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We study the dynamical structure of pure Lovelock gravity in spacetime dimensions higher than four
using the Hamiltonian formalism. The action consists of a cosmological constant and a single higher-order
polynomial in the Riemann tensor. Similarly to the Einstein-Hilbert action, it possesses a unique constant
curvature vacuum and charged black hole solutions. We analyze physical degrees of freedom and local
symmetries in this theory. In contrast to the Einstein-Hilbert case, the number of degrees of freedom
depends on the background and can vary from zero to the maximal value carried by the Lovelock theory.
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I. INTRODUCTION

Lovelock-Lanczos gravity [1,2] is a natural generaliza-
tion of general relativity to higher dimensions. It provides
the most general gravity action, yielding the second-
order field equations in the metric gμνðxÞ. In a (dþ 1)-
dimensional spacetime, the action is given by

I½g� ¼
Z

ddþ1x
X½d=2�
k¼0

αkLk: ð1:1Þ

Each term in the sum is characterized by the coupling
constant αk multiplied by the dimensionally continued
Euler density Lk of order k in the curvature,

Lk ¼
1

2k
ffiffiffiffiffiffi
−g

p
δμ1…μ2k
ν1…ν2k R

ν1ν2
μ1μ2 � � �Rν2k−1ν2k

μ2k−1μ2k : ð1:2Þ

Here Rα
βμν is the Riemann curvature tensor and δμ1…μ2k

ν1…ν2k is
the totally antisymmetric generalized Kronecker delta of
order k defined as the determinant of the k × k matrix
½δμ1ν1δμ2ν2 � � � δμkνk �. This kind of action, polynomial in curva-
ture, is of significant interest in theoretical physics because
it describes a wide variety of models. It has been shown in
Refs. [3,4] that, for arbitrary constants αk, a degeneracy
may appear in the space of solutions because the metric is
not fully fixed by the field equations. For instance, if the
action has nonunique degenerate vacua, then the temporal
component gtt of any static spherically symmetric ansatz
remains arbitrary [5]. This problem can be avoided by a
special choice of the coefficients αk. The most simple
example is given by the Einstein-Hilbert (EH) term alone,
which has the unique Minkowski vacuum. Presence of

positive or negative cosmological constant terms gives the
theory a unique de Sitter (dS) or anti-de Sitter (AdS)
vacuum, respectively. Adding the Gauss-Bonnet term with
α2 ≠ 0 produces two different (A)dS vacua, which can
become degenerate for the critical value of the parameter
where the two vacua coincide [6].
Another way to fix the coefficients αk is to have a unique

vacuum in the theory that is degenerated, which leads to
Chern-Simons gravity in odd dimensions and Born-Infeld
gravity in even dimensions [7]. In those theories all
couplings are expressed only in terms of the gravitational
interaction and the cosmological constant. Also, choosing
the coefficients up to a certain order k ¼ 1;…; ½d=2�≡ N
leads to a family of nonequivalent theories whose black
hole solutions were studied in [8] and also in [9] for the
maximal case with k ¼ N.
Recently, another possibility has been suggested,

where instead of the full Lovelock series, only two terms
in the sum are considered in the action: the cosmological
constant and a polynomial in the curvature of order p.
These pure Lovelock (PL) gravities [10] remarkably
admit nondegenerate vacua in even dimensions, while
in odd dimensions they have a unique nondegenerate dS
and AdS vacuum. Their black hole solutions are asymp-
totically indistinguishable from the ones appearing in
general relativity [5]. This is the case even though the
action and equations of motion are free of the linear
Einstein-Hilbert term. This similar asymptotic behavior
of the two theories seems to also extend to the level of the
dynamics and a number of physical degrees of freedom in
the bulk.
The properties of PL gravity have been discussed in the

literature. The stability of PL black holes has been analyzed
in [11]. Application of gauge-gravity duality to phase
transitions in quantum field theories dual to pure Gauss-
Bonnet AdS gravity was studied in Ref. [12]. It can be
shown that in any dimension dþ 1 there is a special power
p such that the black hole entropy behaves as in any
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particular lower dimension. In the case of the maximum
power, p ¼ N, such as the five-dimensional pure Gauss-
Bonnet action, the black holes exhibit a peculiar thermo-
dynamical behavior [5,13], where temperature and entropy
bear the same relation to horizon radius as in the case for
3D and 4D, respectively. Thermodynamical parameters are
thus universal in terms of horizon radius for all odd D ¼
2N þ 1 and even D ¼ 2N þ 2 dimensions.
Dynamical aspects of PL theory were analyzed in

Ref. [14] in terms of analogs of the Riemann and Weyl
tensors for Nth-order PL gravity. It turns out that it is
possible to define an Nth-order Riemann curvature with the
property that the trace of its Bianchi derivative yields the
same divergence-free (analogue of Einstein tensor) second-
rank tensor as the one obtained by the corresponding
Lovelock polynomial action. Thus, one can obtain the
gravitational equations for PL gravity [15,16] in the same
way as one does for the Einstein equations from the Bianchi
identity. However, there is one crucial difference, which is
that the second Bianchi identity (i.e., vanishing of the
Bianchi derivative) is only satisfied by the Riemann tensor
and not by itsNth-order analogue. The former therefore has
a direct link to the metric, while for the latter this relation is
more involved. What yields the divergence-free tensor is
the vanishing of the trace of the Bianchi derivative, and not
necessarily the derivative itself. From this perspective, PL
gravity could be seen as kinematic, which means that the
Nth-order Riemann tensor is entirely given in terms of the
corresponding Ricci tensor in all critical odd D ¼ 2N þ 1
dimensions, and it becomes dynamic in the even D ¼
2N þ 2 dimensions. This might uncover a universal feature
of gravitational dynamics in all critical odd and even
dimensions, making it drastically different in critical odd
dimensions. More precisely, the PL vacuum is flat with
respect to the Nth-order Riemann tensor but not relative to
the Riemann tensor. This suggests that there are no
dynamical degrees of freedom in the critical odd dimen-
sions relative to the former, but this may not be the case for
the latter.
On the other hand, it has been argued in Ref. [17] that the

metric Lovelock theory should have the same number of
degrees of freedom as the higher-dimensional Einstein-
Hilbert gravity, namely, DðD − 3Þ=2. This is different than
expected from our previous discussion, which suggested
fewer physical fields. However, the number of degrees of
freedom can change with the backgrounds. For example,
Lovelock-Chern-Simons gravity has different numbers of
degrees of freedom in different sectors of the phase space
[18,19]. Because of the nonlinearity of the theory, the
symplectic matrix might have different ranks depending on
the background [20], causing more symmetries and less
degrees of freedom in some of them, which was explicitly
demonstrated in Chern-Simons supergravity [21]. The
constraints can also become functionally dependent in
certain symmetric backgrounds [22].

Therefore, we provide a detailed analysis of the dynami-
cal structure of PL theory by explicitly performing
Hamiltonian analysis and exploring to what extent it is
similar to general relativity and whether it exhibits any
additional universal features.

