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In [V. Salzano, M. P. Dąbrowski, and R. Lazkoz, Phys. Rev. Lett. 114, 101304 (2015)] a new method to
measure the speed of light through baryon acoustic oscillations was introduced. Here, we describe in much
more detail the theoretical basis of that method and its implementation, and we give some newly updated
results about its application to forecast data. In particular, we show that SKA will be able to detect a 1%
variation (if any) in the speed of light at the 3σ level. Smaller signals will be hardly detectable by already-
planned future galaxy surveys, but we give indications of what sensitivity requirements a survey should
fulfill in order to be successful.
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I. INTRODUCTION

The speed of light is one of the most fundamental
constants of nature playing a significant role in basic
physical laws such as the Maxwell equations, special
and general relativity equations, atomic and particle physics
equations, and many others. In other words, it influences
the vast areas of physics which deal with both microscopic
and astronomical scales. Because of its crucial meaning,
the speed of light was officially announced in 1983 to take a
fixed value by the Bureau International des Poids etMesures
[1]. Many measurements of the speed of light have been
performed, beginning with the famous, though inaccurate,
measurement by Rømer and Huygens in 1675, continuing
with Bradley, Fizeau, and Michaelson, and ending in a
laser interferometric measurement by [2]. However, in view
of the contemporary theories of physics such as multidi-
mensional theories of gravity within the framework of
superstring and brane theories (see, e.g., [3]), some phys-
icists argue that the values of physical constants like the
gravitational constant G, the fine-structure constant α, the
electron-to-proton mass ratiome=mp, and the speed of light
cmay becomedynamical (represented by some scalar fields,
for example), and so they can evolve in time and space. (For
a review of such a variation, see [4].)
The option which probably has the strongest impact on

the whole of physics is the variability of c. Such an idea
even dates back to Einstein himself [5], but it has attracted
more interest recently due to the fact that it can provide an
alternative solution for the classic problems of noninfla-
tionary cosmology, such as the horizon and flatness
problems. Having such advantages, the theories of a

varying speed of light—in short, VSL theories—are often
regarded as controversial because they are usually not
formulated in a proper framework of dynamical scalar field
theory [6], allowing a special choice of the frame in which
the speed of light is constant [7,8], though there are some
attempts at a more proper formulation [9]. In particular, a
comparison of those theories with experimental data seems
to still be missing [10]. In this paper, following our brief
previous study [11], we will try to put constraints on some
varying speed of light theories by using future galaxy
surveys such as the Square Kilometer Array (SKA) [12],
Euclid [13,14], and the Wide-Field Infrared Survey
Telescope WFIRST-2.4 [15], showing how the huge
number of galaxies which will be collected can be used
as a probe for the constancy of c.
One of the main signals that can be detected by a galaxy

survey is related to the baryon acoustic oscillations (BAOs)
[16]. Theoretically well established since 1970 [17], they
have only relatively recently been recognized as one of the
most useful and promising probes for studying dark
energy and cosmology [18,19]. At the present stage, even
though they are very helpful, they are still far from being of
optimal use; this is the reason why they are among the
main objectives of many important ongoing and future
Earth-based and spatial surveys, such as SKA, Euclid,
WFIRST-2.4, the Baryon Oscillation Spectroscopic Survey
(BOSS) [20], the Extended BOSS Survey (eBOSS) [21],
the Dark Energy Spectroscopic Instrument (DESI) [22],
and the Hobby-Eberly Telescope Dark Energy Experiment
(HETDEX) [23]. Basically, BAO observational outputs are
measurements of the sound horizon at late times, as it is
imprinted in the clustering of a large scale structure. It is
generally considered to be a standard ruler, i.e., an “object”
whose size is constant in time and which can be used as a*enzo.salzano@wmf.univ.szczecin.pl
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stick to calibrate/measure cosmological distances (for
problems and alternatives, see [24]). Its magnitude can
be exactly calculated from the theory and it is approx-
imately equal to 150 Mpc in physical units. This is just the
value which can be measured, with the best precision
possible, from the cosmic microwave background (CMB)
observations. The latest data release from Planck [25]
gives us a value of rsðzrecÞ ¼ 144.81� 0.24 Mpc for the
baseline model, exhibiting a very weak cosmological
model dependence. Given the strong correlation between
photons (measured by CMB) and baryons, such a distance
should be imprinted in the large scale structure, and so it is.
Measuring the distribution of galaxies in space, as well as
their redshifts, and analyzing their correlation function, it is
possible to observe the typical correlation length which, as
expressed in comoving units, corresponds exactly to the
sound horizon. Being more precise, it corresponds to the
sound horizon not at recombination, but rather at a later
epoch defined as “dragging redshift” [18], at zdrag ≈ 1060.
Of course, galaxy distribution is three dimensional, and the
sound horizon should be measured in three different
directions: two are on the projected sky and one is in
the radial direction. The former are said to be the tangential
modes, the latter the radial. They can be defined as

