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Recently Graham, Kaplan and Rajendran proposed cosmological relaxation as a mechanism for
generating a hierarchically small Higgs vacuum expectation value. Inspired by this we collect some
thoughts on steps towards a solution to the electroweak hierarchy problem and apply them to the original
model of cosmological relaxation [Phys. Rev. Lett. 115, 221801 (2015)]. To do so, we study the dynamics
of the model and determine the relation between the fundamental input parameters and the electroweak
vacuum expectation value. Depending on the input parameters the model exhibits three qualitatively
different regimes, two of which allow for hierarchically small Higgs vacuum expectation values. One leads
to standard electroweak symmetry breaking whereas in the other regime electroweak symmetry is mainly
broken by a Higgs source term. While the latter is not acceptable in a model based on the QCD axion, in
non-QCD models this may lead to new and interesting signatures in Higgs observables. Overall, we
confirm that cosmological relaxation can successfully give rise to a hierarchically small Higgs vacuum
expectation value if (at least) one model parameter is chosen sufficiently small. However, we find that the
required level of tuning for achieving this hierarchy in relaxation models can be much more severe than in
the Standard Model.
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I. INTRODUCTION

Run I of the LHC has seriously challenged the known
approaches for solving the hierarchy problem. Most nota-
bly, supersymmetry and extra dimensions have not yet
been found. The scale where they can solve the hierarchy
problem has increased significantly and is challenging our
notions of naturalness. While it is still too early to draw a
definite conclusion (and hopes for discovery at Run II are
high), it is nevertheless timely to think of new approaches
to the hierarchy problem. Having a wide range of (new)
solutions to this problem can serve to heighten and widen
our perception of what to look for at the LHC and to also
devise complementary search strategies.
Indeed, recently an interesting new approach for making

progress towards solving the hierarchy problem has been
proposed [1] (for previous work along these lines see
[2–4]). Further improved models based on this idea have
also been constructed [5–8]. The hierarchy problem is
widely accepted as a very difficult problem and, conse-
quently, progress might only be possible in small steps.
One strategy thus amounts to solving only certain aspects
of the hierarchy problem, thereby perhaps providing us
with a piece of the puzzle that is the whole problem. This
is also the path taken in [1] which attempts to solve the
so-called “technical hierarchy problem.”

In this paper we want to examine the model of [1] and
discuss its merits as a piece of the puzzle. To do that we first
set out a number of small steps that we think may help
solving the hierarchy problem. We then study the dynamics
of the model of [1] and determine its behavior in different
regions of parameter space. Given our findings, we then
discuss how the model of [1] relates to the hierarchy
problem.

A. Making progress towards solving
the hierarchy problem

What can be considered progress towards solving the
hierarchy problem? Here we want to discuss this issue in
the context of an effective description valid up to a scale, Λ,
that we want to embed into a more complete and funda-
mental theory.
The hierarchy problem is closely related to the issue of

fine-tuning and is, in essence, a question about when a
number can be “naturally” small and where this small
number originates from. One immediate observation is that
we can only meaningfully talk about “smallness” for
dimensionless numbers. In theories like the Standard
Model (SM), there are many parameters from which we
can form dimensionless numbers, e.g. ratios of fermion
masses. Some of them, such as the ratio of the electron to
the top mass, are indeed worryingly small and one may
desire an explanation.
In the context of the hierarchy problem the question

applies to very specific dimensionless numbers. In particu-
lar, we do not want to have to use any unexplained small
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values for parameters at the fundamental level, i.e. at the
UV scale. Absent a solution in a UV complete theory, we
can only apply this requirement to our effective theory.
Therefore, we would like to apply it to all dimensionless
coupling constants and ratios between dimensionful cou-
plings and powers of the scale Λ ≫ v ¼ 246 GeV.
Let us begin by giving an overview of the possible paths

via which we can make progress. The first category of
progress is the straightforward improvement of the small-
ness/tuning of the numbers themselves. A model can be
considered an improvement over the SM if no or only little
tuning of its parameters is necessary at the UV scale. In
particular, one can ask
(1) Does the model require dimensionless quantities at

the UV scale Λ that are ≪ 1?
(2) If yes, is the product of all small dimensionless

parameters < v2=Λ2?
Progress is made if the answer to any one of the above
questions is negative.
Since we know (or assume) that the theory is not

complete, we can ask additional questions. In particular,
we can look at what happens when, in one form or another,
we try to extend the model. We could do this by just
considering a higher value of the UV scale, or by the
inclusion of new degrees of freedom. A model is then
attractive, from the point of view of the hierarchy problem,
if it exhibits a mild scaling behavior and has nice embed-
ding features. So, we can ask
(3) If we change Λ to a larger scale Λ0 can we keep v (or

any other relevant low-energy parameter) fixed
without having to adapt any UV parameters by
(large) powers of Λ0=Λ?

(4) If adaptation of the parameters is necessary, is it less
than ðΛ0=ΛÞ2?

(5) Is there a prescription for extending the model by
additional fields with massesM > Λ without requir-
ing the original parameters to be changed by orders
of magnitude?

Further, as extremely small nonvanishing numbers are
difficult to explain, one could aim to replace them by
zeros. In general, one can try to improve the structure/
parametrization of the Lagrangian to facilitate embedding.
We therefore would also like to consider the following
options:
(6) Can (some of) the small numbers in the model be

replaced by zeros, while keeping low-energy param-
eters of interest (v in the case of the hierarchy
problem) intact? (Note, that we do not require an
explanation for these zeros.)

(7) Vice versa, can we explain a vanishing or extremely
small (≪ v) Higgs mass parameter?

(8) Can the desired smallness of the Higgs be achieved
by choosing one (or at most only a few) of the
dimensionless input parameters to be small? For
example, is the Higgs vacuum expectation value

(vev) proportional to a coupling parameter of the
theory (whose smallness then gives the small
Higgs vev)?

(9) Is the Lagrangian of the theory generic with respect
to all (approximate) symmetries of the system, i.e.
are all terms that are allowed by symmetries present
in the Lagrangian and are they of the same order of
magnitude? In case of approximate symmetries, do
all symmetry breaking terms have the same size?

While the above list is not exhaustive, we think it can be
used as guidance towards a solution to the hierarchy
problem. In particular, the nine points introduced above
can be used to assess to what extent a model can be
considered an improvement over the SM with respect to the
hierarchy problem. For details on this we refer readers to
Sec. II. Ultimately, we will apply these criteria to the
paradigm of “cosmological relaxation” [1]. Readers mainly
interested in the model of cosmological relaxation may skip
directly to Sec. III.

II. SMALL STEPS TOWARDS A SOLUTION TO
THE HIERARCHY PROBLEM

In this section we discuss possible pathways towards
solving the hierarchy problem in more detail. To begin, we
make our notion of tuning more precise. Using this
understanding of tuning we then discuss the potential
improvements in more detail. Where possible, we also
try to give simple examples.

A. Fine-tuning

To set the stage for a discussion of the steps listed in the
Introduction, let us first state what we consider as fine-
tuning (for an interesting discussion and review of natu-
ralness and fine-tuning see [9]).
Consider the space of the fundamental input parameters,

i.e. all parameters that are consistent with the symmetries
and field content of the system. A measure of fine-tuning is
then given by the fraction of parameter space reproducing
qualitatively similar physics to what is observed (see also
[10]). If this fraction is very small the model is fine-tuned1

(see Fig. 1).
Let us look at a parameter that is, in some sense, small

(or otherwise peculiar) at the low-energy scale,2 e.g. the
Higgs vev, which we will use, henceforth, for concreteness,
but our arguments hold more generally, e.g. for the case
of the flavor problem. We can now ask ourselves the
following: Which fraction of the fundamental parameter
space (at some high energy scale) leads to a Higgs vev of a

1This is essentially the notion of wanting an explanation for
any small numbers [11,12].

2It is, for example, trivial to generalize to the case where a low-
energy parameter takes some very large value. But more generally
one could simply require that the low-energy parameter should
sustain physics that is qualitatively similar to what we observe.
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size that is observed or smaller?3 We would then measure
the fine-tuning in the following way. Let α1;…; αn ∈
f−L;Lg with L ∼Oð1Þ be the space of all fundamental,
scaled to be dimensionless, input parameters consistent
with the symmetries and field content of our system. The
total volume in parameter space is then,

Voltotal ¼
Yn
i¼1

Z
L

−L
dαi: ð1Þ

Only a volume,

Volv≤v0 ¼
Yn
i¼1

Z
L

−L
dαiθðv0 − vðαiÞÞ ð2Þ

would lead to a vev that is smaller than the physical value
v0. The ratio then corresponds to a measure of the amount
of fine-tuning required:

F ¼ Voltotal
Volv≤v0

: ð3Þ

A high degree of fine-tuning can manifest itself in
different ways. For example, the model is highly fine-
tuned if one parameter has to take very specific values.
Alternatively, a high level of fine-tuning is also observed if
two or more parameters are required to take somewhat
specific values. See also Fig. 1.
Comparing theories with different numbers of free

parameters is always rather difficult. However, the amount
of fine-tuning as defined above will typically increase with

the number of parameters. This can be easily understood:
Unless additional parameters are free to take values in their
entire range, they will cause the ratio (3) to decrease,
thereby increasing the fine-tuning.
This could be dealt with in two ways:
(i) This increase in the fine-tuning measure F with the

number of parameters could actually be taken as a
desirable feature. It penalizes complicated or
“baroque” constructions with many parameters.
One could therefore take F as some form of
combined measure of fine-tuning and “baroque-
ness,” which one would like to minimize (see [13]).

