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New localization mechanism and Hodge duality for g-form field
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In this paper, we investigate the problem of localization and the Hodge duality for a g-form field on a
p-brane with codimension one. By a general Kaluza-Klein (KK) decomposition without gauge fixing, we
obtain two Schrodinger-like equations for two types of KK modes of the bulk g-form field, which
determine the localization and mass spectra of these KK modes. It is found that there are two types of zero
modes (the 0-level modes): a g-form zero mode and a (¢ — 1)-form one, which cannot be localized on the
brane at the same time. For the n-level KK modes, there are two interacting KK modes, a massive g-form
KK mode and a massless (¢ — 1)-form one. By analyzing gauge invariance of the effective action and
choosing a gauge condition, the n-level massive g-form KK mode decouples from the n-level massless
(g — 1)-form one. It is also found that the Hodge duality in the bulk naturally becomes two dualities on the
brane. The first one is the Hodge duality between a g-form zero mode and a (p — g — 1)-form one, or
between a (¢ — 1)-form zero mode and a (p — ¢)-form one. The second duality is between two group KK
modes: one is an n-level massive g-form KK mode with mass m,, and an n-level massless (¢ — 1)-form
mode; another is an n-level (p — ¢)-form one with the same mass m,, and an n-level massless (p — g — 1)-
form mode. Because of the dualities, the effective field theories on the brane for the KK modes of the two

dual bulk form fields are physically equivalent.
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I. INTRODUCTION

When the Arkani-Hamed-Dimopoulos—Dvali (ADD) [1]
and the Randall-Sundrum (RS) [2,3] brane-world models
were brought up, they opened a new avenue to solve
the long-standing hierarchy problem and the cosmology
problem [4-11]. Since then the brane-world and extra
dimension theories have received more and more attention
[10-27].

In the brane-world theory, one of the most important and
interesting subjects is to investigate the Kaluza-Klein (KK)
modes of various fields [28—48], which are the codes of the
extra dimensions. In this work we are interested in the KK
modes of a bulk massless g-form field on a p-brane world
with codimension one. It is known that the O-form and
1-form fields are the scalar and vector fields, respectively,
and the usual 2-form field is the Kalb-Ramond field, which
is used to describe the torsion of space-time in Einstein-
Cartan theory. The higher-form (¢ > 2) fields are new types
of particles in a higher-dimensional space-time with
dimension D > 4, which are useful for some unknown
problems such as the cosmological constant problem or
dark energy problem [7,49].

*Corresponding author.
fuche08 @lzu.edu.cn

liuyx @lzu.edu.cn

*9u0h06@lzu.edu.cn

$zhangsl @mail.xjtu.edu.cn

2470-0010,/2016,/93(6)/064007(10)

064007-1

The p-brane considered here has p spacial dimensions
and is embedded in a D = p + 2 dimensional space-time
with one extra dimension perpendicular to the brane.
Although the realistic world is the 3-brane, the higher
dimensional branes with p > 3 (D > 5) may also have
realistic applications if the branes have three infinite
large dimensions (which are those we can feel) and
p —3 finite size dimensions with topology S'x S'x
-+-x 8" =TP7 and small enough radius. It is also
possible that there are more extra dimensions outside
the p-brane. In this work we only consider the simplest
case. The line element of the space-time is assumed as a
RS-like one,

ds* = e (g, (x*)dx"dx” + dz?), (1)

where A(z) is the warp factor that is only the function of z,
and §,,(x*) = n,, is the induced flat metric on the brane.
Moreover we regard the bulk g-form field as a small
perturbation around the p-brane and neglect its back-
reaction on the background geometry.

To investigate the KK modes of a bulk field, we should
propose a localization mechanism for the field. Some work
has been carried out on the localization of the g-form field
[34,50-63], where the authors usually first chose a gauge to
make the localization mechanism simpler. But these gauge
choices make us only see parts of the whole localization
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information. In this paper, we will try to find a new
localization mechanism for the g-form field without any
gauge choice in order to give a whole view of the field’s
localization.