ytðzÞ ¼
DAðzÞ
rsðzrecÞ

and yrðzÞ ¼
c

HðzÞrsðzrecÞ
;

where c is the speed of light, z is the cosmological redshift,
DA is the angular diameter distance, H is the Hubble
function, and rsðzdecÞ is the sound horizon, evaluated at
recombination (or dragging epoch).
At this point, we do not yet have such a good signal in

order to have accuratemeasurements for yt and yr separately.
We have good measurements of quantities combining DA
and H as, for example, the average distance

DV ¼
�
ð1þ zÞ2czD

2
A

H

�
1=3

; ð1Þ

or the Alcock-Paczyński distortion parameter

F ¼ ð1þ zÞDA
H
c
: ð2Þ

There are some trials to obtaining independent information
forDA andH [26,27], but they are not yet fully competitive.
With future surveys, with a larger number of galaxies
available, this will be possible eventually, and it will reveal
itself as a necessary requirement for our method to be
applied.
The same galaxies used for detecting BAOs—or, at least,

a fraction of them—can also be used as cosmic chronom-
eters. The seminal idea of cosmic chronometers was first
described in [28] and then progressively extended and used

for cosmological analysis in [29,30]. It is based on the
differential age method: the key is to find a “cosmological
clock” able to return the variation of Universe age with
redshift. If one has this clock, then one simply has to
measure the age difference Δt between two redshifts
separated by Δz, and calculate from these the derivative
dz=dt ≈ Δz=Δt. This latter quantity then would be directly
related to the Hubble function, defined as

HðzÞ ¼ −
1

1þ z
dz
dt

:

If such a method were possible, we would have a measure-
ment of the Hubble function free from any assumptions
about the nature of the metric, which normally affects, for
example, the definition of cosmological distances. It was
proposed in [28] that the role of such clocks could be played
by passively evolving early-type galaxies (ETGs). How to
use them has also been shown, and what order of constraints
should be expected from them. Since then, a lot of work and
improvements have been made: now we have better stellar
population models; we have a much larger number of
observations (see, e.g., [29], in which ≈104 galaxies were
analyzed) and very deep in redshift (up to z ∼ 2); as well as
more precise tools to calibrate the clocks (the 4000 Å break
in ETG spectra). And this scenario can still be improved
using future galaxy surveys in the optical, as Euclid and
WFIRST-2.4, which should observe at least ten times more
galaxies (and ETG, eventually) than now.
The paper is organized as follows: in Sec. II we will

describe the theoretical background underlying the pro-
posed method; in Sec. III we will describe in detail all of the
steps involved in the building of our method; and, finally, in
Sec. IV we will apply our method to some particular cases
and then discuss the results.

II. THEORETICAL BASIS

The possibility of constraining VSL theories from a large
scale structure is strictly related to the definition of one of
the quantities that can be measured in a galaxy (BAO)
survey, i.e., the angular diameter distance, DAðzÞ. This
distance is defined as

DAðzÞ ¼
1

1þ z

Z
z

0

c0
Hðz0Þ dz

0; ð3Þ

where c0 is the speed of light. From now on, wewill assume
the convention for defining c0 ≡ 299792.458 km s−1 as the
value of the speed of light [1]. This is, of course, assumed to
be constant in a standard scenario (and in most of physics
these days), while, in a VSL theory, it is equal to the speed of
light evaluated here and now.
A very well-known, and somewhat counterintuitive,

property of DAðzÞ is that it rises up to a maximum at some
redshift, which we will call zM, and then starts to decline
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[31]. Starting from its definition, an equivalent way to set the
problem is to say that the angular size of a given escaping
object diminisheswhile it is going farther fromus up to some
point, where it reaches a minimum, before it starts rising
again. Both pictures basically tell us that early times objects
(or, at least, older than some redshift zM) look closer than late
times ones. The explanation behind this peculiar behavior is
a mix of geometric facts (curvature, non-Euclidean space)
and the dynamical history of our Universe [32].
The exact location of the maximum, i.e., the redshift