(ii) One could also simply multiply by a factor ∼1=Ln to
account for this (which, of course, entails a choice
of L).

B. Progress towards solving the hierarchy problem

Equipped with the picture of fine-tuning above, let us
now proceed to a discussion of our previous collection of
steps that may help with solving the hierarchy problem.
Ad (1) and (2): It is clear that any viable model that has

no small numbers does indeed solve the hierarchy problem
up to a scale, Λ. However, even if the model requires small
parameters, improvement compared to the SM can be
achieved if these parameters are less tuned than the
equivalent tuning of v2=Λ2 in the SM. Thus, we would
consider it a step forward if the small parameters do not
have to be as small as v2=Λ2.
However, one has to be careful once there is more than

one small parameter: if the product of all small parameters
is again of the order of v2=Λ2 or smaller, it remains
questionable whether any progress has been achieved.
The level of tuning required, according to our definition,
is then as high or even higher than in the SM (cf. the left-
hand side of Fig. 1).
Ad (3) and (4): When trying to embed our theory, an

obvious question arises: what happens to the allowed
(dimensionless) parameter space when we increase the
cutoff scale as Λ → Λ0 > Λ (see Fig. 2)? If the allowed
parameter space remains constant the amount of fine-tuning
is independent of the cutoff scale. On the other hand, if the
allowed parameter space shrinks, fine-tuning worsens as we
try to approach higher energy scales. This is shown in
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FIG. 2. When trying to increase the cutoff scale, fine-tuning
may become worse.
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FIG. 1. Sketch of what appears to be natural versus situations
one may consider fine-tuned.

3With the latter choice, we avoid any tuning that would arise
from simply having measured the vev to a high degree of
precision. Nevertheless, in some cases one may also want to
impose a restriction on the lower values, e.g. when the qualitative
behavior changes. For example, for a Higgs vev smaller than the
QCD scale, electroweak symmetry would be broken by the
condensates that are usually responsible for chiral symmetry
breaking. A mechanism that produces such small Higgs vevs for
nearly all of the available parameter space may also not be
satisfactory. An alternative, and perhaps more precise possibility,
would be to take the volume of parameter space for which the
measurable observables at low energies lie within a reasonable
factor, say a factor of 2, of the observed values.
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Fig. 2 and corresponds to the situation of the Higgs in the
SM (as long as the situation remains perturbative; if the
anomalous dimension, for some reason, approaches 2 it
could remain constant [14]).
To give an example of this, let us consider the SM

extended by a right-handed neutrino. In particular, let us
require the mass of the right-handed Majorana neutrino
measured at the low ¼ energy scale k to be equal to that of
an electron: MRðk ≈ 0Þ ¼ meðk ≈ 0Þ. As the fundamental
dimensionless input parameters we have the Yukawa
coupling YðΛÞ and the Majorana mass ϵRðΛÞ ¼ MRðΛÞ=Λ.
Here we want to study how the input parameters have

to be adapted for different UV scales, Λ. As an example,
let us takeΛ ¼ v andΛ0 ¼ 100Λ ¼ 100v. To get the correct
electron mass in a theory with cutoff Λ requires YðΛ ¼ vÞ∼
10−6 and ϵRðΛ ¼ vÞ ∼ 10−6. However, if we increase the
UV scale to Λ0 (while keeping the vev of the Higgs field v
constant),4 the Yukawa coupling only has to be adapted
logarithmically to preserve the observed low scale mass and
we still haveYðΛ0Þ ∼ 10−6. For theMajoranamass to remain
the same we now need ϵRðΛ0Þ ∼ ϵRðΛÞΛ=Λ0 ∼ 10−8. So for
the Majorana case significant adaptation is required. In a
situation akin to the electron case, it seems that it is easier to
establish a large hierarchy.5

The difference between the two cases is of course that
one of the input parameters has a nonvanishing mass
dimension. In the UV, their renormalization group (RG)
behavior with respect to the scale k is of the form,

∂txðtÞ ¼ −dxxðtÞ; t ¼ logðkÞ: ð4Þ

We then have for the dimensionless parameters YðkÞ and
ϵRðkÞ ¼ MRðkÞ=k

dY ≈ 0; dϵR ≈ 1; ð5Þ

i.e. the scaling dimensions in the UV differ. In the above
example, and in many perturbative situations, this simply
means that we want to have truly dimensionless input
parameters at the UV scale.6 One such example, in the
context of the electroweak hierarchy problem, is techni-
color [15–18]. Since there are no fundamental scalars or

other dimensionful quantities (in the UV), all couplings
have a scaling dimension of zero.
However, an improvement over the SM is already

achieved when the scaling dimension (e.g. via a significant
anomalous dimension in the UV) of the UV input param-
eters is reduced. For the Higgs field mass parameter in the
SM, the dimensionless UV input quantity is

ϵHðΛÞ ∼
m2

H

Λ2
: ð6Þ

The dimensional running (i.e. neglecting small anomalous
dimensions) of ϵH ¼ m2

H=k
2 is thus given by

∂tϵH ¼ −dϵHϵH; dϵH ¼ 2: ð7Þ
So in that sense, progress compared to the SM is already
made when the necessary input parameters have scaling
dimension less than 2.
In addition, both couplings discussed in the above

example are equally natural in the context of ’t Hooft’s
definition [19]. In the first case, a vanishing Yukawa
coupling allows one to do independent right-handed chiral
rotations for the electron, while in the case of a vanishing
Majorana neutrino mass the corresponding lepton number
is conserved. Thus, while it is technically natural to have
both quantities small, a small electron mass is nevertheless
preferable from a tuning point of view.
So far we have only considered situations where the

measured quantity of interest in the IR is essentially the
same as the input parameter in the UV. Yet, in many cases it
depends on several of the input parameters of the theory.
Let us consider the simple example of a scalar field with a
potential

VðϕÞ ¼ 1

2
m2ϕ2 − κϕ: ð8Þ

In this case, the vev is given by

hϕi ¼ κ

m2
: ð9Þ

We want to consider a situation where we have a small
fixed hϕi.
Now we have to look at the scaling of both parameters.

In absence of any knowledge regarding the origin of the
parameters κ and m2, we have to assume that they scale
according to their naive dimension. The dimensionless
input parameters are

α1 ¼
m2

Λ2
; α2 ¼

κ

Λ3
: ð10Þ

For the vev we therefore find,7

4This, of course, also requires tuning, but our example
demonstrates that a small Majorana mass would be an indepen-
dent tuning which is more severe than say an additional chiral
fermion.

5As an elaboration of our example, one could make the
argument that for a theory valid up to the Planck scale Λ ∼
1018 GeV a TeV scale Majorana neutrino is actually somewhat
more tuned than a 0.1 eV Dirac neutrino with imposed lepton
number conservation, since MR=Λ ∼ 103 GeV=ð1018 GeVÞ ∼
10−15 whereas Y ∼mν=v ∼ 10−12.

6If we go beyond the perturbative regime and consider a
potential nontrivial UV fixed point of the renormalization group it
simply means that the parameters with UV scaling dimension 0
seem preferable from the hierarchy point of view.

7Since there are no interactions, the parametersm2 and κ in the
infrared are the same as in the UV.
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hϕi ¼ α2
α1

Λ: ð11Þ

Increasing Λ → Λ0, while keeping hϕi ¼ v fixed, we need
to reduce α2=α1 by a factor Λ=Λ0 and the fine-tuning
increases accordingly.
However, the situation can change when we have further

information. For example, imagine we have a mechanism
that determines κ from some independent scaleM such that
κ ¼ M3. Most important,M is fixed whenΛ is increased. In
this case it is fairly straightforward to explain a very small
hϕi. One just needs a large enough Λ. Alternatively, if
there is a mechanism that produces a small and cutoff-
independent m2 (or if we have measured m2 to be small)
the situationmay actually becomeworse. It is thus important
to knowwhich parameters can be treated as free parameters.
Ad (5): So far we have simply and very naively increased

the UV scale of the theory. A perhaps more meaningful
change to the theory occurs when we change the field
content by including additional particles, possibly with a
mass M > Λ. This is indeed what is happening when one
“integrates in” degrees of freedom to embed the model in a
theorywith a higherUV cutoff (or in aUV complete theory).
Adding such additional fields is of interest as, by a

suitable choice, one may improve the fundamental UV
behavior of the Higgs. For example, in string theories,
higher string modes actually render the theory finite. Here,
however, we are not looking at such a complete theory but
are trying to make progress in the context of an effective
theory. Thus, we have to ask, what would make such an
embedding easier and safer from a fine-tuning point
of view?
One possibility is that there is a well-defined prescription

to add combinations of fields with massM > Λ, coupled to
the Higgs and other relevant fields (otherwise it is trivial),
such that no (or little) adaptation of the UV input param-
eters of the model, without the fields, is needed.
The presence of a symmetry, as required by ’t Hooft,

usually gives exactly such a prescription. A famous
example is, of course, supersymmetry [20–23] [24–29].
If we add a supersymmetric multiplet that does not
introduce any additional sources of supersymmetry
(SUSY) breaking (including spontaneous breaking), then
the soft parameters of the Higgs and its vev are only
changed by Oð1Þ factors. This holds, even if the multiplet
in question is very heavy.
However, one has to be careful when breaking the

symmetry. In the case of SUSY, only so-called soft breaking
is allowed. This is such that no new sensitivities to the cutoff
or the mass scales of new particles are introduced. In
particular, to prevent quadratic divergences from reappear-
ing, SUSY should only be broken by soft mass terms and
soft couplings of three scalars [30–35] (see also [36]). Note
that couplings are more dangerous and, in general, only a
subset of interactions is allowed, if any at all.

