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The uniqueness of a static asymptotically flat photon sphere for a static black hole solution in the
Einstein-Maxwell-dilaton theory with an arbitrary coupling constant is proposed. Using the conformal
positive energy theorem, we show that the dilaton photon sphere subject to the nonextremality condition
constitutes a cylinder over a topological sphere.
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I. INTRODUCTION

Gravity theories like general relativity and its modifica-
tions predict the existence of a spacetime region in which
photon orbits are closed. The aforementioned regions play
an essential role in gravitational lensing, one of the main
tools in astrophysical observations [1–6].
The photon sphere can be considered a timelike hyper-

surface on which the bending angle is unboundedly large.
Compact objects like black holes, neutron stars, worm-
holes, and others ought to be, in principle, surrounded by a
photon sphere. On the other hand, as was revealed in
Refs. [7–9], the photon spheres are connected with qua-
sinormal modes for the compact objects in question. Their
presence is the main factor in their stability.
Moreover, it was found that photon spheres possess some

very intriguing features, such as the lapse function con-
stancy. They are totally umbilical hypersurfaces with con-
stant mean curvature and constant surface gravity [10–12].
The properties in question very much resemble the character-
istic features of black hole event horizons. In the case of
black hole physics, the no-hair theorem’s mathematical
formulation, the uniqueness theorem resolves the problem
of classification of domains of outer communication of
suitably regular black hole spacetimes.
The first attempts to classify nonsingular static black

hole solutions in Einstein gravity were undertaken in [13],
and some others mathematical refinements were presented
in Refs. [14–20]. The complete classification of static
vacuum and electrovacuum black hole solutions was
finished in [21,22], where the condition of nondegeneracy
of the event horizon was removed and it was proved that all
degenerate components of the black hole event horizon
have charges of the same signs. As far as stationary
axisymmetric black holes are concerned, the problem
turned out to be far more complicated [23] and the complete
uniqueness proof was achieved by Mazur [24] and Bunting

[25] (for a review of the uniqueness of black hole solutions,
see [26] and references therein). Contemporary unification
schemes such as M/string theories triggered the efforts to
classify higher-dimensional charged black holes with both
nondegenerate and degenerate components of the event
horizon, which was proposed in Refs. [27–29]. On the
other hand, some progress concerning the nontrivial case of
the n-dimensional rotating black object (black holes, black
rings, or black lenses) uniqueness theorem was presented in
[30], while the behavior of matter fields in the spacetime of
higher-dimensional black holes was examined in [31]. The
desire to construct a consistent quantum gravity theory also
raised interest in mathematical aspects of black holes in the
low-energy limit of the string theories and supergravity
[32,33]. Various modifications of Einstein gravity such as
the Gauss-Bonnet extension were examined from the point
of view of the black hole uniqueness theorem. The strictly
stationary static vacuum spacetimes was discussed in [34],
while it turned out that up to the small curvature limit,
the static uncharged or electrically charged Gauss-Bonnet
black hole is diffeomorphic to the Schwarzschild-
Tangherlini or Reissner-Nordström black hole solution,
respectively [35]. For black holes appearing in Chern-
Simons modified gravity, it was proved that a static
asymptotically flat black hole solution was unique in
Schwarzschild spacetime [36], while the electrically
charged black hole in the theory in question was diffeo-
morphic to the Reissner-Nordström black hole [37].
The analogy of the photon sphere and the black hole

event horizon arises as a tantalizing question if the presence
of a photon sphere uniquely characterizes the spacetimes
with asymptotical charges. This problem was tackled for
the first time in [12], where it was shown that an
asymptotically flat vacuum Einstein equation with mass
and photon sphere is isometric to the Schwarzschild
solution characterizing the same mass. Recently, modified
version of arguments presented by Bunting and Massod
[38] were applied in the proof of the uniqueness of the
Einstein vacuum photon sphere and the electrovacuum one
[39]. On the other hand, the uniqueness of the static
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Einstein scalar and Einstein-Maxwell spacetimes with a
photon sphere were given in Refs. [40,41]. In Ref. [42], the
general classification of photon spheres (covering black
hole and non-black-hole spacetimes) in Einstein-Maxwell-
dilaton gravity with arbitrary coupling constant was pro-
posed, subject to the auxiliary condition that the lapse
function regularly foliates the spacetime outside the photon
sphere. In our paper, we relax the additional condition and
consider the case of the uniqueness theorem for the dilaton
black hole photon sphere in the dilaton gravity with
arbitrary coupling constant. Namely, we shall pay attention
to the system described by the standard action

