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Apart from its debatable correctness, we examine the perturbative stability of the recently proposed
cosmology from quantum potential. We find that the proposed quantum corrections invoke additional
parameters which apparently introduce perturbative instability to the Universe.

DOI: 10.1103/PhysRevD.93.063526

I. INTRODUCTION

The standard model for cosmology assumes a high
degree of precision with regards to the spatially homo-
geneous and isotropic structure of our Universe [1], which
is well described by the Friedmann-Lemaître-Robertson-
Walker (FLRW) metric. This leads to restrictions on the
possible geometric topologies of the large-scale structure of
the Universe, i.e., either closed, open, or flat FLRW spaces.
Nevertheless, any proposed world model should be able to
describe the expanding Universe and simultaneously show
that the resulting Universe is stable, as is observed.
In general, there are different kinds of stability criteria:

(a) a minimum energy level ensuring that the physical
system does not collapse into negative-energy levels,
(b) nothing is allowed to be created out of nothing, ensuring
physical conservations, and (c) arbitrary small perturba-
tions should not drive the system out of equilibrium.
Studying the stability of the Einstein universe dates back
to the 1930s; for instance, Eddington implemented
Lemaitre’s picture of the “primordial atom” and found
instability against spatially homogeneous and isotropic
perturbations [2].
Structural stability—which has been well known since

the early stages of Einstein cosmology—has led to numer-
ous successes. Structural stability should also be applied to
all subsystems [3]. Alternatively, perturbative stability is a
powerful tool based on understanding the physics of the
perturbation propagation. The introduction of a discrete
perturbation at an arbitrary point is then followed by
analyzing its effects over time.

The stability criterion is fulfilled if the added perturba-
tion changes at a later time [4–7]. Such a stability analysis
for nonredundant field equations in a Bianchi type I
universe has been performed in the isotropic limit [7]
and for anisotropic brane cosmology [8].

(i) For a Bianchi type I isotropic brane cosmology [7], it
was shown that any unstable mode of the isotropic
perturbation with respect to a de Sitter background is
also unstable with respect to anisotropic perturba-
tions. This type of world model is stable against any
anisotropic perturbation for a perfect fluid or a
dilaton field [8].

(ii) In the large-time limit and independent of the
different types of background matter, the anisotropic
expansion of the anisotropic brane cosmology is
dynamically smeared out [8]. In addition, the sta-
bility analysis [9–13] indicates that all such models
are stable against any anisotropic perturbation. The
perturbative (in)stability is conditioned by the exist-
ence of a mode in the plane-wave equation, where
γþ > 0 (unstable) or γ− < 0 (stable), respectively.

The impacts of dark matter [14,15], dark energy [16–21],
and the cosmological constant [22,23] on reliable (stable)
world models have been evaluated. Nevertheless, the idea
of a static, closed, and singularity-free universe—known as
the “emergence of cosmic space”—was recently proposed
[24–30]. Of particular relevance is the instability of the
static Einstein universe, especially for infinitely long times
in presence of quantum fluctuations. Furthermore, it was
found that the static Einstein universe is unstable with
respect to small radial perturbations [25–27,31]. Even if
such models are perfectly fine-tuned to describe the early*http://atawfik.net/.
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stages of the Universe, the quantum fluctuations among
others would generate inflation or even entirely collapse it
at infinite time (infinite age!) [25–27].
The avoidance of an initial singularity [32–34]—as

explored in the idea of an emergent universe—motivated
the introduction of quantum corrections [35,36]. It was
argued that replacing the classical geodesic with Bohmian
trajectories leads to quantum corrections to the
Raychaudhuri equations [35]. Then, by deriving the
Friedmann equations, the authors claimed that their cor-
rections contain a correct estimation for the cosmological
constant and the so-called radiation term. They have
interpreted that the latter evades the big bang singularity
and determines an infinite age for the Universe. Instead of
criticizing the correctness of this approach as was done in
Ref. [36]—where it was argued that both conclusions are
simply wrong—we go another way. Instead of proposing
radical corrections, we merely analyze the perturbative
stability of both versions.
The present work is organized as follows. In Sec. II A,

we implement the perturbative stability in a FLRW uni-
verse. The perturbative stability of FLRW cosmology from
a quantum potential—which was proposed in Ref. [35] and
criticized in Ref. [36]—shall be elaborated in Sec. II B.
Section III is devoted to the discussion and final
conclusions.