This difference can also be seen in the example Eq. (8)
which features a Z2 symmetry broken by the source term
∼κϕ. Adding a term ∼ξϕ3 we get a correction to κ, Δκ ∼
ξΛ2 that is proportional to the cutoff squared, indicating
that the coupling ξ does not correspond to a soft breaking.
The same holds if we introduce couplings like ϕχ2 to a new
field χ.
We hence arrive at another principle which helps in

defining progress towards a solution of the hierarchy
problem: If we consider a theory with a small parameter
that is technically natural (i.e. setting this parameter to zero
restores a symmetry), it is preferable for this symmetry
to be broken softly. Otherwise we risk reintroducing prob-
lems when embedding the model in a more complete theory.
Ad (6) and (7): Perhaps it is simpler to explain an exact

zero rather than a very small number. For example, in the
Standard Model, we could ask whether we can set the
Higgs mass parameter in the UV to be exactly zero and still
obtain a phenomenologically acceptable Higgs vev. This is
the idea behind models based on the Coleman-Weinberg
mechanism [37]. Of course, in the SM this does not work,
but can be made viable by adding an additional hidden
sector (see, e.g. [38–46]).
While one can argue that there is no exact symmetry to

justify this (scale invariance is anomalous; but one could
still argue for classical scale invariance), it would still
correspond to a well-defined prescription for the effective
model [43,47,48]. This is clear in dimensional regulariza-
tion because the RG equation for the Higgs mass parameter
has a fixed point where the mass parameter vanishes (this
holds similarly for other scalar field mass parameters).
Even in explicitly scale-invariance-breaking regularization
schemes, it corresponds to a selection of a well-defined
hypersurface in the space of all couplings (see also [48]). It
is at least possible that a selection of such a hypersurface
may be easier to justify in a more complete theory than a
very small parameter.
Vice versa to (6), a mechanism that allows one to set

problematic parameters to zero, or close to zero, may help.
Indeed it could, for example, be the starting point for a
model based on scale invariance.
Ad (8) and (9): Fine-tuning is fundamentally a problem

of parametrization. Since we do not (yet) know the measure
on the parameter space, one could always choose a non-
linear parametrization that blows up the desired region in
parameter space and/or shrinks the undesirable ones. This
can be illustrated by the example of QCD. Parametrizing
the nucleon masses in terms of the QCD scale ΛQCD, i.e. we
have mnucl ∼ ΛQCD, QCD looks horribly tuned since
ΛQCD=MP ∼ 10−19 ≪ 1 is required. However, in terms of
the QCD coupling, we have

ΛQCD ∼MP exp

�
− 8π2

b0g2ðMPÞ
�
; ð12Þ

MUSINGS ON COSMOLOGICAL RELAXATION AND THE … PHYSICAL REVIEW D 93, 063522 (2016)

063522-5



and g ∼ 1 gives us the right QCD scale (b0 is the β-function
coefficient). No significant tuning is required anymore.
Similarly, technicolor achieves such a rescaling for the
electroweak vev.8

Importantly, such a rescaling seems easier to achieve if
the quantity for which we have measured a small value is
related in a simple manner to the fundamental input
parameters, most notably by being proportional to some
power of this input parameter. For example, in the case of
QCD the nucleon mass is proportional to the QCD scale
itself.
In contrast, such an embedding seems much more

difficult if the relevant region in parameter space has a
complicated, nontrivial shape—potentially even depending
on several input parameters in a nontrivial way. Indeed, this
is often considered to be what makes the hierarchy problem
especially hard: The Higgs vev (or the required negative
Higgs field mass parameter) requires a very nontrivial
cancellation between a combination of the different masses
and coupling parameters. This is schematically illustrated
in Fig. 3. In contrast, one could imagine that it is easier to
find an embedding that corresponds to the situation
indicated in the middle or the right panel of Fig. 3. In
the middle panel, one parameter can be chosen to be exactly
zero as suggested by step 6. Alternatively, step 8 suggests
the parameter could be small but nonvanishing. Most
importantly, it is one parameter that is small and not a
complicated combination of parameters. In both cases, the
allowed parameter region is small (or even vanishing) but it
may be easier to find an embedding.
If the observed small parameter can be related to an

approximate symmetry, as in ’t Hooft’s definition, such a
simple relation can typically be achieved. For example, the
electron Yukawa breaks the chiral symmetry for the
electron and the mass is, therefore, proportional to it. It
does not fully explain the smallness of the electron mass,
but one can now look for a reparametrization of this single

small parameter [e.g. by making it exponential as in models
with extra dimensions and brane-type models [49–51]; or
models where the Yukawa coupling is generated via some
(stringy-) instanton effect [52,53]; or by generating it from
the power of some smallish parameter, as in a Froggatt-
Nielsen mechanism [54]].
Having a simple functional dependence of the desired

small quantity on the fundamental input parameters at the
UV scale—preferably on one (still small) quantity—is what
we would associate with, what is often termed, “a solution
to the technical hierarchy problem.” We stress that this is
taken to refer to a simple parametrization at the UV scale in
some physically preferred basis and regularization at the
high scale. Indeed, if the embedding is simple in all
regularization schemes, it may be even easier to achieve
an embedding.
Let us stress the importance of having a fixed para-

metrization and a fixed regularization. Leaving the choice
of parametrization and regularization free, it is indeed
always possible to obtain a parametrization such that the
physical Higgs vev in the SM is essentially proportional to
some small renormalized input parameter at the UV scale
[14]. The reason for this is that a vanishing Higgs field mass
parameter corresponds to a second order phase transition
and one can simply define a suitable input parameter that
measures the distance to this phase transition (for details on
how this works see the Appendix). This same parameter
also measures the explicit breaking of scale invariance in
the SM.9 In this sense, one could argue that (approximately)
’t Hooft’s naturalness criterion is fulfilled with respect to
scale invariance. The question is then, however, why the
parameter is small in a given physical regularization
scheme and parametrization, i.e. in a desired embedding,
and in particular one also still has to explain the smallness
of the number itself. One should keep in mind that the latter
always has to be the ultimate goal.
To summarize, progress towards solving the hierarchy

problem can be made by constructing a model where the
Higgs vev has a simple functional dependence on one or
few small parameters in a physically preferred basis. When
realizing a simplification of the embedding along these
lines, one should, of course, try to avoid introducing
additional problematic choices and tunings. Specifically,
one should ensure that the potential is generic in the sense
that all parameters consistent with the symmetry should
have the same order of magnitude. In case of an approxi-
mate symmetry, one should similarly require that all
symmetry breaking terms are of the same order.
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L
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L-L 1 L-L 1
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L
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difficult easier? easier?

FIG. 3. Sketch of different ways in which a parameter region
can be small. The middle and right panels show situations which
are still “tuned” but one can hope for an easier embedding.

8Indeed this rescaling has its root cause in the scaling
dimension of g being ¼ 0 in the UV. However, a vanishing
scaling dimension is not always sufficient to address all issues of
unnaturally small numbers. For example, the electron Yukawa
coupling does have scaling dimension zero in the UV but we
would still like to understand its value ∼10−5.

9While scale invariance is anomalous, we think that anomalous
breaking terms can, in many cases, be separated from non-
anomalous ones. For example, it is widely accepted that the axion
obtains its potential from a purely anomalous breaking. Gravity
effects aside, no (large) explicit breaking is required just because
the Uð1Þ symmetry is anomalous. In any case, anomalous scale-
invariance breaking effects in the SM from QCD, etc. are small.
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Finally, let us remark that while a generic potential
makes an embedding definitely easier, it is not absolutely
necessary. Nonperturbative effects and, in particular,
anomalies, are known to produce nongeneric poten-
tials [55].

1. Summary

In this section we collected a set of features of effective
field theories that can be considered progress towards
solving the hierarchy problem. Ultimately, we want to
apply these criteria to the paradigm proposed by [1].
However, before we do so, we need to understand the
model of [1] in some detail. Thus, by studying the
dynamics of the model we will derive when and how a
small Higgs vev can be generated.

III. THE DYNAMICS OF COSMOLOGICAL
RELAXATION

The nature of the hierarchy problem lies in the relation
between the fundamental parameters of a theory and the
observable quantities; of particular significance for this
discussion is the electroweak scale. Here we investigate
such relations for the model proposed in [1].

A. Model setup

To properly define our conventions, let us write down the
potential for the Higgs and axion fields,

Vðϕ; hÞ ¼ − 1

2
ðM2 þ gϕÞh2 − c1gM2ϕþ c2

2
g2ϕ2

þ λ

4
h4 − κjhj cos

�
ϕ

f

�
ð13Þ

where h is the Higgs field and is taken to be real, i.e. it
represents the vev, and ϕ is the axion field.10

Note that, in comparison with [1], we have changed a
few sign conventions in order to have the field ϕ rolling
from large negative values towards positive values.

