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We study the possibility that inflation is driven by a massive vector field with SOð3Þ global symmetry
nonminimally coupled to gravity. From an E3-invariant Robertson-Walker metric we propose an Ansatz for
the vector field, allowing us to study the evolution of the system. We study the behavior of the equations of
motion using the methods of the theory of dynamical systems and find exponential inflationary regimes.
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I. INTRODUCTION

Inflation is a key ingredient for solving the initial
conditions problems of the cosmological Standard Model
[1–4] (see e.g. Ref. [5] for a review). Inflation is most often
driven by a scalar field with a suitable potential; however, it
would be particularly interesting that if inflation could also
be set up with vector fields. The issue was considered
long ago in Refs. [6,7], resorting to a quadratic potential
VðAμÞ ∼ AμAμ, and more recently in Ref. [8] (see also
Refs. [9–12]). It was shown in Ref. [7] that a massive vector
field cannot, on its own, drive inflation.
The purpose of this paper is to investigate the possibility

of an inflationary regime using a massive vector field, if the
latter is nonminimally coupled to gravity. We shall consider
the proposal put forward in Ref. [7], by further including a
nonminimal coupling between the vector field and both the
Ricci scalar and the Ricci tensor. Indeed, from a phenom-
enological point of view, models containing only a cou-
pling to the Ricci scalar can be viewed as incomplete or
unnatural, as there is no a priori reason for assuming that a
coupling of the vector field to the Ricci tensor is negligible
when compared with the latter.
The first coupling has been examined as a mechanism to

drive inflation in Refs. [10,12], albeit with an Ansatz for the
behavior of the vector field quite different from the one
assumed in this study; it has also been approached in the
context of primordial magnetic field generation [13] (see
also Ref. [14]). The second type of coupling has been
considered in models of gravity with spontaneous breaking
of Lorentz symmetry [15–17].
The inclusion of only a coupling ∼AμAμR can be

interpreted as a varying mass term for the vector field,
which breaks its Uð1Þ symmetry and induces the appear-
ance of a longitudinal mode absent in massless vector fields
(such as the photon).

As Ref. [18] has shown, albeit with rather different
assumptions for the vector field [namely the lack of SOð3Þ
invariance leading to the Ansatz described in the next
section], computing the perturbative spectrum of the model
reveals that such a mode is a ghost: expanding it around a
Robertson-Walker (RW) metric shows that the correspond-
ing perturbation is endowed with a kinetic term of the
wrong sign. The addition of a “hard” mass m2 cannot
alleviate this problem, as the effective mass will never-
theless shift sign after inflation ends [18,19].
Naturally, the equations for cosmological perturbations

for the model here considered are much more convoluted,
and approaching them is beyond the purported scope of this
work: however, it is possible that the additional dynamics
could avoid the appearance of ghost modes described
above. In particular, it is worth pointing out that a coupling
∼RμνAμAν can be interpreted as an additional contribution
to a mass term during de Sitter inflation—since, for a
constant expansion rate, Rμν ∼ gμνR and both couplings are
similar, so that their effect is dynamically equivalent
(as shall be shown later); however, this is no longer the
case for a realistic inflationary scenario, where the expan-
sion of the Universe is not perfectly exponential.
This work is organized as follows: in Sec. II we present

our model and the corresponding field equations; the
ensuing cosmological dynamics is discussed in Sec. III,
focusing on the possibility of exponential inflation and
some specific regimes allowing its occurrence. Section IV
presents the dynamical system derived from the cosmo-
logical equations and derives its critical points and the
corresponding values for the expansion rate. Finally, in
Sec. V we present our conclusions.

II. THE MODEL

We consider the action for an SOð3Þ-invariant gauge
group with a massive vector field nonminimally coupled to
the curvature,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2k2

þ L
�
; ð1Þ
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with

L ¼ 1

8e2
Tr½FμνFμν� þ 1

2
m2Tr½AμAμ�

þ 1

3
αRAμAμ þ βRμνAμAν; ð2Þ

where k2 ¼ 8πG, e is the gauge coupling, α and β are
the strengths of the nonminimal couplings between the
gauge field and the Ricci scalar and Ricci tensor, respec-
tively [7]. The gauge field strength is given by Fμν ¼
∂μAν − ∂νAμ þ ½Aμ; Aν�.
The variation of the action with respect to the metric