zM, depends on the cosmological model, which enters
the definition of HðzÞ. In order to have a general idea of
the range possibly covered by zM, and compatible with the
most updated set of cosmological probes available, we have
considered the Chevallier-Polarski-Linder (CPL) [33] wþ
wa plikHM_TTTEEE_lowTEB_BAO_post_lensing best fit
from the Planck 2015 release [34]. We have considered a
total of 104 cosmological models, derived from varying the
cosmological parameters consistently with the 1σ confi-
dence intervals defined for the previous parametrization. Of
course, wþ wa is only one of the many dark energy models
available, but it is somewhat used as a “reference”model in
the literature. Moreover, the large errors on its parameters
—in particular, on the dynamical dark energy equation of
state parameter wa—make us confident of having explored
a very large set of cosmological scenarios compatible with
observational data, thus making our estimation for the
range of zM highly conservative. We have checked to see
that zM lies in the range [1.4, 1.75] for more than 99% of
104 random cosmological models chosen as described
above. This is a quite narrow redshift range and, very
interestingly, it will be covered by many surveys in the
future (SKA, Euclid, and WFIRST-2.4), so we will have
good quality data in such a range.
Given the dependence of zM on the cosmological model,

one could think about using it as a further tool to constrain,
for example, dark energy properties, in addition to the most
used probes in cosmology. Unfortunately, the large degen-
eracy between the cosmological parameters in such a
narrow range, as was shown in the previous case for the
CPL parametrization, makes zM of no real use in such a
case [35]. However, we have found a different and very
interesting way for which zM can be usefully used to
explore the nature of our Universe.
In fact, a very interesting relation (in the context of

testing the validity of VSL) exists between the angular
diameter distance and the maximum redshift, which is easy
to derive and intrinsic to its definition: the mathematical
condition for the maximum of a function is that the
derivative with respect to a variable vanishes. In the case
of DA, we find that the condition ∂DAðzÞ=∂z ¼ 0, when
evaluated at zM, corresponds to the relation

DAðzMÞ ¼
c0

HðzMÞ
⇒ DAðzMÞHðzMÞ ¼ c0; ð4Þ

i.e., the multiplication of the angular diameter distance and
the Hubble function, both evaluated at the maximum red-
shift, will give the value of the speed of light. It is worth
underlining here that such a relation is not fully model
independent, but it is based on two hypothesis: a Friedmann-
Robertson-Walker metric of the background, and no spatial
curvature, i.e., k ¼ 0. While the former is quite general and
is used as an assumption inmost of themodels on themarket
(despite the fact that some non-Friedmannian models are
theoretically studied anyway [36]), the latter has to be
proven not to invalidate our results. At the least, it can be
shown that even in the case of k ≠ 0, Eq. (4) still has some
validity. Allowing the curvature to differ from zero, the
angular diameter distance is defined as

DAðzÞ¼

8>>>>><
>>>>>:

DHffiffiffiffi
Ωk

p
ð1þzÞsinh

� ffiffiffiffiffiffi
Ωk

p DCðzÞ
DH

�
for Ωk > 0

DCðzÞ
1þz for Ωk ¼ 0

DHffiffiffiffiffiffi
jΩkj

p
ð1þzÞsin

� ffiffiffiffiffiffiffiffiffijΩkj
p DCðzÞ

DH

�
for Ωk < 0;

ð5Þ

where DH ¼ c0=H0 is the Hubble distance, DCðzÞ ¼
DH

R
z
0 dz

0=Eðz0Þ is the line-of-sight comoving distance,
EðzÞ ¼ HðzÞ=H0, and Ωk ≡ kc20=H

2
0 is the dimensionless

curvature density parameter today. One can easily check
that the condition for themaximum inDA is nowgeneralized
into [37]

DAðzMÞHðzMÞ
c0

¼

8>>><
>>>:

cosh
� ffiffiffiffiffiffi

Ωk
p DCðzÞ

DH

�
forΩk > 0

1 forΩk ¼ 0

cos
� ffiffiffiffiffiffiffiffiffijΩkj
p DCðzÞ

DH

�
forΩk < 0:

ð6Þ

From the previous expression, we can easily quantify what
the “error” is in using our Eq. (4), assuming null curvature.
Using the Planck 2015 data release base_omegak_
plikHM_TTTEEE_lowTEB_BAO_H070p6_JLA_post_
lensing model, we have Ωk ¼ 0.0008� 0.002 at the 68%
(and�0.004 at the 95%) confidence level. Assuming for zM
the value of 1.59 (the maximum for the considered reference
model), we obtain a correction≲0.05% or, equivalently, the
contribution of curvature, in the redshift range of concern, is
3 to 4 orders of magnitude less than the leading order which
is of interest for us. This result is also in agreement with the
recent estimations presented in [38]. Finally, the consistency
of the curvature with a null value is generally assumed to be
an indication of no spatial curvature; thismakes us confident
about the use of Eq. (4).
Equation (4) itself is very interesting already at this

stage: it states that it will be possible to measure the speed
of light cosmologically. So far, this has been done only in
laboratories on Earth [2], and such measurements are
officially used to establish the value of c0 [1]. Here, we
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have a first ever way to measure the speed of light out of
Earth, out of the Solar System, out even of our Galaxy. This
measurement is direct, imprinted in the clustering of
galaxies, as direct as any other measurement that can be
done in any terrestrial laboratory.
We also point out another important property of Eq. (4):

it is valid independent of the cosmological model, or, in
other words, the measurement of DA and H at the
maximum redshift zM is unequivocally equal to the value
of the speed of light at that time. In Fig. 1, in the top panels,
we plot the quantity DA ·H for different models, chosen
from the 104 described above, having different cosmologi-
cal backgrounds, but assuming a constant speed of light. It
is clearly shown that, independent of the value of zM, which

is actually dependent on the cosmological background, the
quantity DA ·H can change its profile but, when evaluated
at zM, is always equal to c0. We anticipate here some
discussion from the next section, in order to show, in the
same Fig. 1, but in the middle panels, what happens when
the speed of light is varying. In that case, again, we change
the cosmological background as above and assume a
varying speed of light (more details on how this can be
done are in the forthcoming sections). From left to right,
each model has its own maximum, as well as DA ·H
asymptotics, and also, given that the speed of light is a
function of redshift, its own value for cðzMÞ. Now, of
course, cðzMÞ will be different for each model because it is
a function of redshift, and zM changes from one value to

c zM c0 const.
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FIG. 1. (Top panel) Speed of light measurement through DA ·H evaluated at the maximum redshift zM when the speed of light is
constant. (Middle panel) Speed of light measurement through DA ·H evaluated at the maximum redshift zM when the speed of light is a
redshift function (see the forthcoming sections for its formulation); each model recovers its own value for the speed of light. (Bottom
panel) Determination of the maximum redshift zM.
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another. However, the quantityDA ·H, evaluated at zM, still
has exactly the value, equal to cðzMÞ, which we expect from
the theoretical model we used as input.
As a consequence, one could argue that a VSL theory

might be constrained directly from the total observations,
with no need of any alternative method. Even if this is, in
theory, true, in reality there would be many caveats and
conceptual flaws, similar (if not worse) to those one finds
when exploring dark energy properties, and ones which
would make it impossible to constrain with good accuracy
any VSL. Whether theoretically based or phenomenologi-
cally given, a VSL, faced in this way, would be just an
uncertainty (or an “ignorance”) adding up to other well-
known uncertainties (“ignorances”) from the cosmological
side like, for example, dark energy equation of state or
density. Actually, we ignore, in the same way, the “right”
dark energy behavior and the right VSL theory, and they are
also degenerate. In fact, VSL’s were originally introduced
as an alternative to inflation (or any accelerated expansion),
given that a higher speed of light in the past would solve the
horizon event. But a VSL might also mimic dark energy:
instead of an energy-mass fluid, dark energy could be
explained, totally or in part, as a “virtual” effect coming
from VSL. Again, we stress that our method is different: we
will measure the speed of light directly—no indirect
inference will be applied.
Thus, our algorithm has to pass through two main steps:

(1) the detection of the maximum redshift zM in DA and
(2) the measurement of the speed of light at zM using
DA ·H. In the following subsections, we will describe in
detail the basis for both steps, highlighting problems and
solutions.