M denotes the UV scale up to which the model should be
valid and f is the axion decay constant. Moreover, we have
explicitly written down the Higgs field dependence of the
prefactor of the axion potential. Following the conventions
of [1] we set

Λ4 ¼ κjhj; ð14Þ
with κ being a model-dependent coupling. (In the model
where ϕ is the QCD axion κ is fixed to be m2

πf2π=v.)
Importantly, we explicitly included two constants, c1 and
c2, to make the prefactors in front of generic structures
evident. Finally, we also include the stabilizing quartic
coupling for the Higgs field, as assumed in [1].
The important idea of this model can be summarized by

the following: Initially, one assumes that the axion ϕ starts
at a negative field value, ϕi ¼ −Oð2ÞM2=g. The Higgs
field can take any value, but will quickly settle in its initial
minimum at h ≈ 0. Thus, for simplicity, we can take hi ¼ 0.
When Hubble friction becomes subcritical, the axion will
start to evolve and roll towards larger field values. Once it
crosses ϕ ¼ ϕc ¼ −M2=g the mass term for the Higgs
becomes tachyonic and the Higgs potential takes on its
usual Mexican-hat form. Thus, for ϕ > ϕc the field point
h ¼ 0 becomes unstable and the Higgs will fall into its new
minimum at the bottom of the potential.11 This, in turn, has
consequences for the axion evolution: Once h ≠ 0 the term
∼jhj cosϕ=f will act as a set of periodic barriers for the
axion. If these barriers are high enough, the axion evolution
will stop. The Higgs will remain in its minimum at the
bottom of the Mexican hat with a vev, hhi, which can, in
principle, be much smaller than the cutoff of the theory M.
This would solve the hierarchy problem in that hhi

M is
sufficiently small.
In [1] a set of constraints on the model parameters was

also specified. The constant g, the mass parameter for the
field ϕ, should satisfy

g < H; ð15Þ

g <
H2

M2
Mpl; ð16Þ

for ϕ to be rolling slowly. One also requires the energy
density in the axion sector to be subdominant to the energy
density of the inflation sector, i.e.

H >
M2

Mpl
: ð17Þ

Finally, for the evolution of ϕ to be dominated by classical
rolling, rather than quantum “jumps,” one has

10The model given by (13) can be understood as a theory of a
field ϕ with an axionic shift symmetry ϕ → ϕþ 2πf, which is
broken by further potential terms of the form VðgϕÞ. Note that it
is problematic to identify ϕ with a pseudo-Nambu-Goldstone
boson (pNGB). In that case the shift symmetry ϕ → ϕþ 2πf is
gauged and any breaking would lead to inconsistencies [56]. As a
result the potential VðgϕÞ should still be periodic with period
2πf. The field range is hence reduced to 2πf preventing the
relaxation mechanism from working successfully. There are two
ways to avoid this conclusion. For one, inconsistencies in the
form of a breakdown of perturbative unitarity could be tolerated if
they only occurred for energies well above the cutoff of the theory
[57]. Alternatively, the field ϕ should not be interpreted as a
pNGB, but rather an axion with a multibranched potential [58]
(see [59,60] for earlier work on such theories). In this framework
a theory with a mass term and interactions for ϕ can be made
consistent with an underlying shift symmetry ϕ → ϕþ 2πf.

11A similar effect is employed in hybrid inflation [61,62].
There, once the inflaton has rolled past a particular field value, the
mass term of a second “waterfall” field becomes tachyonic
triggering the end of inflation.
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H <
V 0

H2
⇒ H < ðgM2Þ1=3: ð18Þ

We will ensure that the conditions (15)–(18) are satisfied in
all the numerical examples studied in the remainder of our
discussion. Since we are only interested in the mechanisms
itself and not in the particular numerical values we will,
however, not try to reproduce a realistic Higgs vev.
It will also be useful to introduce the shifted axion field

~ϕ ¼ ϕ − ϕc and ϕc ¼ −M2

g
: ð19Þ

Thus, in terms of ~ϕ the potential is given by

Vð ~ϕ; hÞ ¼ − 1

2
g ~ϕh2 − ðc1 þ c2ÞgM2 ~ϕþ c2

2
g2 ~ϕ2 þ λ

4
h4

− κjhj cos
�
~ϕþ ϕc

f

�
þ
�
c1 þ

c2
2

�
M4: ð20Þ

B. Single-field approximation

The typical mass scale for the axion, or axionlike
particle, is going to be very small. Therefore, the
dynamics for the Higgs field will evolve much faster
than those of the axion. We can assume, as a rough
approximation, that the Higgs field takes its minimum
position instantaneously and thus, may consider the
effective potential, VðϕÞ.
Moreover, we can assume that the cosine potential only

constitutes a small effect. We can then easily find the
minimum for the Higgs,

hhi ¼

8><
>:

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gðϕ−ϕcÞ

p ffiffi
λ

p ¼
ffiffiffiffi
g ~ϕ

p ffiffi
λ

p ϕ ≥ ϕc; ~ϕ > 0

0 ϕ < ϕc; ~ϕ < 0

: ð21Þ

Thus, we obtain the effective potential for the axion field,

Vð ~ϕÞ ¼

8><
>:

1
2
g2ðc2 − 1

2λÞ ~ϕ2 − gM2ðc1 þ c2Þ ~ϕ − κ
ffiffiffiffi
g ~ϕ

p ffiffi
λ

p cos

�
~ϕþϕc
f

�
þ const ~ϕ > 0;

1
2
g2c2 ~ϕ

2 − gM2ðc1 þ c2Þ ~ϕþ const ~ϕ < 0:

ð22Þ

Different values of the constants then result in different
behaviors of the potential. For ~ϕ < 0:

(i) With c2 < 0, the potential has an instability as
~ϕ → −∞. This is problematic, as the relaxation
mechanism requires the field ~ϕ to start at a negative
value. Instead of rolling towards larger field values,
the axionic field exhibits a runaway behavior to-
wards ~ϕ → −∞. This is avoided if we take c2 > 0.

(ii) For c1 þ c2 < 0 the potential has a minimum at
~ϕmin < 0. This is again undesirable. The relaxation
mechanism requires ~ϕ to roll from a negative initial
value to at least ~ϕ ¼ 0. In particular, ~ϕ should not be
trapped in a minimum, ~ϕmin < 0. Thus, we re-
quire c1 þ c2 > 0.

Let us also note a couple of features of the polynomial part
of the potential (i.e. ignoring the cos-term) for ~ϕ > 0.
(iii) Now, the factor in front of the quadratic term is

different. This arises from the fact that the energy is
lowered when the Higgs acquires a nonvanishing
vev. For c2 < 1

2λ,
12 this leads to an unstable direction

as ~ϕ → ∞. This is not a fundamental problem, since
it is desirable to end up in a metastable minimum.
However, if the Hubble friction is insufficiently

large, i.e. the Hubble constant is too small, the field
can never stabilize;

(iv) In contrast, for c2 > 1
2λ, the polynomial potential for

~ϕ has a global minimum, for some ~ϕ > 0, and there
is no danger of runaway behavior.

This observation persists when we include the cosine-term
in the potential. For c2 > 1

2λ, the envelope of the potential is

convex in the region ~ϕ > 0, while for c2 < 1
2λ it is concave.

This is shown in Fig. 4.13

While the overall envelope of the potential is governed
by the polynomial parts, the oscillatory part is crucial for
the detailed dynamics of the fields ~ϕ and h—and hence for
the success of the model. In particular, depending on the
size of the oscillatory terms the behavior of the fields will
be qualitatively different. We identify three regimes:
(1) If κ is sufficiently large compared to the slope

generated by the rest of the potential, the effective
potential starts exhibiting a series of pronounced
oscillations as soon as ~ϕ ¼ 0 is reached. This is
shown in Figs. 4(a) and 4(b). We note, however, that
this is to some degree an artifact of the one-field

12If c2 is generated by a perturbative quantum correction one
would expect this to be the case.

13From the figure one also notices that, for field ranges of order
∼ϕc, the quadratic term can never be fully neglected, since

g2ϕ2
c ∼ gM2ϕc:
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approximation. As we will discuss below the full
two-field model exhibits minima even before ~ϕ ¼ 0
is reached.

(2) With κ small compared to the (negative) slope of the
potential, the axion potential first needs to develop,

i.e. the factor
ffiffiffiffiffiffiffiffiffiffi
g ~ϕ=λ

q
in front of the cosine has to

grow first before pronounced minima and maxima
appear. This can be seen in Fig. 4(c). However,
typically, the oscillatory phase does not last forever:
Since the quadratic term yields a linearly increasing
slope, while the axion potential only grows like a
square root of ~ϕ, the oscillations die down and the
potential smoothly increases or decreases.

(3) Finally, for some parameter values, the oscillatory
contribution is never big enough to produced explicit
maxima and minima. Such an example is shown in
Fig. 4(d).

C. Properties with respect to the hierarchy problem

Having identified these regimes, we can investigate their
properties with respect to the hierarchy problem. We will
use the single-field approximation where suitable, but also
turn to the full two-field dynamics. This will be important,
as we will see the two-field dynamics can depart from the
results obtained using the single-field approximation in
phenomenologically interesting situations.