II. PURE LOVELOCK GRAVITY

We focus on pure Lovelock gravity of order p in (dþ 1)
dimensions, whose action consists of the unique Lovelock
term Lp and the cosmological constant L0,

I½g�¼−κ
Z

ddþ1x
ffiffiffiffiffiffi
−g

p �
1

2p
δ
μ1…μ2p
ν1…ν2p R

ν1ν2
μ1μ2 � � �Rν2p−1ν2p

μ2p−1μ2p −2Λ

�
;

ð2:1Þ

where αp ¼ −κ and α0 ¼ 2κΛ. The gravitational constant κ
has dimension of ðlengthÞdþ1−2p and the cosmological
constant has dimension of ðlengthÞ−2p, and not
ðlengthÞ−2 as in general relativity. Varying the action with
respect to the metric gμνðxÞ, one obtains equations of
motion in the form

ðpÞGμ
ν þ Λδμν ¼ 0; ð2:2Þ

where Λ ¼ 0 or Λ ¼ ð�1Þpd!
2ðd−2pÞ!l2p, and the generalized

Einstein tensor is symmetric to pth order in the curvature,

ðpÞGμ
ν ¼ −

1

2pþ1
δ
μν1…ν2p
νμ1…μ2pR

μ1μ2
ν1ν2 � � �Rμ2p−1μ2p

ν2p−1ν2p : ð2:3Þ

The form of Λ given above is such that Λ ¼ 0 has a
Minkowski metric as a particular solution, whereas Λ ≠ 0
has dS (sign þ) and AdS (sign −) space of the radius l as
solutions of the PL field equations.
Because of the presence of local symmetries in the

theory, not all components of the metric are physical. In
order to determine dynamically propagating fields in the
bulk, we turn to the Hamiltonian formalism, which pro-
vides a systematic method to separate physical variables
from the nonphysical ones. However, applying the canoni-
cal analysis to the PL action in the metric formalism is
technically involved, even though it only depends on
velocities. A reason for this is that it is higher order in
curvature.
On the other hand, if we write the action (2.1) in the

Palatini formalism ~I½g;Γ�, where the metric gμν and affine
connection Γλ

μν are treated as independent fundamental
fields, then the theory naturally includes torsional degrees
of freedom. Then, the vanishing torsion would just corre-
spond to a particular solution of the field equations,
whereas in general relativity, it is the only solution. A
wider space of solutions can be avoided by introducing a
Lagrange multiplier that forces the torsion to vanish, in
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such a way that the field equations become the ones of PL
gravity in Riemann space.
In the next section, we reformulate the PL gravity in first-

order formalism, linear in velocities, which makes it much
simpler to apply the Hamiltonian analysis.

A. First-order formalism

The fundamental fields in the first-order formalism,
vielbein eaμðxÞ and spin connection ωab

μ ðxÞ, are related to
the fields in the tensorial formalism through the relations
gμν ¼ ηabeaμebν and Γλ

μν ¼ ωab
ν eλaeaμ þ eλa∂νeaμ, where

a; b ¼ 0; 1;…; d are the Lorentz indices. Note that the
change of variables ðg;ΓÞ → ðe;ωÞ is not unique but is
determined up to Lorentz rotations. With the new fields, we
obtain the Riemann curvature tensor Rab

μν and the torsion
tensor Ta

μν as

Rab
μν ¼ ∂μω

ab
ν − ∂νω

ab
μ þ ωa

μbω
bc
ν − ωa

νbω
bc
μ ;

Ta
μν ¼ Dμeaν −Dνeaμ; ð2:4Þ

where D ¼ DðωÞ is a covariant derivative with respect to
the spin connection acting on the Lorentz indices only,
e.g., Dμeaν ¼ ∂μeaν þ ωa

μbe
b
ν .

Naively, the first-order PL action can be cast in the form

~I½e;ω� ¼
Z

ddþ1xðα0L0 þ αpLpÞ; ð2:5Þ

where we rescaled αk → − αk
ðdþ1−2kÞ! and Lk →

−ðdþ 1 − 2kÞ!Lk, and the Euler densities now become
polynomials in R and e,

L0 ¼ ϵa1���adþ1
ϵμ1���μdþ1ea1μ1 � � � eadþ1

μdþ1
∼ edþ1;

Lp ¼ 1

2p
ϵa1���adþ1

ϵμ1���μdþ1Ra1a2
μ1μ2 � � �Ra2p−1a2p

μ2p−1μ2p e
a2pþ1
μ2pþ1

� � �
× eadþ1

μdþ1
∼ Rpedþ1−2p: ð2:6Þ

Notation for the Levi-Civita symbol ϵμ1���μdþ1 is given in the
Appendix. The coupling constants become

α0 ¼
2Λκ

ðdþ 1Þ! ; αp ¼ −
κ

ðdþ 1 − 2pÞ! : ð2:7Þ

However, the field equations obtained from the action (2.5)
after varying it in eaμ and ωab

μ are, respectively,

0 ¼ ϵaa1���adϵ
μμ1���μd

�
1

2p
Ra1a2
μ1μ2 � � �Ra2p−1a2p

μ2p−1μ2p e
a2pþ1
μ2pþ1

� � �

× eadμd þ
α0ðdþ 1Þ

αpðdþ 1 − 2pÞ e
a1
μ1 � � � eadμd

�
; ð2:8Þ

0 ¼ ϵaba2���adϵ
μμ1���μd

�
1

2p
Ra2a3
μ2μ3 � � �

× R
a2p−2a2p−1
μ2p−2μ2p−1T

a2p
μ2pμ1e

a2pþ1
μ2pþ1

� � � eadμd
�
: ð2:9Þ

These equations are not equivalent to the PL field equa-
tions (2.2) because the Riemann spaces for which Ta

μν ¼ 0

are not the only solutions of Eq. (2.9) when dþ 1 > 4 and
p > 1. Thus, treating ðeaμ;ωab

μ Þ as independent fields
changes the dynamics of the system. In order to use
first-order formalism and, at the same time, obtain field
equations of pure Lovelock gravity, where Ta

μν ¼ 0 is the
unique solution, we introduce a Lagrange multiplier λμνa
that forces the torsion tensor to vanish through a constraint.
The new action reads

I½e;ω; λ� ¼
Z

ddþ1x

�
α0L0 þ αpLp þ

1

2
Ta
μνλ

μν
a

�
:

ð2:10Þ

The field λμνa ðxÞ is antisymmetric in the indices ½μν�.
Although the proposed action is explicitly torsionless,

it does not imply that the equations of motion give the
dynamics equivalent to the PL one. An example of the
system where the addition of the constraint Taλa modifies
the dynamics of the theory is topologically massive gravity,
where it introduces a term involving the Cotton tensor
[23–25]. There, the term with the multiplier has nontrivial
implications on the derivation of conserved charges [26].
Therefore, the influence of a multiplier has to be well
understood on the level of the field equations.
The action (2.10) reaches an extremum on the equations

of motion,

δeaμ∶ 0 ¼ ϵaa1���adϵ
μμ1���μd

�
αp
2p

ðdþ 1 − 2pÞRa1a2
μ1μ2 � � �

× R
a2p−1a2p
μ2p−1μ2pe

a2pþ1
μ2pþ1

� � � eadμd
þ α0ðdþ 1Þea1μ1 � � � eadμd

�
þDνλ

μν
a ; ð2:11Þ

δωab
μ ∶ 0 ¼ 1

2p
ϵaba2���adϵ

μμ1���μdRa2a3
μ2μ3 � � �

× R
a2p−2a2p−1
μ2p−2μ2p−1T

a2p
μ2pμ1e

a2pþ1
μ2pþ1

� � � eadμd
þ 1

2
ðebνλμνa − eaνλ

μν
b Þ; ð2:12Þ

δλμνa ∶ 0 ¼ Ta
μν: ð2:13Þ

In addition, the curvature and torsion tensors satisfy the first
and second Bianchi identities,
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DμTa
ρσ þDρTa

σμ þDσTa
μρ ¼ Rab

μρebσ þ Rab
ρσebμ

þ Rab
σμebρ;

DμRab
ρσ þDρRab

σμ þDσRab
μρ ¼ 0: ð2:14Þ

When the torsion tensor vanishes, the field equation (2.12)
becomes

0 ¼ ebνλ
μν
a − eaνλ

μν
b ; ð2:15Þ

where dðdþ 1Þ2=2 components of λμνa can be solved as

λμνa ¼ 0: ð2:16Þ

This result is obtained by rewriting (2.15) with the Lorentz
indices as λa;bc − λc;ba ¼ 0, and combining it with two
other expressions obtained by performing the permutation
of indices, which directly leads to λa;bc ¼ 0 and therefore
(2.16). Using (2.16), the last equation (2.11) is indeed
equivalent to the Lovelock field equations in Riemann
space. The Bianchi identities (2.14) in that case read