A. Maximum detection by BAOs

Equation (4), stated in a different form, can be written as

ytðzMÞ ¼ yrðzMÞ; ð7Þ
where yt and yr are the tangential and radial modes (apart
from a multiplicative term equal to the sound horizon which
appears on both the right-hand and left-hand sides, and
having no influence on our results) which will be directly
measured by a BAO survey in the next future.
Equation (7) is very important for our purposes because

it helps to state the determination of the maximum in an
easier observationally tested way, equivalent to the vanish-
ing derivative condition, but more precise. In fact, the use of
DA only to determine the position of the maximum would
be problematic, as a large number of effects combine to
smear out the profile of DAðzÞ: the plateau at about zM, the
measurements ofDAðzÞ from just a few redshift bins from a
BAO survey, and the errors on the same measurements plus
their intrinsic dispersion. The final consequence is the
practical impossibility of determining the location of the
maximum. However, Eq. (7) contains the solution for this

problem, at least when we will have disentangled BAO
modes measured by a future survey: having at our disposal
separate measures of ytðzÞ and yrðzÞ, we can, in principle,
constrain the value of zM with better precision because,
instead of searching for the maximum in DAðzÞ, one can
search for the redshift where the condition ytðzMÞ ¼ yrðzMÞ
holds. This is shown at the bottom panel of Fig. 1.
Anyway, even in this case, we can have a better

measurement of zM with respect to the single use of DA,
but it would still be far from useful to measure c0 or some
(possible) variation with enough accuracy. However, one
can employ some cosmologically model-independent
method to extract information from data. Literature about
this topic is huge and is growing faster and larger, pulled by
the need for disentangling dark energy models in a way
which should be as free as possible from theoretical inputs,
thus giving independent hints of a theory for further
developments, confirmations, or a rebuttal. A nonexhaus-
tive list of such literature is in [39]. We have finally decided
to use Gaussian processes (GPs) [40,41], which are very
well suited to our needs. We postpone a more detailed
description of all of the details of our implementation of
GPs; we just anticipate here that we have employed them
to reconstruct ytðzÞ and yrðzÞ in order to find zM. The
application of GPs to the BAOmodes yields ytðzÞ and yrðzÞ
numerically reconstructed as smooth analytical functions,
which can be evaluated at whatever redshift value one may
need, and the sets of GP-reconstructed BAO modes can
eventually be employed in a numerical algorithm to
estimate zM and its error. Finally, once zM is known, it
will be straightforward to check on whether DAðzMÞ ·
HðzMÞ ¼ c0 or not.

B. Varying speed of light theories

In a standard context where the speed of light is not
expected to change, combining the errors on zM with the
errors on DAðzÞ ·HðzÞ will measure c0 with some error, as
follows from Eq. (4). Nowadays, the measurement of c0 is
assumed to be exact and is used as a ruler for the definition
of the meter [1]. The best measurement for c0, obtained
with laser interferometry in a terrestrial laboratory, has a
relative error of ∼10−9 [2]: this precision is largely out of
the possibility of a cosmological measurement. However, if
we assume a VSL, i.e., the existence of an—up to now
unknown—function cðzÞ [with the limit cðz → 0Þ≡ c0],
then we can recalculate the ∂DA=∂z in this case, and we
would find out that Eq. (4) would change to the more
general expression,

DAðzMÞ ·HðzMÞ ¼ cðzMÞ; ð8Þ

where, possibly, cðzMÞ ≠ c0 is the value of the speed of
light at redshift zM. Deviations from c0—if any—defined
from now on through the parameter Δc≡ cðzMÞ − c0, can
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be of whatever order possible, not necessarily as small
as 10−9.
About the approach to follow, we have to advise that, so

far, no definitive theoretical background exists for VSL. We
have chosen to follow the approach summarized in [8,42],
where a minimal coupling is assumed between matter and
the field driving the change in the speed of light. More
recent approaches are in [9], but we stress here that, for our
needs, the choice of the approach is unimportant.
For our objectives, it is important to check on the

modifications induced by a VSL approach to the
Friedmann and continuity equations. In particular, follow-
ing [8,42], the first Friedmann equation will look like