To this end, we first give a general KK decomposition
for a bulk g-form field X, MyM, without any gauge
choice:

Koo (50:9) = 3 Rl (U (@)1 (2a)
Xz (X 2) = ZX,,I g (XU 2")(z)e”2A<z), (2b)

where the " denotes the effective quantities on the brane, the
index n marks different KK modes, U;(z) are only the
function of the extra dimension coordinate z, and a; are
constants. Here we have classified the bulk g-form field
into two types, i.e., X, .., . containing the index of z and

Xy, DO containing, because they have different effective

fields on the brane. The effective fields on the brane for

Xy and X, o, AT€ the (¢ — 1)-form and g-form fields,

respectively.

Then through the dimensional reduction we will get the
effective action for the g-form field, the orthonormality
conditions for the KK modes, and the equations of motion

of U (z) and Ué )( ), which are found to be two
Schrodlnger-hke equations. With the orthonormality con-
ditions and the two Schrodinger-like equations we can get
the mass spectra of the KK modes and analyze their
characters in any p-brane world model.

It will be finally found that for any g-form field there are
two types of massless 0-level KK modes, a g-form mode
and a (¢ — 1)-form one, which cannot be localized on the
p-brane at the same time. There are also two interacting
n-level KK modes, i.e., a massive g-form KK mode and a
massless (¢ — 1)-form one.

With the general KK decomposition, we also will find
that the Hodge duality in the bulk naturally turns out to be
two dualities, i.e., the Hodge duality on the brane between a
massless g-form mode and a (p — g — 1)-form one, and a
new duality between two group KK modes: one is an
n-level massive g-form KK mode with mass m, and an
n-level massless (¢ — 1)-form mode; another is an n-level
(p — g)-form one with the same mass m, and an n-level
massless (p — g — 1)-form mode. Because of the two
dualities, there are some interesting phenomena. For
example, as a massless vector (1-form) field on a 3-brane
is dual to itself according to the Hodge duality on the brane,
we cannot know it is from a bulk 1-form or a 2-form field.

This paper is organized as follows. We first investigate
the new localization mechanism in Sec. II, and then discuss
the massless and bound massive KK modes, respectively, in
Secs. IT A and II B. In Sec. II C we show the new duality
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derived from the Hodge duality in the bulk. Finally, we give
a brief conclusion in Sec. III.

II. A NEW LOCALIZATION MECHANISM
AND HODGE DUALITY

In a brane-world background, there are usually four steps
to investigate the localization of a bulk g-form field, for
which the action is [34]

1
S=— 2(q+ 1) /de /— YM My--M g, YMle"‘Mq+1 s (3)
field
YM1M2~~-M4+1 = [M1XM2~~M4+1]'
(i) Firstly, choose a simple gauge for the g-form field,
such as

with Yy, My M, the strength  defined as

u
Xy o1z (F

7) =0, (4)
and make a KK decomposition for other components
of the field:

Zxﬂl ﬂq ( Jehh (5)

u, (X, 2) =

(i1) Secondly, substitute the KK decomposition into the
equations of motion for the g-form field:

a#] (\/__gyﬂlﬂzm#qﬂ) + 31(\/__gyz#z~-ﬂq+l) =0,
(6a)

a”] (\/:gY”IﬂZ"'/‘qZ) =0, (6]3)

and use the gauge choice (4). Then obtain a
Schrodlnger like equation for the KK modes
U1 (Z)

(iii) Thirdly, with the KK decomposition into the action
of the bulk field (3), and assuming the orthonor-
mality conditions for localizing the KK modes on
the brane, the effective action for the KK modes will
be found.

(iv) Lastly, with a background solution, by solving the
equation of U (1") (z), the mass spectra of the KK modes
are obtained, and their characters can also be analyzed.