II. PERTURBATIVE COSMOLOGICAL
STABILITY

A. FLRW cosmology

The FLRW metric can be given as [5]

ds2 ¼ −b2ðtÞdt2 þ a2ðtÞ
�

dr2

1 − κr2
þ r2dΩ

�
; ð1Þ

where κ is the curvature constant (0, �1 stand for a flat,
closed, or open universe, respectively, aðtÞ is the scale
factor, and bðtÞ is the lapse function. For a perfect fluid, the
energy-momentum tensor reads

Tμν ¼ ðρþ pÞuμuν þ gabp; ð2Þ

where uμ is the four-velocity field, μ and ν run over 0;…; 3,
ρ is the comoving energy density, and p is the pressure. The
energy-momentum conservation condition DμTμν ¼ 0 is
apparently equivalent to the time evolution of the energy
density which defines the continuity equation,

_ρ ¼ −3ρð1þ wÞH: ð3Þ

At finite cosmological constant, the second form of the
Friedmann equation (which is also known as the
Raychaudhuri equation) gives

_H ¼ −
3

2
ð1þ wÞH2 þ Λc2

3
; ð4Þ

where the Hubble parameter H ¼ _a=a, and ω ¼ p=ρ is
the equation of state (EoS). The cosmological constant (Λ)
has dimensions of ðlengthÞ−2 and the approximate value
∼10−52 m−2.
By applying an infinitesimal perturbation to the Hubble

parameter H ¼ H̄ þ δHðt; xÞ, the time evolution of H, the
energy density, the pressure, and the equation of state,
respectively, can be given as

_H ¼ _̄H þ δ _Hðt; xÞ; ρ ¼ ρ̄þ δρðt; xÞ;
p ¼ p̄þ δpðt; xÞ; ω ¼ ω̄þ δωðt; xÞ; ð5Þ

where a bar donates the spatial average. First, let us assume
that α ¼ − 3

2
ð1þ ωÞ,

αþ δα ¼ −
3

2
ð1þ ω̄þ δωÞ: ð6Þ

Then, by eliminating the higher orders, the frictional
perturbation (δ≡ δρ=ρ) leads to

δα ¼ −
3

2
δω ¼ −

3

2
ðωþ δω − ωÞ ¼ −

3

2

�
pþ δp
ρþ δ

−
p
ρ

�

¼ −
3

2

p
ρ

�
1þ ðδpp Þ
1þ ðδρρ Þ

− 1

�

¼ −
3

2

p
ρ

��
1þ δp

p

��
1þ δρ

ρ

�
− 1

�
¼ 3

2

p
ρ

δρ

ρ
¼ 3

2
ωδ;

ð7Þ

which obviously means that δα ¼ −3=2δω. For an infini-
tesimal perturbation δp̄ ≪ δρ ≪ 1, the first-order pertur-
bations in the FLRW Raychaudhuri equation and the
continuity equation, respectively, are given as

δ _H ¼ −3ð1þ ωÞHδH þ 3

2
H2ωδþ c2

3
δΛ; ð8Þ

δ_ρ ¼ −3ð1þ ωÞρδH − 3Hδρ: ð9Þ

Let _δ ¼ ∂=∂tðδρ=ρÞ; then, according to Eq. (7) one obtains
ωδ≡ −δω, and Eq. (9) can be written as

_δ ¼ −3ð1þ ωÞδH − 3Hωδ: ð10Þ

From the coupling between Eqs. (10) and (8), it is
straightforward to determine the second time derivative
of Eq. (8) with a finite inhomogeneous Λ term,

Aδ̈H þ B _δH þ CδH ¼ c2

3
ðD _δΛþ EδΛÞ; ð11Þ
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where A ¼ D ¼ 1, B ¼ −3ð2þ 3ωÞH, C ¼ ð−9=2Þð1þ 5ωÞH2, and E ¼ −3H. The general solution of the inhomo-
geneous ordinary differential equation (11) reads

