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We perform a comprehensive study of models of dark matter (DM) in a Universe with a nonthermal
cosmological history, i.e. with a phase of pressureless matter domination before the onset of big-bang
nucleosynthesis (BBN). Such cosmological histories are generically predicted by UV completions that
contain gravitationally coupled scalar fields (moduli). We classify the different production mechanisms for
DM in this framework, generalizing previous works by considering a wide range of DM masses/couplings
and allowing for DM to be in equilibrium with a “dark” sector. We identify four distinct parametric regimes
for the production of relic DM, and derive accurate semianalytic approximations for the DM relic
abundance. Our results are particularly relevant for supersymmetric theories, in which the standard
nonthermally produced DM candidates are disfavored by indirect-detection constraints. We also comment
on experimental signals in this framework, focusing on novel effects involving the power spectrum of DM
density perturbations. In particular, we identify a class of models where the spectrum of DM density
perturbations is sensitive to the pressureless matter-dominated era before BBN, giving rise to interesting
astrophysical signatures to be looked for in the future. A worthwhile future direction would be to study
well-motivated theoretical models within this framework and carry out detailed studies of the pattern of
expected experimental signals.
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I. MOTIVATION AND INTRODUCTION

Apart from its existence, the nature and nongravitational
interactions of dark matter (DM) are still very uncertain.
The most popular class of dark matter models—weakly
interacting massive particles (WIMPs)—rely on two key
assumptions to reproduce the observed relic abundance.
First,WIMPs are assumed to annihilate into StandardModel
(SM) particles with an electroweak-scale cross section.
Second, the Universe is usually assumed to be radiation
dominated between the end of inflation andmatter-radiation
equality. However, there are no clear indications that either
of these assumptions are valid. With regards to the former,
large regions of WIMP parameter space have been ruled out
by various direct and indirect-detection experiments. With
regards to the latter, the earliest evidence for a radiation-
dominated Universe arises during big-bang nucleosynthesis
(BBN), which occurs at temperatures of order an MeV. The
energy budget of the Universe has not been probed for
temperatures above that at the time of BBN. Of course, it is
still possible that dark matter is a simpleWIMP, but because
of the above reasons it is well motivated to go beyond the
traditionalWIMPparadigm, both in terms ofDMcandidates
as well as the production mechanisms for DM.
A well-motivated alternative to the standard “thermal”

cosmological history mentioned above is that of a non-
thermal cosmological history, in which BBN is preceded by
a phase of pressureless matter domination. Such a situation

is predicted in many top-down theories for new physics
e.g. low-energy limits of supergravity and string/M-theory
compactifications. These theories, under some very mild
assumptions, contain gravitationally coupled scalars called
moduli. When the Hubble parameter drops below moduli
masses, moduli begin coherent oscillations and behave as
pressureless matter, dominating the energy density of the
Universe until the longest-lived one (ϕ) decays to reheat the
Universe. In these cosmological histories, an electroweak-
scale wino provides a natural candidate for supersymmetric
(SUSY) DM, provided that the modulus-dominated phase
ends at temperatures below a GeV or so [1,2]. However,
recent FERMI-LAT and HESS observations of Galactic
center photons have placed severe limits on wino DM [3,4].
If the wino is stable, satisfying these constraints in the
cosmological histories mentioned above requires a large
hierarchy between the modulus and gravitino masses [3].
Such a hierarchy is quite unnatural for a broad class of
models in which moduli stabilization sets the scale of
supersymmetry breaking [5–8]. This conclusion also holds
if the lightest superpartner is some more general admixture
of minimal supersymmetric SM (MSSM) particles [9]. A
simple way to avoid these constraints is to assume that the
lightest visible-sector superpartner, hereafter referred to as
the LOSP, is unstable.
Motivated by the above statements, this work provides a

comprehensive study of relic DM production in cosmo-
logical histories with a late phase of modulus domination.
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To perform as general an analysis as possible, we go
beyond the standard WIMP picture by (i) allowing for a
wide range of DM masses and annihilation cross sections
and (ii) allowing for the possibility that DM is in kinetic
equilibrium with some sector other than the visible sector.
These two assumptions are well motivated in SUSY
theories with an unstable LOSP, but can also be true in
general. If the LOSP decays, DM is not a visible-sector
particle; a priori there is no reason to expect its DM mass
or annihilation cross section to be near the electroweak
scale. Moreover, if the DM resides in a sector that couples
weakly to the visible sector, DM could be in kinetic
equilibrium with a “dark sector” instead of the thermal
bath of visible-sector particles. As we will see, our results
can be straightforwardly reduced to that of the single-sector
case despite assumption (ii).
The analysis of DM models in this framework can be

effectively separated into three questions.
(i) How does one classify production mechanisms for

relic DM and accurately compute ΩDMh2?
(ii) What is the pattern of experimental and observa-

tional signals arising within such a framework?
(iii) What kind of DM candidates and interactions

naturally arise in well-motivated theories?
In this paper, we focus primarily on the first question by

solving the Boltzmann equations for a two-sector system
with a late phase of modulus domination. A brief overview
of this framework, along with the Boltzmann equations
describing its cosmological evolution, is presented in Sec. II.
We then classify all potential mechanisms for the production
of relic DM, and compute ΩDMh2 for a large range of DM
masses and annihilation cross sections. The entire parameter
space of these DM models can be classified into four
different parametric regimes, each with distinct production
mechanisms for relic DM.We derive (semi)analytic approx-
imations for ΩDMh2 in these different regimes, and confirm
their validity by comparison with the numerical solution.
This is the main new result of our work, and is discussed in
detail in Sec. III. Readersmay godirectly to Sec. III E,which
contains a self-contained summary of the above results. In
Sec. IV, we discuss the implications of our results for UV-
motivated SUSY theories where the modulus mass is of
order the gravitino mass, and show that this framework
provides several viable alternatives to MSSM dark matter.
In the remainder of the paper, we briefly discuss the latter

two questions listed above. In Sec. V, we discuss potential
experimental signatures of the DMmodels considered here.
A significant portion of the parameter space predicts free-
streaming lengths characteristic of warm dark matter.
Furthermore, we identify a class of DM models in which
the DM power spectrum is sensitive to the linear growth of
subhorizon DM density perturbations during the modulus-
dominated era. This can lead to interesting astrophysical
signatures, such as an abundance of Earth-mass (or smaller)
DMmicrohalos which are far denser than their counterparts

in standard cosmologies [10]. Finally, Sec. VI briefly
addresses the third question, and describes work done in
string theory models that have dark sectors. In a companion
paper, we will elaborate further on some classes of these
models. We present our conclusions in Sec. VII. The
appendices contain technical results which will be referred
to in the main text.

II. OVERVIEW OF TWO SECTORS—MODELS
AND COSMOLOGY

The framework considered here consists of two
sectors: a visible sector containing SM (and perhaps
MSSM) particles and a dark sector containing the DM.
Both the visible and dark sectors are assumed to have
sufficient interactions such that thermal equilibrium is
separately maintained within the two sectors, whose
temperatures are T and T 0 respectively. We assume that
there exist very weak portal interactions between the two
sectors, so that T and T 0 may not be equal to each other.
Finally, we assume that the Universe is dominated by the
coherent oscillations of a modulus field ϕ at some time
which is much earlier than when BBN occurs.1 The
cosmological framework described above is depicted
schematically in Fig. 1. The results of our work will be
straightforward to reduce to the single-sector case; see the
discussion in Sec. III E.
As denoted in Fig. 1, the visible sector contains radiation

degrees of freedom R, comprised of relativistic particles in
equilibrium with the SM bath at temperature T. We also
track the abundance of an unstable WIMP-like particle X
which is in equilibrium with the visible sector. X corre-
sponds to the LOSP in the SUSY theories discussed in
the introduction. The dark sector is assumed to contain a
stable DM candidate X0, along with dark radiation R0.
“Dark radiation" refers to dark-sector particles which are in
thermal equilibrium and are relativistic at a given dark-
sector temperature T 0. Henceforth, visible (dark) sector
quantities are denoted using unprimed (primed) variables.
For simplicity and concreteness, we assume that no DM
asymmetry is present, so DM particles and antiparticles
need not be separately tracked in the Boltzmann equations.
Relaxing this assumption is worth exploring in future
studies; see for example Ref. [9]. Finally we make the
assumption that MX;MX0 ≪ mϕ, which is naturally
expected for the supersymmetric theories discussed in
the Introduction and in Sec. IV.
Before moving on to study the cosmological evolution

of this system, it is worth mentioning that there are
constraints on hidden-sector relativistic degrees of free-
dom during BBN and during recombination, through their

1In general, there could be many moduli present in the early
Universe. In this case, ϕ should be thought of as the longest-lived
modulus. DM produced from shorter-lived moduli will be diluted
by entropy production [11].
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contribution to the expansion rate of the Universe. These
constraints are typically presented in terms of the number
of effective extra neutrino species ΔNeff , which is related
to the number of relativistic hidden-sector degrees of
freedom g0�ðT 0Þ by

ΔNeffðTBBNÞ ¼ 0.57g0⋆ðT 0
BBNÞξ4ðTBBNÞ;

ΔNeffðTCMBÞ ¼ 2.2g0⋆ðT 0
CMBÞξ4ðTCMBÞ ð1Þ

where TBBN ∼ 1 MeV, TCMB ∼ 1 eV and ξðTÞ≡ ðT 0=TÞ4.
The current 95% C.L. bounds are ΔNeffðTBBNÞ ≤ 1.44
[12] and ΔNeffðTCMBÞ ≤ 0.4 [13]. We will discuss the
implications of these constraints for the two sector models
considered here in Sec. III A 2.

A. Cosmological evolution

The cosmology of the framework can be studied by
writing down the Boltzmann equations for the time
evolution of the relevant quantities which comprise the
total energy density of the Universe. This includes the
modulus energy density ρϕ, the energy density arising from
X and X0 with number densities nX and nX0 respectively,
and the energy densities of radiation in the visible and dark
sector, denoted by ρR and ρR0 respectively. The relevant
parameters in the Boltzmann equations turn out to be

fTRH;ΓX;MX;MX0 ; hσvi; hσvi0; BX; BX0 ; η; g�ðTÞ; g0�ðT 0Þg:
ð2Þ

Here ΓX is the decay width of the unstable X particle,
MX and MX0 denote the masses of X and X0 respectively,
while hσvi and hσvi0 denote the thermally averaged
annihilation cross sections of X and X0 respectively.
g�ðTÞ and g0�ðT 0Þ are the relativistic degrees of freedom
in the visible and dark sectors at a given temperature T; T 0.
The quantities BX and BX0 denote the branching fractions of

the modulus to X and X0 respectively.2 Given the
assumption MX;MX0 ≪ mϕ, η approximately denotes the
fraction of the energy density from the modulus going to
dark radiation, with the remaining fraction ð1 − ηÞ going to
visible radiation. Finally, following established convention
we define TRH in terms of the decay width of the modulus
Γϕ as follows:

TRH ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΓϕMpl

p �
45

4π3g�ðTRHÞ
�

1=4
; ð3Þ

where Mpl ¼ 1.22 × 1019 GeV is the Planck scale, and
g⋆ðTRHÞ is the number of relativistic degrees of freedom in
the visible sector at TRH. We will discuss the physical
interpretation of TRH in Sec. III A 2.
A priori, the nine parameters in Eq. (2) can vary over a

wide range of values, and could affect the computation of
the DM relic abundance in a variety of ways. However,
we will show that for ΓX > Oð1ÞΓϕ, the DM production
mechanisms only depend on a subset of the parameters in
Eq. (2), in particular

fTRH; Btot; mϕ; η;MX0 ; hσvi0; g⋆ðTÞ; g0⋆ðT 0Þg; ð4Þ

where Btot ≡ BX þ BX0 if X decays to X0 and Btot ≡ BX0 if X
does not decay to X0. Note that there is no dependence on
parameters measuring the attributes of the LOSP
X—fΓX;MX; hσvig! Furthermore, as will be discussed
in Sec. IV, the parameters TRH and mϕ are completely
determined by the masses and couplings of the modulus ϕ.
Thus these parameters are insensitive to the details of the
dark sector. In the forthcoming analysis, we find it useful to
choose benchmark values for the following parameters:

FIG. 1. Schematic representation of the two-sector framework under consideration.

2Note that BX also includes channels in which ϕ decays to X
through intermediate states; BX0 is similarly defined.
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Benchmark∶ TRH ¼ 10 MeV; Btot ¼ 0.1;

mϕ ¼ 50 TeV; η ¼ 0.1;

g⋆ðTÞ ¼ 10.75; g0⋆ðT 0Þ ¼ 10.75: ð5Þ

The theoretical motivation for these benchmark values will
be clear from the discussion in Sec. IV. With these
parameters fixed, the DM abundance will depend only
onMX0 and hσvi0, and we will see that these can take a wide
range of values for viable DM production mechanisms. As
mentioned above, for most of the paper we take ΓX > Γϕ

since this is naturally obtained if ΓX is not Planck sup-
pressed. In Appendix B, however, we will briefly discuss
the case ΓX ≲ Γϕ.
The Boltzmann equations which describe this system

are a natural generalization of those which are applicable to
a single-sector framework within a modulus-dominated
Universe, as studied in Refs. [14–17]. As pointed out in
these papers, it is more convenient to define dimensionless

variables corresponding to the energy and number densities
and also to convert derivatives with respect to time to those
with respect to the (dimensionless) scale factor A≡ a

aI
, with

aI ≡ T−1
RH. Thus, following Refs. [14,15] we define

Φ≡ ρϕA3

T4
RH

; R≡ ρR
A4

T4
RH

; X ≡ nX
A3

T3
RH

;

R0 ≡ ρR0
A4

T4
RH

; X0 ≡ nX0
A3

T3
RH

;

~H ≡
�
Φþ Rþ R0

A
þ EX0X0 þ EXX

TRH

�
1=2

: ð6Þ

EX ≈ ðM2
X þ 3T2Þ1=2 and EX0 ≈ ðM2

X0 þ 3T 02Þ1=2 are the
thermally averaged X, X0 energies assuming that X and
X0 are in kinetic equilibrium. The Boltzmann equations in
terms of these comoving dimensionless variables are

~H
dΦ
dA

¼ −c1=2ρ A1=2Φ;

~H
dR
dA

¼ c1=2ρ A3=2ð1 − B̄Þð1 − ηÞΦþ c1=21 Mpl

�
2EXhσvi
A3=2 ðX2 − Xeq

2Þ þ A3=2

�
EX − EX0

TRH
3

�
hΓR

XiX
�
;

~H
dX
dA

¼ c1=2ρ TRHBX

mϕ
A1=2Φþ c1=21 MplTRHA−5=2hσviðXeq

2 − X2Þ − c1=21 Mpl

TRH
2

A1=2XhΓXi;

~H
dX0

dA
¼ c1=2ρ TRHBX0

mϕ
A1=2Φþ c1=21 MplTRHA−5=2hσvi0ðX0

eq
2 − X02Þ þ c1=21 Mpl

TRH
2

A1=2XhΓXi;

~H
dR0

dA
¼ c1=2ρ A3=2ð1 − B̄ÞηΦþ c1=21 Mpl

�
2EX0 hσvi0

A3=2 ðX02 − X0
eq

2Þ þ A3=2

�
EX − EX0

TRH
3

�
hΓR0

X iX
�

ð7Þ

with cρ ¼ ðπ2g�ðTRHÞ
30

Þ, c1 ¼ ð 3
8πÞ and

B̄≡ BXEX þ BX0EX0

mϕ
: ð8Þ

Xeq and X0
eq are related to the X and X0 equilibrium number

densities via

Xeq ≡
�

A
TRH

�
3 gTMX

2

2π2
K2

�
MX

T

�
if MX ≫ T;

�
A

TRH

�
3 cξζð3ÞT3

π2
if MX ≪ T; ð9Þ

where g counts the degrees of freedom of X and cξ ¼
gð3g=4Þ for bosonic (fermionic) X. X0

eq is given by Eq. (9)
with primed variables replacing unprimed variables.
Note that we have assumed in Eq. (7) that X decays to X0;

we neglect X0 þ � � � → X inverse decays, as the dynamics
which fixΩX0 occur when T 0 ≲MX (see Sec. III B) at which

point inverse decays are exponentially suppressed. The
thermally averaged X decay rate is given by

hΓXi ¼ ΓX
K1ðMX=TÞ
gXK2ðMX=TÞ

; hΓXi ⟶
MX≫T ΓX

gX
ð10Þ

where ΓX is the X decay rate in the X rest frame, and K1

and K2 are modified Bessel functions of the second kind.
The quantities hΓR

Xi and hΓR0
X i are respectively the thermally

averaged partial widths for X → X0R and X → X0R0. In the
remainder of this work, we focus on the case where all X
decay channels yield X0 such that Eq. (7) is valid; this
corresponds to X and X0 both being charged under the DM
stabilization symmetry. It is also possible for X to instead
decay directly to visible radiation, as is the case for R-
parity-violating SUSY models. In this case X and X0 are
essentially decoupled in the Boltzmann equations, which
significantly simplifies the analysis. In Sec. III we focus on
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the more complicated case where X decays to X0, and
discuss how relaxing this assumption affects our results.
The above differential equations are solved subject to the

following initial conditions:

A ¼ 1; Φ ¼ ΦI ¼
3H2

IM
2
pl

8πT4
RH

; R ¼ 0;

R0 ¼ 0; X ¼ 0; X0 ¼ 0. ð11Þ

These initial conditions are somewhat unphysical as they
imply ρR ¼ ρR0 ¼ 0 at A ¼ 1. However, at early times the
visible and dark radiation energy densities are subdomi-
nant, so this approximation is justified. HI is the initial
value of the Hubble parameter which fixes the initial energy
density of the modulus field, parametrized by ΦI. As we
will see, in most cases the DM relic abundance is largely
insensitive to the initial condition ΦI .