The reason for choosing the gauge (4) is to obtain a simpler
equation of U §">(z) from (6a), which is used to find the
mass spectra and the wave functions of the KK modes
satisfying the orthonormality conditions.

If we substitute the general KK decompositions (2) into
the field equations (6), we will get complex field equations
for the KK modes U" (n (z) and Uy' ( ). However, we indeed
need these equations to discuss the localization of the
g-form field.
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In order to investigate this problem, we will compare the

equations of motion for the KK modes U\")(z) and U (z)
derived in two ways. One is from the effective action,
which is obtained by the KK reduction for the fundamental
action of the g-form field. Another is from (6) as well as the
KK decomposition (2). Let us show the details.

We first would like to get the effective action for the
g-form field. With the KK decomposition (2), the corre-
sponding components of the field strength become

YH1U Hge1 — Z)?’(‘r‘l;'”q“(xﬂ)U(l'”(Z)e(al—Z(qH))A’ (7)
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q

S
+q+_1 Zn:X(n)

2(g+1))A

U(I”) (Z)ealA)e—Z(q-H)A’

(8)
where the indices of the quantities with ~ are raised or
lowered by the induced metric #*¥(x) or g, (x).
Substituting the above expressions into the action for the
g-form field, we have

1
S, = _W/ dPx\/=g(YH Han Yyropg + (g + 1)yrmrsy, y2)>
§jzj ) [ i 1 [ a8 L,
+ 153,3 / /GRS, + 21 [ a0 R )

where we have let al =a, = (2q — p)/2, and supposed

that U(1”> (z) and U "(z) satisfy the following orthonor-
mality conditions:

I = / dzU{" U = 6, (10a)
2
2 q n n
o = 11 dzUS UL = (g + 18,0, (10b)
and IS;)’ and I’(;L), are given by
1 . p
1g25q+1/dze<P-2q>Aaz(U§ Jeuh)g (U ert), (11)

@ __4 (p=29)A/2
1% = P=2q (12
q+1/dze Uo (Uemn).  (12)

For the effective action (9), it is necessary to analyze the
mass dimensions of the constants / 531), and / ,(;), in the natural

units with 2 = ¢ = 1. From the following result,

Y sty ] = MO = (p+2) /2, (13a)
[Pty = Bhthorne] = (P +1)/2, (13b)
i) = (8] = (P = 1)/2, (13¢)
") =[5 =172, (13d)

[
we have

1% =2,

nn

19 =1. (14)

nn

Further from the action (9), the equations of motion for
the effective fields can be obtained as

1 -
RO )

= 2R L) =0, (15)

n

and

SHIM - Hg
Z’nn (V=0T
+ Zlnn’aﬂl( \% _g)’\(@f‘)?"/‘q) =0. (16)

On the other hand, substituting the KK decomposition
(2) into Egs. (6a) and (6b), we get

\/’Y”]MZ ﬂq+]> +ﬂ, X/‘Z Hg+1 +l Y”Z Hg+1 — 0
\/_ 141 (n) ’
(17)

and
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By, (V=GY(7 ") 4 230, (V/=9X ) ") = 0. (18)

where
e—(a+p—29)A (n)
A= ﬁaz(ew—waz(ul e4)), (19a)
(¢ + 1)U,
—(a1+p—2q)A
Ay = qei(n)az(ljgﬂ)esz«kp—Zq)A)’ (l9b)
(¢ + 1)U,
o (U(”)ealA)
Iy = % (19¢)
qU;"ewA

It is clear that Egs. (15), (16) and (17), (18) must be
consistent with each other, which results in that

2 2
Ly (OSSN S (20)
qg+1 q+1
IE:L)/ = MGy, (21)
and
2
mn
/11 = —m, (223_)
Ay = —im,,, (22b)
ﬁ/ln
/13 = ﬁ s (220)
where [m,] = [m,] = 1.