I ¼
Z

d4x
ffiffiffiffiffiffi
−ĝ

p
½ð4ÞR − e−2αϕFμνFμν − 2∇μϕ∇μϕ�; ð1Þ

where ĝij stands for the four-dimensional metric tensor,
Fμν is the strength tensor of the Uð1Þ-gauge Maxwell
field, ϕ is the dilaton field, and α is the coupling constant.
Because our considerations will be bounded with the
static spacetime, let us suppose that there exists a smooth
Riemannian manifold and a smooth lapse function
N → M3 → Rþ, such that M4 ¼ R ×M3. The line
element of the above manifold is provided by the
following:

ds2 ¼ ĝαβdxαdxβ ¼ −N2dt2 þ gijdxidxj: ð2Þ
Moreover, we introduce an asymptotically timelike
Killing vector field kα ¼ ð ∂∂tÞα, such that the Uð1Þ-gauge
Maxwell and the dilaton field are invariant under the
action generated by this Killing vector field, i.e.,
LkFαβ ¼ 0, Lkϕ ¼ 0. The above conditions define the
Uð1Þ gauge field and dilaton field staticity. The above
notions of staticities, i.e., metric staticity and field
staticity, are consistent. It follows from the fact that
one has the Ricci-static spacetime which means that the
Ricci one-form is proportional to the Kiling vector field
kα, which directly follows from the equations of motion
and the field staticity. On the other hand, it can be proved
that the static spacetime is Ricci-static [26]. We shall
assume, further, that the three-dimensional submanifold
ðM3; gijÞ is simply connected. This fact enables one to
define the electric field having potential ψ in the standard
form Eβ ¼ −Fβγkγ ¼ ∇βψ . For the reader’s convenience,
we also quote the equations of motion for the system in
question,

ðgÞ∇i
ðgÞ∇iN ¼ e−2αϕ

N
ðgÞ∇iψ

ðgÞ∇iψ ; ð3Þ

NðgÞ∇i
ðgÞ∇iψ ¼ ðgÞ∇iψ

ðgÞ∇iN þ 2αNðgÞ∇kψ
ðgÞ∇kϕ; ð4Þ

NðgÞ∇iNðgÞ∇iϕþN2ðgÞ∇m
ðgÞ∇mϕ − αe−2αϕðgÞ∇cψ

ðgÞ∇cψ

¼ 0; ð5Þ

ðgÞRij −
1

N
ðgÞ∇i

ðgÞ∇jN

¼ e−2αϕ

N2
ðgijðgÞ∇mψ

ðgÞ∇mψ − 2ðgÞ∇iψ
ðgÞ∇jψÞ

þ 2ðgÞ∇iϕ
ðgÞ∇jϕ; ð6Þ

where the covariant derivative with respect to the metric
tensor gij is denoted by ðgÞ∇, while ðgÞRij is the Ricci
tensor defined in M3 space.
Our paper is organized as follows. In Sec. II, after

describing the basic features of the photon sphere in
Einstein-Maxwell-dilaton (EMD) gravity with arbitrary
coupling constant, we conduct the uniqueness proof using
the conformal positive energy theorem. Section III con-
cludes our investigations.

II. UNIQUENESS

Before we proceed to the main subject of our work, let us
recall some basic facts which will be useful in our
construction of the proof. First of all, let us assume that
the spacetime under consideration will be asymptotically
flat, which means that the spacetime contains a data set
ðΣend; gij; KijÞ with gauge fields such that Σend is diffeo-
morphic to R3 minus a ball and the following asymptotic
conditions are provided:

jgij − δijj þ rj∂agijj þ � � � þ rkj∂a1…akgijj

þ rjKijj þ � � � þ rkj∂a1…akKijj ≤ O
�
1

r

�
; ð7Þ

jFαβj þ rj∂aFαβj þ � � � þ rkj∂a1…akFαβj ≤ O
�
1

r2

�
; ð8Þ

ϕþ r∂aϕþ rk∂a1…akϕ ≤ O
�
1

r2

�
: ð9Þ

We recall that an embedded timelike hypersurface will be
called a photon surface if any null geodesics initially
tangent to it, remain tangent as long as it exists. On the
other hand, by the “photon sphere,” we mean a photon
surface for which the lapse function N is constant and the
auxiliary conditions for the fields emerging in the theories
in question are satisfied. It turns out that an arbitrary
spherically symmetric static spacetime admits a photon
sphere subject to the condition [10]