During our initial analysis, we will assume that ~ϕ is
slowly rolling, i.e. that its velocity tracks the slope of the
potential,

_~ϕ ¼ V 0ð ~ϕÞ
3H

; ð23Þ

and leave the discussion of slow-roll conditions until later.
If this situation is (approximately) fulfilled, the evolution of
~ϕ stops as soon as the slope becomes positive.

1. Regime (1)

In the previous section we found that the effective single-
field potential for ~ϕ exhibits different qualitative features
depending on the parameters of the model. Here we begin
by analyzing regime (1) as described in Sec. III B.
Initially, let us remain in the setting of the single-field

approximation. Here, the oscillatory contributions to the
axion potential become immediately significant once
~ϕ > 0. In particular, the first oscillation of the axion
potential will already create a maximum. Accordingly,
the potential will have a positive slope somewhere in the
region,

0 ≤ ~ϕ ≤ 2πf; ð24Þ
and the field stops in the corresponding minimum in this
field range. The Higgs vev in this regime is then given by

(a) (b)

(c) (d)

FIG. 4. Plots of the effective axion potentials demonstrating the different regimes when changing κ and λ for c1 ¼ 4.0, c2 ¼ 1.0,
M ¼ 0.001Mpl, g ¼ 0.002M and f ¼ 80M.
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hhi ¼
ffiffiffiffiffiffi
g ~ϕ
λ

s
∼

ffiffiffiffiffi
gf
λ

r
; ð25Þ

where the last approximation holds unless the position of
the minimum is somewhat fine-tuned. For small enough
g ≪ λM2=f, we arrive at a value for the Higgs vev which
lies well below the cutoff M. A small g is absolutely
necessary for hhi ≪ M as we typically have f > M. If this
holds, this mechanism appears suitable as a candidate
solution to the hierarchy problem.
However, the above estimate for hhi was obtained in

the single-field approximation. Yet, in this regime this
approximation does not faithfully represent the complete
dynamics and we need to turn to the full two-field
model. We will find the following difference between
the two approaches. In the single-field approximation
the Higgs is assumed to remain at h ¼ 0 for ~ϕ < 0, but
this will not be the case in the full two-field model. To
be specific, once the axion starts rolling down its
potential, the Higgs will not remain at exactly h ¼ 0.
As the cosine-term in the potential (20) is linear in h, it
shifts the true minimum of the potential for h away from
h ¼ 0. Thus, while ~ϕ is rolling down its potential, the
Higgs will be displaced from h ¼ 0 (see e.g. Fig. 5).
This Higgs displacement is not included in the one-

field discussion above and, as we will see, it leads to
departures from the behavior of the single-field model.
In particular, the amplitude of h can become so large
that the cosine barriers for ~ϕ, which grow like κjhj,
become large enough to stop the axion. In fact, this can
occur in a regime where ~ϕ < 0, see Fig. 5(a), i.e. in a
regime where the Mexican-hat potential for the Higgs
has not yet developed.
To analyze this situation quantitatively, let us focus on

the part of the potential (20) depending on h:

V ⊃ Vh ≡− 1

2
g ~ϕh2 þ λ

4
h4 − κjhj cos

�
~ϕþ ϕc

f

�
: ð26Þ

The Higgs field will track the minimum of this potential
which, for both h < 0 and h ≥ 0, is given by

∂V
∂h ¼ 0 ⇒ −g ~ϕjhj þ λjhj3 − κ cos

�
~ϕþ ϕc

f

�
¼ 0: ð27Þ

Note that for cos
�
~ϕþϕc
f

�
< 0 the latter equation does not

have a solution in the regime of interest, i.e. for ~ϕ < 0.
Nevertheless, one can check that the potential (26) is
minimized for h ¼ 0. On the other hand, for

cos
�

~ϕþϕc
f

�
> 0, there are minima with h ≠ 0. In particular,

the maximum displacement occurs when cos
�

~ϕþϕc
f

�
¼ 1.

Thus, we conclude that, for ~ϕ < 0, the Higgs field alter-
nates between phases with h ¼ 0 and h ≠ 0 as shown in
Fig. 5(b).
We now wish to quantify when the displacements of h

become so large that they stop the evolution of ~ϕ: In the

course of one period of cos
�

~ϕþϕc
f

�
, the Higgs field

alternates between h ¼ 0 and a maximum displacement
hmax. Furthermore, during one period, the contribution of
the Higgs potential to the overall energy also changes. In
particular, for h ¼ hmax the potential energy in the Higgs
sector is lower than for h ¼ 0. We represent this
by ΔVh ¼ VhðhmaxÞ − Vhð0Þ ¼ VhðhmaxÞ.
In addition, during one period of cos

�
~ϕþϕc
f

�
, the con-

tribution of the polynomial part of the ~ϕ-potential to the
overall energy also changes. In fact, the potential energy
is lowered as ~ϕ rolls towards larger field values. For
small j ~ϕj < M2=g, the polynomial part in (20) is well

(a) (b)

FIG. 5. (a): Numerical result for the evolution of ~ϕ according to the full two-field model (red) and according to the single-field
approximation (green, dashed). (b): evolution of h for the full two-field model. Here we used c1 ¼ 8.0, c2 ¼ 1.0, M ¼ 0.01Mpl,

g ¼ 0.0015M, H ¼ 0.02M, λ ¼ 0.5, κ ¼ 0.5M3 and f ¼ 15M. The initial conditions are ~ϕð0Þ ¼ −2M2=g, hð0Þ ¼ 10−6M and
_~ϕð0Þ ¼ _hð0Þ ¼ 0. For the two-field case the axion evolution stops before ~ϕ becomes positive, i.e. before the Higgs mass becomes
tachyonic.
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approximated by the linear term. Thus, in the course of one
period Δ ~ϕ ∼ f, the energy changes by

ΔVpol ∼ −ðc1 þ c2ÞgM2f: ð28Þ

We now have all the necessary ingredients to determine
whether the evolution will cease before reaching ~ϕ ¼ 0. Let

us take a value ~ϕ0 < 0 where cos
�
~ϕ0þϕc

f

�
¼ 1 and

h ¼ hmax. If ~ϕ continues to evolve, it will eventually reach

a value where cos
�
~ϕþϕc
f

�
will become negative again, at

which point the Higgs field will return to h ¼ 0. However,
returning h to h ¼ 0 comes with an energy cost of jΔVhj.
For this to be possible, the increase in energy has to be
offset by ΔVpol. As long as jΔVpolj > jΔVhj, it is then

energetically favorable for ~ϕ to continue rolling. For
jΔVpolj < jΔVhj though, any further evolution of ~ϕ is
impossible. Instead, the Higgs field will remain at its
minimum, at h ¼ hmax, and the axion will remain trapped
at ~ϕ ¼ ~ϕ0.
Thus, the evolution of ~ϕ will stop prematurely when

jΔVhj ∼ jΔVpolj ∼ ðc1 þ c2ÞgM2f: ð29Þ

All that remains is to find an expression for ΔVh. To
proceed, we distinguish between two scenarios: the Higgs
potential is dominated by its mass term and the quartic term
dominates.

(i) Mass term dominates: i.e. − 1
2
g ~ϕh2 ≫ λ

4
h4: Setting

cos
�
~ϕ0þϕc

f

�
¼ 1 in (27), allows us to determine hmax.

Ignoring the λ-dependent term, we find

jhmaxj ¼ − κ

g ~ϕ0

: ð30Þ

Substituting this into the Higgs-dependent potential
(26), and ignoring the quartic term, one obtains

ΔVh ≈ − κ2

2g ~ϕ0

þ κ2

g ~ϕ0

¼ κ2

g ~ϕ0

¼ − κ

2
jhmaxj: ð31Þ

Comparing jΔVhj ∼ jΔVpolj, results in an estimate
for the Higgs vev. Dropping the absolute value sign
and the subscript, we arrive at

hhi ∼ ðc1 þ c2Þ
gfM2

κ
:

We can also estimate for which parameter choices
we expect to get stuck prematurely. This, in fact,
occurs when

jΔVhj≳ jΔVpolj⇔
κ2

gj ~ϕ0j
≳ ðc1 þ c2ÞgfM2: ð32Þ

While this relation is not particularly illuminating,
one can draw one interesting conclusion from it: that
the effect of stopping prematurely is the likeliest
outcome once g is chosen to be sufficiently small.

(ii) Quartic term dominates: i.e. − 1
2
g ~ϕh2 ≪ λ

4
h4: We

repeat the above analysis but this time ignore the

Higgs mass term. Setting cos
�
~ϕ0þϕc

f

�
¼ 1 in (27) we

now have

jhmaxj ¼
κ1=3

λ1=3
: ð33Þ

From (26), we then obtain

ΔVh ≈
λ

4

κ4=3

λ4=3
− κ

κ1=3

λ1=3
¼ − 3

4

κ4=3

λ1=3
¼ − 3

4
κjhmaxj:

ð34Þ

Comparing jΔVhj ∼ jΔVpolj, we again arrive at the
same expression for the Higgs vev (up to numerical
factors which can be ignored):

hhi ∼ ðc1 þ c2Þ
gfM2

κ
:

As before, we can also check when one expects to be
trapped for ~ϕ < 0:

jΔVhj ≳ jΔVpolj⇔
κ4=3

λ1=3
≳ ðc1 þ c2ÞgfM2: ð35Þ

Again, we expect this regime to occur for suffi-
ciently small g.