The above three equations are interesting. First, Eq. (22a)
is in fact a Schrodinger-like equation of U\". With
Eq. (22c) the expressions (10b) and (12) are found to have
the following relationship:

ﬂn:(¢+U2mi
! my o g+1

5nn’ = (q + 1)6nn” (23)

( s
I, = O, 0. 24
nn ( )

The consistency of / T Egs. (21) and (24) results in

nn'
m: = m2. (25)

Here we can choose m, = +m,, for the g-form field. But
for the (p — ¢)-form field, which is dual to the g-form field
through the Hodge duality, it should be the negative —m,,,
because this is the requirement of a new duality on the
brane. We will discuss this in Sec. II C. Then Eqgs. (19a)-
(19¢) and (22a)—(22c) are equivalent to the following

coupled equations of U\") and U!":
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n pP— 26] n q + 1 n
0.Uy(2) + =5 AU (2) = == m, U} (2).
(26)
n pP—2q n q n
9.U" (2) —TA’(Z)U§ '(2) = +man§ \(2),
(27)

which can also be written as a Schrodinger-like equation for
each mode,

<82+ V(U (2) = m3U" (). (28a)
(<02 + Vo (2))US (2) = m3US (z).  (28b)

where the effective potentials are given by

P —2q

(=207 o) 1 220 sy, (20)

Voal) = L2292 - 222 ). o)

It is worth noting that the above two equations (28a)
and (28b) can be rewritten alternatively as

00U (2) = m2U\" (), (31)
01U (2) = m2UY (), (32)

with the operator Q given by Q = 0, + ”_TZ"A’ (z). So we
have the following conclusions: (1) there is no eigenstate
with negative eigenvalue; namely, we always have m2 > 0.
(2) There is only one zero mode with my =0, U <10)

or U(ZO), that can survive with the boundary condition

U(10%(|Z| — o0) — 0. (3) The two base functions U 5") and

Ué”) share the same mass spectrum except for my = 0.

Now it is clear that by solving the two Schrodinger-like
equations (28a) and (28b) with the orthonormality con-
ditions (10a) and (10b), we can find the mass spectrum of
the KK modes that can be localized on the brane.

We usually classify the KK modes into massless and
massive ones, as the former are regarded as the field that
has been on the brane, and the latter are carrying the
information of extra dimensions, which can be distin-
guished from the ones that have been on the brane. For
a realistic brane world, these two types of KK modes are
expected to be localized on the brane. For the massless
mode, its analytical wave function can easily be obtained,
so we can check whether it can be localized on the brane
through the normalization condition. While for the massive
KK modes, we usually have to use a numerical method to
solve them from the Schrodinger-like equations. There may
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also exist bound massive KK modes. In the following we
will discuss the massless and massive ones separately.

A. Massless KK modes

For the massless KK modes U(% with my = 0, the

solutions can be obtained from Eqgs. (28a) and (28b) or
Egs. (26) and (27):

UEO)(Z) — N1e+(/"2q)A/2, (33)
[]g»( ) = N,e~(P=20)4/2, (34)

where Ny and N, are the normalization constants. Their
effective action reads

0 1(1) ot (0
Sq,OZ/dp+1x _g(IéO)Y/(l(l))M lYﬂ<4])'"ﬂq+l

2) Sttt (0
+ 160 T T, (35)
where
1 =N / dzelr=204, (36)
1%, = N3 / dze~(P=204, (37)

It can be seen that / 511,())0 and / 512,())0 cannot be finite at the same

time for a brane with infinite extra dimension.