gtt∂rgθθ ¼ gθθ∂rgtt: ð10Þ

Our main aim is to study various features of a photon
sphere in the spacetime of the electrically charged dilaton
black hole, where the line element is given by
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ds2 ¼ −
�
1 −

rþ
r

��
1 −

r−
r

�1−α2

1þα2dt2 þ dr2

ð1 − rþ
r Þð1 − r−

r Þ
1−α2

1þα2

þ r

�
r −

r−
r

� 2α2

1þα2ðdθ2 þ sin2θdφ2Þ: ð11Þ

The dilaton black hole event horizon is located at rþ, while
in the case of r−, we have another singularity, but it can be
ignored it because of the fact that r− < rþ. On the
other hand, the dilaton field is given by the relation

e2ϕ ¼ e−2ϕ0ð1 − r−
r Þ

2α
1þα2 , where ϕ0 is the dilaton field value

as r → ∞. The massM and the charge Q are related by the
relations M ¼ rþ

2
þ 1−α2

1þα2
r−
2
and Q2 ¼ rþr−

2
e2ϕ0 . For such a

black hole, the photon sphere lies outside the black hole
event horizon rþ and forms the timelike hypersurface at
r ¼ rphs [10]:

rphs ¼
1

4

��
3− α2

1þ α2

�
r−

þ 3rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��
3− α2

1þ α2

�
r− þ 3rþ

�
2

−
32rþr−
1þ α2

s �
: ð12Þ

It can be seen that for rþ > Ar−, where A ¼ 2ð7þ3α2Þð1þα2Þ
ð3−α2Þ2þ9ð1þα2Þ,

we obtain a single timelike photon sphere.
In such a spacetime, we define a dilaton-electric static

system as a time slice of the static spacetime
ðR ×M3;−N2dt2 þ gijdxidxjÞ. Then one defines the pho-
ton surface, the main ingredient of our considerations.
Namely, let ðM3; gij; N;ψ ;ϕÞ be a dilaton-electric system
bounded with a static spacetime defined above, with the
line element given by Eq. (2). Keeping in mind the
aforementioned definition of a photon sphere, it will be
subject to a timelike embedded hypersurface ðP3; hijÞ ↪
ðR ×M3;−N2dt2 þ gijdxidxjÞ if the embedding is umbilic
and the lapse function, electric one-form, and dilaton form
dϕ are normal to P3. The photon sphere emerges as the
inner boundary of the spacetime in question [38]. Namely,

ðP3; hijÞ ¼ ðR × Σ2;−N2dt2 þ σijdxidxjÞ
¼ ∪I

i¼1ðR × Σ2
i ;−N2

i dt
2 þ σðiÞij dx

idxjÞ; ð13Þ

where each P3
i is a connected component of P3.

In order to conduct the uniqueness proof of the photon
sphere in EMD gravity, we shall follow the reasoning
presented in [38]. In the first step, we define the dilaton
electrostatic system ðM3; gij; N;ψ ;ϕÞ which will be
asymptotic to the dilaton black hole solution and will have
a Killing horizon boundary. It can be done by gluing pieces
of the (spatial) dilaton black hole manifold of the dilaton
field of adequate mass, charge, and value. In order to create
a new horizon boundary corresponding to each Σ2

i , we

attach (glue) at each photon sphere base Σ2
i a neck piece of

the dilaton black hole manifold of μi > 0; Qi;ϕ (the
cylindrical piece) between the photon sphere in question
and its event horizon. Away from the gluing surface, the
manifold will have non-negative scalar curvature, it will be
smooth, and the metric lapse function, electric potential,
and dilaton field will also be smooth away from the glued
surfaces. In the next step, we double the glued manifolds
under consideration and assert that the emergent system
will be smooth across the boundary. In the last step, we
perform the adequate conformal transformations in order to
apply the conformal positive energy theorem, which will
complete the proof.