An important finding of the above discussion is that, if
the axion evolution ceases for ~ϕ < 0, we expect the Higgs
vev to depend on the model parameters as

hhi ∼ ðc1 þ c2Þ
gfM2

κ
: ð36Þ

Note the difference from our expectation using the single-
field approximation (25). The expression (36) is identical to
that suggested in [1], as can be inferred from their Eq. (7)
with the identification κ ¼ Λ4=v and v ¼ 246 GeV (i.e. v is
fixed and is not the dynamically generated Higgs vev).
However, recall that for h ~ϕi < 0, the potential for the

Higgs potential is not of Mexican-hat form. In fact, it would
take the form

Vh ∼
m2

2
h2 þ λ

4
h4 − κjhj; ð37Þ

MUSINGS ON COSMOLOGICAL RELAXATION AND THE … PHYSICAL REVIEW D 93, 063522 (2016)

063522-11



with m2 ¼ gjh ~ϕij. In this case the source of electro-
weak symmetry breaking is the linear term ∼κjhj rather
than a tachyonic mass term. Thus, the vacuum for the
Higgs differs from the vacuum in the Standard Model,
which can have observable consequences. In the QCD
model this vev is obviously too small for realistic
phenomenology.14 In non-QCD models it is conceivable
that a realistic Higgs vev is attained in this phase. It
would be interesting to deduce any new experimental
signatures for such a different vacuum. A particularly
interesting observable would then be the Higgs self-
coupling [63–70]. We leave a proper study of this for
future work.

2. Regime (2)

We now turn to regime (2), as described in Sec. III B.
In the single-field approximation, this corresponds to a
choice of parameters such that the oscillatory potential
does not immediately lead to a series of prominent
maxima and minima once ~ϕ crosses zero: the size of the
oscillatory “bumps” has to grow before pronounced
maxima and minima appear.
Our goal, as before, is to derive an expression for the

final value of the axion ~ϕ once it is trapped. The
corresponding Higgs vev then follows from jhhij∼ffiffiffiffiffiffiffiffiffiffi
g ~ϕ=λ

q
. Obviously, the axion can only get trapped if we

have pronounced minima. Thus, we begin our analysis by
determining the range in ~ϕ-space where maxima and
minima occur. This occurs when the slope of the oscillatory
part of the ~ϕ-potential (22) dominates that of the poly-
nomial part. If we assume that ~ϕ is slowly rolling, it will
then be trapped by the first minimum it encounters.
For the polynomial part, we have, for ~ϕ > 0,

V 0
polynomial ¼ g2

�
c2 − 1

2λ

�
~ϕ − gM2ðc1 þ c2Þ

¼ g2d2 ~ϕ − gM2d1; ð38Þ

where

d2 ¼
�
c2 − 1

2λ

�
; d1 ¼ ðc1 þ c2Þ: ð39Þ

As explained in Sec. III B, we require d1 > 0, while d2
can be positive or negative. The oscillatory part of the
potential contains two terms,

V 0
osc ¼

κ
ffiffiffi
g

pffiffiffi
λ

p

2
64

ffiffiffiffi
~ϕ

q
f

sin

�
~ϕþ ϕc

f

�
− 1

2

ffiffiffiffi
~ϕ

q cos

�
~ϕþ ϕc

f

�375:
ð40Þ

For ~ϕ ≫ f, we then have

jV 0
oscj ∼

κ
ffiffiffi
g

pffiffiffi
λ

p
ffiffiffiffi
~ϕ

q
f

: ð41Þ

Minima and maxima are present when the slope from the
axion potential exceeds that of the polynomial part, i.e.

jV 0
oscj > jV 0

polynomialj: ð42Þ

We can solve this quadratic equation to determine the range

of ~ϕ where maxima and minima occur. Using jhhij ¼ffiffiffiffiffiffiffiffiffiffi
g ~ϕ=λ

q
we can then also determine the corresponding

range of hhi.
For d2 < 0, we obtain

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ2

4jd2j2f2g2λ2
−M2d1

λjd2j

s
þ κ

2jd2jfgλ
< jhhij

<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2

4jd2j2f2g2λ2
−M2d1

λjd2j

s
þ κ

2jd2jfgλ
; ð43Þ

while for d2 > 0 we find

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2

4d22f
2g2λ2

þM2d1
λd2

s
− κ

2d2fgλ
< jhhij

<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2

4d22f
2g2λ2

þM2d1
λd2

s
þ κ

2d2fgλ
: ð44Þ

As long as ~ϕ is slowly rolling, it will get trapped by the first
minimum it encounters. The corresponding vev for h will
then be given by the lower end of the ranges (43) and (44).
However, the above formulas are not very illuminating. To
extract some meaning let us distinguish three scenarios:

(i) Case 1: M2d1
λjd2j ≪

κ2

4jd2j2f2g2λ2
This situation can occur if, for example, g is

sufficiently small. In this case, the lower threshold
for hhi approaches

hhi ∼ d1
fgM2

κ
ð45Þ

for both d2 > 0 and d2 < 0. This is identical to the
result (36) we found in regime (1). For sufficiently

14It is also not clear whether the structure of the
oscillating term ∼κjhj cosðϕ=fÞ persists for such small values
for h.
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small g the Higgs vev can be well below the cutoffM
as required to solve the hierarchy problem.

(ii) Case 2: M2d1
λjd2j ∼

κ2

4jd2j2f2g2λ2
For parameter choices leading to this case one

finds that

hhi ∼
ffiffiffiffiffiffiffiffiffiffi
d1
jd2jλ

s
M ∼M; ð46Þ

for both d2 > 0 and d2 < 0. Clearly, this does not
address the hierarchy problem.

(iii) Case 3: M2d1
λjd2j ≫

κ2

4jd2j2f2g2λ2
This situation arises when the oscillatory con-

tribution to the ~ϕ-potential is always subleading.

This, by definition, corresponds to what we

termed regime (3) in Sec. III B. We will discuss

this case separately.
In summary, for parameter choices leading to case 1

above, the relaxation mechanism offers a possible
solution to the hierarchy problem. We then find the
following conditions on the model parameters:

M2d1
λjd2j

≪
κ2

4jd2j2f2g2λ2
ð“case 1”Þ ð47Þ

hhi ∼ d1
fgM2

κ
≪ M ð“address hierarchy problem”Þ:

ð48Þ

There is one caveat: to be in regime (2) we require
~ϕ ≫ f. This was explicitly used when deriving (43)
and (44). If this condition is not met and instead h ~ϕi ∼ f

we are back to regime (1) and the results from this section
are not valid.15 Hence, we also need to ensure that

h ~ϕi ¼ λ

g
hhi2 ¼ d21λ

f2gM4

κ2
≫ f ð“regime ð2Þ”Þ: ð49Þ

These three conditions can be rewritten as follows. Tomake
the discussion more transparent, note that generically
d1 ∼ d2 ∼Oð1Þ. Furthermore, λ is determined by experi-
ment and for the present purposewe can set λ ∼Oð1Þ. Then
the three conditions (47)–(49) imply

�
fg
M2

�
2

≪
�

κ

M3

�
2

≪
fg
M2

; ð50Þ

i.e. κ is bounded from above and below. It has to be large
enough to obtain a hierarchically small Higgs vev but small
enough to avoid regime (1).
Before moving on to regime (3), let us compare our

findings of the single-field approximation with the full two-
field dynamics. In Fig. 6 we display the evolution of ~ϕ and
h for both the single-field approximation and the two-field
model. The parameter choice corresponds to case 2 of the

above list, i.e. M
2d1

λjd2j ∼
κ2

4jd2j2f2g2λ2. Overall, we find very good

agreement between the single-field approximation and the
full two-field dynamics. For ~ϕ > 0, the Higgs field closely

follows its instantaneous minimum h ¼
ffiffiffiffiffiffiffiffiffiffi
g ~ϕ=λ

q
as

assumed in the single-field approximation. The Higgs
vev is given by hhi ≈ 3M, which is consistent with the

(a) (b)

FIG. 6. (a): Numerical result for the evolution of ~ϕ according to the full two-field model (red) and according to the single-field
approximation (green, dashed). (b): Evolution of h according to the full two-field model (blue) and according to the single-field
approximation (orange, dashed). Here we used c1 ¼ 3.6, c2 ¼ 1.0,M ¼ 0.01Mpl, g ¼ 0.002M,H ¼ 0.036M, λ ¼ 0.6, κ ¼ 0.22M3 and

f ¼ 80M. The initial conditions are ~ϕð0Þ ¼ −2M2=g, hð0Þ ¼ 10−6M and _~ϕð0Þ ¼ _hð0Þ ¼ 0. The single-field approximation matches
the full two-field dynamics very closely.

15Recall that in regime (1) the relaxation mechanism is prone
to trapping ~ϕ “prematurely” with Higgs stabilized in a nonstand-
ard vacuum where the Higgs vev is induced by a source term.
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above analysis. Thus, for the given parameter choice, there
is no hierarchy between hhi and M.