RaðσμρÞ ¼ 0; DðμRab
ρσÞ ¼ 0: ð2:17Þ

III. ACTION IN THE TIMELIKE FOLIATION

The Hamiltonian formalism is not explicitly covariant
because it presents all the quantities in the timelike foliation
xμ ¼ ðt; xiÞ, where x0 ¼ t ∈ R is the temporal coordinate
and xi (i ¼ 1;…; d) are local coordinates at the spatial
section Σ.
In the tangent space, we decompose the indices as

a ¼ ð0; āÞ. The vielbein eaμ is invertible on R × Σ, and
its inverse is eμa. We require that et0 ≠ 0 and that the
d-dimensional vielbein eāi is also invertible with the inverse

ðdÞeiā ¼ eiā −
ei0e

t
ā

et0
: ð3:1Þ

In order to introduce canonical variables in the action
(2.10), we have to define the action in configurational
space, that is, in terms of the fields eaμ, ωab

μ and its velocities
_eaμ, _ωab

μ . To this end, we have the splitting of the fields in the
timelike foliation

eaμ → ðeat ; eai Þ; ωab
μ → ðωab

t ;ωab
i Þ;

and similarly for the multiplier λμνa → ðλtia ≡ λia; λ
ij
a Þ. It is

worthwhile noticing that ωab
t transforms as a tensor of rank

2 under local Lorentz transformations on Σ and ωab
i as the

Lorentz gauge connection.
Since L ¼ R

ddxL, the Lagrangian scalar density of
(2.10) can be written in a compact way,

L ¼ 1

2
_ωab
i Li

ab þ _eai λ
i
a þ

1

2
ωab
t Sab þ eat Sa þ

1

2
Ta
ijλ

ij
a :

ð3:2Þ

We neglect all boundary terms. In the action above, we
introduce the quantities which do not depend on velocities
and timelike components,

Li
ab ¼

pαp
2p−2

ϵaba2���adϵ
ii2���idRa2a3

i2i3
� � �Ra2p−2a2p−1

i2p−2i2p−1
e
a2p
i2p

� � � eadid ;
ð3:3Þ

Sa ¼ Ha þDiλ
i
a; ð3:4Þ

Sab ¼ Hab þ ebiλia − eaiλib; ð3:5Þ

where

Ha ¼ ϵaa1���adϵ
i1���id

�
ðdþ 1Þα0ea1i1 � � � e

ad
id

þ αp
2p

ðdþ 1 − 2pÞRa1a2
i1i2

� � �Ra2p−1a2p
i2p−1i2p

e
a2pþ1

i2pþ1
� � � eadid

�
;

Hab ¼
pαp
2p−1

ðdþ 1 − 2pÞϵaba2���adϵi1���idRa2a3
i2i3

� � �
× R

a2p−2a2p−1
i2p−2i2p−1

T
a2p
i1i2p

e
a2pþ1

i2pþ1
� � � eadid : ð3:6Þ

The Lagrangian (3.2) is similar to the one in Chern-Simons
theory, whose Hamiltonian analysis was studied in
Ref. [19].

IV. HAMILTONIAN ANALYSIS
IN FIVE DIMENSIONS

Let us start with the simplest case of a five-dimensional
pure Gauss-Bonnet action (d ¼ 4, p ¼ 2),

I ¼
Z

d5x

�
ϵabcdeϵ

μνρσγ

�
α0eaμebνecρedσeeγ þ

α2
4
Rab
μνRcd

ρσeeγ

�

þ 1

2
Ta
μνλ

μν
a

�
: ð4:1Þ

The Lagrangian has the form (3.2) with particular tensors

Li
ab ¼ 2α2ϵ

ijklϵabcdeRcd
jk e

e
l ;

Sab ¼ Hab þ ebiλia − eaiλib;

Sa ¼ Ha þDiλ
i
a;

Hab ¼ α2ϵbacdeϵ
ijklRcd

ij T
e
kl;

Ha ¼ ϵabcdeϵ
ijkl

�
5α0ebi e

c
je

d
ke

e
l þ

α2
4
Rbc
ij R

de
kl

�
; ð4:2Þ

and the multipliers are conveniently written as
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λia ¼
1

3!
ϵijklλa;jkl; λija ¼ 1

2!
ϵijklλa;tkl: ð4:3Þ

If we denote the generalized coordinates by qMðxÞ and the
corresponding conjugated momenta by πMðxÞ,

qM ¼ feat ; eai ;ωab
t ;ωab

i ; λia; λ
ij
a g;

πM ¼ fπta; πia; πtab; πiab; pa
i ; p

a
ijg;

ð4:4Þ

we can use the definition πM ¼ ∂L
∂ _qM to find πiab ¼ Li

ab and

πia ¼ λia, while all other momenta are zero. Thus, the
Hessian matrix ∂2L

∂ _qM∂ _qN is not invertible, and we cannot

express all velocities in terms of the momenta. In turn, we
get the constraints, which are called

primary constraints∶ ΦM ¼ fϕt
a;ϕi

a;ϕt
ab;ϕ

i
ab; p

a
i ; p

a
ijg:
ð4:5Þ

They are defined on the phase space as

ϕt
a ¼ πta ≈ 0; ϕi

a ¼ πia − λia ≈ 0;

ϕt
ab ¼ πtab ≈ 0; ϕi

ab ¼ πiab − Li
ab ≈ 0;

pa
i ≈ 0; pa

ij ≈ 0: ð4:6Þ

The surface ΦM ≈ 0 in the phase space is called the primary
constraint surface, ΓP. The weak equality fðq; πÞ ≈ 0 on ΓP
implies that a phase-space function f vanishes on ΓP, but its
derivatives (variations) are nonvanishing. This is different
than the strong equality, fðq; πÞ ¼ 0, where both f and its
variations vanish on ΓP. This distinction is relevant for the
definition of the Poisson brackets, since f ≈ 0 does not
imply ff; � � �g ≈ 0.
To simplify our notation, we write the arguments of the

phase-space functions symbolically, assuming that all
quantities are defined at the same instant, x0 ¼ x00 ¼ t,

A ¼ AðxÞ; B0 ¼ Bðx0Þ; ∂i ¼
∂
∂xi ; ∂ 0

i ¼
∂
∂x0i ;

δ ¼ δð~x − ~x0Þ; δabcd ¼ δacδ
b
d − δadδ

b
c: ð4:7Þ

The fundamental Poisson brackets (PBs) that are differ-
ent than zero are

feaμ; π0νb g ¼ δabδ
ν
μδ;

fωab
μ ; π0νcdg ¼ δabcdδ

ν
μδ;

fλia; p0b
j g ¼ δabδ

i
jδ;

fλija ; p0b
klg ¼ δabδ

ij
klδ: ð4:8Þ

The symplectic matrix ΩMN of the primary constraints
reads

fΦM;Φ0
Ng ¼ ΩMNδ; ð4:9Þ

and it is antisymmetric, ΩMN ¼ −ΩNM. The only (inde-
pendent) submatrices of the symplectic matrix that are
different than zero are

fϕi
ab;ϕ

0j
cdg ¼ Ωij

abcdδ ¼ −8α2ϵijklϵabcdeTe
klδ;

fϕi
ab;ϕ

0j
c g ¼ Ωij

abcδ ¼ −2α2ϵijklϵabcdeRde
kl δ;

fϕi
a; p0b

j g ¼ −δbaδijδ: ð4:10Þ

The canonical Hamiltonian, HC ¼ πM _qM − L, defined on
ΓP is

HCðp; qÞ ¼ −
1

2
ωab
t Sab − eat Sa −

1

2
Ta
ijλ

ij
a ; ð4:11Þ

and the total Hamiltonian, defined on the full phase space
Γ, is obtained by introducing the indefinite multipliers
uMðxÞ,

HTðp; q; uÞ ¼ HCðp; qÞ þ uMΦMðp; qÞ; ð4:12Þ

where uM ¼ fuat ; uai ; uabt ; uabi ; via; v
ij
a g. Evolution of any

quantityAðqðxÞ; πðxÞÞ ¼ AðxÞ in the phase space is given by

_A ¼
Z

d~x0ðfA;H0
Cg þ u0MfA;Φ0

MgÞ

≈
Z

d~x0fA;H0
Tg: ð4:13Þ

This allows us to identify some field velocities with the
Hamiltonian multipliers,