A. Asymptotically flat manifold with minimal boundary
and non-negative scalar curvature

We commence with the definition of the Komar-type
charge in the form provided by

Qi ¼ −
1

4π

Z
Σ2
i

dA
e−αϕnaEðiÞ

a

N
¼ −

e−αϕr2i n
aEðiÞ

a

Ni
; ð14Þ

where na is a unit normal to P3. The above relation
corresponds to the dilaton-elecric charge, while the defi-
nition of the dilaton charge yields

qi ¼ −
1

4π

Z
Σ2
i

dAnj∇jϕ
ðiÞ ¼ −r2i nj∇jϕ

ðiÞ: ð15Þ

On the other hand, using Eq. (36) from Ref. [42], the above
definitions enable us to find that

4

3
¼ H2

i r
2
i þ

4

3

e−2αϕ

N2
i

njEðiÞ
k njEðiÞ

k

−
4

3
r2i n

mðgÞ∇mϕ
ðiÞnaðgÞ∇aϕ

ðiÞ; ð16Þ

where Hi stands for the mean curvature of each ith
component of P3. The relation (16) can be rewritten in
the form as follows:

4

3
¼ H2

i r
2
i þ

4

3

�
Qi

ri

�
2

−
4

3

�
qi
ri

�
2

: ð17Þ

Then, following Ref. [38], we define the mass μi on each Σ2
i

and intervals Ii:

μi ¼
ri
3
; Ii ¼ ½si ¼ 2μi; ri ¼ rphsðQi; qi; μiÞ� ⊂ R:

ð18Þ

Next, we glue in to each boundary component of Σ2
i

a cylinder Ii × Σ2
i . The photon sphere component in

question, i.e., Σ2
i ⊂ M3, is related to the level frig × Σ2

i
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of the above-constructed cylinder. In what follows, we shall
call this surface still Σ2

i . By virtue of the aforementioned
procedure, we obtain the manifold ~M3 which has the inner
boundary

B ¼ ∪I
i¼1fsig × Σ2

i :

In the next step, we shall build an electrodilaton system
smooth away from the gluing surface Σ2

i . It should be also
geodesically complete up to the corresponding boundary B.
Just on the cylinder Ii × Σ2

i , one defines the line element
provided by

ds2jIi×Σ2
i
¼ γijdxidxj ¼

dr2

f2i ðrÞ
þ giðrÞ

r2i
σi

¼ dr2

f2i ðrÞ
þ giðrÞdΩ2; ð19Þ

where we have denoted

fiðrÞ ¼
�
1 −

rþðiÞðQi; μiÞ
r

��
1 −

r−ðiÞðQi; μiÞ
r

� 1−α2

2ð1þα2Þ;

giðrÞ ¼ r

�
r −

r−ðiÞðQi; μiÞ
r

� 2α2

1þα2 ; ð20Þ

and σi ¼ r2i dΩ.
To conclude, it was glued in the portion of the spatial

dilaton black hole system possessing mass μi > 0 and
charge Qi subject to the nonextremality condition. It was
done from the gluing surface to the photon sphere in
question.
The next problem will be to show that γijjIi×Σ2

i
is smooth

away from the gluing surface, and it is a function of the C1;1

class across Σ2
i . Let us introduce the function [38]

ξ∶ ~M3 → R∶p →

�NðpÞ if p ∈ M3;
3mi
ri
fiðrðpÞÞ if p ∈ Ii × Σ2

i :
ð21Þ

One will apply it as a smooth collar function across the
gluing surfaces. By the construction, the function ξ is
smooth away from Σ2

i , for all i ∈ f1;…; Ig. The choice of
the conformal factor 3mi

ri
as well as the relation-binding ith

mean curvature with Ni, i.e., NiHi ¼ 2nðaÞðgÞ∇aNi (for the
derivation of this equation see Refs. [38,41]) imply that ξ
has the same constant value at each of the sides of Σ2

i .
Hence, it is well defined across Σ2

i .
The unit normal to Σ2

i towards the dilaton black hole side
has the form

nr ¼ ξiðriÞ∂r: ð22Þ

The definitions ofmi; μi and charges ensure that the normal
derivative of ξ is the same positive constant on both sides of
Σ2
i . It means that this fact allows one to implement the

function ξ as a smooth coordinate function in the neighbor-
hood of each analyzed Σ2