3. Regime (3)

In regime (3), as described in Sec. III B, the oscillatory
contribution to the effective ~ϕ-potential is never large enough
to produce maxima and minima. Clearly, the relaxation
mechanism will not work and we cannot solve the hierarchy
problem. Nevertheless, for completeness, let us briefly
record the results using the single-field approximation.
In regime (3) we can ignore the oscillatory contribution

to the potential and focus on the polynomial part. For
d2 > 0, the polynomial ~ϕ-potential has a minimum at

~ϕ ¼ d1
d2

M2

g
: ð51Þ

The corresponding Higgs vev is given by

hhi ∼
ffiffiffiffiffiffiffi
d1
d2λ

s
M ∼M; ð52Þ

which does not solve the hierarchy problem.
For d2 < 0, the polynomial ~ϕ-potential does not have

any minima. As the oscillatory contribution is too small to
produce minima the field ~ϕ, and hence h, do not get
stabilized and diverge.

4. Summary

A relaxation mechanism employing a two-field potential
of the form (13) can indeed successfully produce a Higgs
vev smaller than the cutoff. However, there are pitfalls. For
certain parameter choices the axion can get trapped too
early and the Higgs is stabilized in a nonstandard vacuum.
For other parameter choices there is no hierarchy between
the Higgs vev and the UV cutoff. Overall, the success of a
relaxation mechanism based on (13) in solving the hier-
archy problem is highly dependent on the model param-
eters. It is less robust against modifications of these
parameters than one would initially expect.

D. When do we have slow roll?

The conclusions above for solving the hierarchy problem
hold only for the slow-roll regime. Here, we briefly look at
a sufficient condition for the axion field to be slowly rolling
in the effective potential.
For a potential with a constant slope, k, the velocity, in

field space, is

_ϕ ¼ _ϕ∞ þ ð _ϕðt ¼ 0Þ − _ϕ∞Þ expð−3HtÞ; ð53Þ
where

_ϕ∞ ¼ k
3H

ð54Þ

is the asymptotic velocity.

We see that the typical relaxation time for the field to
return to its asymptotic velocity is

trelax ∼
1

3H
: ð55Þ

If we now look at a situation where the slope suddenly
changes from k to 0, the field has traveled a distance,

Δϕ ∼ _ϕðt ¼ 0Þ 1

3H
∼

k
9H2

; ð56Þ

until it has reached its new asymptotic velocity of 0.
For our purposes, we say a field is slow rolling if it gets

stuck in the first minimum, or in one of the first few
minima. This happens when the field relaxes to its new
velocity in one oscillation,

Δ ~ϕ≲ f: ð57Þ
In the vicinity of ~ϕ ¼ 0, the polynomial potential for ~ϕ is
approximately linear with slope d1gM2. For slow roll we
thus require

d1gM2

9H2
≲ f: ð58Þ

Note that this condition is different from the slow-roll
conditions (15) and (16) proposed in [1].
To exemplify the significance of the condition (58), let us

consider an example. We choose parameters giving rise to
the effective ~ϕ-potential of Fig. 7 which exhibits a series of
pronounced maxima and minima once ~ϕ > 0. If the axion
was slowly rolling one would expect ~ϕ to get trapped by the
first or one of the first few minima.
We now chooseH such that the slow-roll conditions (15)

and (16) of [1] are satisfied while (58) is not. The resulting
time evolution of ~ϕ and h is displayed in Fig. 8. Rather
than getting stuck in one of the first minima, the axion
overshoots and only stabilizes at ~ϕ ∼ 40M2=g. Once ~ϕ > 0,
the Higgs vev tracks its instantaneous minimum

hhi¼
ffiffiffiffiffiffiffiffiffiffi
~gϕ=λ

q
until the axion stops. The final vev of the

FIG. 7. Effective ~ϕ-potential in the single-field approximation
for c1 ¼ 8.0, c2 ¼ 1.0, M ¼ 0.001Mpl, g ¼ 0.0036M, λ ¼ 0.5,
κ ¼ 0.5M3 and f ¼ 20M.
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Higgs is given by hhi ∼ 9M, which is well above the cutoff
of the theory.
This example illustrates that the conditions (15) and (16)

of [1] are not sufficient to ensure that ~ϕ will get trapped in
one of the first minima. However, as the final value of ~ϕ

determines the Higgs vev through hhi ¼
ffiffiffiffiffiffiffiffiffiffi
g ~ϕ=λ

q
, we do not

want ~ϕ to be stabilized at too large a value if we wish to
solve the hierarchy problem. To avoid dangerous over-
shooting we thus have to ensure that the field ~ϕ is
sufficiently slowly rolling. This introduces the additional
constraint (58) on the model parameters.

IV. DISCUSSION

In the Introduction we collected a set of principles for an
effective field theory to be regarded as an improvement over
the SMwith regard to the electroweak hierarchy problem. In
the light of our findings of Sec. III we will now discuss to
what extent these principles are realized in the paradigm of
cosmological relaxation introduced in [1].
We found that for certain parameter choices the model of

[1] is capable of producing a hierarchically small Higgs
vev, which depends on the model parameters as

v≡ hhi ∼ fgM2

κ
: ð59Þ

Then hhi ≪ M can be achieved by choosing f and g small
and/or κ large. However, the scale f is expected to be f ≳
M and thus cannot be chosen small.16 In addition, note that
κ is bounded [see (50)] and taking it too large would

stabilize the Higgs in a nonstandard vacuum.17 As a result,
a small Higgs vev can only be achieved by taking g to
be sufficiently small. For the following discussion let us
define ϵ≡ g=M as the relevant dimensionless small
parameter.
We now proceed to addressing the nine points raised in

the Introduction.

A. Ad (1) and (2)

The mechanism of [1] requires at least one small
parameter, ϵ, to explain a hierarchically small Higgs vev.
It thus exchanges a tuning of the Higgs mass parameter for
the tuning of ϵ. If ϵ has to be tuned less severely than
v2=M2, this can be seen as progress compared to the SM.
Let us check whether this is the case. From (59) we can
write

v2

M2
∼
f2ϵ2M4

κ2
: ð60Þ

Using (50) we also have fg=M2 ¼ fϵ=M ≫ κ2=M6.
Combing with the above we then find

v2

M2
≫

fϵ
M

⇒ ϵ ≪
1

f=M
v2

M2
: ð61Þ

It follows that the tuning required for the model of [1] is
more severe than the equivalent level of tuning required by
the SM. (Recall that f ≳M.) Thus, when considering the
amount of tuning necessary, the setup of [1] does not
correspond to an improvement over the SM.

(a) (b)

FIG. 8. (a): Numerical result for the evolution of ~ϕ according to the full two-field model (red) and according to the single-field
approximation (green, dashed). (b): Evolution of h according to the full two-field model (blue) and according to the single-field
approximation (orange, dashed). Here we used H ¼ 0.004M and the model parameters of Fig. 7. The initial conditions are
~ϕð0Þ ¼ −2M2=g, hð0Þ ¼ 10−6M and _~ϕð0Þ ¼ _hð0Þ ¼ 0.

16For models employing the QCD axion this is necessary
because constraints on the QCD axion require f ≳ 109 GeV and
so far no model has been found that allows for M > 109 GeV.
More generally one would like to have f ∼M or at least f ≳M to
avoid having to explain new hierarchies.

17Furthermore, if we take ϕ to be the QCD axion the
parameters f and κ are determined by QCD and cannot be
adjusted.
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B. Ad (3) and (4)

Let us now consider how the amount of tuning of ϵ has to
be adapted when increasing the UV cutoff as
M → M0 > M. Initially, we take f and κ to be fixed.
Then, keeping v constant while increasing the cutoff we
have

v ∼
ϵM3f
κ

¼ ϵ0ðM0Þ3f
κ

⇒ ϵ0 ¼ ϵ

�
M
M0

�
3

: ð62Þ

We find that ϵ has to be modified with the third power of the
cutoff while in the SM only a quadratic adjustment is
necessary. In this sense the setup of [1] does not improve on
the SM: if we wish to establish a large hierarchy between v
and the cutoff scaleM, a more severe tuning is necessary in
the model of [1] than in the SM. This conclusion would
have to be modified if, in addition to ϵ, κ and f also need to
be adjusted when changing the cutoff. Then an overall
milder scaling behavior than quadratic for the three
parameters is possible. However, as discussed in Sec. II,
a mild tuning of three parameters can nevertheless be more
severe than a stronger tuning of one parameter.

C. Ad (5)

The model of [1] is an effective theory with a cutoff. As
pointed out above the parameters of the model require
retuning when this cutoff is raised. Indeed the shift
symmetry is broken in a hard way, as evident in the
quadratic cutoff dependence of the linear term.
One possibility to include additional particles in a

consistent way could be supersymmetry (as originally
suggested in [1]; for a first attempt in this direction see
[6]). One can hope that the role of the cutoffM can then be
played by the SUSY breaking scale. The combination of
the shift symmetry and SUSY then suggests a scheme for
adding further fields: they should respect SUSY (up to its
breaking scale M) and they should respect the shift
symmetry up to the required level as well. However, a
complete and consistent implementation is still an open
question.

D. Ad (6) and Ad (7)

An alternative ansatz towards solving the hierarchy
problem would be to devise a mechanism which enforces
v ¼ 0. This is not what the model of [1] is attempting.
Instead of enforcing v ¼ 0, a solution to the hierarchy
problem could start with an extremely small value for v.
The model of [1] can indeed produce a vanishingly small
value for the Higgs vev by taking ϵ to be extremely small.
But this is by no means easier than producing the correct
vev in the first place. In both cases it is the parameter ϵ that
has to be chosen sufficiently small. There is no independent
mechanism that could lead to an extremely small
Higgs vev.