_ωab
i ¼ uabi ; _eai ¼ uai ; _λija ¼ vija ; _λia ¼ via: ð4:14Þ

Consistency of the theory requires that the primary
constraints remain on the constraint surface during their
evolution, that is,

_ΦM ¼
Z

d~x0fΦM;H0
Cg þΩMNuN ≈ 0: ð4:15Þ

These consistency conditions will either solve some multi-
pliers or lead to the secondary constraints, or they will be
identically satisfied.
When the symplectic matrix has zero modes and

fΦM;HCg ≠ 0, the consistency conditions lead to the
secondary constraints,

_ϕt
a ¼ Sa ≈ 0; ð4:16Þ

_ϕt
ab ¼ Sab ≈ 0; ð4:17Þ

_pa
ij ¼ Ta

ij ≈ 0: ð4:18Þ
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Other consistency conditions solve Hamiltonian multi-
pliers, such as _pa

i ≈ 0, which gives

uai ¼ Dieat − ωab
t ebi: ð4:19Þ

On the other hand, from _ϕi
a ≈ 0 we solve the multiplier,

via ¼ −ϵabcdeϵijkl½20α0ebt ecjedkeel þ α2Rde
kl ðubcj −Djω

bc
t Þ�

þ ωb
taλ

i
b þDjλ

ij
a : ð4:20Þ

Using the Bianchi identities,Djϵabcde ¼ 0 and the property
that any totally antisymmetric tensor of rank 6 defined in
five dimensions must vanish, that is,

− ϵbcdefeaj þ ϵcdefaebj − ϵdefabecj þ ϵefabcedj

− ϵfabcdeej þ ϵabcdeefj ¼ 0;

the last consistency condition for ϕi
ab becomes

0 ≈ _ϕi
ab ≈ eatλib − ebtλia − λija ebj þ λijb eaj: ð4:21Þ

One can show, in a similar way as for Eq. (2.16), that the
constraints (4.17) and (4.21) are now equivalent to zero
multipliers λia ≈ 0 and λija ≈ 0.
So far, we have found the following,

secondary constraints∶ Sa ≈ 0; Ta
ij ≈ 0;

λia ≈ 0; λija ≈ 0; ð4:22Þ

and we determined the multipliers uai and v
i
a. The functions

fuat ; uabt ; uabi ; vija g remain arbitrary. A submanifold ΓS ⊂ Γ
defines the secondary constraint surface, where all con-
straints discovered so far vanish.
To ensure that the secondary constraints λ evolve on the

constraint surface ΓS, we require that _λ
i
a ¼ via and _λija ¼ vija

vanish. This leads to via ¼ 0, which by Eq. (4.20) can be
equivalently expressed as

χia ¼ −ϵabcdeϵijkl½20α0ebt ecjedkeel þ α2Rde
kl ðubcj −Djω

bc
t Þ�≈ 0

and vija ¼ 0: ð4:23Þ

Before we continue, we notice that the pairs of con-
jugated variables ðλ; pÞ, which are constraints, have PBs
whose right-hand side (symplectic form) is invertible on ΓS.
Thus, they are second-class constraints that do not generate
any symmetry but represent redundant, nonphysical quan-
tities. They can be eliminated by defining the reduced phase
space Γ� with the Poisson brackets replaced by the Dirac
brackets,

fA; B0g� ¼ fA; B0g þ
Z

dy

�
fA; λiaðyÞgfpa

i ðyÞ; B0g

− fA; pa
i ðyÞgfλiaðyÞ; B0g

þ 1

2
fA; λija ðyÞgfpa

ijðyÞ; B0g

−
1

2
fA; pa

ijðyÞgfλija ðyÞ; B0g
�
: ð4:24Þ

It is straightforward to check (and it is a general property
of the Dirac brackets) that the use of f; g� turns the weak
equality into the strong equality on Γ�,

λia ¼ 0; pa
i ¼ 0; on Γ�;

λija ¼ 0; pa
ij ¼ 0; on Γ�; ð4:25Þ

because fλia; p0b
j g� ¼ 0 and fλija ; p0b

klg� ¼ 0 on Γ�. The
remaining generalized coordinates of the space Γ� are
ðeaμ;ωab

μ ; πμa; π
μ
abÞ, and their Dirac brackets remain unmodi-

fied (they are equal to the Poisson brackets). From now on,
we drop the star from the Dirac brackets.
Let us analyze the consistency condition of Sa. Using

_Rbc
ij ¼ Diubcj −Djubci and _eai ¼ uai , we get

_Sa ¼ ϵabcdeϵ
ijkl½20α0Diebt ecje

d
ke

e
l þ α2DiUbc

j Rde
kl

þ ωtf
bð20α0efi ecjedkeel þ α2R

fc
ij R

de
kl Þ�; ð4:26Þ

where we denoted

Uab
i ¼ uabi −Diω

ab
t ð4:27Þ

and used ½Di;Dj�ωbc
t ¼ Rbf

ij ωtf
c − Rcf

ij ωtf
b. It can be

recognized from the Lagrangian formalism that Uab
i ≡

Rab
ti because the Hamiltonian prescription treats all time

derivatives as new functions. Next, we use a combinatorial
identity, valid for any completely antisymmetric tensor
Σcdef,

0 ¼ DtϵacdefΣcdef

¼ ðϵbcdefωta
a þ 2ϵabdefωtc

b þ 2ϵacdbfωte
bÞΣcdef:

For a particular choice of Σfcde ¼ 20α0e
f
i e

c
je

d
ke

e
lþ

α2R
fc
ij R

de
kl , we obtain that Sa does not leave the surface

ΓS during its evolution,

_Sa ¼ −Diχ
i
a − ωta

bSb ≈ 0: ð4:28Þ

Furthermore, we also have to require the same for the
torsion tensor,

_Ta
ij ¼ Diuaj −Djuai þ uabi ebj − uabj ebi ≈ 0: ð4:29Þ
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With the help of Eq. (4.19), we rewrite the last equation as

0 ≈ _Ta
ij ≈ Rab

ij ebt þUa
ji −Ua

ij: ð4:30Þ

Here, the vielbein projects the Lorentz indices to the
spacetime ones, Ua

ji ¼ Uab
i ebj. The above equation gives

30 algebraic equations in 40 unknown functions Ua
ij,

which can be decomposed into 16þ 24 components
ðU0

ij; U
ā
ijÞ. The final solution is

Ua½ij� ¼
1

2
Rab
ij ebt ¼

1

2
Ra
tij ⇒ Uμ½ij� ¼

�
0;
1

2
Rk

tij

�
:

ð4:31Þ
In that way, the 6þ 4 coefficients ðU0

½ij�; U
ā
½ij�Þ become

completely determined by the consistency of _T0
ij and _T ½ki�j.

Since Ua
ij ¼ Ra

itj, the above relation just represents the
first Bianchi identity for the components (tij) rederived in
the Hamiltonian way.
The 20 components of _Ta

ij that do not solve the
corresponding multipliers are exactly the ones that are
symmetric in the first two indices,

_TðkiÞj ≈
1

2
ðeak _Ta

ij þ eai _T
a
kjÞ

≈
1

2
Rktij þUk½ji� þ

1

2
Ritkj þUi½jk� ¼ 0; ð4:32Þ

which vanish due to the known Ui½jk�. Thus, these compo-
nents do not lead to new conditions. We conclude that 30
equations _Ta

ij ¼ 0 solve only 10 antisymmetric components
uabi and the remaining 20 equations do not give anything
new—they are automatically satisfied.
Thanks to the relation (4.31) and because the curvature

Rab
ij satisfies the first Bianchi identity, we can collect all first

Bianchi identities in a covariant way, Bμναβ ¼ RμðναβÞ ¼ 0,
where the components of the tensor B are

0 ¼ Ba
ijk ≡ Ra

ðijkÞ;

0 ¼ Ba
tij ≡ ebtRab

ij − 2Ua
½ij�: ð4:33Þ

This has an important consequence on the number of
linearly independent multipliers Uab

i . Namely, we can
prove that

Rμναβ − Rαβμν ¼
1

2
ðBμναβ þ Bβμνα − Bαβμν − BναβμÞ ¼ 0;

ð4:34Þ

so the Riemann curvature is symmetric, Rμναβ ¼ Rαβμν, or

Rtitj ¼ Rtjti; Rtijk ¼ Rjkti; Rijkl ¼ Rklij: ð4:35Þ

The last relation in (4.35) does not give any further
information because it is just the Bianchi identity on Σ.
The first one, instead, shows that not all coefficients
Uμij ¼ eaμUa

ij are independent because Utij are symmetric,
Utij ¼ Utji ¼ eatebiRab

tj . The second condition in (4.35) is
equivalent to

Ujki ¼ eatebiRab
jk ; ð4:36Þ

in a way that is consistent with (4.31). The only remaining
unknown multipliers are 10 symmetric components UtðijÞ,
leading to the final expression for Uab

i as

Uab
i ¼ Uμνieaμebν

¼ UtðijÞðetaejb − etbejaÞ þ ectediRcd
jk e

jaekb;

Utij ¼ Utji: ð4:37Þ

From the point of view of the irreducible components
of Uab

i , we can see the 10 components of UtðijÞ as the only
unsolved part in the table below.