i ⊂ ~M3.
In order to show that ξ is a C1;1 class function, we shall

take into account local coordinates on Σ2
i as well as a flow

to a neighborhood of Σ2
i ⊂ ~M3 along the level set flow

defined by ξ. Then it is enough to show that, for all
A;K ¼ 1; 2, the components of the metric tensor
~qAB; ~qAξ; ~qξξ are C1;1 class functions, with respect to the
local coordinates ðxA; ξÞ across the aforementioned ξ
function level set of Σ2

i .
Because of the fact that ∂ξ is given by

∂ξ ¼
1

nað ~qÞ∇aξ
njð ~qÞ∇j; ð23Þ

the continuity of ~qij in the ðxA; ξÞ coordinate system and
smoothness in the tangential directions along Σ2

i is seen.
Then the metric tensor components imply

~qAB ¼ r2iΩAB; ~qAξ ¼ 0; ~qξξ ¼
1

ðnað ~qÞ∇aξÞ2
; ð24Þ

on Σ2
i (from both sides).

Further, we calculate the derivative of ~qAB. It yields

∂ξð ~qABÞ ¼
2

nað ~qÞ∇aξ
~hAB: ð25Þ

In the proceeding sections, we show the umbilicity of every
component of any dilaton photon sphere, as well as the fact
that the mean curvature of every photon sphere is deter-
mined by its radius and charges (up to the signs). Having in
mind the exact form of the metric tensor ~qij, one can
conclude that ~h ¼ �1=2Hiσi ¼ �1=2Hir2iΩ hold on both
sides of the dilaton photon sphere. As far as the sign is
concerned, from the side of M3, Hi > 0 (Hi is calculated
with respect to na being directed towards the asymptotic
end). On the dilaton black hole side, the mean curvature of
the dilaton photon surface is directed towards infinity and,
thus, into M3. It is also positive. Therefore, in both
considered cases, ~hAB and thus ∂ξð ~qABÞ coincide from
the two sides of Σ2

i [38,39].
The relation ∂ξð ~qAξÞ ¼ 0 holds on both sides of Σ2

i (by
the construction ~qAξ ¼ 0Þ. It remains to show that ∂ξð ~qξξÞ
coincides on both sides of the hypersurface in question.
In order to do so, let us calculate

∂ξð ~qξξÞ ¼ −
2

ðnað ~qÞ∇aξÞ5
ðnjð ~qÞ∇jÞðnbð ~qÞ∇bξÞ ð26Þ

from both sides of Σ2
i .

Let us recall that for the isometric embedding with a unit
normal ni and the second fundamental form Kab, for every
smooth function θ, we have
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ðD; hij; AnÞ ↪ ð∇; gij; Bnþ1Þ;
∇a∇aθ ¼ DmDmθ þ ðna∇aÞðnj∇jÞθ þ Ka

ani∇iθ:

ð27Þ

Using the identity (27), we obtain

ðnkð ~qÞ∇kÞðnað ~qÞ∇aξÞ ¼ ð ~qÞ∇a
ð ~qÞ∇aN −Hincð ~qÞ∇cN:

ð28Þ

By virtue of the fact that ξ is constant on Σ2
i and having in

mind equation of motion (3), we receive

ðnkð ~qÞ∇kÞðnað ~qÞ∇aξÞ

¼ e−2αϕ

N
ð ~qÞ∇mψ

ð ~qÞ∇mψ −Hincð ~qÞ∇cN; ð29Þ

on both sides of Σ2
i . Moreover, we recall that

nað ~qÞ∇ψ ; N;Hi; nað ~qÞ∇aξ are continuous across Σ2
i , which

in turn implies that ðnað ~qÞ∇aÞðnað ~qÞ∇aξÞ is continuous
across Σ2

i . Consequently, we concludes that ~q is a C1;1

class across Σ2
i and, for arbitrary i ∈ f1;…; Ig, the set

ð ~M3; ~qAB; N;ψ ;ϕÞ belongs to the same class.