Then with (33) and (34), for the bulk g-form and its dual
(p — gq)-form fields (the duality is built through the Hodge
duality in the bulk), their KK decompositions now are

(0

Yoy (0 2) = T (N, (38a)
(0 q _

Yy, o (¥, 2) = Y,(ll?.‘,,q (x”)—q - lNze(zq PIA@) (38b)

/_g?ﬂl-_-ﬂﬁ—qﬂ (Xﬂ, Z) — /_gf;/(‘(l);'ﬂp—qﬂ (xﬂ)Nle(Zq—p)A(z)’

(38¢)
\/_Y”‘ Ho=a? (xH 7 \/_Yﬂ‘ ”” ﬂip_q 1{/2’
p—q+1
(38d)

where we have supposed that there is only the zero mode that
is localized on the brane. Then substituting the above
decompositions (38) into the below bulk Hodge duality [34],

\/—_gYMl'“Mp—qH = MMy NNy YN1~-.Nq+11

(39)
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which can also be written as

M1 Hp—gTV1 Vg1
€ Yy v

=gYH et = (40a)

(g+1)!

/— f/ﬂ]“'llp-qﬂ — lgﬂr--up_qﬂul--quy
g | IR 274

J (40b)

the Hodge duality on the brane is naturally satisfied:

A :ﬂ “Hp—q
V=Yg () =

8/41 Hp—qV17 " Vg+1 Yl(/]) Vi1 (xﬂ)’

(g+1)!

(41a)
M1 Hp—g+ 1 Utel, v 0

/—'Y 1 ' agm Hp-g121 1,y£1?“yq (), (41b)

where we have assumed that

P—q x g+1z
| =—— Ny, N, =-——N,. (42
p—q+1 q

From (41a) we see that there is a duality between a massless
g-form field and a massless (p — ¢ — 1)-form one on the
brane:

1 = Sty $5(0)
S0 = =gy 4"V Wi
~ 1 / ,ul Hp—
Sp-g-10 = 2(P q)! / artix Y I qY”l Hp=q"

(43)

From (41b), a massless (¢ — 1)-form field is dual to a
massless (p — g)-form one:

1

Syto=— 3 drtix/=g¥ly) ”qy¢1>ﬂq

~ 1
- - p+1.. /[ ﬂp q+1
Sp—q,O - drtx /‘ﬂ —q+1°

2(p—q+1)!
(44)

From the discussion about the localization of the zero
mode for a g-form field, we see that there is also a (p — ¢)-
form or (p — g — 1)-form zero mode for a bulk (p — g)-
form field. It is interesting to note that for a ¢g-form field and
its dual (p — ¢)-form field, with Eq. (42), there are some
relationships between the normalization constants:

/@

4,00
, 45
q+1 (45)

1) = N2 / dze(P=2(-0)A —
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— 2 ~
o _(p=4) g / dze=0=P)A = (p— g+ 1)1},

(46)

where I, S ) 00 and I, 1% 400 Are the normalization constants
appearmg 1n the effectlve action of the (p — g)-form field.
It is clear that if there is a localized g-form [or (¢ — 1)-form]
zero mode for a bulk g-form field, there must be a localized
(p — g — 1)-form [or (p — g)-form] zero mode for its dual
field. And this just satisfies the requirement of the Hodge
duality on the brane (41).

We have known that on some 3-brane models there is a
localized 1-form zero mode [58] from a bulk 1-form field,
but now it is seen that the localized 1-form also may be
from a bulk 2-form one. In fact, for any massless effective
g-form field dual to itself on the brane, we cannot be sure it
is from a bulk g-form or (p — ¢)-form field.

B. Bound massive KK modes

Furthermore, for some brane backgrounds there may be
bound massive KK modes except for the localized zero
mode. In this case we are wondering if we substitute
the general KK decomposition into the Hodge duality in the
bulk and keep the Hodge duality on the brane valid, what
will happen for the bound massive KK modes for the
g-form and its dual fields. Let us consider this issue in the
following discussion.