MultiplierUμij∶ Ut½ij� Utk
k SUtij

AUkij
SUkij

TUkij

40 components∶ 6 1 9 4 4 16

Solved by∶ _T0
ij arbitrary arbitrary _T ½ijk� Bianchi Bianchi

As it is well known, the irreducible components of the
rank-2 tensor Utij are as follows: its antisymmetric part
Ut½ij�, the traceUtk

k and the symmetric traceless component
SUtij ¼ UtðijÞ − 1

4
gijUtk

k. On the other hand, the irreduc-
ible components of the rank-3 tensor UiðjkÞ are as follows:
its vectorial component (trace) Ui ≡Ujk

j, also written as
SUijk ¼ gijUk þ gikUj, the axial-vector component
AUijk ¼ U½ijk� and the tensorial one TU ¼ U−AU − SU.

The last equation to analyze is χia ≈ 0. It can be
combined together with Ha ≈ 0 into

χλa ¼ ðHa; χiaÞ

¼ ϵabcdeϵ
λμναβ

�
5α0ebμecνedαeeβ þ

α2
4
Rbc
μνRde

αβ

�
≈ 0;

ð4:38Þ
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in which we recognize the generalized Einstein equations
with cosmological constant (2.2). In contrast to the
Einstein-Hilbert case [27,28], the multipliers in Eq. (4.23)
cannot be fully solved because they are nonlinear in the
fields, causing ambiguities. In fact, if we write it as

2α2ϵabcdeϵ
ijklRde

kl U
bc
j ¼ −40α0ϵabcdeϵijklebt ecjedkeel ;

ð4:39Þ

then the rank of the matrix Ωij
abc ¼ −2α2ϵabcdeϵijklRde

kl
explicitly depends on the background considered. More
concretely, replacing the solution for the multiplier (4.37) in
(4.39), we obtain a set of algebraic equations

MiðjmÞ
a Utjm ¼ Ai

a; or MU ¼ A; ð4:40Þ

where the matrix of the system is obtained by symmetriza-
tion of

Mijm
μ ¼ −Ωij

abce
a
μetbemc ¼ 2α2

jej gμnϵ
mnpqϵijklRpqkl: ð4:41Þ

The nonhomogeneous part of the system is

Ai
μ ¼ jejð120α0δiμ − α2ϵμmnνλϵ

ijklRνλ
klRtj

mnÞ: ð4:42Þ

In the context of Eq. (4.40),M is the 20 × 10matrix that acts
on the 10-component column U. When the rank of M is
maximal, that is, 10, then all components of U can be
determined. This is the case for AdS space, as we show
below. A situation is completely different in flat space, where
the equation becomes homogeneous (A ¼ 0) and the rank of
M ¼ 0 is zero. In that case, all 10 components of the vector
UtðjmÞ remain arbitrary. In the EH case this matrix always
has maximal rank because it does not depend on the
curvature. In higher-dimensional PL gravity, M is again
polynomial in the curvature and may have different ranks. It
is a generic feature of Lovelock gravity, and it has already
been noted for the Lovelock-Chern-Simons case [19].
We are interested in the Λ ≠ 0 backgrounds, where

black hole solutions exist. We restrict our theory to the
part of the phase space where the rectangular 20 × 10

matrix MiðjmÞ
a ðxÞ has maximal rank, 10, for all x. In that

case, only the left inverse of M exists, which is the 10 × 20
matrix Δa

ðklÞiðxÞ of the rank 10 defined by

1

2
Δa

ðklÞiM
iðjmÞ
a ¼ δjkδ

m
l þ δjlδ

m
k : ð4:43Þ

The matrix Δ depends on eaμ and ωab
μ . Then Eq. (4.40) can

be solved and the multipliers are

Utij ¼ Δa
ðijÞkA

k
a: ð4:44Þ

To show that the chosen subspace contains a nonempty
set of solutions, we consider the AdS background

R̄μναβ ¼ −
1

l2
ðḡμαḡνβ − ḡναḡμβÞ; ð4:45Þ

with α0 ¼ 1
5l4 and α2 ¼ −1. Then

M̄iðjmÞ
μ ¼ 4

l2jēj
ð4Þḡḡμnðḡimḡjn þ ḡijḡnm − 2ḡinḡjmÞ;

ð4:46Þ

where ð4Þḡ ¼ det½ḡkl� is the determinant of the spatial
background induced metric ð4Þḡij ¼ ḡij and its inverse

is ð4Þgij ¼ gij − gtigtj

gtt .
Now we linearize Eq. (4.40) around this background,

i.e., ðM̄ þ δMÞðŪ þ VÞ ¼ Āþ δA, where δUtðjmÞ ¼ Vjm.
We multiply the zero order, M̄ Ū ¼ Ā, by ēak and obtain

Ūtij ¼
5α0l2

α2

ḡḡij
ð4Þḡ

¼ −
1

l2
ḡttḡij; ð4:47Þ

where we replaced the values of the constants αk. We also
used the identity jēj2 ¼ −ḡ ¼ −ḡttð4Þḡ.
Projecting M̄ Ū ¼ Ā by ēat , we find that (4.47) is

satisfied. One can obtain the same result from the definition
Ūtij ¼ R̄titj coming from Eqs. (4.27) and (4.45).
The linear order equation, M̄V þ δMŪ ¼ δA, projected

by ēaμ reads

M̄iðjmÞ
μ Vtjm ¼ Ci

μ; ð4:48Þ

where we defined Ci
μ ¼ −δMiðjmÞ

μ Ūtjm þ eaμδAi
a. After

replacing the matrix M [see Eq. (4.46)], we find

Vt
i
μ − δiμVt

j
j ¼

jejl2

2ð4Þḡ
Ci
μ: ð4:49Þ

In that way, all 10 symmetric multipliers U ¼ Ū þ V are
uniquely solved in the AdS background with

Vt
i
j ¼

jejl2

2ð4Þḡ

�
Ci
j −

1

3
δijC

k
k

�
: ð4:50Þ

It is straightforward to check that the remaining equations,

M̄iðjmÞ
t Vtjm ¼ Ci

t, are automatically satisfied. Therefore, we
explicitly find the matrix Δ̄a

ðklÞi in the AdS background.
It is easy to prove in a similar way that the static black

holes also belong to the chosen region of the phase space
where the left inverse Δ̄a

ðklÞi exists. Namely, as in AdS
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space, the black hole curvature Rμν
αβ has each component

proportional to δμναβ, with different factors. An explicit check
confirms that M has maximal rank for static pure Gauss-
Bonnet black holes.
With all constraints identified and the Hamiltonian

multipliers solved, we can obtain the information about
the degrees of freedom and local symmetries in the theory
in a particular class of backgrounds, whereM has maximal
rank during the whole evolution of the fields.