yields

1

2k
Gμν¼−

1

k2
RμνþgμνL−m2AμAν−

1

2e2
Tr½FμνFμν�

−
2

3
α½RμνðAρ

ρÞþRAμAν−∇μ∇νðAρAρÞþgμνðAρAρÞ�
þβ½2∇βðμAνÞAβ−gμνð∇α∇βAαAβÞ
−□ðAμAνÞ−4AαRαðμAνÞ�; ð3Þ

where Gμν is the Einstein tensor.
Variation with respect to the gauge field yields the vector

field equations of motion,

1

8e2
∇μð∇νAνÞ þ

�
1

2
m2 þ 1

3
αR

�
Aμ þ βRμνAν ¼ 0: ð4Þ

III. COSMOLOGICAL DYNAMICS

In this work we use the SOð3Þ-invariant Ansatz dis-
cussed in Ref. [7], which is briefly reviewed here. The
geometry associated with the flat Friedman-Robertson-
Walker Universe has the form M4 ¼R4¼R×E3=SOð3Þ,
where E3 represents a six-dimensional Euclidean group of
spatial hypersurfaces. Compatibility with the RW geometry
requires that the vector field is an SOð3Þ-invariant multiplet
Aa
μ, a ¼ 1;…; N, where a is an internal index.
The Robertson-Walker metric has the form

ds2 ¼ −NðtÞ2ðdx0Þ2 þ aðtÞ2
X3
i¼1

ðdxiÞ2; ð5Þ

where NðtÞ is the lapse function and aðtÞ is the scale factor.
If the lapse function is set to identity, NðtÞ ¼ 1, the
(diagonal) Ricci tensor and ensuing Ricci scalar read

Rtt ¼ −3
ä
a
;

Rii ¼ 2ð _aÞ2 þ aä → R ¼ 6

��
_a
a

�
2

þ ä
a

�
: ð6Þ

Imposing spatial homogeneity and isotropy, it is found
that the vector field must have the following form [7]:

A0 ¼ 0; Ai ¼ Aa
i La ¼ χ0ðtÞδai La; ð7Þ

where χ0ðtÞ is an arbitrary function of the time and La are
the generators of the internal SOð3Þ group.
The cosmological field equations follow from the sub-

stitution of Eqs. (5)–(7) into Eqs. (3) and (4): these
equations can more promptly be found from the effective
action, since all constraints are respected; the former is
obtained by replacing the Ansatze Eqs. (5) and (7) into
action Eqs. (1) and (2) and discarding the infinite volume
of the spatial hypersurface, yielding

Seff ¼ 3

Z
dt

�
−
a _a2

k2N
þ a
4Ne2

�
_χ20
2
−
N2

a2
Vðχ0Þ

�

þ
�
1

4
Nm2 þ γ

_a2

Na

�
χ20

�
; ð8Þ

where we define the quartic potential Vðχ0Þ ¼ χ40=8 and the
composite coupling γ ≡ α − β, showing that the contribu-
tion of the two couplings between the vector field and
the curvature have similar dynamical impact; interestingly,
the case when β ¼ α yields a vanishing effect from the
aforementioned couplings. In the remainder of this study,
we thus consider that γ ≠ 0.
Varying the above with respect to aðtÞ, NðtÞ, and χ0ðtÞ

and setting the gauge NðtÞ ¼ 1, we get the Friedmann and
Raychaudhuri equations, together with the equation of
motion for the vector field:

4ða2 − k2γχ20ÞH2 ¼ k2

e2

�
_χ20
2
þ V
a2

�
þ k2m2χ20; ð9Þ

ða2−k2γχ20Þð _HþH2Þ¼−H2a2þk2
�
2γ _χ0χ0Hþm2χ20

4

�
;

ð10Þ

χ̈0 þH _χ0 ¼ −
χ30
2a2

þ 8e2H2γχ0 − 2e2m2χ0; ð11Þ

where H ¼ _aðtÞ=aðtÞ is the expansion rate.