B. Conformal transformations leading to
non-negativity of scalar curvature and

vanishing of the ADM mass

In this section, we shall consider basic conformal
transformations which lead to the conformal positive
theorem being the key ingredient in the proof of the
uniqueness of the black hole dilaton photon sphere [32].
For the brevity of the notation, in this section, we write Σ
instead of Σ2

i .
To proceed further, let us introduce the definitions of the

crucial quantities in the proof of the uniqueness. Namely,
they can be written as follows:

Φ1 ¼
1

2

�
eαϕN þ 1

eαϕN
− ð1þ α2Þ ψ2

eϕN

�
; ð30Þ

Φ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p ψ

eαϕN
; ð31Þ

Φ−1 ¼
1

2

�
eαϕN −

1

eαϕN
− ð1þ α2Þ ψ2

eϕN

�
; ð32Þ

and

Ψ1 ¼
1

2

�
e−

ϕ
αN þ e

ϕ
α

N

�
; ð33Þ

Ψ−1 ¼
1

2

�
e−

ϕ
αN −

e
ϕ
α

N

�
: ð34Þ

It worth pointing out that defining the metric tensor
ηAB ¼ diagð1;−1;−1Þ, we get that ΦAΦA ¼ ΨAΨA ¼
−1, where A ¼ −1, 0, 1. Having in mind the conformal
transformation provided by

~gij ¼ N2gij; ð35Þ

one can introduce the symmetric tensors written in terms of
ΦA in the following form:

~Gij ¼ ~∇iΦ−1
~∇jΦ−1 − ~∇iΦ0

~∇jΦ0 − ~∇iΦ1
~∇jΦ1; ð36Þ

and similarly for the potential ΨA,

~Hij ¼ ~∇iΨ−1
~∇jΨ−1 − ~∇iΨ1

~∇jΨ1; ð37Þ

where by ~∇i we have denoted the covariant derivative with
respect to the metric ~gij. Consequently, according to the
relations (36) and (37), the field equations may be cast in
the forms

~∇2ΦA ¼ ~Gi
iΦA; ~∇2ΨA ¼ ~Hi

iΨA: ð38Þ

It can be verified by the direct calculations that the Ricci
curvature tensor with respect to the conformally rescaled
metric ~gij is given by the relation

~Rij ¼
2

1þ α2
ð ~Gij þ α2 ~HijÞ: ð39Þ

As far as the conformal positive energy theorem is con-
cerned, one assumes that we have two asymptotically flat
Riemannian three-dimensional manifolds ðΣΦ; ðΦÞgijÞ and
ðΣΨ; ðΨÞgijÞ. Moreover, we establish the conformal trans-
formation of the form ðΨÞgij ¼ Ω2ðΦÞgij, connecting the
adequate metric tensors of the manifolds in question. It
implies that the corresponding masses obey the relation of
the form Φmþ βΨm ≥ 0 if ðΦÞRþ βΩ2ðΨÞR ≥ 0, for some
positive constant β. The aforementioned inequalities are
satisfied if the three-dimensional Riemannian manifolds are
flat [43].
To proceed further, due to the requirement of the

conformal positive energy theorem, we introduce con-
formal transformations fulfilling the following:

ðΦÞg�ij ¼ ðΦÞω2
� ~gij; ðΨÞg�ij ¼ ðΨÞω2

� ~gij: ð40Þ

Their conformal factors are subject to the relations of the
forms:

ðΦÞω� ¼ Φ1 � 1

2
; ðΨÞω� ¼ Ψ1 � 1

2
: ð41Þ

Next, we implement the standard procedure of pasting
ðΣΦ

�;
ðΦÞg�ijÞ and ðΣΨ

�;
ðΨÞg�ijÞ across their shared minimal

UNIQUENESS OF PHOTON SPHERE FOR EINSTEIN- … PHYSICAL REVIEW D 93, 064003 (2016)

064003-5



boundary [38]. We have four manifolds: ðΣΦþ; ðΦÞg
þ
ijÞ,

ðΣΦ
−; ðΦÞg−ijÞ, ðΣΨþ; ðΨÞgþijÞ, ðΣΨ

− ; ðΨÞgþijÞ. Pasting them across
shared minimal boundaries BΨ and BΦ, one can construct
complete regular hypersurfaces ΣΦ ¼ ΣΦþ∪ΣΦ

− and
ΣΨ ¼ ΣΨþ∪ΣΨ

− . Having two regular hypersurfaces, one
has to check that each total gravitational mass on ΣΦ

and on ΣΨ vanishes.
In order to find this result, we shall use the conformal

positive theorem [43]. On this account, it is customary to
define another conformal transformation described by the
relation

ĝ�ij ¼ ½ððΦÞω�Þ2ððΨÞω�Þ2α2 �12 ~gij: ð42Þ
It follows that the Ricci curvature tensor on the space under
consideration can be written in the form as