V. DEGREES OF FREEDOM AND SYMMETRIES

The next step in the Hamiltonian analysis is to separate
first- and second-class constraints. The first-class con-
straints generate local symmetries, and the second-class
constraints eliminate nonphysical fields not related to the
symmetries. If there are N1 first-class and N2 second-class
constraints in the phase space with N generalized coor-
dinates, then a physical number of degrees of freedom is
given by the Dirac formula

N� ¼ N − N1 −
1

2
N2: ð5:1Þ

Thus, determination of a class of constraints is of essential
importance for identification of the physical fields living on
the reduced phase space Γ�. Furthermore, first-class con-
straints are related to the existence of indefinite multipliers
in a theory, and their numbers should match since each
first-class constraint appearing in the Hamiltonian is
multiplied by an arbitrary function. Let us recall from
the previous section that the solved multipliers are
fuai ; Uab

i ; via ¼ 0; vija ¼ 0g, and the unsolved ones uabt
and uat are related to the local symmetries, Lorentz trans-
formations and diffeomorphisms. In addition, we do not
know the explicit form of all multipliers Uab

i because UtðijÞ
depends on the background. It is then expected that we will
not be able to obtain a closed, background-independent
form of all generators.
To find first-class constraints, it is helpful to write the

total Hamiltonian density HT with solved multipliers
because it is known that this is a first-class quantity (it
commutes with all constraints); therefore, only first-class
constraints will naturally appear as combinations of other
constraints. Thus, replacing the solutions (4.19), (4.23) and
(4.27) in HT , we obtain the Hamiltonian density

H ¼ −
1

2
ωab
t Jab − eat Ja þ uat πta þ

1

2
uabt πtab

þ 1

2
Uab

i ϕi
ab þ ∂iDi; ð5:2Þ

where the constraints ðHa;HabÞ are replaced by the new
ones ðJa; JabÞ,

Jab ¼ Hab − eaiπib þ ebiπia þDiϕ
i
ab

¼ −eaiπib þ ebiπia þDiπ
i
ab;

Ja ¼ Ha þDiπ
i
a: ð5:3Þ

The total divergence Di ¼ eat πia þ 1
2
ωab
t ϕi

ab can be
neglected, as it contributes only to a boundary term in
the total Hamiltonian.
The functions ðJa; JabÞ are not guaranteed yet to be first

class because we still have to replace Uab
i . But to evaluate

U · ϕ, we have to choose a particular background for UtðijÞ,
so we will not write it explicitly, as we prefer to keep the
background-independent expressions. A more detailed
analysis shows that after using Eqs. (4.37) and (4.44),
the multipliers can be written as

1

2
Uab

i ϕi
ab ¼ Δc

ðijÞkA
k
cgtleal e

jbϕi
ab

− eat

�
1

2
Racjkekbeci e

jdϕi
bd − Δc

ðijÞkA
k
cgttejbϕi

ab

�

¼ −
1

2
ωab
t ΔJab − eatΔJa; ð5:4Þ

so, in general, this expression can affect the generators Ja
and Jab becauseΔc

ðijÞk is a function of e
a
t and ωab

t . The first-

class generators that appear in the Hamiltonian (5.2) are
J ab ¼ Jab þ ΔJab and J a ¼ Ja þ ΔJa. Note that these
corrections contain the nonlinear R2 terms and the back-
ground-dependent Δðe;ωÞ. This is similar to what happens
in the Rþ T2 þ R2 theory [29]. Because of the complexity
of the problem, in the next step we will not account for the
U · ϕ term.
The temporal components of the fields, ωab

t and eat , are
Lagrangian multipliers because they are not dynamical, and
in the Hamiltonian notation, they are arbitrary functions
multiplying the constraints. Therefore, the Hamiltonian
(5.2) can be seen as the extended Hamiltonian, which
contains constraints of all generations, both primary and
secondary. Furthermore, since only first-class constraints
are associated with indefinite multipliers, we can identify
them as

first-class constraints∶ J a;J ab; πta; πtab;

and there are N1 ¼ ð5þ 10Þ × 2 ¼ 30 of them. With
respect to the second-class constraints, from (4.22) we
know that Ta

ij ≈ 0 is satisfied, but some components of the
torsion tensor are first class and some are second-class
constraints. They cannot be separated explicitly. For
example, 10 functions Hab are linear combinations of
Ta
ij. This means, in order to define J ab in terms of Hab,

we had to change the basis of the constraints. In doing so, it
is important that the regularity conditions are satisfied,
ensuring that all constraints are linearly independent on the
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phase space because they have the maximal rank of the
Jacobian with respect to the phase-space variables. In our
case, we replaced the initial set of 30 constraints Ta

ij by a
new one ðHab; T zÞ. Then, the regularity conditions require
that Rank½∂ðHab;T zÞ

∂ðqM;pNÞ � ¼ 30, what means that there must be

20 second-class constraints T z. We denote them by T z ¼
f ~Ta

ijg regardless of their tensorial properties, to remember
that they are redundant torsional components which do not
generate any local symmetry. Thus, we represented Ta

ij by

an equivalent set of the 10þ 20 constraints ðHab; ~T
a
ijÞ.

Then we can identify the remaining set of constraints as

second-class constraints∶ ~Ta
ij;ϕi

a;ϕi
ab;

and there are N2 ¼ 20þ 20þ 40 ¼ 80 of them. Then,
counting the degrees of freedom is straightforward: for
N ¼ 25þ 50 ¼ 75 dynamical fields ðeaμ;ωab

μ Þ, the Dirac
formula (5.1) gives the number of degrees of freedom

N� ¼ 5: ð5:5Þ
This is the same number as in the five-dimensional
Einstein-Hilbert theory, and the maximal number that a
PL gravity can contain. One of these degrees of freedom is
the radial one. This can be proved by performing the
Hamiltonian analysis of the action in minisuperspace
approximation, which involves only the relevant degrees
of freedom, similar to Ref. [21]. Fundamental fields in this
approximation are the most general ones among gμν and
Tμνλ that have the same isometries. The identified radial
degree of freedom corresponds to the metric component
gtt ¼ −1=grr.
If the rank of M in (4.40) is smaller than maximal, then

some functions UtðijÞ remain arbitrary, reflecting the fact
that there are more local symmetries in the theory and less
degrees of freedom. In the extreme case, when the rank of
M is zero, all UtðijÞ are indefinite, so there are 10 additional
local symmetries because second-class constraints are
converted into the first class; thus, N1 → N1 þ 10 ¼ 40
and N2 → N2 − 10 ¼ 70. This implies that in the flat
background the theory has N�−10þ 1

2
10¼0 degrees of

freedom. Indeed, in Ref. [30], the PL gravity with Λ ¼ 0
was studied in five dimensions, and it was pointed out that
it is kinematic. However, it was also shown that the LL term
alone did not admit a linear approximation, and it was
suggested that a linear Einstein-Hilbert term would make
the theory more physical. In our case, the cosmological
term has this purpose. In general, the number of degrees of
freedom in five-dimensional PL gravity varies in the range

0 ≤ N� ≤ 5: ð5:6Þ
Let us analyze the local symmetries and their generators.