A. De Sitter phase

Before a more encompassing study of the dynamical
system resulting from the above Eqs. (9)–(11), we may first
ascertain whether a solution with an exponential scale
factor solution is admissible,

aðtÞ ∼ eH0t; ð12Þ

where H0 is a constant and t the cosmic time. Since
HðtÞ ¼ H0, setting _H ¼ 0 in Eqs. (9)–(11), together with
the Ansatz χ0ðtÞ ¼ AaðtÞ, yields
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4ð1 − k2γA2ÞH2
0 ¼ k2A2

�
H2

0

2
þ A2

8
þm2

�
;

4ð2 − 3k2γA2ÞH2
0 ¼ k2A2m2;

4ð1 − 4γÞH2
0 ¼ −A2 − 4m2; ð13Þ

where we have fixed e ¼ 1, for brevity. These equations
have as solutions

H2
0� ¼ 2þ ð1þ 8γÞðmkÞ2

24k2γð4γ − 1Þ

×

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 48ð4γ − 1ÞγðmkÞ4

½2þ ð1þ 8γÞðmkÞ2�2

s !
; ð14Þ

and

A2 ¼ 4½ð4γ − 1ÞH2
0 −m2� ¼ 8

k2½12γ þ ðmH0
Þ2� : ð15Þ

For χ0ðtÞ to be real we must have

ð4γ − 1ÞH2
0 > m2; 12γH2

0 þm2 > 0: ð16Þ
These conditions, together with the requirement of a real

expansion rate H2
0 > 0, imply that only the positive branch

H0þ should be considered and that the coupling strength
must obey the restriction γ > 1=4.

1. Massless case

In the massless case, m ¼ 0, the above equations turn to

H2
0 ¼

1

6k2γð4γ − 1Þ ; χ0ðtÞ ¼
ffiffiffiffiffi
2

3γ

s
aðtÞ
k

: ð17Þ

2. Strong coupling limit

In the strong coupling limit ðmkÞ2γ ≫ 1, we can perform
a first order expansion of Eqs. (9)–(11), obtaining

H0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� 2

12γ

s
m ¼

( m
2
ffiffi
γ

p ; γ > 0

m
2
ffiffiffiffiffiffi
−3γ

p ; γ < 0
: ð18Þ

However, while the positive coupling case γ > 0 yields a
real valued vector field, with

χ0ðtÞ ¼
1ffiffiffiffiffi
2γ

p aðtÞ
k

; ð19Þ

the converse case, γ < 0, yields an imaginary function

χ0ðtÞ ¼
4iffiffiffi
3

p maðtÞ; ð20Þ

indicating that a strong coupling is viable only if the
coupling to the Ricci scalar is stronger than to the Ricci
tensor, α > β.

3. Weak coupling limit

In the weak coupling limit ðmkÞ2γ ≪ 1 and m ≠ 0, we
obtain to first order of Eqs. (9)–(11) only one real solution,

H0 ¼
1

2k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ðmkÞ2

−3γ

s
; γ < 0; ð21Þ

which requires that γ < 0. However, this also leads to

χ0ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ðmkÞ2

3γ

s
aðtÞ
k

; ð22Þ

which is thus imaginary—as expected, since it breaks
the previously obtained condition γ > 1=4. As such, we
conclude that no weak coupling regime is possible with
a massive vector field.
Before proceeding, we may also check if a power-law

behavior for the scale factor and vector field is viable: by
setting aðtÞ ∼ tp and χ0 ∼ tn, we obtain HðtÞ ∼ t−1, and
from Eqs. (9)–(11), the relationships

0 ¼ At2p−2 þ Bt2n−2 þ Ct4n−2p þDt2n;

0 ¼ Et2p−2 þ Ft2n−2 þ Gt2n;

0 ¼ Htn−2 þ It3n−2p þ Jtn; ð23Þ

where the capital letters denote nonvanishing constants.
Thus, it is clear that one cannot find a simple monomial
solution for the dynamical system ensued by Eqs. (9)–(11),
further motivating a rigorous study of its critical points.

IV. DYNAMICAL SYSTEM

To find general inflationary solutions, we must solve the
dynamical system associated with Eqs. (9)–(11) and
physically interpret the ensuing critical points. To do so,
the following dimensionless variables are introduced:

x ¼ kχ0ðtÞ
aðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p ; y ¼ k2 _χ0ðtÞ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − w2Þ

p ;

z ¼ kH; τ ¼ t
k
; ð24Þ

where the auxiliary function

w ¼ ffiffiffi
γ

p kχ0ðtÞ
aðtÞ ¼ x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ

1þ γx2

r
ð25Þ

is defined for convenience.
The Friedmann Eq. (9) yields an algebraic constraint,

z2 ¼ y2 þ 1

32

x4

1þ γx2
þ 1

4
μ2x2; ð26Þ
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where μ ¼ mk is the reduced mass, and only 2 degrees of
freedom remain. We can now calculate the derivative of the
variables ðx; yÞ with respect to the dimensionless time τ,
obtaining