For the bound massive KK modes, as the two
Schrodinger-like equations (28a) and (28b) are not inde-
pendent of each other, we can get the mass spectra from any
one of them with the corresponding orthonormality con-
dition (10a) or (10b). The effective action for these n-level
bound KK modes of the g-form field can be written as

1 PN
_ +1y At §(n)
qgn — 2(q ¥ 1)' / drx gY(n) Yﬂ]“‘ﬂq+1

dp+1x\/_(ym #a . M A;(n) )2'

qg+1

(47)

Different with the zero modes, which have two types
[g-form and (¢ — 1)-form], the bound massive KK modes
are all g-form fields, and each n-level bound massive
g-form KK mode couples with the n-level massless (g — 1)-
form mode.

This coupling is important. Because of it the effective
action (47) is in fact gauge invariant under the following
gauge transformation:

5(54’:) Hq - Xlll “Hg + amA/lz Uy (48)
r(n) r(n) My 2
X, = R — ﬁAMZ,,_ﬂq, (49)
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where f\m‘,, " is an antisymmetric tensor field. For a 1-form
field, the effective action is just the Stiickelberg one. Then
we can fix the gauge by choosing

XL, =0, (50)

under which we will simplify the action (47) and obtain the
physical masses of the massive bound KK modes.
With the definition

() _

(8,41XW; + 0, Xu’; "

K1 Hgr1 + 1 Hg+1 g+1H1
+ 6 XM4 Hgt1H1H + - ')v (51)
we have
(1) HL Hgv1 OHaH3 Pyt
Vi Yy mamxﬂzm TRRLZAD (R

1
+—
(g+1)
(a Xllzﬂs llq+1a ZX,(Z;.MHMI + - )

(52)

By using the gauge condition (50), the above expression
can be written as

& (n) Sl 1 o(n) ﬂﬂ “Hg
Yllrll"'l‘qulY(;i) = _q T IXMzﬂs ﬂq+la o X o
+ total derivative terms. (53)

While the term ¥ f,'?,,q)?’&)” * is in fact a total derivative one.
Therefore, under the gauge condition (50), the effective
action (47) for the n-level bound KK mode of the g-form
field turns out to be

st @

Lot pmn 2(0)

auged
sEeed _

+(q+ DL, 0 ”q}, (54)

where [] = n'*d,0,. Note that here we have considered the
case of a flat brane, i.e., g,, = 1,,- Now it is clear that the

n-level massive KK mode )A(’(‘r',)”"

(a massive g-form field on
the brane) decouples from the n-level massless KK mode
5{,&-).-,4,,,1 [a massless (g — 1)-form field on the brane]. There
is still a gauge freedom for the n-level massless KK mode.

The equation of motion for the n-level massive KK
mode is
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@ = m)XGy ™ =0. (55)

Neglecting the tensor structure, the propagator for the mode
can be calculated as

ar-k ie—ik(x—y)
Gy = [ Gmierr ()

which is the Green’s function for (55) with k the momen-
tum of the mode. Therefore, the physical mass for the KK
mode is

mghy = m2. (57)

On the other hand, we find that the effective potentials of
the g-form and its dual (p —g)-form fields have the
following relationships:

Vp—q,l (Z) = Vq,2(2)7 Vp—q,Z(Z) = Vq,l(z)' (58)

Therefore, for the (p — ¢)-form field there also exist bound
massive (p — g)-form KK modes with the same mass
spectra m,, and the corresponding massless (p — g — 1)-
form modes. So that we could say that the n-level (n > 0)
bound KK modes for the g-form and (p — g)-form field are
dual to each other. Next, we will prove this duality by
considering the Hodge duality in the bulk and derive the
duality between them on the brane.

C. A new duality on the brane

From the relationships (58), we have U( " clU(2">,
U(2 " — 2U§"), where UE and Ug are two functions
appearing in the KK decompositions of the dual (p — g)-
form field:

0" (2)e™A), (59a)

E /4
Xﬂl “Hp-q x

/41 .up

v ) (n) a,A(2)
Xﬂr--ﬂ,m, 12 ZXM Tp— () Us" (z)e®A).