H2ðtÞ ¼ 8πG
3

ρðtÞ − k
a2ðtÞ c

2ðtÞ; ð9Þ

while the continuity equation is

_ρðtÞþ3HðtÞ
�
ρðtÞþ pðtÞ

c2ðtÞ
�
¼ 3k
4πGa2ðtÞcðtÞ_cðtÞ; ð10Þ

where ρ and p are, respectively, the energy-mass density
and the pressure of any fluid in the Universe, aðtÞ is the
scale factor, G is the universal gravitational constant,
and the speed of light is expressed as a general function
of time (or redshift), cðtÞ. What is interesting to note is that
any change produced by a VSL is connected to the spatial
curvature. Thus, in our case, where we are working
assuming the condition of spatial flatness, e.g., k ¼ 0, this
implies that no effective change is working in the continuity
equation and, consequently, in the first Friedmann equa-
tion, which, we emphasize, is directly connected to the
observable quantity HðzÞ.
On the other hand, this is not the only change produced

by a VSL; in fact, the speed of light enters all of the metric-
derived terms like, for example, the expressions for
cosmological distances, as DA is, which involve integrals
of the type

Z
z2

z1

c0
Hðz0Þ dz

0; ð11Þ

a VSL modifies such integrals in this way:

Z
z2

z1

cðz0Þ
Hðz0Þ dz

0: ð12Þ

Having clarified the VSL scenario we will work with
(but again stressing that we need it only to produce some
mock data which include a VSL; thus, the choice of one
model over another is not important for our purposes), we
have to show now that a general result, independent of the
choice of cðzÞ, is that, still, even if we were assuming not
negligible spatial curvature, the contribution of k ≠ 0 to our

Eq. (8) would be many orders smaller than a possible
deviation of cðzMÞ from c0. In fact, in VSL, Eq. (5) is
generalized to

DAðzÞ ¼

8>>>>><
>>>>>:

DHffiffiffiffi
Ωk

p
ð1þzÞ sinh

� ffiffiffiffiffiffi
Ωk

p DCðzÞ
DH

�
for Ωk > 0

DCðzÞ
1þz for Ωk ¼ 0

DHffiffiffiffiffiffi
jΩkj

p
ð1þzÞ sin

� ffiffiffiffiffiffiffiffiffijΩkj
p DCðzÞ

DH

�
for Ωk < 0;

ð13Þ

where now the line-of-sight comoving distance is defined
as DCðzÞ ¼ DH

R
z
0 Δcðz0Þ=Eðz0Þdz0, and we have made use

of the general ansatz cðzÞ≡ c0ΔcðzÞ, with ΔcðzÞ ¼ 1 for
z ¼ 0. From this set of equations, the condition for the
maximum of DA within VSL is

DAðzMÞHðzMÞ
cðzMÞ

¼

8>>><
>>>:

cosh
� ffiffiffiffiffiffi

Ωk
p DCðzÞ

DH

�
for Ωk > 0

1 for Ωk ¼ 0

cos
� ffiffiffiffiffiffiffiffiffijΩkj
p DCðzÞ

DH

�
for Ωk < 0:

ð14Þ

Unlike the case we considered in the previous section
where the speed of light was constant, here we need to
make some assumption on the function form of cðzÞ in
order to quantify the deviation between the nonzero
curvature assumption and the formula that we used,
Eq. (8). If we use for cðzÞ the expression we will describe
in the next section, i.e., Eq. (15), and consider the cases we
are going to describe later and the value of the curvature
from Planck that we used above, then we can easily find
that, even in this case, the error we make in not considering
the curvature contribution is ≲0.05%. One important point
we have to stress here is that, in principle, some degeneracy
could arise between VSL and curvature: the possible
detection of a signal might be equally interpreted as
“VSLþ null curvature” or “constant cðzÞ þ curvature.”
However, this misleading interpretation has a reason to
exist only if the VSL signal should result in one of the same
order of curvature, i.e., ∼0.01%. Larger detections (if any),
could be attributed to VSL only.

III. METHOD IMPLEMENTATION

Once we have defined all of the theoretical issues at the
base of our test, we can now move on to giving more
technical details about how we have built our algorithm and
how we checked it to be working well.

A. Mock data sets

First of all, we have to face one problem: we do not now
have any data concerning yt and yr, nor any BAO
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observations in the redshift range that we need. Thus, we
will have to work with mock data. At this time, we have no
clear and reliable phenomenological expression for cðzÞ
[10]; we have chosen to work with a general theoretically
motivated expression given in [8], i.e.,

cðaÞ ∝ c0ð1þ a=acÞn; ð15Þ
where, again, a≡ 1=ð1þ zÞ is the scale factor and ac is the
transition epoch from some cðaÞ ≠ c0 (at early times) to
cðaÞ → c0 (at late times until now). Another possible
ansatz could be c ∝ c0an [42], but it turned out to be less
flexible in order to (qualitatively) match both early and late
time observations, and it seems not to be consistent with
experiments [8]. Of course, the choice of the functional
form of cðzÞ is only needed to simulate some mock
observational data with some intrinsic variation of c, in
order to test whether our method is able to detect it or not,
and it has no influence at all on the final results.
We have decided to produce data based on three different

cosmological models.
(i) Δc=c0 ¼ 0%: the baseline Λ cold dark matter

(ΛCDM) model from Planck 2015 release base_
plikHM_TTTEEE_lowTEB_lensing_post_BAO.
The current dimensionless matter density, inferred
by this model, is Ωm ¼ 0.31.