xτ ≡ dx
dτ

¼ ð1þ γx2Þ
�
y − x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 1 − w2

32
x4 þ 1

4
μ2x2

r �
;

yτ ≡ dy
dτ

¼ −
1 − w2

4
ffiffiffi
2

p x3 −
μ2ffiffiffi
2

p x

þ 4γffiffiffi
2

p
�
2y2 þ 1 − w2

32
x4 þ 1

4
μ2x2

�
x

− ðγx2 þ 2Þy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 1 − w2

32
x4 þ 1

4
μ2x2

r
: ð27Þ

A. Finite critical points

Considering the dynamical system Eq. (27), we first
analyze the origin Fð0; 0Þ, a trivial critical point. The
eigenvalues of the Jacobian matrix derived from Eq. (27)
are λ� ¼ �2i

ffiffiffi
2

p
μ, indicating that this is a stable critical

point; this is a natural result, as the vector field vanishes
and as such the nonminimal couplings have no impact,
collapsing to the case studied in Ref. [7].
Aside from the above, eight nontrivial critical points

arise, as shown in Table I. For convenience, we define

X� ¼ 2þ μ2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 16γÞ2μ4 þ 4ð8γ þ 1Þμ2 þ 4

p
2γ½1þ ð8γ − 1Þμ2� ;

Y� ¼ 1

12γð4γ − 1Þ
�
μ2 þ 2þ ð1þ 4γÞμ2

8
X�

�
: ð28Þ

In what follows it is relevant to realize that the dynamical
system is invariant under reflections ðx; yÞ → ð−x;−yÞ,
so that it suffices to analyze the first four critical points
(first column).
Notice that the value for the expansion rate, read from

the algebraic constraint Eq. (26), naturally coincides with
those discussed in the previous section, as can be seen
from Eq. (14). This also indicates that the critical points
ðC;D;G;HÞ are unphysical, as they lead to an imaginary
value H− for the expansion rate.
Given the convoluted expressions for the eigenvalues

of the Jacobian matrix evaluated at the critical points

ðA;B; C;DÞ, we follow a numerical procedure to show
that these are saddle points.
For this, we assign a range of values for the coupling γ

and the reduced mass μ and numerically compute the value
of the real part of the two eigenvalues λ1 and λ2 of the
Jacobian matrix. We find that the Jacobian evaluated at the
critical points ðA;BÞ has the same two eigenvalues λ1 and
λ2, with real parts that are almost symmetric; the same
behavior occurs for the pair ðC;DÞ. This is graphically
shown in Figs. 1 and 2, where it is clear that these critical
points fall neatly in the line Reðλ1Þ ¼ −Reðλ2Þ.

FIG. 1. Real part of the eigenvalues of critical points ðA; BÞ.

TABLE I. Nontrivial, finite critical points.

Point ðx; yÞ H Point ðx; y; zÞ H

A ð ffiffiffiffiffiffiffi
Xþ

p
;
ffiffiffiffiffiffi
Yþ

p Þ Hþ E ð− ffiffiffiffiffiffiffi
Xþ

p
;−

ffiffiffiffiffiffi
Yþ

p Þ Hþ
B ð ffiffiffiffiffiffiffi

Xþ
p

;−
ffiffiffiffiffiffi
Yþ

p Þ Hþ F ð− ffiffiffiffiffiffiffi
Xþ

p
;
ffiffiffiffiffiffi
Yþ

p Þ Hþ
C ð ffiffiffiffiffiffi

X−
p

;
ffiffiffiffiffiffi
Y−

p Þ H− G ð− ffiffiffiffiffiffi
X−

p
;−

ffiffiffiffiffiffi
Y−

p Þ H−

D ð ffiffiffiffiffiffi
X−

p
;−

ffiffiffiffiffiffi
Yþ

p Þ H− H ð− ffiffiffiffiffiffi
X−

p
;
ffiffiffiffiffiffi
Y−

p Þ H− FIG. 2. Real part of the eigenvalues of critical points ðC;DÞ.
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We notice that it does not suffice to require that
ðx; yÞ are real valued for the critical points ðA;BÞ to be
physically meaningful: indeed, one must also consider
the definition of the dimensionless variables Eq. (24)
to ensure that the physical vector field and its time
derivative are well defined. This requires that
1 − w2 > 0 → 1þ γx2 > 0, which together with the
requirement that ðx; yÞ are real translates into condition
γ > 1=4—precisely the constraint obtained in the previous
section.

