Pe, + U — U%

. (6.16)

This form is the same as in five dimensions, so we skip the
detailed analysis (4.31)—(4.36) and conclude that the
antisymmetric parts U“[l.].] of the multipliers are solved,
U,(ij) remain unknown and the others are not independent

due to the Bianchi identity. The final expression for U¢ is
given by Eq. (4.37). The result for the coefficients U can be

2p-1G2p apt1 - dy
X Ricy iy Cpgir * n (6.13) summarized in the following table.
|
) Multlpller Ul"ij: Ut[l]] Ut(l]) AUkij SUkij Tzl]kij
d (g+1) components: d(dz—l) d(d2+1) d d d(d —zd—4)
Solved by: T); arbitrary Ty Bianchi Bianchi

Solutions of U, depend on the equation x5 = 0 given by
Eq. (6.12), which after using (4.37) becomes

MU, = AL (6.17)

The tensor M has the form (4.41). This is the d(d + 1) x

—d(d; ) matrix of order p — 1 in the Riemann tensor. The

nonhomogenous part of the equation, on the other hand, is

. . 1
— b i kb ylc
Ay =2 e) + Q0 €7 R,y

6.18
(el + 5. (6.13)

[
Higher-order dependence of M in the curvature means that
its rank can change throughout the phase space. When

A # 0, there is always the region of I"* where the rank of M
d(d+1)

is maximal, that is, ==— which enables us to solve all
Ld; D coefficients Uyij)- This completes the constraint

analysis, which has the same structure as in five dimen-
sions. Arbitrary multipliers are associated with the first-
class constraints, and the rest are second-class constraints.

(d+1)*(d+2)
2
) in the PL gravity on the reduced space,

Therefore, we have N = fundamental fields

a ab
(eji.
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N, =(d+1)(d+?2) first-class constraints (J,,, J ., 7}, 7},,))
and N, = d*(d + 1) second-class constraints (T%;, ¢i,, ', )-
Therefore, the number of physical fields in the bulk in this
particular background is

., (d+1)(d-2)
N =

(6.19)

In other backgrounds we can have less degrees of freedom,
so that the number of degrees of freedom in a higher-
dimensional PL gravity is 0 < N* < W. The first-
class constraints and gauge generators have the same form
as before; only the matrix M and the tensor Ay that appear
in (4.40) are of order p — 1 in the curvature, and we will not
write them explicitly—it is straightforward to repeat the
previous calculation here.

VII. DISCUSSION

We performed a Hamiltonian analysis of PL gravity in
any dimension D > 5. This Lovelock gravity is not a mere
correction of the Einstein-Hilbert theory because it does not
even contain the linear term in the scalar curvature. Instead,
its kinetic term is described by a pth-order polynomial in
the Riemann tensor such that the equations of motion
remain of second order in the metric. When the cosmo-
logical constant is included, PL gravity has the unique dS
and/or AdS vacuum.

The first-order formalism was used to deal with non-
linearities involved in the theory. We ensured that space-
time is Riemannian by introducing the constraint that
forced the torsion to vanish.

The detailed analysis revealed that the number of
symmetries and degrees of freedom in this theory depends
on the background. In the generic case, which includes (A)
dS space and spherically symmetric, static black holes, the
theory contains D(D — 3)/2 degrees of freedom, which is
the same as in general relativity. But in contrast to relativity,
a change of the background can increase the amount of
local symmetries in the theory and convert previously
physical fields into nonphysical ones, even leading to a
topological theory (with no degrees of freedom in the bulk).
This is typical for Lovelock theories. In the PL case, this
change of degrees of freedom is kept under control through
the matrix M, whose rank can be between 0 and
D(D - 1)/2, which yields between 0 and D(D —3)/2
degrees.

A constraint analysis probes a number of physical
components of the metric field g,,, which is directly related
to the Riemann tensor. Its relation to the PL Riemann tensor
is indirect and not anchored to any metric or connection in a
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straightforward way. It turns out that the maximum possible
number of physical fields does not depend on a particular
Lovelock theory, as was pointed out earlier in Ref. [17].
This reflects the fact that so long as the equations of motion
are second order, the metric degrees of freedom would be
the same for Einstein as well as Lovelock theories.
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APPENDIX: CONVENTIONS

We use the signature of the Minkowski metric 7,;, =
diag(=+++---+).

The Levi-Civita symbols in d 4 1 and d dimensions are
defined by

elitiaia — gltiaig.

(A1)

AXMIA - - Adxtant = gt Has gdt]

The generalized Kronecker delta of rank s is constructed as
the determinant

L] L) Vs

6/41 5#1 e 5141

V) 23 Vg

. 5#2 5#2 5#2

1 [ J—
Sy i, = (A2)

V) 2 U

5/45 5/4.; T 5ﬂs

If the range of indices is D, a contraction of k < s indices in
the Kronecker delta of rank s produces a delta of rank s — &,

(D—s+k)! o

R Ty T R
Other identities involving the Levi-Civita symbol and the

generalized Kronecker delta are

Moo fgry — _ SH1-Hd+
€y oy, € = =8y L
ap Ad+1 __
€ayag € " Cpan T |e|€/11~-~/4d+1’ (A4)

where |e| = det[ed].
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