III. SOLUTION OF THE BOLTZMANN
EQUATIONS AND THE DARK

MATTER ABUNDANCE

Given the system of equations (7), it is possible to
numerically solve it for various choices of the parameters in
Eq. (2). However, in order to get a good physical intuition
of the qualitatively different mechanisms at play, it is
advisable to study various approximate (semi)analytic
solutions which are applicable in different regions of the
parameter space. We carry out such an exercise in this
section. In Appendix C, we compare our approximations to
the full numerical analysis and find very good agreement.

A. Useful approximations

We now derive useful approximations which allow us to
obtain semianalytic expressions for ΩDMh2 in Sec. III B.
To start with, it is worth noting that Φ remains constant
until H ∼ Γϕ to a very good approximation. Thus in the
following analysis we set ~H ¼ ΦI

1=2 throughout the period
of modulus domination, considerably simplifying the
Boltzmann equations. Our strategy will be to use physically
well-motivated approximations to first solve for Φ, R, R0
and X, and then use these solutions to study the equation
for X0.

1. Approximate solutions for Φ, R and R0

Consider first the Boltzmann equation for Φ. With
~H ¼ Φ1=2

I , it is straightforward to solve for Φ:

Φ ≈ ΦI exp

�
−
2

3

�
cρ
ΦI

�
1=2

ðA3=2 − 1Þ
�
: ð12Þ

Thus, as expected,Φ remains approximately constant atΦI ,
and only begins to decay vigorously when the dimension-
less scale factor satisfies A > A⋆, with

A⋆ ≡
�
3

2

�
ΦI

cρ

�
1=2

þ 1

�
2=3

: ð13Þ

Now consider the equations for R and R0. As can be seen
from Eq. (7), in addition to the modulus decay term these
equations contain the X and X0 annihilation terms as well as
the X decay term. However, it turns out that forMX;MX0 ≪
mϕ all these terms are quite subdominant compared to the
modulus decay term. This is because ifMX;MX0 ≪ mϕ, the
energy densities of X and X0 are subdominant to ρϕ during
the modulus-dominated era; a more detailed argument for
this is presented in Appendix A. Given this approximation,
the solutions to Eq. (7) do not depend on the branching
fractions of X. Thus the approximate solutions for R and R0
can be found readily by integrating the modulus decay
term:

RðAÞ ≈
�
cρ
ΦI

�
1=2

ð1 − ηÞ
Z

A

1

ð1 − B̄ÞA03=2ΦðA0ÞdA0;

R0ðAÞ ≈ η

1 − η
RðAÞ;

Rfinal ≡ RðA → ∞Þ ≈ ð1 − ηÞð1 − BeffÞΓ
�
5

3

�

×

��
3

2

�
2=3
�
ΦI

cρ

�
1=3

ΦI

�
;

R0
final ≈

η

1 − η
Rfinal: ð14Þ

In the second line of Eq. (14), Rfinal represents the late-time
solution for R, i.e. when the scale factor A ≫ A�. Note that
R ≈ Rfinal during the radiation-dominated era. We have
approximated B̄ as

Beff ≡ BXðMX
2 þ 3TD

2Þ1=2 þ BX0 ðMX02 þ 3T 0
D
2Þ1=2

mϕ
;

ð15Þ

where TD and T 0
D approximately correspond to the temper-

atures at which the integrand (14) peaks. These temper-
atures characterize the transition between modulus and
radiation domination, and are defined more precisely in
Sec. III A 2. To obtain the result above for Rfinal, we have
expanded the function obtained after the integration as a
series expansion in cρ

ΦI
with cρ

ΦI
≪ 1 and kept the leading term.

This can be justified by takingΦI as given byEq. (11), where
HI is the Hubble parameter when the modulus ϕ starts
dominating the energy density of the Universe. Thus, for
HI ¼ γΓϕ with γ ≫ 1,3 one finds cρ

ΦI
¼ 1

γ2
≪ 1.

3We expect γ ≫ 1 because the modulus dominates the energy
density of the Universe when mϕ ≳H ≫ Γϕ.
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2. Temperature-scale factor relation and
the “maximum” temperature

The temperature of a system is measured by the radiation
energy density, and the relation between the two is given in
general by

T¼
�

30

π2g�ðTÞ
�

1=4R1=4

a
¼
�

30

π2g�ðTÞ
�

1=4 R1=4

ðA=TRHÞ
: ð16Þ

In a radiation-dominated Universe, it is well known
that R1=4 ¼ ðρ1=4R aÞ remains constant with time, giving
T ∝ a−1. However, the situation is different within a
modulus-dominated Universe since R1=4 does not remain
constant with time. It can be shown that at early times when
T ≫ TRH, Φ ≈ ΦI and the temperatures and scale factor are
related approximately by [14]

T≈
�

88

3355

�
1=20
�
g�ðTmaxÞ
g�ðTÞ

�
1=4

TmaxðA−3=2−A−4Þ1=4; ð17Þ

where Tmax, the maximum temperature attained during
modulus domination, is given by

Tmax ≡ ð1 − ηÞ1=4
�
3

8

�
2=5
�
5

π3

�
1=8

×

�
g�ðTRHÞ1=2
g�ðTmaxÞ

�
1=4

ðMplHIT2
RHÞ1=4: ð18Þ

Thus, we see that the temperature has a more complicated
dependence on the scale factor compared to that in radiation
domination. Using the fact that HI ¼ γΓϕ with γ ≫ 1, one
finds that Tmax ∼ γ1=4TRH. From Eq. (14) it is straightfor-
ward to relate the visible and dark-sector temperatures:

T 0 ≈
�

ηg�ðTÞ
ð1 − ηÞg0�ðT 0Þ

�
1=4

T ⇒ ξ≡ T 0

T

≈
�

ηg⋆ðTÞ
ð1 − ηÞg0⋆ðT 0Þ

�
1=4

: ð19Þ

Combining Eqs. (18) and (19) gives T 0
max for the dark sector.

As mentioned in Sec. II A, bounds on Neff at both TBBN ∼
1 MeV and TCMB ∼ 1 eV constrain T 0

BBN=TBBN and
T 0
CMB=TCMB, which through Eq. (19) can be mapped into

a constraint on η. Comparing Eq. (19) with the Neff bound
(1), we see that the resulting constraint on η is insensitive to
g0�ðT 0Þ assuming g0�ðT 0Þ ≠ 0. Taking g�ðTBBNÞ ¼ 10.75 and
g�ðTCMBÞ ¼ 3, the ΔNeff constraints (1) imply η≲ 0.20
(BBN) and η≲ 0.06 (CMB).
In the presence of dark radiation,4 TRH as defined in

Eq. (3) no longer corresponds to the visible-sector temper-
ature when H ¼ Γϕ, assuming the modulus has completely

decayed (Φ ¼ 0). Instead, we define the temperatures TD,
T 0
D as the visible- and dark-sector temperatures when

HjΦ¼0 ¼ Γϕ:

HjΦ¼0 ¼ ð8π=3Þ1=2
Mpl

ðρR þ ρR0 Þ1=2

¼ ð8π=3Þ1=2
Mpl

�
ρR

1 − η

�
1=2

¼ Γϕ

⇒ TD ≈ TRHð1 − ηÞ1=4; T 0
D ≈

�
g�ðTDÞ
g0�ðT 0

DÞ
�

1=4
η1=4TRH:

ð20Þ

The bounds from Neff discussed above imply TD ≈ TRH.
Hence, for simplicity we will set g�ðTRHÞ ¼ g�ðTDÞ. It is
also useful to compute the scale factor AD which corre-
sponds to the temperature TD; T 0

D. We compute AD by
substituting T ¼ TD and R ¼ Rfinal in Eq. (16):

AD ¼ ½Γð5=3Þð3=2Þ2=3ð1 − BeffÞ�1=4
�
ΦI

cρ

�
1=3

≈ 1.5ð1 − BeffÞ1=4
�

ΦI

g�ðTRHÞ
�

1=3
: ð21Þ

From the definition of A⋆ in Eq. (13), we see that A⋆ ∼ AD.
We caution the reader that the definitions of TD, T 0

D
and AD established above are limited in the following sense.
The above expressions forTD,T 0

D andADwere derived from
H ¼ Γϕ assuming that the Universe has reached radiation
domination, i.e.Φ ¼ 0 andR ¼ Rfinal,R0 ¼ R0

final. However,
modulus decay is a continuous process which occurs when
H ∼ Γϕ, but does not have a well-defined start or end point.
Upon solving the Boltzmann equations, one finds that
when H ¼ Γϕ, the modulus has not finished decaying
and the radiation-dominated phase has not yet been reached
ðR ≠ RfinalÞ. In the next subsection we will verify this fact
graphically, utilizing the full numerical solutions forΦ andR
(see Fig. 2 below). Despite this ambiguity, we find TD, T 0

D
and AD to be useful qualitative proxies for the temperature
and scale factor at which the Universe transitions from the
modulus-dominated to radiation-dominated era.

3. Approximate solution for X

Now consider the Boltzmann equation for X. Motivated
by earlier statements, we are interested in the case where X
is a LOSP with weak-scale mass and annihilation cross
section; thus Xeq will be exponentially suppressed for
temperatures of a few GeV. In our analysis, we will mostly
consider the situation that the LOSP X decays before the
modulus (typically much before), i.e. ΓX > Oð1ÞΓϕ. Such a
condition can be naturally achieved since the modulus
decays by Planck-suppressed operators. In Appendix B, we
will briefly consider the case where ΓX ≲ Γϕ.

4For further discussion of the effects of dark radiation in
nonthermal histories, see e.g. Refs. [18–21].
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In the Boltzmann equation for X0, the X decay term
grows like A1=2; thus we are interested in the solution for X
in the low-temperature regimes where Xeq can be neglected
(this approximation is justified in Appendix B). With this
approximation, the Boltzmann equation for X can be
written as

dX
d logA

¼ −
�

X2

Xcrit
þ A3

Xcrithσvi
ΓX

gXT3
RH

X

�

þ
�

A3

Xcrithσvi
c1=2ρ BX

mϕc
1=2
1 Mpl

Φ

�
; ð22Þ

where Xcrit is the critical value required for annihilations to
be efficient for a given value of the Hubble parameter. More
precisely, Xcrit is given by

Xcrit ≡ ðnXÞcrit
A3

T3
RH

¼ HA3

hσviT3
RH

¼
~HA3=2

c1=21 MplTRHhσvi
: ð23Þ

Now, if the processes for the depletion of X [the first and
second terms on the right-hand side of Eq. (22)] and the
production of X [the third term on the right-hand side of
Eq. (22)] are larger than X itself, then these are each faster
than the Hubble rate and one rapidly reaches a situation
where the two processes cancel each other, giving rise to
what is known as quasistatic equilibrium (QSE) [22]. The
QSE solution is found by equating the right-hand side of
Eq. (22) to zero:

XQSE¼
ΓXA3

2T3
RHgXhσvi

��
1þ4g2XBXc

1=2
ρ ΦTRH

6hσvi
c1=21 A3mϕMplΓ2

X

�1=2

−1

�
:

ð24Þ

Given the criteria described above Eq. (24), QSE occurs
when

�
XQSE þ

A3

hσvi
ΓX

gXT3
RH

�
> Xcrit and

A3

hσvi
��

c1=2ρ BX

c1=21 mϕMpl

��
Φ

XQSE

��
> Xcrit: ð25Þ

Upon inspection, one finds that the QSE condition (25) is
equivalent to the familiar condition ΓX=gX > H. Thus, we
see that as long as ΓX > gXΓϕ, the QSE condition will
be satisfied during the modulus-dominated era such that
X ≈ XQSE for ΓX > gXH.
We can gain further insight into the QSE solution for X

by rewriting Eq. (24) as

XQSE ¼ ΓXA3

2T3
RHgXhσvi

��
1þ hσvi

hσvi�

�
1=2

− 1

�

⇒ XQSE ≈
�
gXbBX

c1=2ρ T3
RH

c1=21 ΓXmϕMpl

�
Φ;

b ≈

8<
:

1 ; hσvi ≪ hσvi�;
2
�
hσvic
hσvi
�
1=2

; hσvi ≫ hσvi�:
ð26Þ

Physically, the QSE solution for X occurs when moduli
decay into X, and X decay into X0, balance one another;
this explains the dependence of XQSE on Φ. In the above
expression, hσvi� is defined as

hσvi� ≡
�

1

4g2XBX

��
A3

ΦI

� ffiffiffiffiffi
c1
cρ

r �
MplmϕΓX

2

T6
RH

�

≈ 4.48 × 1024 GeV−2

×

�
5

g2XBX

��
A
AD

�
3
�

mϕ

50 TeV

��
10 MeV
TRH

�
6

×

�
ΓX

10−5 GeV

�
2
�

10.75
g�ðTRHÞ

�
3=2

: ð27Þ

Note that for the benchmark choice of parameters in
Eq. (5), and ΓX not extremely small, hσvi� is quite large
(compared to a WIMP cross section ∼10−7–10−10 GeV−2).
We expect the same qualitative conclusion as long as the
portal coupling is not extremely tiny. Thus for super-
symmetric models where X is the LOSP, we expect
hσvi ≪ hσvi�, and hence b ≈ 1 in the QSE solution for
X in the second line of Eq. (26).
Figure 2 shows a plot of the solutions for the values of Φ,

R and X (normalized to their maximum values) as functions
of the scale factor A for the choice of benchmark param-
eters as in Eq. (5). As can be seen from Eqs. (12), (14)
and (26), respectively, the solutions for Φ, R and X do not

1 100 104 106 108 1010 101210 5

10 4

0.001

0.01

0.1

1

A

Y Y max
X

R

A
A

D

FIG. 2. Plots of the exact solutions for Y ¼ Φ; R and X
(normalized to their maximum values) as functions of the scale
factor A. We have takenHI¼1015Γϕ, BX¼0.1, hσvi¼10−7GeV−2

and ΓX ¼ 10−5 GeV. All other parameters are taken to their
benchmark values (5). The dashed vertical line represents the
scale factor A ¼ AD defined in Eq. (21), which characterizes
the transition between a modulus-dominated and a radiation-
dominated Universe.
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depend on MX, MX0 or hσvi0 to a good approximation.
Moreover the solution for X does not depend on hσvi for
most models of interest in which hσvi ≪ hσvi� as we have
just discussed above.