B. Critical points at infinity

We now analyze putative critical points found at infinity,
by resorting to a boundary at infinity, x2 þ y2 ¼ ∞, which
is then compactified to a circle of unit radius. In order to do
so, we introduce a new radial coordinate and time variable,
together with the usual definition of polar angle, through

x ¼ ρ cos θ
1 − ρ

; y ¼ ρ sin θ
1 − ρ

;
dζ
dτ

¼ 1

ð1 − ρÞ2 ; ð29Þ

where 0 ≤ ρ ≤ 1.
The dynamical system Eq. (27) may be rewritten as

ρζ ≡ dρ
dζ

¼ Πðρ; θÞ ¼ 1

2
½−3þ 6ρ − ð3þ γÞρ2 þ ½1 − 2ρþ ð1 − γÞρ2� cos 2θ�ρ2fðρ; θÞ þ

ffiffiffi
2

p

16

ρgðρ; θÞ sin θ cos θ
ð1 − ρÞ2 þ γρ2cos2θ

;

θζ ≡ dθ
dζ

¼ Ψðρ; θÞ ¼ −ρfðρ; θÞ sin θ cos θ þ
ffiffiffi
2

p

16

hðρ; θÞ
ð1 − ρÞ2 þ γρ2cos2θ

; ð30Þ

with

f2ðρ; θÞ ¼ ð1 − ρÞ
�

ρ2cos4θ
32½ð1 − ρÞ2 þ γρ2cos2θ� þ

1

4
μ2cos2θ þ sin2θ

�
;

gðρ; θÞ ¼ 8ðμ2 − 4Þð1 − 5ρÞ þ ð16½5μ2 − 4γ − 10� þ 2cos2θÞρ2 þ 2ð160þ 96γ − 40μ2 − 3cos2θÞρ3
þ ð8½5μ2 − 24γ − 20� þ 2½3 − 32γ2�cos2θ þ ½8γð4 − μ2Þ − 1�cos4θÞρ4
þ ð8½4þ 8γ − μ2� − 2½1 − 32γ2�cos2θ − ½8γð4 − μ2Þ − 1�cos4θÞρ5;

hðρ; θÞ ¼ 8ð1 − ρÞ4½ð4 − μ2Þcos2θ − 4� − 2ρ2½1 − 2ρþ ð1 − 16γ2Þρ2�cos4θ þ γ½1þ 8γðμ2 − 4Þ�ρ4cos6θ: ð31Þ

The critical points at an infinitely distant boundary
are obtained by finding the solution of the equations
Πð1; θÞ ¼ 0 and Ψð1; θÞ ¼ 0. Since Eq. (30) is invariant
under transformations θ → θ þ π, it suffices to consider
just the critical points lying on the region ½0; π�. As
fð1; θÞ ¼ gð1; θÞ ¼ 0 and hð1; θÞ, the critical points are
given by

½32γ þ ð1þ 8γ½μ2 − 4�Þ cos2 θ� cos2 θ ¼ 0; ð32Þ

with solutions labeled as Nð1; π
2
Þ and

S�

�
1; arccos

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1 − 1
32γ −

1
4
μ2

s ��
:

The argument of the critical points S� is real under the
condition�

μ < 2∧
�
γ < 0∨ γ >

1

8ð4 − μ2Þ
��

∨
�
μ > 2∧ −

1

8ðμ2 − 4Þ < γ < 0

�
; ð33Þ

where the symbols ∧ (and) and ∨ (or) have been used.
The linearization of the system Eq. (30) allows for the

derivation of the eigenvalues of the Jacobian around the

critical points S� (which are degenerate) andN; in the latter
case, this further requires a change in the time variable
ζ → ζ̂, such that dζ̂=dζ ¼ ρ − 1. The ensuing results are
presented in Table II.
In order to extract the expansion rate, we again resort to

the definition Eq. (24) and the algebraic constraint Eq. (26)
which, in the compactified polar coordinates, reads

ðkHÞ2 ¼ z2ðρ; θÞ

¼ ρ2

32ð1 − ρÞ2
�

ρ2cos4θ
γρ2cos2θ þ ð1 − ρÞ2

þ 8μ2cos2θ þ 32sin2θ

�
: ð34Þ

TABLE II. Eigenvalues of the critical points at infinity S� and
N for the dynamical system Eq. (30).