(59b)

Here a; = a, = (p —2q)/2. The effective action for the
dual (p — ¢g)-form field corresponding to (9) reads

PHYSICAL REVIEW D 93, 064007 (2016)

1
YT 2(p—g+ 1)

#1 H 1 5(n")
X g E { /d”“x\/ v, pat Yﬂ1 iyt
+l / ﬂpz
/dp * IY ”ﬁq

3(3) S Hp—g (1)
+1nn,/dp+1x gX() IqX ey

1"""Hp—q
+21¢ / drixy/=g Ry, (60)

Then with the relations i’(lln), = f dzU Yl)ff inl) = O’ U §n> =

clUgn), and (10b), we have ¢; = g/(q + 1). Similarly, we
getco = (p—q+1)/(p — q). Thus, we obtain the follow-
ing relations:

rrn q

U§>—q+1U§>, (61a)

rr(n - 1 n

g P4 Lyt (61b)
P=q

With the two above relations, and considering the two

coupled equations of U (1 and U2 (26) and (27), we can

find that
= (n P—2q = (n P—q+1 ~q
0.0y (2) - "5 AT (2) = == m,U}" (2).
pP—q
(62)
rr(n P—2C] rr(n — =~ (n
0.0\ (2) + * T AU (@) = =2ty m, U5 (2).
(63)
While Eq. (63) is just equal to
o0y m, TV (64
(p- )0 (e p=q+l p-qg+1’

which is similar to the one for the g-form field (19c).
This means that for the (p — ¢)-form field, we have

= =m0, (65)

so that for the massive bound KK modes of the (p — g)-
form field, the effective action is

064007-7



FU, LIU, GUO, and ZHANG

~ 1 Ryt g1 & (1)
- +1 /A HiHp—g+1
Sl’—qs” - 2(p —g+ 1)! / drix gY(n) Yﬂl"'ﬂp—q+1
i
- [ dPT'x\/=§
2(p—q)!
~ ~ 2
X ?ﬂl“'ﬂp—q _ m, Xﬂl"'/‘p—q) . 66
( N e (66)

According to the calculations about the propagators for the
g-form field, we can see that the physical masses for
massive KK modes of the (p — ¢)-form field are also m,,.

With the KK decompositions of the bulk g-form and its
dual fields (2) and (59), and considering the relations (19c¢)
and (64), the KK decompositions of the field strengths can
be written as

(0
Voo (,2) = N P ()

+ et S P, (U (2). (67)
n>1
— $0 NN oa-p)AG) 4 4 aarA
Y Hz) =Yyl N.ela—rp
sl = T o o) e
v M (m)
(88 )
%; L g+1
x V7). (67b)

\/__g?ﬂl"'ﬂp—qﬂ (x*,2)

+ e(le+2q—p)AZ§vl("ll;'ﬂp*q+l (x”)f]g'” (Z) ’

n>1

(68a)

\/__gf/ﬂl"'”ﬁ*qz(xﬂ’z)
P—4q

—_ A N ;ﬂl"'ﬂp—q xﬂ +
vV 9[ 14(0) (x) p—q+tl

PTIRTIN m, PTITI ~ (0
S - w0

n>1

el@+2q—p)A

(68b)

Substituting the above field decompositions (68b) and
(67a) into the Hodge duality (40) and considering the
Hodge duality of the zero modes on the brane (41a) as well
as the relations (61), we obtain the following dual relation
between the n-level KK modes:
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~ [ SH1Hp—g m, SH1Hp—g
\/—g<Y<n> i) )

p—q+1

1 A
DTS TR LA (69)

Similarly, we can derive another dual relation:

M-
\/__gY(r]z) p=q+1

1 o(n M %(n
— agﬂl..-ﬂp_qﬂllln-uq <Yl<,l?..yq + q + 1 Xl(,].)..yq> . (70)