B. Classifying production mechanisms
for relic dark matter

We now move on to studying the main quantity of
interest—the Boltzmann equation for X0, whose solution
will give us the expression for the relic abundance ΩDMh2

of dark matter X0 in terms of a subset of the parameters (2)
appearing in the Boltzmann equations. More precisely, the
X0 relic abundance is given by

ΩDMh2 ¼
ρX0 ðT 0

fÞ
ρRðTfÞ

Tf

Tnow
ΩRh2

¼ MX0
X0ðT 0

fÞ
RðTfÞ

AfTf

TnowTRH
ΩRh2: ð28Þ

In the above expression, Tf is the temperature at any very
late time in which the Universe has become radiation
dominated (Tf ≪ TD) and the X0 comoving abundance
has become constant. The parameters Tnow ≈ 2.35 ×
10−13 GeV and ΩRh2 ≈ 4.17 × 10−5 are the present day
temperature and radiation relic density. Taking RðTfÞ ≈
Rfinal and using Eq. (16) to relate Af and Tf, Eq. (28) can be
written as

ΩDMh2 ≈ L−3=4
X0ðT 0

fÞ
ΦI

MX0

Tnow
ΩRh2;

L≡ ð1 − ηÞð1 − BeffÞΓð5=3Þ
�
3

2

�
2=3

: ð29Þ

In order to derive semianalytic approximations for X0ðTfÞ
and ΩDMh2, we will solve the Boltzmann equation for X0
given the approximations stated in the previous sections. In
the following we will show that X0ðTfÞ ∝ ΦI , so ΩDMh2 is
insensitive to ΦI as mentioned above.
Using the approximate solutions for Φ; R; R0 and X in

Eqs. (12), (14) and (26), respectively, we can reduce the
system of Boltzmann equations in Eq. (7) to a single
ordinary differential equation for the evolution of X0:

dX0

dA
≈
c1=21 MplTRHhσvi0A−5=2

~H
½X0

eq
2 − X02�

þ c1=21 A1=2

~H

�
c1=2ρ TRHBX0

c1=21 mϕ

Φþ ΓXMpl

gXT2
RH

XQSE

�
ð30Þ

where XQSE is defined in Eq. (26). Note that if X does not
decay to X0, the X0

QSE term in Eq. (30) is absent. Using a
similar definition for the critical annihilation for X0 as was
used for X in Eq. (23), one can rewrite Eq. (30):

dX0

d logA
≈−
�
X02

X0
crit

�
þ
�
X0
eq

2

X0
crit

þ A3

X0
crithσvi0

�
c1=2ρ Btot

c1=21 mϕMpl

Φ

��
;

X0
critðAÞ≡ HA3

hσvi0T3
RH

¼
~HA3=2

c1=21 MplTRHhσvi0
; ð31Þ

where Btot ≡ BX þ BX0 if X decays to X0,5 and Btot ≡ BX0 if
X does not decay to X0. Just as for the case of X, if the
processes of depletion of X0 [first term on the right-hand
side of Eq. (31)] and production of X0 [second, third and
fourth terms on the right-hand side of Eq. (31)] are each
greater than X0 itself, X0 will rapidly reach a QSE attractor
solution such that terms on the right-hand side of Eq. (31)
cancel among themselves:

X0
QSEðAÞ ¼

�
A3

hσvi0
�

c1=2ρ Btot

c1=21 mϕMpl

Φ

�
þ X0

eq
2

�1=2
: ð32Þ

Comparing Eqs. (31) and (32), and using Eq. (26) for the
QSE solution for X, we see that the QSE conditions hold
when

X0
QSE > X0

crit: ð33Þ

Note that in contrast to X for hΓXi > Γϕ, X0 does not
necessarily enter QSE during the modulus-dominated
phase. One reason for this is that in contrast to X, which
is assumed to be a WIMP, we are exploring a much more
general set of possibilities for the mass and interactions of
the DM particle X0.
In order to understand better the broad possibilities that

could arise for X0, it is important to find the conditions
necessary for QSE to hold at A ≈ AD. If the QSE conditions
hold at A ≈ AD, then the positive contribution to X0 from
modulus decay is annihilated away such that X maintains
its QSE value. In this case, the final X0 abundance is
insensitive6 to modulus decay parameters such as mϕ and
Btot. Conversely if QSE does not hold at A ≈ AD,ΩX0h2 will
be sensitive to contributions from modulus decay, along
with other sources for X0 production during the modulus-
dominated era. Comparing Eqs. (31) and (32), we see that
requiring X0

QSEðADÞ > X0
critðADÞ places a lower bound on

hσvi0. Keeping the above statements in mind, it is useful to
define a critical annihilation cross section such that X0

QSE ¼
X0
crit at A ¼ AD, to delineate the various possibilities:

5Note that as discussed below Eq. (27), hσvi ≪ hσvi� for most
models where X is a LOSP, for which b ≈ 1 from Eq. (26).
Therefore, we have used the expression for XQSE with b ≈ 1 in
Eq. (31).

6Modulo logarithmic sensitivity, as will be discussed in
Sec. III C 1.
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hσvi0c ≡
�

c1=2Γ
c1Btot

��
mϕ

T2
RHMpl

�
; MX0 ≫ T 0

D ð34Þ

hiσv0c ≡
�
π2c−1=2Γ
θg0ζð3Þ

�
2

3

�
1=4 1

Γð5=3Þ3=8
�

×

�
g0�ðT 0

DÞ
g�ðTDÞη

�
3=4 1

TRHMpl
; MX0 ≪ T 0

D

≈ 2.35

�
3.0
θg

��
g0⋆ðT 0

DÞ
η

�
3=4
�

10.75
g⋆ðTRHÞ

�
1=4 1

TRHMpl

ð35Þ

where we have approximated ~H ≈ ΦI at A ¼ AD. In the
above expressions, cΓ ≡ ð 45

4π3g⋆ðTRHÞÞ, g
0 is the degrees of

freedom of X0, and θ ¼ 1ð3=4Þ for bosonic (fermionic) X0.
The above expressions were obtained by taking X0

eq → 0 in
theMX0 ≫ T 0

D case and X0
QSE ¼ X0

eq in theMX0 ≪ T 0
D case.

In the following sections, we will classify production
mechanisms for X0 according to whether or not
hσvi0jT 0¼T 0

D
> hσvi0c, or equivalently whether or not X0

annihilations are efficient at T 0
D. To simplify the following

analysis, we will assume that hσvi0 is temperature inde-
pendent. The generalization of our results to temperature-
dependent hσvi0 is presented in Appendix D.

C. Efficient annihilation at T0
D: hσvi0 > hσvi0c

If hσvi0 > hσvi0c, X0 tracks its QSE value until X0
QSE

drops below X0
crit at A≳ AD. When X0

QSE drops below X0
crit,

annihilations are no longer efficient and the comoving X0
abundance becomes constant. The dynamics of this proc-
ess, along with the resulting parametrics for ΩX0, depends
on whether or not the freeze-out temperature for X0, T̂ 0

FO, is
larger than T 0

D. Here T̂
0
FO is the X0 freeze-out temperature,

which is computed assuming a radiation-dominated
Universe [Eq. (38)]. If T̂ 0

FO > T 0
D we can neglect X0

eq in
X0
QSE for T ∼ TD; in this case X0

QSE ∝ Φ1=2, and X0
QSE drops

below X0
crit when the modulus decays at T 0 ∼ T 0

D. If instead
T 0
D > T̂ 0

FO, X
0 remains in thermal equilibrium during the

onset of radiation domination (X0
QSE ≈ X0

eq for T 0 ≲ T 0
D).

In this case the X0 relic abundance is determined by the
standard freeze-out mechanism.

1. Nonrelativistic quasistatic equilibrium (QSEnr)

First consider the case where T̂ 0
FO > T 0

D such that X0
eq

can be neglected for T 0 ≳ T 0
D. Assuming hσvi0 > hσvi0c, X0

tracks X0
QSE ∝ Φ1=2 until A≳ AD, after which the ratio

X0
QSE=X

0
crit begins to drop exponentially due to the decay of

Φ according to Eq. (12). The final X0 value is given by
X0
QSEðAcÞ, where Ac is determined by solving the tran-

scendental equation

X0
QSEðAcÞ ¼

1

κ
X0
critðAcÞ ⇒

�
Φ
~H2

�				
Ac

¼ hσvi0c
κ2hσvi0

⇒ log½ ~Ac� ¼
2

3
c1=2ρ ½ ~Ac�3=2 þ log

�
cρ−1=3

�
3

2

�
2=3

Γð5=3Þ
�

− log

��
κ2hσvi0
hσvi0c

− 1

��
: ð36Þ

We have defined ~Ac ≡ AcΦI
1=3 and have used the approxi-

mation RðAcÞ ≈ Rfinal. Taking κ ≈ 2 gives close agreement
with the full numerical result, as shown in Fig. 3. We denote
the above mechanism for DM production as QSEnr.
Upon solving Eq. (36) for ~Ac, it is straightforward

to compute ΩDMh2 using Eq. (29) with X0ðT 0
fÞ ¼

κ−1X0
critðAcÞ:

Ωh2½QSEnr� ≈
B1=2
tot

L3=4c1=4Γ

~A3=2
c exp ð− 1

3
c−1=2ρ ~Ac

3=2Þ
ðMplmϕhσvi0Þ1=2

×

�
MX0

Tnow

�
½ΩRh2�

≈
�ðΓð5

3
Þð3

2
Þ2=3Þ1=2

κc1=6ρ c1=21 L3=4

��
~Ac

MX0Mplhσvi0
MX0

TRH

�

×

�
MX0

Tnow

�
½ΩRh2�: ð37Þ

In the above, we have made the approximation e−
2
3
½cρΦI �

1=2

≈ 1;
see discussion below Eq. (12). Also, in the second line, we
have used Eq. (36) to get rid of the exponential factor in the
first line. The factor ~Ac in the numerator depends loga-
rithmically on both hσvi0 and hσvi0c.
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FIG. 3. Plot of the exact solution of the Boltzmann equations
for X0 (normalized to its maximum value) as a function of the
scale factor A corresponding to the QSEnr mechanism. We have
taken HI ¼ 1015 Γϕ, hσvi0 ¼ 10−6 GeV−2 and MX0 ¼ 10 GeV,
with all other parameters set to the benchmark values (5). We
have also plotted X0

crit [Eq. (31)] and X0
QSE [Eq. (32)]. The

horizontal dashed line corresponding to A ¼ Ac is determined by
solving the transcendental equation (36) for Ac.
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2. Standard freeze-out during radiation
domination (FOrad

r and FOrad
nr )

Now consider the case where T̂ 0
FO < T 0

D with hσvi0 >
hσvi0c. Then, as discussed above, X0

QSEðT 0
DÞ ≈ X0

eqðT 0
DÞ,

which implies that X0 is in thermal equilibrium at T 0 ≈
T 0
D and freezes out at some T̂ 0

FO < T 0
D when X0

eq drops
below X0

crit. The Universe is radiation dominated for
T 0 ≲ T 0

D; thus the X
0 relic abundance is determined by the

standard thermal freeze-out mechanism. Furthermore, there
are two possible subcases: (i) nonrelativistic freeze-out
during radiation domination when T 0

D > M0
X > T̂ 0

FO, which
we denote as FOrad

nr , and (ii) relativistic freeze-out when
T 0
D > T̂ 0

FO > MX0 , which we denote as FOrad
r . The relic

abundance in the two cases are given by Eq. (28) with
Tf ¼ T̂FO, T 0

f ¼ T̂ 0
FO and ρX0 ðT̂ 0

FOÞ determined by the

standard freeze-out calculation. Specifically, ρX0 ðT̂ 0
FOÞ ¼

ρX0
eq
ðT̂ 0

FOÞ, where T̂ 0
FO is defined by n0eqðT 0

FOÞ≡H=hσvi0.
Assuming nonrelativistic freeze-out, T̂ 0

FO is given by solv-
ing the transcendental equation

x̂0F ≡ MX0

T 0
FO

¼ log

 
3

8π3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10η

g0�ðT 0
FOÞ

s
hσvi0g0MX0Mplðx̂0FÞ1=2

!

ð38Þ
and the resulting relic abundance is given by

Ωh2½FOrad
nr � ≈

�
4
ffiffiffi
5

pffiffiffi
π

p
��

η1=4

ð1 − ηÞ3=4
��

1

g�ðTFOÞg0�ðT 0
FOÞ
�
1=4

×

�
x̂0F

MX0Mplhσvi0
��

MX0

Tnow

�
½ΩRh2�: ð39Þ

If instead x̂0F ≲ 3, X0 freeze-out occurs relativistically, and

Ωh2½FOrad
r � ≈

�
30ζð3Þ
π4

��
ηg�ðTFOÞ

ð1 − ηÞg0�ðT 0
FOÞ
�
3=4

×

�
cξ

g⋆ðTFOÞ
��

MX0

Tnow

�
½ΩRh2� ð40Þ

where cξ ¼ g0ð3g0=4Þ for bosons (fermions).
Note that although the mechanism for DM production

discussed here is standard thermal freeze-out, the relevant
parametric region is very different compared to that of
usual thermal WIMP freeze-out. In particular, here T̂ 0

FO is

smaller than T 0
D ≈ TRHðηÞ1=4ðg⋆ðTDÞ

g0⋆ðT 0
DÞÞ

1=4 ≲ ð0.1 − 0.5ÞTRH

for reasonable choices of parameters. This implies
that MX0 < x̂0FT

0
D ≲ 10 × TRH. Furthermore, for the cos-

mological scenarios described in the Introduction and in
Sec. IV, one expects TRH to be in the range a few
MeV≲ TRH ≲ 100 MeV. Thus, the DM in this case is
much lighter than a typical electroweak-scale WIMP, even
if the underlying mechanism is nonrelativistic freeze-out

during radiation domination (FOrad
nr ). On the other hand,

DM undergoing relativistic thermal freeze-out in the dark
sector (FOrad

r ) is qualitatively similar to the case of neutrino
decoupling in the visible sector. We reiterate that in all other
regions of MX0 and hσvi0 parameter space, the standard
thermal freeze-out calculation will not be valid.

D. Inefficient annihilation at T0
D: hσvi0 < hσvi0c

We now consider the case where hσvi0 < hσvi0c such that
X0 is not in QSE for T ≳ TD. In contrast to the previous
case, the X0 relic abundance will be sensitive to both early-
time X0 production during the modulus-dominated era and
the modulus branching ratio Btot. Because the annihilation
rate ΓðX0Þ ∼ n2X0 hσvi0 is much smaller than the Hubble
parameter for T 0 ≳ T 0

D, the X02 term in Eq. (30) can be
neglected for T 0 ≳ T 0

D. The Boltzmann equation for X0
becomes linear in this limit, and the contributions to ΩDM
can be separated into two sources:

ΩDMh2 ¼ Ωannh2 þΩdecayh2: ð41Þ

The first term, Ωdecayh2, is the contribution from modulus
and X decays. This term can be computed by taking ~H ¼
ΦI

1=2 and integrating the second term on the rhs of Eq. (30)
to A ¼ Af ≫ A�. Taking expð−2c1=2ρ =3ΦI

1=2Þ ≈ 1, Eq. (29)
gives

Ωdecayh2 ≈ L−3=4
�
Btot

TRH

mϕ

�
MX0

Tnow
½ΩRh2�: ð42Þ

On the other hand, as the name suggests, Ωannh2 para-
metrizes contributions to X0 production which arise from
the annihilation term in Eq. (30). This has been discussed in
Ref. [14] in models with a single sector. There are two
qualitatively different cases regarding the parameterics
of Ωannh2.
The first case arises when the DM particle X0 attains

equilibrium at high temperatures (but hσvi0 is still smaller
than hσvi0c) and freezes out during modulus domination;
hence T 0

max > T 0
FO > T 0

D. Here T 0
FO is the X0 freeze-out

temperature computed assuming a modulus-dominated
Universe [Eq. (43)]. Now, one might naively think that
both nonrelativistic and relativistic thermal freeze-out
may be possible during modulus domination, just as they
are during radiation domination (see Sec. III C 2). However,
as noted in Ref. [14], relativistic freeze-out cannot
occur during modulus domination if hσvi0 ∝ ðT 0Þn with
n < 6. To see this, note that the term in Eq. (31) corre-
sponding to R0R0 → X0X0 inverse annihilations scales like
X0
eq

2hσvi0=X0
crit ∝ ðT 0Þð−6þnÞ when X0 is relativistic. Thus if

X0 decouples from the thermal bath of dark radiation while
relativistic at some temperature T 0

dec, the X0 comoving
abundance will continue to grow for T 0 < T 0

dec due to
inverse annihilations, provided n < 6. In this work we will
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only consider n < 6; thus for the models considered here,
freeze-out during modulus domination occurs only if
T 0
max > T 0

FO > T 0
D and MX0 > T 0

FO.
The second case arises when T 0

FO > T 0
max > T 0

D (X0
never reaches equilibrium) or when T 0

max > T 0
FO > MX0

(X0 decouples while relativistic). In this case, it turns out
that the contribution to DM abundance comes predomi-
nantly from inverse annihilations via R0R0 → X0X0, as will
be seen shortly.