δHðtÞ ¼ β1 exp ½γþt� þ β2 exp ½γ−t�

þ exp ½γ−t� ·
Z

t

1

�
exp ½ð−3Hð2þ 3ωÞ þ γþÞK�c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Hð6þ ωþ 9ω2Þ

p
δΛðKÞ

3Hð6þ ωþ 9ω2Þ

−
exp ½ð−3Hð2þ 3ωÞ þ γþÞK�c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Hð6þ ωþ 9ω2Þ

p
_δΛðKÞ

3H2ð6þ ωþ 9ω2Þ
�
dK

þ exp ½γþt� ·
Z

t

1

�
exp ½ð−3Hð2þ 3ωÞ þ γ−ÞK�c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Hð6þ ωþ 9ω2Þ

p
δΛðKÞ

3Hð6þ ωþ 9ω2Þ

−
exp ½ð−3Hð2þ 3ωÞ þ γ−ÞK�c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Hð6þ ωþ 9ω2Þ

p
_δΛðKÞ

3H2ð6þ ωþ 9ω2Þ
�
dK; ð12Þ

where γ� shall be given in Eq. (14). If Λ is finite but its time
derivative vanishes, then the second and fourth integrals
should be removed.
If Λ terms vanish, Eq. (12) becomes homogeneous and

can be solved as

δHðtÞ ¼ β1 exp ½γþt� þ β2 exp ½γ−t�; ð13Þ

where γ� ¼ −B�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − 4AC

p
=2A, and the parameters β1

and β2 can be determined from initial perturbations. The
zeroth-order perturbation gives exactly the field equation
for the background field, i.e., H ≡H0. The exponent term
can be simplified as

γ� ¼ 3

2
½ð2þ 3ωÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6þ 22ωþ 9ω2

p
�H0: ð14Þ

It is apparent that even the inhomogeneous ordinary
differential equation does not help in optimizing the
perturbative stability of the standard FLRW universe.
From Eq. (14), it is obvious that the first term on the
right-hand side is always positive as ω and H0 are positive
quantities. This part apparently refers to a stable mode and
isotropic perturbation. The second term can be negative,
referring to unstable modes and anisotropic perturbation.
Accordingly, the stability conditions can be determined
from Eq. (14). It is stable at γ− < 0 and unstable at γþ > 0.

(i) The square root is less than the first two terms,
3ð2þ 3ωÞ. Then, the solution is apparently identical
to the stability equation for the existence of an
inflationary phase era of the de Sitter solution [4,6,7].

(ii) Occasionally, the square root might possess insta-
bility modes, i.e., γþ >; 0. In this case, despite the
fact that the inflationary era shall come to an end
once such an unstable mode takes place, the latter
likely sharpens the stability of the isotropic space
[6,7]. It has been concluded that even if such an
unstable mode for the de Sitter perturbation were to

happen, it will be unstable against the anisotropic
perturbation.

Thus, we conclude that for a standard FLRW universe,
the stable modes are characterized by a positive EoS,
ω ≥ 0, especially in the matter-/radiation-dominated eras.
For negative dark energy, the EoS might be negative,
−1 < ω < −1=3, leading to instability with respect to a
small perturbation. The unstable modes exist for negative ω
without including a cosmological constant. This means that
the matter-/radiation-dominated eras are appropriate ranges
to interpret the stability with respect to arbitrarily small
perturbations of the FLRW universe. For a dark energy
equation of state, i.e., negative ω, the universe is likely
unstable against the anisotropic perturbation.

B. FLRW cosmology with quantum corrections

In this section we investigate whether or not the FLRW
cosmology remains stable in quantum theory. By replacing
the classical geodesic with quantum trajectories [37], the
Raychaudhuri equations get quantum corrections [35],

_H ¼ −
3

2
ð1þ wÞH2 −

6ϵ1ℏ2

m2
ð1þ wÞ

×

�
6ð1þ wÞ2 − 81

2
ð1þ wÞ þ 18

�
H4: ð15Þ

This was criticized and accordingly considerable correc-
tions have been proposed [36],

_H ¼ −
3

2
ð1þ wÞH2 −

9ℏ2

4m2c4
ϵð1 − 9ω2Þð1þ ωÞH4; ð16Þ

where the arbitrary constants ϵ1 and ϵ might differ from
each other.
As discussed in the Introduction, we do not intend to

comment on the incorrectness of Eq. (15) [35] and/or
approve the proposal of Eq. (16) [36]. The present work is
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merely devoted to checking the perturbative (in)stability.
Accordingly, one can judge whether this proposal or the
other (or both) are physically (ir)relevant. The authors of
Ref. [35] did not want to give details about the numerical
factor in front of ℏ2 and m2 [37]. Without clear scientific
argumentation, they categorically rejected the proposed
corrections of Eq. (16) [36]! Our goal is the introduction of
a systematic study for the perturbative stability of both
equations by evaluating their (un)stable modes.
Let us assume that the correction part in Eq. (15) is

given as

ξ ¼ −
6ϵ1ℏ2

m2
ð1þ wÞ

�
6ð1þ wÞ2 − 81

2
ð1þ wÞ þ 18

�
:

ð17Þ

By applying perturbations as in Eq. (5), the first-order
perturbation of ω reads

δξ ¼ −270
ϵ1ℏ2

m2
ωδ; ð18Þ

where ωδ≡ −δω. Accordingly, the perturbation of Eq. (15)
becomes

_δH ¼ ð2αH þ 4ξH3ÞδH þ
�
3

2
H2 −

270ϵ1ℏ2

m2
H4

�
ωδ:

ð19Þ

By using Eqs. (10) and (19)—which can be reexpressed,
respectively, as

_δH ¼ λ1δH þ λ2δ; ð20Þ

_δ ¼ λ3δH þ λ4δ; ð21Þ

where λ1 ¼ 2αH þ 4ξH3, λ2¼ð3H2=2−ð270ϵ1ℏ2=m2Þ×
H4Þω, λ3 ¼ −3ð1þ ωÞ, and λ4 ¼ −3Hω—it is straightfor-
ward to determine the second time derivative of Eq. (20),
and by using Eq. (21) we obtain

A1δ̈H þ B1
_δH þ C1δH ¼ 0; ð22Þ

where A1 ¼ 1, B1 ¼ −ðλ1 þ _λ2=λ2 þ λ4Þ, and C1 ¼
−ð _λ1 − λ1 _λ2=λ2 þ λ2λ3 − λ1λ4Þ. Moreover, the constants
of Eq. (22) can be simplified as follows:

B1 ¼ −
�
λ1 þ

_λ2
λ2

þ λ4

�
¼ −

�
2αH þ 4ξH3 − 3Hωþ 2ðαH þ ξH3Þð1 − 4

3
270ϵ1ℏ2

m2 H2Þ
ð1 − 2

3
270ϵ1ℏ2

m2 H2Þ

�
; ð23Þ

where _H=H ¼ αH þ ξH3. Also, the third term becomes

C1 ¼ −
�
_λ1 − λ1

_λ2
λ2

þ λ2λ3 − λ1λ4

�
¼ 2ðαþ 6ξH2ÞðαH2 þ ξH4Þ

−
2ðαH þ ξH3Þð2αH þ 4ξH3Þð1 − 4

3
270ϵ1ℏ2

m2 H2Þ
ð1 − 2

3
270ϵ1ℏ2

m2 H2Þ

− 3ð1þ ωÞ
�
3

2
H2 −

270ϵ1ℏ2

m2
H4

�
ωþ 3Hωð2αH þ 4ξH3Þ: ð24Þ

Again, the general solution of Eq. (22) is

δHðtÞ ¼ β3 exp ½γþt� þ β4 exp ½γ−t�; ð25Þ

where the parameters β3 and β4 can be determined from the initial perturbations. The cosmological constant (Λ) was
omitted, as Ref. [35] claimed that the quantum correction, (17) includes Λ and moreover gives an exact estimation for it.
Then, the modes γ� are given as

γ� ¼ 3

2
H0

�
ð2þ 3ωÞ − 3

270ϵ1ℏ2

m2
H2

0ð11þ 30ωÞ

�
�
6þ ωð22þ 17ωÞ þ 2

3

270ϵ1ℏ2

m2
ð1þ ωÞð−209þ ωð−792þ ωð−665þ 156ωÞÞÞH2

þ 17

�
270ϵ1ℏ2

m2

�
2

ð11þ ωð30þ ωð15 − 4ωÞÞÞ2H4

��
1=2

: ð26Þ
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The first four terms are always positive. Thus, the square root defines (un)stable modes.
Also, for the corrected version (16) we follow the same procedure. First, we assume that the correction term of Eq. (16) is

given as

ζ ¼ −
9ℏ2

4m2c4
ϵð1 − 9ω2Þð1þ ωÞ: ð27Þ

The first-order perturbation in ω leads to

δζ ¼ þ 9ℏ2

4m2c4
ϵωδ: ð28Þ

As given in Eq. (20), the perturbation of Eq. (16) is

_δH ¼ λ5δH þ λ6δ; ð29Þ

where λ5 ¼ 2αH þ 4ζH3 and λ6 ¼ ½ð3=2ÞH2 þ ð9ϵℏ2Þ=ð4m2c4ÞH4�ω. By using Eq. (21), and as in Eq. (22), we can
determine the second time derivative of Eq. (29) as done before but with A2 ¼ 1, B2 ¼ −ðλ5 þ _λ6=λ6 þ λ4Þ and
C2 ¼ −ð _λ5 − λ5 _λ6=λ6 þ λ6λ3 − λ5λ4Þ,