With the above two relations it is easy to show that the two
effective actions on the brane of the n-level KK modes of
the bulk g-form and its dual (p — ¢)-form fields are equal:

Sqn = Sp_qn- (71)

This means that a bound n-level massive g-form KK mode
coupling with an n-level massless (¢ — 1)-form mode is
dual to a bound n-level massive (p — ¢)-form one coupling
with an n-level massless (p — ¢ — 1)-form mode. The
duality relations are given by Egs. (69) and (70). If we
consider the gauge condition (50) for the n-level KK modes
of the g-form field and the corresponding condition for the
n-level KK modes of the dual (p — ¢)-form field, then we
will find that a bound rn-level g-form KK mode with mass
m,, and an independent n-level massless (¢ — 1)-form mode
are dual to a bound n-level massive (p — ¢)-form one with
the same mass and an independent n-level massless
(p — g — 1)-form mode.

ITII. CONCLUSION AND DISCUSSION

In this work, we investigated a new localization mecha-
nism for a massless g-form field with a general KK
decomposition without any gauge choice. It was found
that for the KK modes of the g-form field, there are two
Schrodinger-like equations. By solving these two equations
we can obtain the mass spectra of the KK modes and
analyze their characters.

We found that for any g-form field there are two types of
zero modes, a g-form mode and a (g — 1)-form mode,
which cannot be localized on the p-brane at the same time.
We also found that an n-level massive bound KK mode
couples with an n-level massless (¢ — 1)-form mode, and
both of them may localize on some p-branes. This suggests
that if there are bound n-level massive vector KK modes for
a bulk vector field, they must couple with n-level massless
scalar fields. This is similar to the Higgs mechanism for a
massless vector field obtaining mass; the difference is that
the scalar field here is a part of the bulk vector field. By
analyzing the gauge invariant effective action of the n-level
KK modes and choosing a gauge condition, the n-level
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TABLE 1. Dualities in the bulk and on the brane.

PHYSICAL REVIEW D 93, 064007 (2016)

Duality

Bulk
Brane

Massless
KK modes n =0
KK modes n > 1

g-form < (p — g — 1)-form or

(p — q)-form(with mass m,,)

g-form & (p — g)-form
g — 1)-form < (p — g)-form
q — 1)-form(massless)

—~

g-form(with mass m,,) +

+ <&

(p — g — 1)-form(massless)

massive g-form KK mode decouples from the n-level
massless (¢ — 1)-form one.

Considering the general KK decomposition, we also
found that the Hodge duality in the bulk naturally becomes
two dualities on the brane. The first one is the Hodge
duality between a g-form zero mode and a (p — g —1)-
form one, or between a (¢ — 1)-form zero mode and a
(p — q)-form one, which are indicated in (41a) and (41b).
The second duality is between two group KK modes: one is
an n-level g-form KK mode with mass m, and an n-level
massless (¢ — 1)-form mode; another is an n-level (p — g)-
form one with the same mass m,, and an n-level massless
(p — g — 1)-form mode, which are suggested in (69) and
(70). The first kind of duality is the usual Hodge duality
between two massless form fields. But the second one is a
new type of duality between two groups of form fields
including massive and massless form fields. Note that the
prerequisite for those dualities is that the corresponding KK
modes should be localized on the brane. These dualities are
listed in Table L.

Because of the two dualities, there are some interesting
phenomena. For example, since a 1-form zero mode

(a massless vector) on a 3-brane is dual to itself according
to the Hodge duality on the brane, we cannot judge
whether it is from a bulk 1-form or a 2-form field. In fact,
for any g-form zero mode dual to itself on the p-brane, it
may be from a bulk g-form or (p — g)-form one. The same
applies to the n-level KK modes. However, it does not
matter since the effective field theories on the brane for the
KK modes of the two dual bulk form fields are physically
equivalent.
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