1. Nonrelativistic freeze-out during modulus
domination (FOmod

nr )

Let us first consider the case where X0 reaches chemical
equilibrium and then undergoes freeze-out during modulus
domination (T 0

max > T 0
FO > T 0

D). From the arguments
above, we note that freeze-out can only occur when DM
is nonrelativistic, and hence we denote this mechanism as
FOmod

nr . The X0 freeze-out temperature, defined as T 0
FO such

that neqX0 ðT 0
FOÞhσvi≡HðT 0

FOÞ, is given by solving the

following transcendental equation for x0F ≡ MX0
T 0
FO
:

x0F ¼ ln

��
3

2
ffiffiffiffiffi
10

p
π3

��
g0g�ðTRHÞ1=2
g0�ðT 0

FOÞ
��

Mpl

MX0

�

× ½T2
RHhσvi0�ηx0F5=2

�
ð43Þ

where x0F ≡ MX0
T 0
FO
. Note that the above equation, and hence

the parameters T 0
FO and x0F, are valid only if T

0
max > T 0

FO >
T 0
D and MX0 > T 0

FO, i.e. 1 < x0F < ðMX0
T 0
D
Þ.

Then Ωannh2 is given by Eq. (29) with X0ðTfÞ ¼
X0
eqðT 0

FOÞ:

Ωannh2½FOmod
nr � ≈

�
8ηffiffiffiffiffiffi
5π

p
L3=4

��
g�ðTRHÞ1=2
g0�ðT 0

FOÞ
��

TRH

MX0

�
3

×

�
x0F

4

MX0Mplhσvi0
��

MX0

Tnow

�
½ΩRh2� ð44Þ

where x0F is the solution of Eq. (43). From Eq. (43), it can
be seen that the condition x0F > 1 is equivalent to hσvi0 >
hσvi00 or MX0 < M0 where

hσvi00ðMX0 Þ≡
�
2e

ffiffiffiffiffi
10

p
π3

3

��
g0�ðT 0

FOÞ
g0g�ðTRHÞ1=2

��
MX0

MplT2
RHη

�
;

M0ðhσvi0Þ≡
�

3

2e
ffiffiffiffiffi
10

p
π3

��
g0g�ðTRHÞ1=2
g0�ðT 0

FOÞ
�
½MplT2

RHhσvi0η�:

ð45Þ
In addition, x0F must be smaller than MX0=T 0

D, which puts
an additional constraint on the parameters. Thus the
parameter space for viable FOmod

nr is rather limited, as
we will show in Sec. IV.

2. Nonrelativistic and relativistic inverse
annihilation (IAnr and IAr)

Finally, let us consider the situation when one of the
conditions in the previous subsection, i.e. T 0

max > T 0
FO >

T 0
D orMX0 > T 0

FO, is not satisfied. In this case, X
0 is instead

populated by R0R0 → X0X0 inverse annihilations. This
occurs if X0 never reaches equilibrium for T 0 < T 0

max, or
if X0 decouples from the thermal bath while relativistic. In
either case X02 ≪ X0

eq
2 for T 0 ≲MX0, allowing us to neglect

the X02 term in Eq. (30). Integrating the first term on the
right-hand side of Eq. (30) from A ¼ A0 ≡ ð8=3Þ2=5 to
some scale factor A ¼ Af, one gets7

X0ðAfÞ ≈ c1=21 Mplhσvi0TRH
−5
Z

Af

A0

dA
A7=2n0eq2

~H
: ð46Þ

While X0 is relativistic, the integrand of Eq. (46) grows like
A5=4 in the modulus-dominated phase ( ~H ≈ ΦI

1=2) and falls
like A−3 in the radiation-dominated phase ð ~H ≈

ffiffiffiffiffiffiffiffiffi
R=A

p Þ.
Thus if MX0 > T 0

D, X
0 production occurs predominantly

when X0 first becomes nonrelativistic, while if MX0 < TD0

X0 production occurs predominantly at the transition
between modulus domination and radiation domination.
In either case the important dynamics for X0 production

approximately occurs during modulus domination; thus
taking ~H ≈ ΦI

1=2 we can use Eq. (17) to rewrite Eq. (46) as

X0ðT 0
fÞ ≈ η3

�
192

ð125π7Þ1=2
��

g⋆3=2ðTRHÞ
g0⋆3ðT 0⋆Þ

��
TRH

7Mplhσvi0ΦI

M12
X0

�

×
Z MX0

T0
f

MX0
T0max

dx0x011n0eq2; ð47Þ

where we have defined x0 ≡MX0=T 0. Here T 0� is defined as
the temperature at which the integrand of

R
dx0x011n0eq2 is

peaked, and T 0
f is a temperature chosen such that X0ðT 0Þ is

essentially constant for T 0 < T 0
f. For relativistic X0, the

integrand of Eq. (46) peaks at T 0 ≈ T 0
D=1.75. Thus we will

henceforth take T 0
f ≈ T 0

D=1.75, though if MX0 ≫ T 0
D the

integrand of Eqs. (46) and (47) falls rapidly well before T 0
f.

The evaluation of the integral in Eq. (47) is different in
different regimes. If MX0 > T 0

D, we can evaluate Eq. (47)
assuming X0 satisfies Maxwell-Boltzmann statistics. The
integral in Eq. (47) can then be expressed as

Z MX0
T0
f

MX0
T0max

dx0x011n0eq2 ¼
g02M6

X0

4π4

Z MX0
T0
f

MX0
T0max

dx0x09K2ðx0Þ2: ð48Þ

The function x09K2ðx0Þ2 peaks at x0⋆ ≈ 3.6, corresponding
to T 0� ≈ 0.28MX0 . Thus the maximum X0 production takes

7A0 corresponds to the scale factor at which T ¼ Tmax; see
Eq. (18).
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place when X0 is nonrelativistic, justifying our assumption
of Maxwell-Boltzmann statistics. Finally, if MX0

T 0
max

> x0⋆, then
Eq. (48) will be exponentially suppressed, in particular by
expð−2MX0=T 0

maxÞ. We denote the above mechanism of
DM production via nonrelativistic inverse annihilations as
IAnr. We remind the reader that for MX0 > TD0, Eq. (47) is
valid if T 0

FO > T 0
max or if T 0

FO > MX0 where T 0
FO is given

by Eq. (43); otherwise Ωannh2 is determined by non-
relativistic freeze-out during modulus domination as
described in Sec. III D 1.
What happens when MX0 < T 0

D? In this case, X0 pro-
duction peaks when X0 is relativistic at T 0� ¼ T 0

D=1.75, and
Fermi-Dirac or Bose-Einstein statistics must be taken into
account. The integral in Eq. (48) can then be expressed as

Z MX0
T0
f

MX0
T0max

dx0x011n0eq2 ¼
ζð3Þ2cξ2MX06

π4

Z MX0
T0
f

MX0
T0max

dx0x05 ≈
1.756ζð3Þ2cξ2MX012

6π4T 0
D
6

ð49Þ

where again cξ ¼ g0ð3g0=4Þ for bosons (fermions). We
denote the above mechanism of DM production via
relativistic inverse annihilations as IAr.
Given Eq. (29) and Eqs. (47)–(49), the relic abundance

from inverse annihilations can be readily computed:

Ωannh2½IAnr� ≈
�

48g02χη3

1251=2π15=2L3=4

��
g⋆3=2ðTRHÞ
g0⋆3ðT 0⋆Þ

�

×

��
TRH

MX0

�
7

MplMX0 hσvi0
��

MX0

Tnow

�
½ΩRh2�;

ð50Þ

Ωannh2½IAr� ≈
�
32cξ2ζð3Þ2ð1.75Þ6
1251=2π15=2L3=4

��
η3=2

g0⋆3=2ðT 0
DÞ
�

×

��
TRH

MX0

�
MplMX0 hσvi0

��
M0

X

Tnow

�
½ΩRh2�

ð51Þ

where χ ≡ R MX0
T0
D

MX0
T0max

dx0x09K2ðx0Þ2 and we have taken g�ðTDÞ ¼
g�ðTRHÞ and g0�ðT 0

DÞ ¼ g0�ðT 0
fÞ in Eq. (51). Of all the

production mechanisms we have studied, the only scenario
where the X0 relic abundance depends on T 0

max is IAnr in the
case where MX0 > T 0

max.
Note that we have assumed above that hσvi0 is indepen-

dent of temperature. For the QSEnr, FOrad
nr , FOmod

nr and IAnr,
the processes which determine the DM relic abundance
occurwhenX0 is nonrelativistic. Thus for thesemechanisms,
a temperature-independent hσvi0 is typically a good
assumption for s-wave annihilation (p-wave annihilations
are considered in Appendix D). However for IAr, the

relevant process responsible for the DM abundance (inverse
annihilation) takes place when X0 is relativistic.8 Since IAr
requires hσvi0 < hσvi0c, it is expected that hσvi0 in this case is
schematically given by hσvi0 ¼ Tn

Λnþ2 for some heavy media-
tor scale Λ and positive integer n. The temperature-
independent hσvi0 case studied here corresponds to
n ¼ 0. Anotherwell-motivated case isn ¼ 2, corresponding
to fermionic X0 annihilating via a heavy bosonic mediator.
We consider this possibility in Appendix D, and show that
the n ¼ 2 case can be recovered fromEq. (51) bymaking the
replacement hσvi0 → 0.17 × T 0

D
2=Λ4.

E. Summary of results

In this section, we summarize the results of this section
for the benefit of the reader. There are four qualitatively
distinct parametric regimes for ΩDMh2 in the framework
considered. These different regimes are summarized in
Table I; hσvi0 is defined in Eq. (34), T 0

D is defined
in Eq. (20), and Tmax is defined in Eq. (18). The quantities
T̂ 0
FO and T 0

FO are respectively the X0 freeze-out temper-
atures during radiation domination [Eq. (38)] and modulus
domination [Eq. (43)]. Here we briefly review the para-
metrics for ΩDMh2 in these different regimes, and collect
the semianalytic expressions for ΩDMh2 derived earlier.
In the following expressions we will set g�ðTRHÞ ¼
g�ðTDÞ ¼ 10.75, which is the SM value for g�ðTÞ at
T ∼ 10 MeV. We also assume a fermionic DM candidate
and set g0 ¼ 2. Note that the various mechanisms are valid
in different parametric regions; this is reflected in the
different fiducial values for MX0 and hσvi0 chosen in the
expressions below. In Appendix C we compare our
approximate expressions with numerical solutions to the
Boltzmann equations (7) and find close agreement.

(i) I.A: Nonrelativistic QSE (QSEnr): DM annihilations
are large enough to drive X0 to its QSE value until T 0
is close to T 0

D, soon after which QSE is lost and the
comoving DM abundance becomes constant. The
relic abundance in this regime is given by Eq. (37):

Ωh2½QSEnr�≈5.2× ð1−ηÞ−3=4
�
~Ac

3

��
MX0

10GeV

�

×

�
10MeV
TRH

��
10−8 GeV−2

hσvi0
�
: ð52Þ

~Ac is defined below Eq. (36), and lies in the range
1≲ ~Ac ≲ 5 for hσvi0c ≲ hσvi0 ≲ 105hσvi0c. QSEnr is
the precise generalization of the “nonthermal
WIMP miracle” studied in Refs. [1,2], and also
captures the subdominant logarithmic dependence

8The process responsible for DM abundance for FOrad
r does

take place when X0 is relativistic, but in this case the DM
abundance is independent of hσvi0; see Eq. (40).
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on hσvi0 and hσvi0c via ~Ac which was not considered
in Refs. [1,2].

(ii) I.B: Freeze-out during radiation domination (FOrad
nr

andFOrad
r ): X0 tracks its equilibrium value until after

T 0 ≈ T 0
D, and freezes out after the modulus decays

and the Universe becomes radiation dominated.
Both nonrelativistic (FOrad

nr ) and relativistic (FOrad
r )

thermal freeze-out are possible. FOrad
nr is the dark-

sector analogue of standard WIMP freeze-out
during radiation domination, while FOrad

r is the
dark analogue of neutrino decoupling in the visible
sector. This mechanism occurs only for MX0 ≲ T 0

D;
see Table I. The relic abundances are given by
Eqs. (39) and (40):

Ωh2½FOrad
nr � ≈ 0.13 ×

�
η

ð1 − ηÞ3g�ðT̂FÞg0�ðT̂ 0
FÞ

�
1=4

×
�

x̂0F
17.5

��
10−8 GeV−2

hσvi0
�
; ð53Þ

Ωh2½FOrad
r � ≈ 100 ×

�
η3

ð1 − ηÞ3g�ðT̂FÞg0�ðT̂ 0
FÞ3
�

1=4

×

�
MX0

1 KeV

�
: ð54Þ

x̂0F is defined in Eq. (38) and captures the standard
logarithmic sensitivity to hσvi0 for thermal
freeze-out.

(iii) II.A: Freeze-out during modulus domination and
production from modulus decay (FOmod

nr ): X0 reaches
its equilibrium value and then freezes out during the
modulus-dominated phase. After freeze-out, modu-
lus decay continues to populate X0 until T ≲ TD. As
discussed in Sec. III D, nonrelativistic freeze-out
during modulus domination occurs only if T 0

max >
T 0
FO >T 0

D and MX0 >T 0
FO. This implies 1<x0F <

MX0
T 0
D
, and hσvi00 < hσvi0 < hσvi0c where hσvi00 is given

in Eq. (45). The relic abundance is given by
ΩDMh2 ¼ Ωdecayh2 þ Ωannh2 where Ωdecayh2 and
Ωannh2 are given respectively by Eqs. (42) and (44):

Ωdecayh2 ≈ 0.31 ×

�
Btot

ð1 − ηÞ3=4
��

MX0

10 MeV

�

×
�

TRH

10 MeV

��
50 TeV
mϕ

�
; ð55Þ

Ωannh2½FOmod
nr � ≈

�
1.1 × 10−6η

g0�ðT 0
FOÞð1 − ηÞ3=4

��
x0F
19

�
4

×

�
TRH

10 MeV

�
3
�
10 GeV
MX0

�
3

×

�
10−8 GeV−2

hσvi0
�
: ð56Þ

x0F in Eq. (56) is defined in Eq. (43) and is
logarithmically sensitive to hσvi0.

(iv) II.B: Inverse annihilation and production from
modulus decay (IAnr and IAr): X0 does not undergo
freeze-out during modulus domination. DM produc-
tion takes place predominantly by inverse annihila-
tions as well as production from modulus decay.
Specifically, ΩDMh2 ¼ Ωdecayh2 þ Ωannh2 where
Ωdecayh2 is given by Eq. (55), while Ωannh2 gets
contributions from inverse annihilations. There are
two different parametrics for Ωannh2 depending on
whetherMX0 > T 0

D or vice versa. (i)MX0 > T 0
D: The

inverse annihilation contribution peaks at T 0� ≈
0.28MX0 and

Ωannh2½IAnr� ≈
�

6.2 × 10−7η3

ð1 − ηÞ3=4g0�ðT 0�Þ3
��

χ

292

�

×

�
TRH

10 MeV

�
7
�
10 GeV
MX0

�
5

×

� hσvi0
10−16 GeV−2

�
ð57Þ

where χ is defined below Eq. (51). To a good
approximation, χ ≈ 292 if T 0

max > T 0� > T 0
D. On the

other hand, if T 0� > T 0
max (MX0 is very large), χ will

become suppressed by a factor of expð−2MX0=T 0
maxÞ.

TABLE I. Summary of the different parametric regimes for ΩDMh2 as discussed in Sec. III B. The quantity hσvi0c is defined in Eq. (34)
and hσvi00 in Eq. (45). The temperatures T 0

max is defined in Eq. (18), T 0
D in Eq. (20), and T 0

FO above Eq. (43).