The first-class constraint G ≈ 0 acts on the fundamental

field q through the smeared generator G½λ� ¼ R
d4xλG, and

the field transforms as δq ¼ fq;G½λ�g. In our case, the
generator for all first-class constraints is

G½Λ; _Λ;ϵ; _ϵ�¼
Z

d4x

�
1

2
ΛabðJab−eatπtbþebtπtaÞ

−
1

2
D0ΛabπtabþϵaJa−D0ϵ

aπta

�

¼
Z

d4x

�
1

2
Λab ~Jab−

1

2
_Λabπtabþϵa ~Ja− _ϵaπta

�
;

ð5:7Þ

where we redefined Jab → Jab − eatπtb þ ebtπta and
Ja → Ja þ ωta

bπtb in order to covariantize the e · π term.
It is equivalent to the redefinition of the multipliers, so that

~Jab ¼ Jab − eatπtb þ ebtπta þ ωc
taπ

t
cb − ωc

tbπ
t
ac;

~Ja ¼ Ja þ ωta
bπtb: ð5:8Þ

The parameters _Λab and _ϵa are required by Castellani’s
construction of the generators [31] (for an alternative
method, see [32,33]) to replace the independent parameters
by the first-class constraints πtab and π

t
a. A reason for this is

that in the Hamiltonian formalism, all PB are taken at the
same time, and the time derivatives of parameters are
treated as the new, independent functions; for example,
D0Λab is linearly independent of Λab. In addition, the
Castellani method gives a procedure to determine these
parameters in a way that recovers covariance of the
Lagrangian theory. Direct calculation shows that, up to
the background-dependent term U · ϕ, the given generators
indeed satisfy Castellani’s conditions.
The gauge transformations generated by G½Λ; _Λ; ϵ; _ϵ�

have the form

δeaμ ¼ Λabebμ −Dμϵ
a;

δωab
μ ¼ −DμΛab: ð5:9Þ

The ΛabðxÞ is recognized as a Lorentz gauge parameter.
The local transformations with the parameter ϵaðxÞ are
related to the diffeomorphisms on shell, and their explicit
form cannot be written because it depends on the
background.
The nonvanishing brackets between the constraints

f~Jab; ~Ja; πta; πtab; Ta
ij;ϕ

i
a;ϕi

abg contain the Lorentz algebra

f~Jab; ~J0cdg ¼ ðηad ~Jbc þ ηbc ~Jad − ηac ~Jbd − ηbd ~JacÞδ;
ð5:10Þ

where the brackets with ~Jab vanish weakly with all other
constraints, so they are explicitly first class,
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f ~Jab; π0tcg ¼ ðηbcπta − ηacπ
t
bÞδ;

f ~Jab; π0tcdg ¼ ðηadπtbc þ ηbcπ
t
ad − ηacπ

t
bd − ηbdπ

t
acÞδ;

f ~Jab; ~J0cg ¼ ðηbc ~Ja − ηac ~JbÞδ;
f ~Jab;ϕ0i

cg ¼ ðηbcϕi
a − ηacϕ

i
bÞδ;

f ~Jab;ϕ0i
cdg ¼ ðηadϕi

bc þ ηbcϕ
i
ad − ηacϕ

i
bd − ηbdϕ

i
acÞδ;

f ~Jab; T 0c
ijg ¼ ðδcbTaij − δcaTbijÞδ: ð5:11Þ

For completeness, we also list the other nonvanishing
brackets among the constraints,

f ~Ja; ~J0bg ¼ −
15α0
4α2

Ωij
abijδ;

where Ωij
abij ¼ Ωij

abcde
c
i e

d
j and, by introducing Ki

abc ¼
4α2ϵ

ijklϵabcdeω
d
j f
Rfe
kl þ ηabπ

i
c − ηacπ

i
b,

f ~Ja; π0tbcg ¼ ðηabπtc − ηacπ
t
bÞδ;

f ~Ja;ϕ0i
bg ¼ −120α0jejðetaeib − etbe

i
aÞδ;

f~Ja;ϕ0i
bcg ¼ Ωij

abc∂jδþ Ki
abcδ;

f ~Ja; T 0b
ijg ¼ Rb

aijδ;

fTa
ij;ϕ

0l
cg ¼ −δacδlkij∂kδþ ðωa

i cδ
l
j − ωa

j cδ
l
iÞδ;

fϕj
ab; T

0c
klg ¼ ð−edlδcdabδjk þ edkδcdabδ

j
lÞδ: ð5:12Þ

As already mentioned, the symplectic form in PL gravity
is nonlinear in the curvature so its rank depends on the
particular background. This implies that the second-class
constraints cannot, in general, be separated from the first-
class constraints. The constraints whose brackets do not
vanish explicitly on the constraint surface are the ones
given by Eq. (5.12).

VI. HAMILTONIAN ANALYSIS OF PL GRAVITY
IN (d þ 1) DIMENSIONS

In this section we only give the main results of the
Hamiltonian analysis in dþ 1 dimensions and point out
the differences with respect to the five-dimensional case.
The generalized coordinates qM, momenta πM and primary
constraints have the form (4.4)–(4.6), where now the
indices run in the wider range i ¼ 1;…; d and
a ¼ 0;…; d. The symplectic matrix has the components

Ωij
abcd ¼ 4ðp − 1Þβpϵijki4���idϵabcda4���adRa4a5

i4i5
� � �

× R
a2p−2a2p−1
i2p−2i2p−1

T
a2p
ki2p

e
a2pþ1

i2pþ1
� � � eadid ;

Ωij
abc ¼ βpϵ

iji3���idϵabca3���adR
a3a4
i3i4

� � �Ra2p−1a2p
i2p−1i2p

e
a2pþ1

i2pþ1
� � � eadid ;

ð6:1Þ

where βp ¼ −22−pðdþ 1 − 2pÞpαp is a real constant. The

matrix Ωij
abcd is identically zero only in the Einstein-Hilbert

gravity (p ¼ 1). In general (p > 1), the matrix Ωij
abcd only

weakly vanishes for the PL gravity (2.10). The phase-space
functions Li

ab, Saand Sab in higher dimensions become

Li
ab ¼ −

1

dþ 1 − 2p
Ωij

abce
c
j ;

Sa ¼ Ha þDiλ
i
a;

Sab ¼ Hab þ ebiλia − eaiλib; ð6:2Þ

where

Hab ¼ −
1

2
Ωij

abcT
c
ij;

Ha ¼ ðdþ 1Þα0ϵaa1���adϵi1���idea1i1 � � � e
ad
id
−

1

4p
Ωij

abcR
bc
ij :

ð6:3Þ

Using the Hamiltonian (4.11) and (4.12), we find the
following secondary constraints from the condition of
vanishing _pa

ij, _ϕt
a and _ϕt

ab,

Ta
ij ≈ 0; Sa ≈ 0; ð6:4Þ

Sab ≈ ebiλia − eaiλib ≈ 0: ð6:5Þ

The requirement of vanishing _ϕi
a and _pa

i solves the multi-
pliers via and uai ,

via ¼ ebt Σi
ab þ

1

2
Ωij

cdaU
cd
j þ ωb

t aλ
i
b þDjλ

ij
a ≈ 0; ð6:6Þ

uai ¼ Dieat − ωab
t ebi; ð6:7Þ

where it was convenient to define Uab
i ¼ uabi −Diω

ab
t and

Σi
ab ¼ ϵaba2���adϵ

ii2���id
�
−dðdþ 1Þα0ea2i2 � � � e

a2pþ1

i2pþ1

þ d − 2p
4p

βpR
a2a3
i2i3

Ra4a5
i4i5

� � �Ra2pa2pþ1

i2pi2pþ1

�
e
a2pþ2

i2pþ2
� � � eadid :

ð6:8Þ

In odd-dimensional spaces with d ¼ 2p, the last line in Σi
ab

vanishes. This is the case of five-dimensional pure Gauss-
Bonnet gravity analyzed in the previous sections.
We ask that the constraint ϕi

ab ≈ 0 vanishes during
its time evolution in (dþ 1)-dimensional spacetime,
leading to
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_ϕi
ab ≈ −

1

2
ωcd
t ðΩij

cdaebj −Ωij
cdbeaj þ Ωij

abcedj − Ωij
ab;decjÞ

þ etaλib − etbλia − λija ebj þ λijb eaj: ð6:9Þ

However, the first line identically vanishes due to the
combinatorial identity

ϵba1���adeaj − ϵaa1���adebj þ ϵaba2���adea1j − � � �
þ ð−1Þdþ1ϵabca1���ad−1eadj ¼ 0; ð6:10Þ

and the second line of (6.9) with Eq. (6.5) can be
equivalently written as λia ≈ 0 and λija ≈ 0, so that we find

secondary constraints : Sa ≈ 0; Ta
ij ≈ 0;

λia ≈ 0; λija ≈ 0: ð6:11Þ

Next, we require that the secondary constraints also
evolve on the constraint surface. Thus, the requirement of
vanishing _λija and _λia solves the multipliers vija ¼ 0 and
via ¼ 0, but because the form of via is already known from
Eq. (6.6), we obtain the algebraic equation for the multi-
pliers Ucd

j ,

0 ≈ χia ¼ ebt Σi
ab þ

1

2
Ωij

cdaU
cd
j : ð6:12Þ

By replacing Uab
i ¼ Rab

ti , we can prove that the above
expression combined with Ha is equivalent to the
Lagrangian equations,