B2 ¼ −
�
λ5 þ

_λ6
λ6

þ λ4

�
¼ −

�
2αH þ 4ζH3 − 3Hωþ 2ðαH þ ζH3Þð1þ 4

3
9ℏ2

4m2c4 ϵH
2Þ

ð1þ 2
3

9ℏ2

4m2c4 ϵH
2Þ

�
; ð30Þ

C2 ¼ −
�
_λ5 − λ5

_λ6
λ6

þ λ6λ3 − λ5λ4

�
¼ 2ðαþ 6ζH2ÞðαH2 þ ζH4Þ

−
2ðαH þ ζH3Þð2αH þ 4ζH3Þð1þ 4

3
9ℏ2

4m2c4 ϵH
2Þ

ð1þ 2
3

9ℏ2

4m2c4 ϵH
2Þ

− 3ð1þ ωÞ
�
3

2
H2 þ 9ℏ2

4m2c4
ϵH4

�
ωþ 3Hωð2αH þ 4ζH3Þ: ð31Þ

As in Eqs. (12) and (22), the general solution reads

δHðtÞ ¼ β5 exp ½γþt� þ β6 exp ½γ−t�; ð32Þ

where the parameters β5 and β6 can determined by the initial perturbations. The modes γ� are given as

γ� ¼ 3

2
H0

�
ð2þ 3ωÞ − 2

9ℏ2

4m2c4
H2

0ð1þ ωÞ

�
�
6þ ωð22þ 17ωÞ þ ℏ2

m2c4
ð1þ ωÞð19þ ωð42þ ωð19þ 39ωÞÞÞH2

0

þ 68

9

�
9ℏ2

4m2c4

�
2

ð1þ 2ωÞð1þ ωþ ω2 þ ω3ÞH4
0

�
1=2

�
: ð33Þ

Also, here the first four terms are always positive. The
(un)stable modes are given by the last term, i.e., the square
root.

III. DISCUSSION AND CONCLUSIONS

The numerical estimation for (un)stable modes plays an
essential role in determining the Universe’s (in)stability.

The analysis of the perturbative (in)stability of the standard
FLRW universe and that from the quantum corrections to
the Raychaudhuri equations is strongly dependent on
the choices for the parameters. We assumed that the
parameters ϵ or ϵ1, ℏ, and the mass m have the values
1=6, 4.135 × 10−15 eV s, and ∼10−32 eV=c2, respectively
[35]. In Ref. [36], the uncertainties in the physical quan-
tities have been discussed. The authors of Ref. [35] did not
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want to even mention how they have evaluated their
parameters!
For various equations of state—including dark

energy and a cosmological constant (negative ω),
matter-/radiation-dominated eras (positive ω), and an
additional one characterized by ω ¼ 5.27—the (un)stable
modes (γ�) are “not defined” for cosmology with a
quantum potential [Eqs. (15) and (16)], i.e., imaginary
values (nonphysical solutions). In the case of physical
solutions, we can estimate the modes of Eqs. (15)
and (16), where their signs directly point to a
(un)stable universe. We conclude that the resulting
modes are simply very unstable and the solutions are
nonphysical.

In inflation and accelerating expansion, the equation of
state is characterized by a negative ω. According to obser-
vations for the unseenUniverse [38],ω ≈ −1. Forω>−1, the
dark energy density slowly decreases as the universe expands,
but it increases forω<−1. Atω¼−1, both equations become
strongly dependent on the choice of the parameters ϵ or ϵ1, ℏ,
and m. It worthwhile to recall that the standard FLRW
universe at vanishing Λ and ω¼−1 is unstable against a
small perturbation. By replacing classical trajectories in such
an Einstein static state (which is nothing but an emergent
Universe) with the quantum ones, the instability becomes
noteworthy. We conclude that the quantum corrections add
additional parameters (ϵ or ϵ1, ℏ, and m) which apparently
heighten the perturbative instability of our Universe.
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