DM production mechanism Parametric region

I. Efficient annihilation at T 0
D A. Nonrelativistic QSE MX0 > x̂0FT

0
D

[QSEnr]
hσvi0 > hσvi0c B. FO during radiation domination MX0 < x̂0FT

0
D

[FOrad
nr & FOrad

r ]
II. Inefficient annihilation at T 0

D A. FO during matter domination þ fT 0
max;MX0 g > T 0

FO > T 0
D

Production from modulus decay ½hσvi0 > hσvi00�
[FOmod

nr ]
hσvi0 < hσvi0c B. Inverse annihilations(R0R0 → X0X0) þ

Production from modulus decay IIA condition not satisfied
[IAnr & IAr] ½hσvi0 < hσvi00�

DARK MATTER PRODUCTION MECHANISMS WITH A … PHYSICAL REVIEW D 93, 063527 (2016)

063527-13



(ii)MX0 < TD0 : The inverse annihilation contribution
peaks at T 0� ≈ T 0

D=1.75, and

Ωannh2½IAr� ≈ 95

�
η3=2

ð1 − ηÞ3=4g0�ðT 0
DÞ3=2

��
TRH

10 MeV

�

×

�
MX0

1 KeV

�� hσvi0
10−16 GeV−2

�
: ð58Þ

1. Reducing to a single sector

Though the results derived in this section assume a two-
sector cosmology as described in Sec. II, it is straightforward
to reduce these expressions to the single-sector case. To see
this, we define a temperature T0 ≡ T0

maxðA−3=2 − A−4Þ−1=4
where

T0
max ≡

�
3

8

�
2=5
�
5

π3

�
1=8
�
g�ðTRHÞ1=2
g�ðTmaxÞ

�
1=4

ðMplHIT2
RHÞ1=4:

ð59Þ

T0 corresponds to the temperature for a given value of A
in single-sector cosmologies [see Eq. (15) in Ref. [14]].
Reducing our expressions to the single-sector case amounts
to replacing both T and T 0 with T0 in the above expressions
for ΩDMh2. Comparing Eq. (59) to Eqs. (17)–(20), this
amounts to making the replacements ð1 − ηÞ → 1 and
η=g0�ðT 0Þ → 1=g�ðTÞ in the above expressions.

IV. IMPLICATIONS FOR UV-MOTIVATED
SUPERSYMMETRIC THEORIES

In this section, we examine the implications of the results
obtained in Sec. III for UV-motivated supersymmetric
theories that contain moduli fields, and identify regions
of parameter space which yield suitable DM candidates. As
discussed in Sec. II the DM relic abundance in these models
is fixed by the following parameters:

TRH; mϕ; Btot; η; g�ðTÞ; g0�ðT 0Þ;MX0 ; hσvi0: ð60Þ

To simplify our analysis, we will henceforth assume that
g�ðTÞ and g0�ðT 0Þ are constant, and take g�ðTÞ ¼ g0�ðT 0Þ ¼
10.75. We also fix η ¼ 0.1, which is a reasonable value
assuming the modulus couplings are not sequestered
from the dark sector.9 Relaxing these assumptions will
change the computed relic abundance as per the formulas
in Sec. III B, but will not qualitatively effect the results
presented here.
As mentioned in Sec. II, the parameters TRH,mϕ and Btot

can be viewed as inputs from the UV theory, and are fixed

by the couplings and masses of the moduli fields. For a
particular UV framework, these quantities are constrained
to lie within a particular range of values. We will focus here
on UV completions which contain gravitationally coupled
moduli fields while also yielding TeV-scale supersym-
metry. If the modulus interacts gravitationally, dimensional
analysis suggests that Γϕ ¼ c1mϕ

3=M2
pl, and TRH as

defined in Eq. (3) is related to the modulus mass via

TRH ≈ 14 MeV ×

�
mϕ

50 TeV

�
3=2

c11=2: ð61Þ

Thus the BBN bound TRH ≳MeV places a lower bound on
mϕ in the tens of TeV range.
The range of values for mϕ is further restricted by

imposing the requirement of TeV-scale supersymmetry. We
focus here on models in which SUSY breaking is mediated
to the visible sector via gravitational interactions; this arises
naturally in theories containing moduli. In the minimal case
(i.e. no sequestering or large volume suppression of SUSY
breaking), the lightest modulus mass is order the gravitino
mass m3=2, which sets the scale of the SUSY-breaking
parameters [5–8]. For many such models, the scalar super-
partner masses will be comparable to m3=2, while the
gauginos may be parametrically lighter by roughly a loop
factor. The lightest superpartners in the visible sector will
then be gauginos whose masses are suppressed with respect
to m3=2. This is true for heterotic models and Type-IIB flux
compactifications, M-theory compactifications with stabi-
lized moduli, and also for spectra with pure anomaly
mediation. Thus for these SUSY models, the requirement
of TeV-scale supersymmetry along with constraints from
BBN imply

30 TeV≲mϕ ≲Oð100Þ TeV;
5 MeV≲ TRH ≲Oð100Þ MeV; ð62Þ

assuming c1 ∼Oð1Þ. This justifies our choice of bench-
mark parameters in Eq. (5). If the DM is an MSSM particle
there is a tension between Eq. (62) and indirect-detection
constraints, which require TRH ≳ 1 GeV [3,9].
The quantity Btot is more difficult to constrain from a

theoretical point of view, as it depends on the precise
interactions between the modulus and visible-/dark-sector
particles. Nevertheless, if the canonically normalized light-
est modulus contains a nontrivial fraction of the modulus
that determines the gauge coupling of the visible and/or
dark sector, then one expects a contribution to Btot by
operators of the form

R
d2θΦWαWα where Wα is the chiral

gauge superfield of either the visible or dark sector.10

Therefore, in M-theory compactifications [11] and also9For this value of η, the latest CMB bound on Neff requires that
all dark radiation particles have masses greater than ∼1 eV.
Otherwise, η must be smaller. The qualitative features of our
results will be the same for smaller η as well.

10This allows the lightest modulus to decay to visible or dark-
sector gauginos, which would then cascade decay to the DM X0.
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FIG. 4. Left column: Scan of the hσvi0, MX0 parameter space with TRH ¼ 10 MeV, mϕ ¼ 50 TeV, and various values of Btot. Right
column: Similar plots with TRH ¼ 100 MeV,mϕ ¼ 150 TeV. All other parameters are fixed to the benchmark values (5). Solid (dashed)
contours correspond to ΩDMh2 ¼ 0.12ð0.012Þ. Green, blue and gray regions represent ΩDMh2 < 0.012, 0.012 < ΩDMh2 < 0.12 and
0.12 < ΩDMh2. For these plots we have taken HI ¼ 1020Γϕ, corresponding to T 0

max ∼ 3 TeV [Eq. (18)].
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roughly isotropic Type II compactifications, Btot is
expected to be Oð0.1Þ. However, in anisotropic compacti-
fications in which the visible and dark sectors are localized
at different regions of the internal manifold, it is possible
that Btot is suppressed; see Refs. [23,24] for example. We
will consider below a wide range of values for Btot to
perform as general an analysis as possible.
In the following, we fix TRH, mϕ and Btot to particular

values, and scan over hσvi0 andMX0 to give a fairly model-
independent characterization of the viable regions of
DM parameter space. All other parameters are taken to
their benchmark values (5). In Fig. 4, we have scanned
over the hσvi0, MX0 parameter space for various values of
Btot, with TRH ¼ 10 MeV, mϕ ¼ 50 TeV for the left
column and TRH ¼ 100 MeV, mϕ ¼ 150 TeV for the right
column [consistent with the TRH ∝ mϕ

3=2 scaling manifest
in Eq. (61)].
Btot determines both the cross section required for QSEnr

[see Eq. (34)], and the size of the modulus decay con-
tribution (42) in the inefficient annihilation region. Thus the
available parameter regions are quite sensitive to orders of
magnitude changes in Btot. For Btot ¼ 0.1, the viable
parameter space effectively splits into two regions. In
the upper region hσvi0 ≳ 10−9 GeV−2, the relic DM abun-
dance is produced via either QSEnr or FOrad

nr , while in the
lower region hσvi0 ≲ 10−17 and the relic DM abundance is
populated via inverse annihilations and/or modulus decay.
In the inefficient annihilation regime, most of the parameter
space with MX0 > TRH results in an overabundance of
DM due to the modulus decay contribution for Btot ¼ 0.1
[see Eq. (42)]. The value of MX0 where the modulus decay
contribution (42) saturatesΩDMh2 ¼ 0.12 scales likeBtot

−1;
thus for smaller values ofBtot, muchmore of theMX0 > TRH

parameter space becomes available. Particularly, for Btot ≲
10−3 both the FOmod

nr and IAnr mechanisms can give the
correct relic abundance for a significant portion of the
parameter space. These mechanisms are absent for
Btot ¼ 0.1, as the DM masses required would result in
too large a contribution from modulus decay.

V. EXPERIMENTAL/OBSERVATIONAL
CONSEQUENCES

In this section, we discuss potential experimental probes
of the framework analyzed above. As one can imagine,
since our analysis covers a large range of values for the
mass and couplings of DM in MX0 and hσvi0, there are a
variety of interesting possibilities for observations. A
detailed analysis of the various experimental signatures
which can arise in this framework is beyond the scope of
this paper. Instead, we will limit ourselves here to making
some general and preliminary remarks which will be
relevant for future studies.
A nice schematic illustration of the framework studied

here is provided in Fig. 1. From there we see that there are

three different kinds of couplings, denoted as
fλV−V; λV−D and λD−Dg. Now, the very assumption that
the visible and dark sectors are “separate” sectors implies
that the “portal” couplings of type λV−D are parametrically
smaller than the fλV−V; λD−Dg couplings. When this is true,
hσvi dominantly depends on λV−V , while hσvi0 depends
mostly on λD−D. However, within this framework, it is the
portal couplings of type λV−D that determine the signals for
all “standard” searches for dark matter, such as direct-
detection, indirect-detection, and collider experiments. The
portal couplings λV−D can cover a huge range. At one
extreme, it is possible to have λV−D ≃ λgrav, the latter
corresponding to gravitational strength couplings sup-
pressed by the Planck scale. In this case, the decay width
of the LOSP X, ΓX, is comparable to that of the modulus
Γϕ.

11 In our work, we have not focused on this case for both
theoretical and experimental reasons; see Appendix B. At
the other extreme, it is possible that λV−D is large enough so
that the two sectors are in thermal equilibrium with each
other and thus combine to form one sector. As mentioned
above, we have also not focused on such a regime.
Nevertheless, themodels considered here can still accom-

modate a huge range of values 1 ≫ λV−D > λgrav for the
portal coupling λV−D, which in turn allows for awide variety
of DM signals (or lack thereof) in direct-detection, indirect-
detection and collider searches. For this range of portal
couplings, our results from Sec. III B show that the relic
abundance for the dark matter X0 does not depend on the
properties of the LOSP X—fMX;ΓX; hσvig—or equiva-
lently the portal couplings λV−D. Thus, in order to character-
ize the “standard”DMsignalswhich arise in this framework,
one must consider explicit dark-sector models in which the
size of the portal couplings λV−D are calculable.We save this
exercise for futurework, except for making some comments
about the consequences of a decaying LOSP.
The LOSP X, being a visible-sector particle, can be

produced at colliders. Since it is unstable, it is possible that
the LOSP is charged and/or colored. Prospects for detecting
a charged/colored LOSP at the LHC are much better than
that for a neutral LOSP, as a charged/colored LOSP will
interact with detector materials and slow down consider-
ably relative to a neutral LOSP. Charged/colored LOSP
decay widths in the range 10−13 GeV≳ ΓX ≳ 10−31 GeV
can be measured in principle. However, subject to model-
dependent details, large windows in the above range are
now disfavored [25]. On the other hand, only decay widths
larger than around 10−17 GeV (τX ≲ 10−9 s) can be mea-
sured for a neutral LOSP because then a sizable fraction of
LOSP particles decay inside the detector. The LOSP decay
width ΓX can be parametrized as

11This is because the modulus also couples with gravitational
strength to both the visible and dark sectors.
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ΓX ∼
λ2V−D
16π

MX: ð63Þ

Thus, one requires λV−D ≳ 10−9 in order for a weak-scale
neutral LOSP to significantly decay inside the detector so
that its decay products could be measured in principle.
Otherwise the neutral LOSP is stable for collider purposes,
and manifests itself as missing energy.
We now describe some possible signatures of the

framework that do not depend on portal couplings between
the visible and dark sectors.

A. Cosmological/astrophysical effects

Here, we comment on astrophysical and cosmological
effects arising from two sources: (i) that from DM
couplings of type λD−D, i.e. from interactions within the
dark sector, and (ii) from the presence of a modulus-
dominated phase in the early Universe. Since these effects
are independent of λV−D couplings, the observables which
arise are independent of the pattern of “standard” signals
for DM. As such, they provide additional observables to
probe DM and its properties. Some interesting examples of
such effects include

(i) observables sensitive to the power spectrum of
density fluctuations of dark matter;

(ii) observables sensitive to the morphology of galactic
DM halos.

Understanding these and other observables is becoming
increasingly important, both because of the realization that
interactions in the dark sector can affect these observables,
as well as from the fact that the quantity and quality of
cosmological and astrophysical data has been getting
steadily better. Here, we briefly discuss the following issues:

(i) Sensitivity to the modulus-dominated era: The pres-
ence of a modulus-dominated era in the early
Universe can have important implications. As
pointed out in Refs. [10,26], this can lead to
substantial linear growth of subhorizon DM pertur-
bations during the modulus-dominated era.
More precisely, the presence of a (low) reheat
temperature sets a new cosmological length scale,
LRH ≡ ðaRHHRHÞ−1, the comoving horizon at the
time of reheating. Therefore, in the absence of other
effects, DM perturbations on length scales l < LRH
grow linearly during the modulus-dominated phase,
and could have interesting observable effects.
However, the presence of other relevant scales can
affect whether such subhorizon growth of DM
perturbations are observable or not. These scales
are described below.

(ii) Damping of DM perturbations due to acoustic
oscillations and free-streaming: It is well known
that chemical equilibrium is in general different from
kinetic equilibrium. In the context of DM inter-
actions, the former is set by number-changing

interactions in which DM number is not preserved,
while the latter is set by number-preserving inter-
actions in which DM number is conserved. For
example, within the standard WIMP paradigm,
chemical decoupling leading to thermal freeze-out
happens much earlier than kinetic decoupling since
the interaction rate for the latter is enhanced by the
relativistic abundance of light SM species in inter-
actions of the type DM þ SM → DM þ SM.

There are two important scales related to kinetic
decoupling that determine the length scale at which
DM perturbations get damped or suppressed.

(i) The scale arising due to the coupling of DM to
the dark radiation fluid (and also to the visible
radiation and baryons in general): The effect of
coupling of DM to visible baryons and radiation is
also present for standard WIMPs in general [27], but
qualitatively different effects may arise here due to
the presence of dark radiation (DR) in addition
[20,28]. It is expected that the DM-DR interactions
will give rise to damped oscillatory features in the
DM power spectrum with a characteristic length
scale denoted as Ld, given by

Ld ¼
ηkd
xd

; ð64Þ

where ηkd is the conformal time at kinetic decou-
pling, and xd is a numerical factor of Oð1Þ (we take
xd ≈ 7; see Refs. [27,28] for example).
(ii) The scale arising due to the free-streaming of

particles after kinetic decoupling: This length scale
is defined as Lfs ≡ R t0t� v=adt, where v is the average
DM velocity, a is the scale factor, t0 is the current
age of the Universe, and t� is a characteristic time
which is different for different mechanisms and will
be discussed shortly. If the Universe is radiation
dominated at t�, then Lfs is given by (see e.g.
Ref. [26])

Lrad
fs ≈

1

H0

ffiffiffiffiffiffi
ΩR

p
Z

1

a�

��
1þ

�
MX0a
p�a�

�
2
�

×

�
1þ a

aeq

��
−1=2

da ð65Þ

where aeq ≈ 2.9 × 10−4 and H0 ≈ 1.5 × 10−42 GeV.
If the Universe is modulus dominated at t�, Lfs is
instead given by

Lmod
fs ≈

a1=2RH

H0

ffiffiffiffiffiffi
ΩR

p
Z

aRH

a�
a−1=2

�
1þ

�
MX0a
p�a�

�
2
�

−1=2
da

þLrad
fs ða� → aRH;p� → pRHÞ ð66Þ

where we have taken H ¼ HRHðaRH=aÞ3=2 during
modulus domination. Here aRH corresponds to the
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scale factor at which H ¼ Γϕ, normalized such that
a ¼ 1 today.