0≈ χia ¼ ðHa; χiaÞ ¼ ðdþ 1Þα0ϵaa1���adϵλμ1μ2���μdea1μ1ea2μ2 � � �eadμd
þ αp
2p

ðdþ 1− 2pÞϵλμ1���μdϵaa1���adRa1a2
μ1μ2 � � �

×R
a2p−1a2p
μ2p−1μ2p e

a2pþ1
μ2pþ1

� � �eadμd : ð6:13Þ

Further calculation can be simplified by observing that,
as in five dimensions, the pairs of conjugated constraints,
ðλia; pb

j Þ and ðλija ; pb
klÞ, are second class. This means they

can be eliminated from the phase space by defining the
reduced phase space Γ�, where the Poisson brackets are
replaced by the Dirac brackets (4.24). The coordinates of
the space Γ� are ðeaμ;ωab

μ ; πμa; π
μ
abÞ, and their Dirac brackets

are equal to the Poisson brackets. From now on, we drop
the star in the Dirac brackets and continue working on Γ�.
The evolution of Sa can be obtained, after the long, but

straightforward calculation, with the help of the identity
0 ¼ Dϵaba1���ad , which implies

ωta
bRa1a2

i1i2
Ωi1i2

ba1a2
¼ −ωtf

a1 ½2pΩi1i2
aa1a2R

fa2
i1i2

þ ðd − 2pÞΩi2i3k
aa1a2a3R

a2a3
i2i3

efk �: ð6:14Þ

Then, we find that Sa never leaves the constraint surface,

_Sa ≈ −Diχ
i
a − ωta

bHb ≈ 0: ð6:15Þ

Finally, the consistency condition of Ta
ij gives ðdþ1Þdðd−1Þ

2

algebraic equations for d2ðdþ1Þ
2

unknown functions Ua
ij ¼

Uab
j ebi,

0 ≈ _Ta
ij ≈ Rab

ij ebt þ Ua
ji −Ua

ij: ð6:16Þ

This form is the same as in five dimensions, so we skip the
detailed analysis (4.31)–(4.36) and conclude that the
antisymmetric parts Ua

½ij� of the multipliers are solved,

UtðijÞ remain unknown and the others are not independent
due to the Bianchi identity. The final expression for Uab

i is
given by Eq. (4.37). The result for the coefficientsU can be
summarized in the following table.

MultiplierUμij∶ Ut½ij� UtðijÞ AUkij
SUkij

TUkij
d2ðdþ1Þ

2
components∶ dðd−1Þ

2

dðdþ1Þ
2

d d dðd2−d−4Þ
2

Solved by∶ _T0
ij arbitrary _T ½ijk� Bianchi Bianchi

Solutions of UtðijÞ depend on the equation χia ¼ 0 given by
Eq. (6.12), which after using (4.37) becomes

MiðjmÞ
a Utjm ¼ Ai

a: ð6:17Þ

The tensor M has the form (4.41). This is the dðdþ 1Þ ×
dðdþ1Þ

2
matrix of order p − 1 in the Riemann tensor. The

nonhomogenous part of the equation, on the other hand, is

Ai
a ¼ Σi

abe
b
t þ

1

2
Ωij

abce
kbelcRtjkl: ð6:18Þ

Higher-order dependence of M in the curvature means that
its rank can change throughout the phase space. When
Λ ≠ 0, there is always the region of Γ� where the rank ofM
is maximal, that is, dðdþ1Þ

2
which enables us to solve all

dðdþ1Þ
2

coefficients UtðijÞ. This completes the constraint
analysis, which has the same structure as in five dimen-
sions. Arbitrary multipliers are associated with the first-
class constraints, and the rest are second-class constraints.

Therefore, we have N ¼ ðdþ1Þ2ðdþ2Þ
2

fundamental fields
ðeaμ;ωab

μ Þ in the PL gravity on the reduced space,
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N1¼ðdþ1Þðdþ2Þ first-class constraints ðJa; Jab; πta; πtabÞ
and N2¼d2ðdþ1Þ second-class constraints ð ~Ta

ij;ϕi
a;ϕi

abÞ.
Therefore, the number of physical fields in the bulk in this
particular background is

N� ¼ ðdþ 1Þðd − 2Þ
2

: ð6:19Þ

In other backgrounds we can have less degrees of freedom,
so that the number of degrees of freedom in a higher-
dimensional PL gravity is 0 ≤ N� ≤ ðdþ1Þðd−2Þ

2
. The first-

class constraints and gauge generators have the same form
as before; only the matrix M and the tensor Aa

μ that appear
in (4.40) are of order p − 1 in the curvature, and we will not
write them explicitly—it is straightforward to repeat the
previous calculation here.

VII. DISCUSSION

We performed a Hamiltonian analysis of PL gravity in
any dimension D ≥ 5. This Lovelock gravity is not a mere
correction of the Einstein-Hilbert theory because it does not
even contain the linear term in the scalar curvature. Instead,
its kinetic term is described by a pth-order polynomial in
the Riemann tensor such that the equations of motion
remain of second order in the metric. When the cosmo-
logical constant is included, PL gravity has the unique dS
and/or AdS vacuum.
The first-order formalism was used to deal with non-

linearities involved in the theory. We ensured that space-
time is Riemannian by introducing the constraint that
forced the torsion to vanish.
The detailed analysis revealed that the number of

symmetries and degrees of freedom in this theory depends
on the background. In the generic case, which includes (A)
dS space and spherically symmetric, static black holes, the
theory contains DðD − 3Þ=2 degrees of freedom, which is
the same as in general relativity. But in contrast to relativity,
a change of the background can increase the amount of
local symmetries in the theory and convert previously
physical fields into nonphysical ones, even leading to a
topological theory (with no degrees of freedom in the bulk).
This is typical for Lovelock theories. In the PL case, this
change of degrees of freedom is kept under control through
the matrix M, whose rank can be between 0 and
DðD − 1Þ=2, which yields between 0 and DðD − 3Þ=2
degrees.
A constraint analysis probes a number of physical

components of the metric field gμν, which is directly related
to the Riemann tensor. Its relation to the PL Riemann tensor
is indirect and not anchored to any metric or connection in a

straightforward way. It turns out that the maximum possible
number of physical fields does not depend on a particular
Lovelock theory, as was pointed out earlier in Ref. [17].
This reflects the fact that so long as the equations of motion
are second order, the metric degrees of freedom would be
the same for Einstein as well as Lovelock theories.
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APPENDIX: CONVENTIONS

We use the signature of the Minkowski metric ηab ¼
diagð−þþþ � � � þÞ.
The Levi-Civita symbols in dþ 1 and d dimensions are

defined by

dxμ1∧ � � �∧dxμdþ1 ¼ ϵμ1���μdþ1ddþ1x; ϵti1i2���id ¼ ϵi1i2���id :
ðA1Þ

The generalized Kronecker delta of rank s is constructed as
the determinant

δν1���νsμ1���μs ¼

�����������

δν1μ1 δν2μ1 � � � δνsμ1
δν1μ2 δν2μ2 δνsμ2

..

. . .
.

δν1μs δν2μs � � � δνsμs

�����������
: ðA2Þ

If the range of indices isD, a contraction of k ≤ s indices in
the Kronecker delta of rank s produces a delta of rank s − k,

δν1���νk���νsμ1���μk���μsδ
μ1
ν1 � � � δμkνk ¼

ðD − sþ kÞ!
ðD − sÞ! δνkþ1���νs

μkþ1���μs : ðA3Þ

Other identities involving the Levi-Civita symbol and the
generalized Kronecker delta are

ϵν1…νdþ1
ϵμ1…μdþ1 ¼ −δμ1…μdþ1

ν1…νdþ1
;

ϵa1���adþ1
ea1μ1 � � � eadþ1

μdþ1
¼ jejϵμ1…μdþ1

; ðA4Þ

where jej ¼ det½eaα�.
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