Furthermore, when decreasing ϵ for fixed f and κ we run
into a regime where the Higgs will be trapped in a
nonstandard vacuum, i.e. regime (1) of Sec. III.

E. Ad (8)

Compared to the SM the mechanism of [1] offers one
great simplification: the Higgs vev has a simple depend-
ence on the model parameters. In particular, the Higgs vev
is proportional to the parameter ϵ. This indeed holds in all
regularization schemes thereby not restricting the way the
physical cutoff is generated. This is the key advantage of
this paradigm over the SM.
Let us comment in a bit more detail on the nature of the

required shift symmetry breaking. Shift symmetries of the
type employed in cosmological relaxation are always
spontaneously broken with the field ϕ as the Goldstone
field. If the symmetry was exact the corresponding
Goldstone particle would be massless and would have
absolutely no potential. Since this is not the case, explicit or
anomalous breaking is required. The latter is somewhat
more appealing because it lends itself to being a small
nonperturbative effect. This case of a very weakly violated
shift symmetry is parallel to the situation in the Standard
Model with respect to scale invariance. We find it therefore
hard to argue purely based on the existence of a symmetry.
That said we think and hope that this, being a rather
different symmetry, will lead to novel and different oppor-
tunities for embedding in a more complete theory that
explains the smallness of the required symmetry breaking.

F. Ad (9)

The model of [1] is self-consistent. Quantum corrections
up to the cutoff M will not induce any additional sizeable
couplings which are not already present at tree level.
However, one can argue how generic the Lagrangian
equation (2) of [1] really is. Depending on how the axionic
shift symmetry is broken, one could also expect operators
of the form gϕ3 and gMϕ2. Both terms would modify the
dynamics significantly. One hence requires a principle why
these terms are vanishingly small or absent.

V. CONCLUSIONS

In this paper we discuss the mechanism of cosmological
relaxation [1] in the context of the electroweak hierarchy
problem.
The hierarchy problem is effectively a question of fine-

tuning and, consequently, we studied the severity of tuning
in cosmological relaxation models. In the Standard Model a
hierarchically small weak scale can be generated by tuning
the Higgs mass parameter at the order of v2=Λ2, where Λ is
the cutoff of the theory and v ¼ 246 GeV. In relaxation
models this tuning is exchanged for a tuning of a different
parameter ϵ ¼ g=Λ, where g is a scale associated to the
complete breaking of an axionic shift symmetry. Our results
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are as follows: We find that in the original model of
cosmological relaxation [1] the parameter ϵ has to be tuned
even smaller than v2=Λ2. Furthermore, if we increase the
cutoff as Λ → Λ0 > Λ, the tuning in the SM gets worse by a
factor of ðΛ0=ΛÞ2, while it rises by a factor ðΛ0=ΛÞ3 in the
relaxationmodel. Overall, we find that the required tuning in
relaxation models can be much more severe than in the SM.
One attractive feature of models of cosmological relax-

ation is, that the Higgs vev v depends on the input
parameters in a simple way. In fact, the Higgs vev is a
linear function of the small parameter ϵ, i.e. v=Λ ∝ ϵ. As ϵ
controls the strength of the breaking of an axionic shift
symmetry, demanding a small Higgs vev is now physically
equivalent to demanding a weak breaking of the shift
symmetry. An important novelty of the relaxation model is
that this shift symmetry is different from the weakly broken
scale invariance of the Standard Model. A weakly broken
shift symmetry is potentially easier to embed into a more
complete theory, e.g. string theory. String theory compac-
tifications typically contain axionlike particles in their
low-energy spectra [71,72] and also allow for the breaking
of axionic shift symmetries by fluxes and branes [73,74].
If the axionic shift symmetry can be broken sufficiently
weakly in string theory without tuning, the mechanism
of cosmological relaxation would then in turn solve the
electroweak hierarchy problem. This is where more work
is needed to establish relaxation as a full solution to the
hierarchy problem. The possibility of such a weak
breaking has been analyzed in the context of axion
monodromy inflation in string theory [73,74] and more
recently in [75]. In particular the latter study indicates
that a very weakly broken shift symmetry requires a
tuned cancellation reminiscent of the original problem in
the Standard Model.
We also found that for very small values of ϵ ¼ g=Λ

electroweak symmetry is broken via the nonperturbative
axion potential ∼jhj cosðϕ=fÞ. This acts like a source term
and therefore a different pattern of electroweak symmetry
breaking ensues. For the QCD axion model this is clearly
ruled out. However, for non-QCD models this may lead to
an interesting phenomenology. It would be interesting to
study if this can be realized in a consistent manner and how
this would manifest itself in experiments.
There are many questions which we did not attempt to

answer. For cosmological relaxation to work it has to be
embedded in a suitable model of inflation, without intro-
ducing the necessity of further tunings. Finding such a
model which is consistent with all experimental results
remains a challenge.
Overall we find that the original model of cosmological

relaxation [1] contains parameters that need to be tuned to
even smaller values than the equivalent in the SM. It
remains to be seen whether this is a feature of that particular
model or a property of the whole paradigm. The paramount
question then becomes to find ways of benefitting from the

improved parametrization so that one can explain the
required small parameters by a suitable mechanism.

ACKNOWLEDGMENTS

We thank Martin Bauer, Arthur Hebecker, David E.
Kaplan, Surjeet Rajendran and M. Spannowsky for very
useful discussions. This work was supported by the DFG
Transregional Collaborative Research Centre TRR 33 “The
Dark Universe.”

APPENDIX SMALLNESS OF THE HIGGS
VEV IN THE SM

In this appendix we want to explain the notion that
one can always find a parametrization in the Standard
Model such that the smallness of the Higgs vev is
controlled by a small input parameter. In the following
we closely follow the arguments given in [48]. The
general structure of the renormalization group equation
for the Higgs mass parameter ϵH ¼ m2

H=k
2 is schemati-

cally given by

∂tϵH ¼ ð−2þ ηHÞϵH þ cgg2 þ cλλ: ðA1Þ

cg, cλ are regularization scheme dependent numbers, and
g schematically represents all gauge and fermion con-
tributions. ηH is the Higgs anomalous dimension which
itself is of the order of g2, λ2 and therefore small in
the UV.18

In dimensional regularization cg ¼ cλ ¼ 0. For simplic-
ity of our argument let us neglect the running of all
couplings g, λ. We can then easily solve Eq. (A1),

ϵHðkÞ ¼
�
Λ
k

�
2−ηH

ϵHðΛÞ: ðA2Þ

To get the correct order of magnitude for m2
H in the IR at

k ∼ v, corresponding to

ϵHðk ∼ vÞ ¼ ϵH ∼ 1; ðA3Þ

one therefore needs to pick

ϵHðΛÞ ∼
�
v
Λ

�
2−ηH

≪ 1; ðA4Þ

which is exactly the fine-tuning issue in the RG language as
discussed above in the discussion of points 3 and 4 around
Eq. (6). Indeed we can also directly see how a large
anomalous dimension ηH ≈ 2 can ameliorate the problem.

18Since the U(1) gauge coupling and the Higgs self-coupling
are marginally irrelevant this is strictly speaking not quite true in
the extreme UV, but this is a different problem and not relevant
for our current discussion.
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However, dimensional regularization could be accused
of neglecting the all important quadratic divergences. So let
us consider the situation cg ≠ 0, cλ ≠ 0. For constant g, λ
one can the still quite easily rewrite Eq. (A1) as

∂tϵ̂ ¼ ð−2þ ηHÞϵ̂; ðA5Þ
with

ϵ̂ ¼ ϵH − ϵ⋆; ϵ⋆ ¼ cgg2 þ cλλ

2 − ηH
: ðA6Þ

This obviously has a solution of the same structure as
Eq. (A2),

ϵ̂ðkÞ ¼
�
Λ
k

�
2−ηH

ϵ̂ðΛÞ: ðA7Þ

We obtain

m2
Hðk ∼ vÞ ∼ ϵ̂ðk ∼ vÞv2 þ ϵ⋆v2 ∼ ϵ̂ðk ∼ vÞv2: ðA8Þ

The latter holds, because ϵ⋆ ≪ 1 for small couplings g, λ.
Hence, we again require

ϵ̂ðk ∼ vÞ ∼ 1 ðA9Þ
to get the correct electroweak scale. Thus the fine-tuning is
reduced to choosing ϵ̂ðΛÞ to be exceedingly small. In this

sense we can always succeed by choosing a particular
parameter to be small.19

One may wonder what happened to the quadratic
divergences. Neglecting ηH ≈ 0 and inserting Eq. (A7)
and using m2

H ¼ ϵHðΛÞΛ2 one finds

m2
Hðk ∼ vÞ ∼m2

HðΛÞ þ ϵ⋆ðΛÞΛ2

∼m2
HðΛÞ þ

cgg2 þ cλλ

2
Λ2; ðA10Þ

which contains exactly the expected quadratic terms in Λ.
Choosing ϵ̂ðΛÞ ≪ 1 in the UV simply corresponds to
choosing an appropriate counterterm for them.
The all important and (remaining) question is then why

one should parametrize the UV theory in terms of ϵ̂ and not
in terms of ϵ̂H, the latter not being exceedingly small but
requiring to be tuned to a value very close to ϵ⋆. In other
words why are we close to the fixed point/phase transition
in the first place.
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