Both scales above are present in general, and the damping
scale is determined by Lcut ¼ maxðLd; LfsÞ. The scale Lcut

is relevant in determining the mass of the smallest DM
protohalos: Mproto ∝ L3

cut.
As discussed above, DM perturbations on length scales l

such that Lcut < l < LRH grow linearly during modulus
domination and the growth during this era is not washed
out by free-streaming and/or acoustic damping effects.
Thus, these perturbations could have interesting and novel
effects. For example, as pointed out in Ref. [10], a low
reheat temperature of order 10 MeVor so can give rise to an
abundance of Earth-mass dark matter microhalos in the
early Universe containing a significant fraction of dark
matter. A possible way to observe these microhalos is via
their strong gravitational lensing effects on quasars [29,30],
or via their impact on pulse arrival times from millisecond
pulsars [31]. Furthermore, if the portal couplings λV−D are
large enough, these DMmicrohalos can annihilate to γ rays,
thereby acting as γ-ray point sources and contributing to the
γ-ray background [32–34]. It is worthwhile to explore these
possibilities in more detail.
In the case where Lcut > LRH such that the growth of DM

perturbations during modulus domination is washed out,
the damping of DM perturbations below the scale Lcut can
still give rise to observable effects. Notably, “warm” dark
matter with Lcut ¼ Lfs ∼ 1− 100Kpc can reconcile many
of the discrepancies between ΛCDM cosmology and
observations on galactic/subgalactic scales [35–39]. If
the damping scale becomes too large i.e. Lcut ≳ 1 Mpc,
bounds from Lyman-α will start to apply [40].

B. Prospects for the framework

What can be said about the effects mentioned above vis-
à-vis the framework considered? Qualitatively, there are
two different scenarios which are determined by whether or
not T 0

kd is larger than T 0
D. If T

0
kd < T 0

D, then X0 kinetically
decouples during radiation domination after the modulus
has decayed. Depending on the mass and kinetic decou-
pling temperature, either Lfs or Ld will determine the
damping scale Lcut. Alternatively, if T 0

kd > T 0
D then the DM

kinetically decouples during the modulus-dominated
phase; Lfs will then determine Lcut for most of the relevant
parameter space.
In order to discuss observational signatures for the

framework considered here, it is pertinent to consider
what range of values for T 0

kd is expected, given the DM
production mechanisms discussed in Sec. III B.
Generically, one expects that crossing symmetry relates
the X0X0 → R0R0 annihilation cross section (hσvi0) to the
(X0R0 → X0R0) elastic scattering cross section (σ0el). In
the case of fermionic DM annihilating into fermionic
R0 through a massive bosonic mediator, hσvi0∼

ðMX02 þ T 02Þ=Λ4 and σ0el ∼ T 02=Λ4 where Λ is the mediator
mass scale (see e.g. Refs. [41,42]). If this is the only
X0 − R0 scattering process, X0 kinetically decouples
when the scattering rate Γel ∼ σ0eln

0
eqω drops below the

Hubble rate, where ω ¼ 1ðT 0=MX0 Þ for relativistic (non-
relativistic) X0. Taking the benchmark parameters (5)
for this example, T 0

kd < T 0
D implies Λ≲ 800 GeV

(250MX0−1=4 GeV) if X0 kinetically decouples while rela-
tivistic (nonrelativistic).
However, in a more realistic model there may be other

(e.g. inelastic) processes which also keep X0 in kinetic
equilibrium; thus the precise relationship between hσvi0
and T 0

kd is fairly model dependent. In the following, we
will treat T 0

kd as a free parameter, though it will be useful
to keep the above toy example in mind as a benchmark
scenario.
Kinetic decoupling during radiation domination: In this

case, the DM particle X0 is in kinetic equilibrium until
T 0 < T 0

D. The kinetic decoupling temperature will then
determine the length scales Ld in Eq. (64) and Lfs in
Eq. (65). Specifically, Lfs is computed using Eq. (65)
with T 0ðt�Þ ¼ T 0

kd and p� ¼
ffiffiffi
3

p
T 0
kdω

1=2 where ω ¼
1ðMX0=T 0

kdÞ for MX0 < T 0
kd (MX0 > T 0

kd). From Fig. 5,
we see that for larger DM masses 10−2 GeV≲MX0 ≲
102 GeV and smaller kinetic decoupling temperatures
T 0
KD < 0.1T 0

D, LD is larger than Lfs and determines Lcut

and the mass of the smallest protohalos. All of this
parameter space is consistent with the upper bounds arising
from the observables studied in Ref. [20]. In the comple-
mentary parameter space, Lcut is determined by Lfs. A
large region of this parameter space is consistent with the
Lyman-α forest upper bound on Lfs of about 1 Mpc.
Finally, for most of the parameter space Lcut ¼
maxðLd; LfsÞ is greater than LRH, implying that growth
of DM perturbations in the modulus-dominated era is
washed out. Only in a very small region of parameter
space with 1≲MX0 ≲ 100 GeV and 0.1T 0

D ≲ T 0
KD ≲ T 0

D,
one has Lcut < LRH so that the memory of growth of DM
perturbations on length scales l with Lcut < l < LRH, is
retained. This can have interesting implications as men-
tioned previously.
Kinetic decoupling during modulus domination: In this

case, X0 kinetically decouples before the beginning of
radiation domination such that T 0

kd > T 0
d. If kinetic decou-

pling occurs after X0 production, Lfs is given by Eq. (66)
with T 0ðt�Þ¼T 0

kd and p� ¼
ffiffiffi
3

p
T 0
kdω

1=2. Note that this
scenario requires MX0 > T 0

D, as for MX0 <T 0
D DM produc-

tion occurs predominantly when T 0 ≲ T 0
D (see Sec. III E).

For the allowed parameter regions depicted in Fig. 4, one
finds in this case that Ld < LRH < Lfs ≪ 1 Mpc, assum-
ing a single DM particle accounts for all of the dark matter.
If kinetic decoupling occurs before X0 production, T 0ða�Þ

is the characteristic temperature at which X0 production
occurs, and p� depends on the mechanism for X0
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production. The production mechanisms which allow for X0
to be produced out of kinetic equilibrium are the following
(see Sec. III B).

(i) Inverse annihilation: As discussed in Sec. III D 2,
DM production from inverse annihilations peaks at
T 0� ≈ T 0

D=1.75 for IAr and T 0� ≈ 0.28MX0 for IAnr.
We then take p� ≈

ffiffiffi
3

p
T 0� in computing Lfs.

(ii) Production from modulus decay: If the DM abun-
dance comes predominantly from modulus decay
[i.e. ΩDMh2 ≈ Ωdecayh2, Eq. (42)], then T 0� ≈ T 0

D and
p� ≈mϕ=2 assuming two-body modulus decays.

To be precise, if X0 kinetically decouples before X0
production occurs, one must replace X0 in the
Boltzmann equations with an integral over the X0 phase-
space distribution function. However for the inverse anni-
hilation and modulus decay production mechanisms, terms
involving X0 can be neglected in the X0 Boltzmann
equation; thus the results in Sec. III D are still valid despite
this departure from kinetic equilibrium.12 Nonetheless, in
order to properly compute p� and Lfs, a precise knowledge

of the DM phase-space distribution function at T 0� is
required. In lieu of a more precise computation we will
use the approximate values for p� quoted above, with the
understanding that our results for Lfs are meant to be
qualitative.
Figure 6 summarizes the cosmological length scales

which can arise in the case where X0 is produced out of
kinetic equilibrium. Because X0 is not coupled to the
dark radiation bath when produced, there is no acoustic
damping effect to consider; thus Lcut ¼ Lfs. We see from
Fig. 5 that for the IAr case, most of the parameter space
easily avoids Lyman-α constraints. The IAr scenario can
also naturally accommodate warm DM candidates, with
Lfs ∼ 1−100 kpc. Perhaps more interestingly, we see that
for a majority of the IAnr parameter space, Lfs < LRH.
Thus, the linear growth of DM perturbations during
modulus domination is not washed out for a large portion
of the IAnr parameter space, leading to potentially inter-
esting effects as discussed above.
Finally, let us comment on the case where relic DM is

produced from modulus decay. If DM particles in this
scenario are kinetically decoupled at T 0

D, they will be
highly boosted when produced from modulus decay. If the
modulus decay contribution is the dominant contribution to
the overall DM abundance, DM masses within the range
10−3 GeV≲MX0 ≲ few GeV are at odds with Lyman-α
bounds Lfs ≲ 1 Mpc; this is evident from Fig. 6. Thus if
the relic DM is predominantly produced via modulus
decays, Lyman-α constraints require MX0 ≳Oð1Þ GeV;
this in turn implies Btot ≲ 10−3 as can be seen
from Eq. (42).
To summarize, we find that there are various interesting

possibilities for cosmological/astrophysical observables

FIG. 5. Hierarchies among the cosmological length scales
Lfs; Ld; LRH shown in the MX0 − T 0

KD plane, assuming
T 0
kd < T 0

D. The pink region corresponds to Ld > Lfs, the green
region corresponds to Lfs > Ld, the blue region corresponds to
LRH > Lcut, and the brown region corresponds to Lcut > 1 Mpc.
The other relevant parameters are set to their benchmark values;
see Eq. (5).
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FIG. 6. Plot of the free-streaming length Lfs in Mpc. The blue
lines correspond to DM produced predominantly via inverse
annihilations, while the black lines correspond to DM produced
predominantly via modulus decay. The solid lines were obtained
for TRH ¼ 10 MeV, mϕ ¼ 50 TeV while the dashed lines were
obtained for TRH ¼ 100 MeV, mϕ ¼ 150 TeV. The other rel-
evant parameters are chosen as in Eq. (5).

12One additional subtlety is that if X0 is out of kinetic
equilibrium, we are no longer justified in assuming EX0 ≈ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3T 02 þMX0 2
p

in Eq. (7). However if BX0 ≲ 0.1, this subtlety
will not significantly affect our results.
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which can probe the framework considered, both in terms
of providing constraints on the parameter space as well as
by providing insights for potential signals. In particular, we
find that there is sensitivity to the modulus-domination era
for a large portion of the IAnr parameter space. This is in
contrast to the result obtained in Ref. [26], primarily
because the framework considered here encompasses a
wider variety of DM masses and couplings compared to
the analysis in Refs. [26,43]. The results obtained in this
section are largely qualitative. It would therefore be
interesting to carry out a more detailed and comprehensive
analysis of the constraints and potential observations which
have been suggested in this section.

VI. HIDDEN/EXTRA SECTORS IN EXPLICIT
STRING CONSTRUCTIONS

The system of Boltzmann equations studied in this paper
are relevant for cases in which the dark matter is located in a
hidden sector, weakly coupled to the observable sector, and
the Universe undergoes a substantial period in which the
total energy density is controlled by a single modulus field.
In addition, we have chosen to study a benchmark case in
which the number of relativistic degrees of freedom for the
dark sector is similar to that of the Standard Model. How
well motivated is this framework?
Certainly, the presence of hidden sectors is generic in

string theory, as observed in the earliest days of model
building based on theE8 × E8 heterotic string. Furthermore,
every four-dimensional effective supergravity theory repre-
senting a string compactification has moduli. Barring some
remarkable feat of engineering, therefore, a long period of
modulus domination in the early Universe is essentially
guaranteed. These two components of our framework are
therefore exceedingly well motivated from the point of view
of string theory.
But this paper adds a third component: a portal that

connects the hidden sector and observable sector. Our
analysis generally assumes that the strength of this presumed
coupling is greater than that of gravity-mediated operators
suppressed by the Planck scale. Interactions between the
dark sector and the observable sector complicate the system
of Boltzmann equations, as we have explained at length.
Measurements necessarily constrain the observable sector,
but the presence of a portal of appreciable strength means
that these measurements also constrain the nature of the
dark, hidden sector in a manner that would not exist if the
coupling between the sectors was utterly negligible. This
constraint is summarized in the very first equation presented
in the paper, and it involves the number of relativistic
degrees of freedom in the hidden sector. It is thus important
to ask what, if any, statements can be made about the nature
of hidden sectors in actual string constructions, and what
sorts of interactions are observed to exist between these
hidden sectors and the Standard Model.

A. Heterotic orbifolds

Calculating the massless spectrum in a string compacti-
fication is easiest to perform in cases where conformal field
theory tools are available. This tends to restrict explicit
calculations to orbifolds and their orientifold analogues.
These techniques have been used extensively in weakly
coupled heterotic string theory, but also in Type II string
theory. The latter have generally been conducted in the
context of Type IIA theory compactified on orientifolds
with intersecting D6-branes.
String phenomenologists tend to be concerned primarily

with the observable sector, and ensuring that three gen-
erations of fields charged under the Standard Model gauge
group emerge from the compactification. The hidden sector
is often left undetermined, or only computed years later
when they become necessary (for example) in guaranteeing
global consistency conditions. Therefore, meaningful
examples in the literature are relatively sparse. An impor-
tant early computation involved Z6 asymmetric orbifolds of
heterotic string theory, in which quasirealistic GUT models
were constructed at higher Kac-Moody level [44,45]. A
search for constructions which yielded an E6, SOð10Þ,
SUð6Þ or SUð5Þ GUT model was conducted. Satisfactory
cases were required to have three (net) families of GUT
representations capable of realizing the SM, and an adjoint
Higgs representation for breaking the group to the Standard
Model. The three families in this case arise from demand-
ing a Z3 outer-automorphism.
In addition to the GUT gauge group, the hidden-sector

groups were identified, and the massless matter content for
all sectors was computed. For E6 and SOð10Þ GUTs, the
hidden sector consisted of at least one, and sometimes two,
SUð2Þ factors. In one class of constructions bifundamental
representations between the SM and a hidden SUð2Þ were
identified, suggesting the possibility of a Higgs-like portal
between the sectors. In addition, there were several (non-
anomalous) Uð1Þ factors and the SM states typically
carried charges under these “hidden” Uð1Þ’s. For the
SUð5Þ and SUð6Þ GUTs, the hidden-sector gauge groups
can again be SUð2Þ, but occasionally SUð3Þ and even
SUð4Þ were observed. Again, some twisted sectors tend to
contain states that are fundamentals of the SUðNÞ GUT
group, but also a doublet under a hidden SUð2Þ factor. We
note that in most of the cases studied, the SUð2Þ factor
remains weakly coupled to very low energies. This suggests
that a relatively sparse dark sector that contains a WIMP,
interacting with the observable sector via a Higgs portal or
Uð1Þ portal, would not be unusual in this particular class of
theories.
An example in which the hidden-sector analysis fol-

lowed that of the observable sector by nearly a decade, is
the venerable case of heterotic E8 × E8 string theory
compactified on a Z3 orbifold. The original work of
classifying all possible twist embeddings for the Z3

orbifold, with two Wilson lines, that yield the Standard
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Model gauge group was performed in the late 1980s [46].
But this analysis did not fully specify the embedding for the
hidden-sector E8 factor. This completion was performed in
2000 [47]. The classification required three generations of
Standard Model matter. In practice it is the demand that
three quark doublets be present that puts the most restric-
tions on the allowed Wilson lines. This, in turn, restricts the
allowed hidden-sector gauge group to the relatively small
list of SOð10Þ, SUð5Þ, SUð4Þ, SUð3Þ and SUð2Þ, plus
additional Uð1Þ factors to fill the rank-eight product group
(one of which will be anomalous). In a follow-up study
[48], the field content charged under the full rank-16 gauge
group was computed, and it was common to find states in
twisted sectors which were bifundamental between the SM
SUð2ÞL and a hidden SUð2Þ. In addition, Standard Model
fields and hidden-sector fields were generally charged
under any number of common Uð1Þ factors.
Years later, a much more exhaustive search was per-

formed, this time in the context of the Z6−II orbifold of
heterotic string theory. This so-called “mini-landscape”
study [49] required a gauge embedding of the orbifold
action such that an intermediary SOð10Þ or E6 GUT
structure emerges. The authors then scanned over all
possible completions of the embedding with up to two
Wilson lines such that the intermediate GUT gauge group
ultimately breaks to the SM gauge group. Further require-
ments included the demand of three (net) generations of
SM fields and a hypercharge candidate which is non-
anomalous. Unfortunately, only a single explicit example of
a hidden sector was given, that of an SOð8Þ × SUð2Þ
hidden sector. Again, the massless spectrum contained
states which were bifundamental under the SUð2ÞL of the
Standard Model and a hidden SUð2Þ, though these states
were vector-like with respect to the overall gauge group and
might therefore receive large masses if an appropriate set of
singlet vacuum expectation values were to arise. A follow-
up study relaxed the restriction to intermediate SOð10Þ and
E6 structures, and allowed up to three Wilson lines [50].
Once again, however, a single example of a hidden sector
was illustrated, containing both an SUð3Þ and an SUð5Þ
factor. Interestingly, this example had states which were
fundamentals under the hidden SUð3Þ and yet were
charged under various parts of the Standard Model gauge
group. It is hard to assess just how generic such portals
are in this promising class of constructions, as the raw data
was not presented in the papers. However, a later paper by
Goodsell et al. [51] investigated this same data set,
analyzing the prospects for kinetic mixing between
Uð1ÞY and hidden-sector Uð1Þ factors. The authors found
that over 95% of the models allow for such mixing, and
some explicit dark sectors and dark forces were con-
structed. Their conclusion was that such sectors and portals
were indeed “generic” in this class.
It would be interesting to know if such properties were

also common in smooth Calabi-Yau compactifications of

the heterotic string, away from the orbifold point in moduli
space. A systematic investigation of hidden sectors in this
context has yet to be performed. An initial foray into the
subject was presented in Ref. [52], in which a search was
conducted for consistent vector bundle configurations of
the E8 × E8 hidden sector, given a holomorphic observ-
able-sector bundle with structure group SUð4Þ, which was
shown to allow for the three-generation Standard Model
field content [53]. From this, two examples were presented,
with gauge groups SOð12Þ and E7, and neither case seemed
to contain a portal between the two sectors. But we note
that this paper was meant as a proof of concept, not an
exhaustive survey.