Point Eigenvalues

Sþ 8γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−γð8γμ2þ1Þ

p
1þ8γðμ2−4Þ

S− − 8γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−γð8γμ2þ1Þ

p
1þ8γðμ2−4Þ

N 3�
ffiffiffiffiffiffiffiffiffi
1−64γ

p
2
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1. Critical point N

Inspection of Table II shows that the critical point
Nð1; π=2Þ is

(i) a saddle point, if γ ≤ −1=8;
(ii) unstable, if −1=8 < γ < 1=64;
(iii) a focus, if γ > 64.
Replacing θ ¼ π=2 in Eq. (34), we see that z∼

1=ð1 − ρÞ → ∞ for all values of the coupling γ and reduced
mass μ, thus yielding the possibility of a big rip scenario
(if N is a focus); i.e. the Universe evolves toward an
infinite expansion rate.

2. Critical points S�
By inspecting Table II, we may ascertain the behavior of

the critical points S�: we impose condition Eq. (33) for real
critical points and vary the coupling γ and reduced mass μ
to determine the behavior of the corresponding degenerate
eigenvalues, as depicted in Fig. 3. We find that the latter are
never positive, yielding

(i) γ < 0: − 1
8μ2

< γ < 0;

(ii) ReðγÞ ¼ 0:

�
γ < − 1

8μ2
∨ γ > 1

8ð4−μ2Þ ; μ < 2
1

8ð4−μ2Þ < γ < − 1
8μ2

; μ > 2
.

Again resorting to Eq. (34), we find that

z

�
ρ; arccos

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1 − 1
32γ −

1
4
μ2

s ��

¼ ρ2

ðρ − 1Þ2½1þ 8γðμ2 − 4Þ − 32γ2ρ2� ; ð35Þ

so that taking the limit ρ ¼ 1 yields

z2 ¼ −
1

32γ2
: ð36Þ

Thus, although the value for θ is precisely that required
to cancel out the divergence obtained in the case of the
critical point N, we find that it leads to an unphysical,
imaginary expansion rate.

V. CONCLUSIONS

In this work, we have studied the dynamics of an
SOð3Þ-invariant massive vector field [7] nonminimally
coupled to the curvature.
The resulting system admits de Sitter, exponential infla-

tionary, solutions for a restricted region of the parameter
space, γ > 1=4. Some specific regimes for exponential
inflation were considered; for the massless case, μ ¼ 0, we
have obtained physical solutions. The strong coupling
limit, μ2γ ≫ 1, is viable only if the coupling to the
Ricci scalar is stronger than to the Ricci tensor, α > β.
A weak coupling limit, μ2γ ≪ 1, is not achievable, as it
breaks the aforementioned constraint γ > 1=4. A power
law behavior for the scale factor and vector field was
also studied: however, it is not possible to find a simple
monomial solution for the dynamical system embodied
in Eqs. (9)–(11).
We studied the dynamical system arising from the

equations of motion for this theory, finding nine finite
critical points and three critical points at infinity. In the
former case, the origin is a trivial critical point, with no
impact arising from the nonminimal coupling between the
vector field and curvature: the behavior of this fixed point is
thus naturally equivalent to that obtained in Ref. [7]. The
other eight nontrivial points lead to a constant expansion
rate and are saddle points, with only two of them having
physical meaning, i.e. obeying the constraint γ > 1=4.
Regarding the three fixed points at infinity, we have

Nð1; π=2Þ which, depending on the value of γ, can behave
as a saddle point, an unstable point, or a focus. If the critical
point N is a focus, this leads to a big rip scenario, with the
Universe evolving toward an infinite expansion rate. The

other two critical points S� ¼ ð1;� 8γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−γð8γμ2þ1Þ

p
1þ8γðμ2−4Þ Þ lead to

an imaginary expansion rate and can thus be identified with
an oscillating scale factor.
Thus, we conclude that inflationary solutions

can be obtained which are driven by a massive vector
field, provided the nonminimal coupling to gravity has
a nonvanishing effect, a particularly interesting and
pleasing new feature of the presented model. We highlight
that this requires that the couplings with the Ricci scalar
and the Ricci tensor do not cancel each other out, α ≠ β,
i.e. γ ≠ 0.

0.5 1.0 1.5 2.0 2.5 3.0

–2

–1

1

2

FIG. 3. Degenerate eigenvalues of S�: real and negative (dark
gray), pure imaginary (light gray).
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