ð1þ α2ÞR̂� ¼ ½ðΦÞω2
�ðΨÞω2α2

� �−1
2ððΦÞω2

�ðΦÞR�þðΨÞω2
�ðΨÞR�Þ

þ 2α2

1þ α2
ð∇̂i ln ðΦÞω� − ∇̂i ln ðΨÞω�Þ

× ð∇̂i ln ðΦÞω� − ∇̂i ln ðΨÞω�Þ: ð43Þ
Further, direct calculations reveal that Eq. (43) can be cast
as follows:

ðΦÞω2
�ðΦÞR� þ α2ðΨÞω2

�ðΨÞR�

¼ 2

����Φ0
~∇iΦ−1 − Φ−1

~∇iΦ0

Φ1 � 1

����2

þ 2

����Ψ0
~∇iΨ−1 −Ψ−1

~∇iΨ0

Ψ1 � 1

����2; ð44Þ

with the terms on the right-hand side of the relation non-
negative.
On the other hand, the conformal positive energy

theorem enables us to claim that ðΦÞω ¼ constðΨÞω, as well
as Φ0 ¼ constΦ−1 and Ψ0 ¼ constΨ−1. Moreover, each of
the manifolds ðΣΦ; ΦgijÞ, ðΣΨ; ΨgijÞ, and ðΣ̂; ĝijÞ are flat.
Just the manifold ðΣ; gijÞ is conformally flat. The metric
tensor ĝij can be written in a conformally flat form. Namely,
let us define

ĝij ¼ U4ðΦÞgij; ð45Þ
where one sets U ¼ ðΦω�VÞ−1=2. The fact that the Ricci
scalar in the ĝij metric is equal to zero implies that the
equations of motion of the system in question reduce to the
Laplace equation on the three-dimensional Euclidean
manifold,

∇i∇iU ¼ 0; ð46Þ
where∇ is the connection on a flat manifold. Next, it yields
that the expression for the flat base space is valid; i.e., one
obtains the following:

ðΦÞgijdxidxj ¼ ~ρ2dU2 þ ~hABdxAdxB: ð47Þ

The photon sphere will be located at some constant value of
U. The radius of the photon sphere can be given at the fixed
value of the ρ coordinate [12]. All these allow that, on the
hypersurface Σ, the metric tensor can be given in the form of

ĝijdxidxj ¼ ρ2dV2 þ hABdxAdxB;

and a connected component of the photon surface can be
identified at a fixed value of the ρ coordinate.
In order to proceed further, let us assume that U1 and U2

consist of two solutions of the boundary value problem of
the system in question. Using the Green identity and
integrating over the volume element, we arrive at the
relation�Z

r→∞
−
Z
H

�
ðU1 − U2Þ

∂
∂r ðU1 − U2ÞdS

¼
Z
Ω

����∇ðU1 − U2Þ
����2dΩ: ð48Þ

In view of the last equation, the surface integrals disappear
due to the imposed boundary conditions. On the other hand,
by virtue of the above relation, one finds that the volume
integral must be identically equal to zero. Taking all the
above into account, we can assert that the following
theorem holds:
Theorem: Let us consider the set ðM3; gij; N;ψ ;ϕÞ

being the system asymptotic to the dilaton black hole
spacetime and possessing the photon sphere ðP3; hijÞ ↪
ðR ×M3;−N2dt2 þ gijdxidxjÞ, which can be regarded as
the inner boundary of R ×M3. Suppose further that M
and Q are the ADM mass and the total charge of
ðR ×M3;−N2dt2 þ gijdxidxjÞ. Then ðR ×M3;−N2dt2 þ
gijdxidxjÞ is isometric to the region of r ≥ rphs, exterior to
the photon sphere in the electrically charged dilaton black
hole spacetime. The photon sphere in question is connected,
and it constitutes a cylinder over a topological sphere.

III. CONCLUSIONS

In our paper, we have elaborated the uniqueness of a
static asymptotically flat black hole photon sphere in the
Einstein-Maxwell-dilaton theory of gravity with arbitrary
coupling constant α. Using the conformal positive energy
theorem, we show that the region exterior to the photon
sphere of the adequate radius in the electrically charged
dilaton black hole spacetime is connected, and it authorizes
a cylinder over a topological sphere. The proof is valid for
the nonextremal dilaton black hole photon sphere.
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