B. Local models in a global embedding

Recent years have seen an explosion in model building
in the context of Type II string theory compactified on
orientifolds. For the most part, this model building has
occurred in the form of “local” models: the study of D-
branes at singularities in the Calabi-Yau manifold, in which
other effects (including the presence of possible hidden
sectors) can be safely neglected. Models are constructed
using representative quiver gauge theories, or the related
techniques of dimer diagrams/brane tilings.
Unfortunately, these studies tend to focus exclusively on

the Standard Model field content. Hidden sectors only
emerge when an effort is made to embed these local
constructions in a global Calabi-Yau context. To a first
approximation, such global embeddings amount to the
imposition of certain consistency conditions, including the
requirement of N ¼ 1 supersymmetry, Ramond-Ramond
tadpole cancellation and various anomaly constraints.
These additional requirements generally necessitate sectors
beyond the local Standard Model quiver (i.e. hidden
sectors), as the Standard Model theory generally does
not satisfy them on its own. In fact, in the context of
quiver gauge theories, these consistency conditions will
generally require that matter charged under hidden-sector
“nodes” are bifundamental with the nodes of the SM
gauge group.
An early example involved Type IIA orientifolds on

T6=Z2 × Z2 with intersecting D6-branes [54]. These mod-
els achieve the three-generation Standard Model via the
Pati-Salam gauge group SUð4Þ × SUð2Þ × SUð2Þ. A scan
was performed over all possible brane configurations and
wrapping numbers consistent with the Standard Model
field content (via the Pati-Salam symmetry) and global
consistency conditions. This yielded explicit hidden sectors
which could then be classified. Typical hidden sectors
involved the USpð4Þ and USpð2Þ symplectic groups. In
some cases, the field content charged under these gauge
groups allowed for confinement of the USpðnÞ gauge
group, and the authors speculated as to the appearance of
various “mesonic” and “baryonic” bound states. It is
noteworthy that such composites would generally carry
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charges under the various residual Uð1Þ symmetries,
including that of the StandardModel. Typically, the number
of such objects in the massless spectrum was of order ten,
consistent with the number of degrees of freedom in the
Standard Model below the QCD confinement scale.
A more expansive survey was conducted some time later

[55]. In this case the survey began with the original three-
node “Madrid” quiver [56] and all its three-node general-
izations. These quivers represent gauge theories which
contain the field content of the Standard Model. From this,
additional nodes (i.e. gauge groups) were added to the
quiver until all global embedding conditions were satisfied.
All of the quiver extensions considered in this paper had an
anomalous Uð1Þ factor, under which the newly introduced
“hidden” states are chiral, not vector-like. As a result, there
is a mixed anomaly between this Uð1Þ factor and any other
Uð1Þ under which these states are charged. In particular,
when the hidden-sector states carry hypercharge, a mixed
anomaly between hypercharge and the anomalous Uð1Þ
provides a portal between the two sectors, with a potentially
light mediating Z0 boson. For the phenomenology, and
some toy models, see Ref. [57].
In Type IIB string theory, much of the recent work has

focused on singularities of toric del Pezzo surfaces (dPn
surfaces). The advantage here is that toric surfaces afford a
certain “modularity” in constructing models, in which one
can work in a bottom-up approach, beginning with various
phenomenological demands [58]. Another benefit is access
to the large Kreuzer-Skarke database of reflexive polytopes
[59], which generate these toric ambient spaces, and the
Calabi-Yau manifold realized as a hypersurface within
these ambient spaces [60].
Local models with promising phenomenological features

were constructed in this context in recent years [61,62].
While these early efforts concentrated almost exclusively
on the observable (Standard Model) sector, some attempts
at embedding these into a global Calabi-Yau context have
been made, by enforcing consistency conditions such as
the Ramond-Ramond tadpole conditions and vanishing of
K-theory torsion charges [63,64]. In these papers, some
rudimentary hidden sectors were constructed. The authors
chose flux parameters in such a way as to avoid chiral
matter in the hidden sector, resulting in a pure SOð8Þ
or SUð4Þ gauge theory with no portal to the observable
sector. However, this was again a proof of principle and
not an exhaustive scan over all possible hidden-sector
configurations.
To our knowledge, no such survey has been conducted

within the Type IIB context in analogy with the above-
mentioned work in Type IIA. However, some interesting
examples of nontrivial hidden, or “dark” sectors, were
constructed using the “toric Lego” approach of Ref. [58].
One such example involved the construction of a “dark
sector” which mimics the MSSM (visible) sector. This was
a toy model designed to exhibit the power of the modular

approach. The model was based on two dP0 singularities
and a dP1 singularity—the former pair for the visible and
dark sectors, and the last for the SUSY-breaking sector. The
dark and visible sectors were patterned on the phenomeno-
logical model of Ref. [65], in which kinetic mixing between
Uð1Þ factors in the observable and dark sectors provide the
portal. The global embedding was identified some time later
[66], by identifying those reflexive polytopes from the
Kreuzer-Skarke database with the appropriate singularity
structure in one of their two-dimensional faces to give rise to
this trio of sectors. Remarkably, nearly 300 000 such
polytopes were shown to exist, implying at least as many
(and perhaps many more) Calabi-Yau manifolds which
would generate this model upon compactification.
Analysis of hidden sectors in bona fide string

constructions—at the level needed to describe early
Universe dynamics—is still in its earliest stages, lagging
the construction of viable observable sectors in many
respects. The areas that have been investigated were those
that were identified as being phenomenologically interest-
ing from the point of view of observable sector physics, and
may not be a representative sample of heterotic or Type II
string theory, let alone the entire string theory landscape.
Nevertheless, the basic elements that are needed for our
cosmological framework are often present.

VII. SUMMARY AND FUTURE DIRECTIONS

In this work, we have provided a general classification of
dark matter models in a Universe which undergoes a phase
of pressureless matter (modulus) domination. Such non-
thermal cosmological histories are predicted in a wide class
ofUV completions to the StandardModel (e.g. compactified
string theories), and are also phenomenologically viable
provided that the matter-dominated phase ends before BBN.
Our analysis generalizes previous works by going far
beyond the standard WIMP paradigm. In particular

(i) we considered DM masses and annihilation cross
sections which span several orders of magnitude
above and below the electroweak scale, and

(ii) we allowed the possibility that DM is in thermal
equilibrium with a “dark sector,” whose temperature
need not be the same as that of the visible sector.

Upon analyzing the relevant Boltzmann equations, we
classified the mechanisms by which relic DM can be
produced. We found four distinct mechanisms (QSEnr;
FOmod

nr ; IAfr;nrg and FOrad
fr;nrg), each of which have different

parametrics for ΩDMh2. The first three mechanisms are
different from standard thermal freeze-out. We derived
semianalytic approximations for these various production
mechanisms, and discussed their regimes of validity. For the
convenience of the reader, these results are summarized in
Sec. III E.
Our results have interesting implications for supersym-

metric theories containing moduli fields. As discussed in
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Secs. II and III, ΩDMh2 does not depend on the masses or
couplings of the (unstable) lightest visible-sector super-
partner (LOSP), provided the LOSP decays before the end
of modulus domination.13 Once the modulus mass and
couplings are fixed and the dark relativistic degrees of
freedom g0�ðT 0Þ are specified, ΩDMh2 depends only on MX0

and hσvi0. In Sec. IV, we fixed the modulus mass and
couplings by considering models with gravity-mediated
SUSY breaking in which mϕ is of order the gravitino mass.
We mapped out the parameter space of these models by
scanning over MX0, hσvi0 for various values of Btot; see
Fig. 4. Here Btot is the branching ratio of the modulus decay
into DM, including contributions from intermediate states.
For Btot ∼Oð0.1Þ, the viable DM parameter space splits
into two separate regions: large annihilation cross section
hσvi0 ≳ 10−9 GeV−2, or small annihilation cross section
hσvi0 ≲ 10−17 GeV−2. Intermediate values of hσvi0 result in
DM overproduction. Moreover in the hσvi0 ≲ 10−17 GeV−2

region, the DM mass must be ≲100 MeV to avoid being
overproduced by moduli decay. If however the modulus
branching ratio to DM is suppressed i.e. Btot ≪ 1, much
more of the DM parameter space becomes available. These
features can easily be inferred from Fig. 4.
We have also briefly discussed potential experimental

signatures for the theoretical framework considered here.
Since ΩDMh2 is insensitive to the portal couplings between
the visible and dark sectors for the models considered,
the “standard” DM signals in direct-detection, indirect-
detection and collider experiments, which crucially depend
on portal couplings between the visible and dark sectors,
can cover a wide range of possibilities and are rather model
dependent. On the other hand, observables which involve
couplings within the dark sector yield more robust pre-
dictions, as these couplings are correlated with the DM relic
abundance. One such set of observables involves the power
spectrum of DM density perturbations. If the DM kineti-
cally decouples during the radiation-dominated era after
BBN, the sensitivity of DM density perturbations to the
modulus-dominated phase is maintained only for a very
small region of parameter space, as shown in Fig. 5. On
the other hand, when DM kinetically decouples during
modulus domination, the power spectrum of DM density
perturbations depends on the mechanism by which relic
DM is produced.

(i) If DM is produced by annihilation of thermal bath
particles while the DM is nonrelativistic (we call this
case IAnr; see Sec. III E), the free-streaming length is
smaller than the comoving horizon at TRH. The
linear growth of DM density perturbations during
modulus domination is not washed out, leading to
potentially interesting astrophysical signatures as
discussed in Ref. [10].

(ii) If DM is produced by annihilation of thermal bath
particles while the DM is relativistic (we call this
case IAr; see Sec. III E), the free-streaming length is
larger than the comoving horizon at TRH. Even
though the growth of DM perturbations during
modulus domination is erased, a large region of
parameter space yields Lfs ∼ 1− 100Kpc which
leads to signatures similar to warm DM.

(iii) If DM is dominantly produced by modulus decay,
then the DM has large free streaming lengths
Lfs ≳ 1 Mpc, which is in tension with constraints
on warm dark matter from Lyman-α measurements.

There are many opportunities for future research. One
might consider generalizing the system of Boltzmann
equations to include n → 2 processes, where n ≥ 3 (i.e.
a nonthermal analog to [67]). From the point of view of
model building, it would be worthwhile to study explicit
models of DM candidates and portal interactions within the
general framework so that detailed predictions for “stan-
dard” DM signals (e.g. direct and indirect detection) could
be made. From a string theory perspective, although there is
some existing work on dark sectors and portal interactions
as described in Sec. VI, clearly much more needs to be
done. Finally, our discussion in Sec. Vof the astrophysical/
cosmological effects of DM interactions within its own
sector has been largely qualitative. A more precise analysis
would involve solving for the DM phase-space distribution
at kinetic decoupling in order to determine the appropriate
transfer function relevant for the power spectrum of DM
density fluctuations. We hope that future studies in these
directions will help shed important light on the nature of
dark matter.
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APPENDIX A: JUSTIFYING APPROXIMATIONS
FOR R AND R0

In Sec. III A, analytic approximations for R and R0 were
obtained assuming that all other terms aside from the
modulus decay term can be neglected in dR0=dA and
dR=dA if MX0 ;MX ≪ mϕ. In this appendix, we will justify
this approximation. Note from Eq. (7) that the modulus
decay terms in dR0=dA and dR=dA grow like A3=2 during
the modulus-domination phase, and peak when T ∼ TD.

13The contrary case is briefly considered in Appendix B.
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Thus in determining whether or not certain terms in dR0=dA
and dR=dA are negligible compared to the modulus decay
term, it is sufficient to focus on the Boltzmann equations at
temperatures near TD.
First, consider the X → X0 þ… decay term in dR0=dA

and dR=dA. At T ≳ TD, X has already reached QSE,
assuming hΓXi > Γϕ. Taking X ¼ XQSE with b ≈ 1, the
X0 → X þ… decay terms are given by

~H
dR
dA

¼ BXBX→X0Rc
1=2
ρ

�
EX − EX0

mϕ

�
A3=2Φþ � � �

~H
dR0

dA
¼ BXBX→X0R0c1=2ρ

�
EX − EX0

mϕ

�
A3=2Φþ � � � : ðA1Þ

Here BX→X0R and BX→X0R0 are the branching fractions of X
into X0R and X0R0. Thus we see that the X → X0 þ… decay
terms are suppressed with respect to the modulus decay term
by a factor of ðEX − EX0 Þ=mϕ; a similar conclusion holds if
X does not decay to X0. Next, consider the annihilation
terms. For the hσvi term in dR=dA, Xeq ≈ 0 and X ≈ XQSE

for T ∼ TD. Thus for temperature-independent hσvi, the
annihilation term in dR=dA falls like A−3=2 for T ≳ TD, and
will be numerically insignificant at TD due to suppression by
negative powers of the scale factor.
The argument for the hσvi0 term in dR0=dA is less

straightforward. First, consider the case where hσvi0 >
hσvi0c such that X0 reaches QSE at T 0 ∼ T 0

D. If X
0
QSE ≈ X0

eq,
the annihilation term vanishes and is trivially negligible. If
instead X0

eq is negligible in X0
QSE [Eq. (32)] at T

0 ∼ T 0
D (as is

the case for QSEnr), we can take X0 ≈ X0
QSE and write the

hσvi0 term as

~H
dR0

dA
¼ c1=2ρ Btot

�
2EX0

mϕ

�
A3=2Φþ � � � ðA2Þ

which is suppressed with respect to the modulus decay term
by a factor of EX0=mϕ. Now consider the case where
hσvi0 < hσvi0c such that X0 is not in QSE at T 0

D. As
discussed in Sec. III D, we can write X0 at T 0 ≳ T 0

D as
X0 ¼ X0

mod þ X0
ann, where X0

mod comes from integrating the
modulus decay term

X0
mod ¼

2

3
cρ1=2

TRHBtot

mϕ
A3=2Φ1=2 ðA3Þ

and X0
ann is determined by the hσvi0 term. In the case where

MX0 > TD0 , X0
ann is negligible compared to X0

mod unless
Btot ≪ 1 (see Secs. III D 1 and III D 2). Taking X0 ≈ X0

mod,
the hσvi0 term in dR0=dA can be written as

~H
dR0

dA
¼ 4

9
cρ1=2

�
2
BtotEX0

mϕ

� hσvi0
hσvi0c

A3=2Φþ � � � : ðA4Þ

Thus in the case where hσvi0 < hσvi0c and MX0 > T 0
D, the

hσvi0 term in dR0=dA is suppressed by at least a factor of
EX0=mϕ with respect to the modulus decay term.
Finally, consider the case where hσvi0 < hσvi0c and

MX0 < T 0
D, corresponding to the IAr scenario (see

Sec. III D 2). In this case X0 ≪ X0
eq and we can write the

hσvi0 annihilation term as

~H
dR0

dA
≈ c1=21 Mplη

2
48g�ðTRHÞcξ2ζð3Þ2EX0 hσvi0T2

RH

5π6g0�ðT 0Þ2T 02 ΦIA3=2

þ � � � ðA5Þ

where we have used Eqs. (17)–(19) to relate A and T 0.
Evaluating Eq. (A5) at T 0 ¼ T 0

D, we obtain

~H
dR0

dA

			
T 0¼T 0

D

≈ c1=21 MplTRHη

�
ηg�ðTRHÞ
g0�ðT 0

DÞ
�

3=4

×

�
48

ffiffiffi
3

p
cξ2ζð3Þ2hσvi0
5π6g0�ðT 0Þ

�
ΦIA3=2 þ � � �

ðA6Þ

≈c1=2ρ η

�
0.16cξζð3Þ
g0�ðT 0

DÞ
��hσvi0

hσvi0c

�
ΦIA3=2þ���:

ðA7Þ
Thus the hσvi0 term in dR0=dA is suppressed with respect
to the modulus decay term by a factor of the order
of 0.1hσvi0=hσvi0c.
To summarize, the above arguments show that the

approximations made in solving the equations for R and
R0 in solving Eq. (7) are justified, as can also be confirmed
by the agreement of the approximate and exact solutions in
Appendix C.

APPENDIX B: A VERY LONG-LIVED X
PARTICLE (ΓX ≲ Γϕ)

For most of this work, we have assumed ΓX > Oð1ÞΓϕ

such that X decays are efficient before the end of modulus
domination. This assumption is well motivated from both
theoretical and phenomenological points of view. To see
this, note that the modulus decays through Planck-sup-
pressed operators such that the decaywidth is parametrically
given by Γϕ ∼m3

ϕ=M
2
pl ∼ 10−24 GeV for mϕ ∼ 50 TeV.

Thus, as long as the visible and dark sectors are coupled
by larger than gravitational strength interactions, one
expects ΓX ≫ Γϕ for a wide class of dark-sector models.
This is also true if the coupling between the two sectors
arises by integrating out Kaluza-Klein modes of the
extra dimensions or heavy GUT multiplets of some under-
lying GUT model, as even these mediators are lighter than
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the Planck scale. In addition, from a phenomenological
point of view, X decays to visible-sector particles can
spoil the successful predictions of BBN if ΓX < HðTBBNÞ ∼
T2
BBN=Mpl where TBBN ∼ 1 MeV [68]. To avoid these

constraints, for ΓX ≲ Γϕ, ΓX should lie in a narrow window:

T2
RH ≃ ΓϕMpl ≳ ΓXMpl ≳ T2

BBN: ðB1Þ

Despite these considerations, for completeness we
briefly discuss in this appendix the case where ΓX ≲ Γϕ.
In this case, X is effectively stable during modulus
domination (as H > Γϕ > ΓX). Thus for H > ΓX we can
treat X as a stable relic. If X is a WIMP, its comoving
abundance will become fixed at T ∼ TD via the QSEnr

mechanism, which is the precise generalization of the
nonthermal WIMP miracle [1,2]. Once the Hubble param-
eter drops below ΓX during radiation domination, the
remaining X abundance will decay to yield X0 particles.
The dynamics of such a process was studied in detail in
Ref. [22]. From the results of Ref. [22], we see that there are
three possibilities for the resulting parametrics of ΩX0h2.

(i) X0 is in equilibrium when H ¼ ΓX (which is only
possible for FOrad

nr and FOrad
r ). X0 will continue to

track its equilibrium abundance until freeze-out. In
this case ΩDMh2 is completely insensitive to X
decays.

(ii) X0 is out of equilibrium whenH ¼ ΓX, and X decays
yield an X0 abundance which is less than the critical
abundance required for X0 annihilations. This gives
rise to the freeze-out & decay mechanism described
in Ref. [22]. In terms of dimensionless comoving

variables,XQSEðAcÞ<X0
critjH¼ΓX

, where XQSEðAcÞ
is given by the QSEnr mechanism as described in
Sec. III C 1 and X0

crit is defined in Eq. (23). The
resulting contribution to the X0 comoving abundance
is insensitive to ΓX, and is given simply by
ΔX0 ≈ XQSEðAcÞ. This contribution must be added
to the X0 abundance which results from the produc-
tion mechanisms described in Sec. III B.

(iii) X0 is out of equilibrium whenH ¼ ΓX, and X decays
yield an X0 abundance which exceeds the critical
abundance required for X0 annihilations. In terms of
dimensionless comoving variables this occurs if

XQSEðAcÞ > X0
critjH¼ΓX

. The X0 particles produced
from X decays will then annihilate until

X0 ≈ X0
critjH¼ΓX

. This was referred to as the

“freeze-out & decay and re-annihilation” in
Ref. [22]; the resulting X0 relic abundance scales
like ΩDMh2 ∝ 1

Γ1=2
X hσvi0.

Before concluding this appendix, we remark that the
“freeze-in” mechanisms (FI and FIr) described in
Refs. [22,69] are not important for the models considered

here. Recall that FI is due to X → X0 þ… decays which
occur during the radiation-domination era when X is still
relativistic and in equilibrium. However, it turns out that
freeze-in due to X decays is negligible during the modulus-
dominated era. To see this, consider the X decay term in
dX0=dA. We saw in Sec. III A 3 that X attains QSE at some
scale factor A (say AX) before AD if ΓX > Oð1ÞΓϕ. For
A < AX, X is given by X ≈ Xeq, while for AX < A≲ AD, X
is given by X ≈ XQSE. In the analysis in Sec. III A 3, the
effect of X decays when 1 < A ≤ AX and X ≈ Xeq, which
corresponds to freeze-in effects from X decays, was
neglected. To see that it is justified to do so, note that
the integration of the decay term gives (up to overall
constants)

Z
AD

1

dAXA1=2 ≈
Z

AX

1

dAXeqA1=2 þ
Z

AD

AX

dAXQSEA1=2

≈
cξ

π2T3
RH

Z
AX

1

dAA7=2T3

þ 2

3
AD

3=2

�
gXBX

ΓϕTRH

ΓXmϕ

�
Φ ðB2Þ

where AX corresponds to the scale factor at which either X
becomes nonrelativistic or X enters QSE (whichever occurs
first). Comparing the first and second terms in Eq. (B2),
we find

R AX
1 dAXeqA1=2R AD

AX
dAXQSEA1=2

∼
�
TD

TX

�
4
�

ΓXmϕ

BXΓϕT4
RH

� ðκTmaxÞ8
TX

5ΦI

∼
�
T6
RHΓXmϕMpl

TX
9BX

�
ðB3Þ

where we have used T ≈ κTmaxA−3=8 and ðκTmaxÞ8=ΦI ∼
TRH

8 [see Eq. (18)]. There are now two possibilities for TX.
If X enters QSE before X becomes nonrelativistic, then
TX ∼ ðΓXMplTRH

2Þ1=4 > MX. If instead X becomes non-
relativistic before QSE is reached, then TX ∼MX and

ΓX ≲ M4
X

TRH
2Mpl

. Since TX is smaller in the latter case, the

ratio (B3) is maximized for TX ∼MX, and one gets

R AX
1 dAXeqA1=2R AD
AX

dAXQSEA1=2
≲T4

RHmϕ

BXM5
X

≃10−13

BX

�
TRH

10MeV

�
4
�

mϕ

100 TeV

��
100GeV

MX

�
5

: ðB4Þ

Thus the freeze-in production of X0 from X decays can be
neglected for reasonable choices of parameters, provided
BX is not extremely tiny.
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APPENDIX C: ACCURACY OF
APPROXIMATE SOLUTIONS

In this section, we compare the semianalytic approx-
imations obtained above with the full numerical solution to
Eq. (7). The accuracy of these approximations is depicted
in Figs. 7 and 8. In these plots we use the benchmark values
of parameters as in Eq. (5); however we take g0�ðT 0Þ ¼
20 ≠ g�ðTÞ to ensure that the g0�ðT 0Þ dependence has been
properly captured. Figure 7 shows the accuracy of the
approximate solutions for MX0 ¼ 10 GeV and Btot ¼ 0.1.
In the left plot, the green curve shows the numerical
solution, while the black curve in the left plot shows the
approximate expression for DM production through QSEnr
[Eq. (37)]. The right-hand plot shows the ratio of the
approximate QSEnr result to the exact result, which is close
to unity if hσvi0 ≫ hσvi0c.

Figure 7 shows the accuracy of the approximate sol-
utions for Btot ¼ 0; note that in this case hσvi0c becomes
effectively infinite for MX0 > T 0

D [see Eq. (34)]. The left
plot shows ΩDMh2 as a function of hσvi0 for
MX0 ¼ 10 GeV. For these parameters, DM production
occurs either via FOmod

nr for hσvi0 > hσvi00 or via IAnr

for hσvi0 < hσvi00 where hσvi00 is defined in Eq. (45). The
green curve shows the numerical solution, the red curve
shows the approximation for IAnr [Eq. (50)], and the black
curve shows the approximation for FOmod

nr [Eq. (44)]. The
right plot shows a similar plot with MX0 ¼ 10−6 GeV. In
this case DM production occurs via IAr for hσvi0 < hσvi0c
and via thermal freeze-out (FOrad

r and FOrad
nr ) for

hσvi0 > hσvi0c. The green curve shows the numerical
solution, the red curve shows the approximate expression
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FIG. 7. Left:ΩDMh2 as a function of hσvi0 forMX0 ¼ 10 GeV and Btot ¼ 0.1. The green curve shows the numerical solution, while the
black curve shows the approximate QSEnr solution (34). The vertical dashed line represents hσvi0 ¼ hσvi0c as defined in Eq. (34), while
the horizontal dashed line shows the modulus decay contribution given in Eq. (42), which is valid for hσvi0 < hσvi0c. Right: The ratio of
the approximate result for QSEnr to the exact result.
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FIG. 8. Left: ΩDMh2 as a function of hσvi0 for MX0 ¼ 10 GeV and Btot ¼ 0. Right: Similar plot for MX0 ¼ 10−6 GeV and Btot ¼ 0.
The green curves show the numerical solution, the red curve shows the approximation for IAnr (left) and IAr (right), while the black
curve shows the approximation for FOmod

nr (left) and FOrad
nr (right). In the left plot the vertical dashed line represents hσvi0 ¼ hσvi00,

defined in Eq. (45), while in the right plot the vertical line represents hσvi0 ¼ hσvi0c in the case where MX0 < T 0
D [see Eq. (34)]. The

dashed horizontal line in the right plot shows the approximate solution for FOrad
r .
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for IAr [Eq. (51)], while the black curve shows the
approximate expression for FOrad

nr [Eq. (39)]. Within their
respective regimes of validity, Eqs. (50), (51) and (44) are
accurate to within ∼5%, while Eqs. (40) and (39) are
accurate to within ∼15%.

APPENDIX D: TEMPERATURE
DEPENDENCE OF hσvi0

In Sec. III B, (semi)analytic expressions for ΩDMh2 were
obtained assuming that hσvi0 is temperature dependent. In
this section, we generalize the results of Sec. III B for
temperature-dependent hσvi0. For scenarios where the
contribution to ΩDMh2 is determined by nonrelativistic
X0 annihilation (QSEnr, FOrad

nr , FOmod
nr and IAnr) we will

consider p-wave annihilations where hσvi0 ¼ T 0=Λ3. For
scenarios where the contribution to ΩDMh2 is determined
by relativistic annihilations (IAr) we consider the case
where hσvi0 ¼ T2=Λ4, corresponding to annihilation
through a heavy bosonic mediator. Note that for FOrad

r ,
ΩDMh2 is independent of hσvi0 so Eq. (40) holds regardless
of the temperature dependence of hσvi0.

(i) For QSEnr, Eqs. (36) and (37) are still valid for p-
wave annihilation, provided the annihilation cross
section is parametrized as

hσvi0 ¼ T 0

Λ3
¼ T 0

D

Λ3

�
~AD

~Ac

�
; ðD1Þ

where in the second equality we have assumed
T 0 ∝ A−1 as in radiation domination. In order to
match the numerical result, we instead use κ ¼ 1.8
in Eqs. (36) and (37).

(ii) For FOrad
nr , the expression for x̂0F is given by

x̂0F ≡ MX0

T 0
FO

¼ log

0
@ 3

8π3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10η

g0�ðT 0
FOÞ

s
g0

×

�
MX02Mpl

Λ3

�
κradp ðx̂0FÞ−1=2

1
A ðD2Þ

while ΩDMh2 is given by

Ωh2½FOrad
nr �≈

�
4
ffiffiffi
5

pffiffiffi
π

p
��

η1=4

ð1−ηÞ3=4
�

×

�
1

g�ðTFOÞg0�ðT 0
FOÞ
�
1=4
�
κmod
p ðx̂0FÞ2Λ3

MX02Mpl

�

×

�
MX0

Tnow

�
½ΩRh2�: ðD3Þ

Here κradp ¼ 2 is a constant which is chosen to match
the full numerical result.

(iii) For FOmod
nr , the expression for x0F is given by

x0F ¼ ln

��
3

2
ffiffiffiffiffi
10

p
π3

��
g0g�ðTRHÞ1=2
g0�ðT 0

FOÞ
�

×

�
MplT2

RH

Λ3

�
κmod
p ηx0F

3=2

�
ðD4Þ

while Ωannh2 is given by

Ωannh2½FOmod
nr � ≈

�
8ηffiffiffiffiffiffi
5π

p
L3=4

��
g�ðTRHÞ1=2
g0�ðT 0

FOÞ
��

TRH

MX0

�
3

×

�
κmod
p x0F

5Λ3

MX02Mpl

��
MX0

Tnow

�
½ΩRh2�:

ðD5Þ
Here κmod

p ¼ 5=4 is a constant which is chosen to
match the full numerical result (see also Ref. [14]).

(iv) For IAnr, it is straightforward to show that for
hσvi0 ¼ T 0= ~M3, the expression analogous to
Eq. (50) is given by

Ωannh2½IAnr� ≈
�

48g02χpη3

1251=2π15=2L3=4

��
g⋆3=2ðTRHÞ
g0⋆3ðT 0⋆Þ

�

×

��
TRH

MX0

�
7
�
MplMX02

Λ3

��

×
�
MX0

Tnow

�
½ΩRh2� ðD6Þ

where χp is given by

χp ≡
Z MX0

T0
D

MX0
T0max

dx0x08K2ðx0Þ2: ðD7Þ

The integrand peaks at T 0� ≈ 0.33MX0 ; if T 0� ≪ T 0
max

and T 0� ≫ T 0
D, χp ≈ 80.

(v) For IAr, we are interested in the case where hσvi0 ¼
T 02=Λ4 (see above). The expression analogous to
Eq. (51) is given by

Ωannh2 ¼
�

48cξ2ζð3Þ2
1251=2π15=2L3=4

�
T 0
D

T 0�

�
4
��

η2g�ðTRHÞ1=2
g0�ðT 0

DÞ2
�

×

�
TRH

3MX0Mpl

TnowΛ4

�
ΩRh2: ðD8Þ

In the above, T 0� ≈ T 0
D=1.35 is chosen to match the

numerical result, and is related to the temperature at
which the integrand of

R
dAT 02A7=2n0eq2 ~H

−1 peaks.
Note that we can recover Eq. (D8) from Eq. (51) by
making the replacement

hσvi0 → 0.17 ×

�
η1=2g�ðTRHÞ1=2
Λ4g0�ðT 0

DÞ1=2
�
T2
RH: ðD9Þ
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