(ii) Δc=c0 ∼ 0.1%1 at zM ≈ 1.55–1.6: baseline ΛCDM
model plus a cðaÞ given by Eq. (15), with
a ¼ 0.05, n ¼ −0.001.

(iii) Δc=c0∼1% at zM≈1.55–1.6: baselineΛCDMmodel
plus a cðaÞ given by Eq. (15), with a ¼ 0.05,
n ¼ −0.01.

In order to make the global dynamics of the Universe
within these two VSL scenarios compatible with present
data, we have had to change the value of Ωm, the current
dimensionless matter density. This is expected because, as
we have explained in previous sections, VSL can mimic the
effects of a dark energy fluid, i.e., an accelerated expansion.
A higher speed of light in the past can mimic the effects of a
dark energy component, thus resulting in a lower value for
ΩDE (the current dimensionless dark energy density).
Equivalently, when no spatial curvature is assumed, this
gets converted to a larger value of Ωm. In order to arrange
for the above assessed variations in c, in the second model
of VSL, we need Ωm ¼ 0.314, and in the third we need
Ωm ¼ 0.348, while the value for the first case (thus,
constant c0) is Ωm ¼ 0.31. We stress again that such values
are not derived from a fitting procedure to present cosmo-
logical data, which is beyond the purpose of this work. We
simply checked heuristically the values which could give a

qualitatively good global description of the present data. As
a proof of such goodness, in Table I we calculate all of the
quantities of interest for all three models we have consid-
ered, and we compare them to the available measurements.
The sound horizon at decoupling, rsðz�Þ, is derived from
the same baseline model from Planck 2015, used to mimic
data as described above; the BOSS Data Release 11 data are
from [27]; the WiggleZ Dark Energy Survey data are from
[26]; and theHðzÞ data from cosmic chronometers are from
[30]. We can easily check that the changes in the sound
horizon are ≲σs in all of the cases considered, where σs is

TABLE I. Qualitative comparison among data and models. The
distances [sound horizon at decoupling, rsðz�Þ; angular diameter
distances, DA] are in Mpc; rate expansion data (Hubble function,
H) are in km s−1 Mpc−1.

Data ΛCDM
Δc=c0
¼0.1%

Δc=c0
¼1%

Planck 2015
rsðz�Þ 144.77� 0.24 144.70 144.67 144.75

BOSS
DAðz ¼ 0.57Þ 1380� 23 1388 1385 1371
Hðz ¼ 0.57Þ 93.1� 3.0 93.0 93.3 95.6
DAðz ¼ 2.34Þ 1662� 96 1730 1725 1684
Hðz ¼ 2.34Þ 222� 7 237 238 250

WiggleZ
DAðz ¼ 0.44Þ 1204.9� 113.6 1196.2 1208.5 1198.0
Hðz ¼ 0.44Þ 82.6� 7.8 88.0 86.2 88.0
DAðz ¼ 0.60Þ 1380.1� 94.8 1400.5 1419.2 1403.4
Hðz ¼ 0.60Þ 87.9� 6.1 97.5 95.0 97.5
DAðz ¼ 0.73Þ 1533.7� 106.8 1517.0 1540.6 1520.6
Hðz ¼ 0.73Þ 97.3� 7.0 106.0 102.9 106.0

Cosmic Chronometers
Hðz ¼ 0.070Þ 69.0� 19.6 69.97 70.00 70.25
Hðz ¼ 0.090Þ 69� 12 70.68 70.72 71.04
Hðz ¼ 0.120Þ 68.6� 26.2 71.77 71.82 72.26
Hðz ¼ 0.170Þ 83� 8 73.69 73.76 74.40
Hðz ¼ 0.179Þ 75� 4 74.05 74.13 75.79
Hðz ¼ 0.199Þ 75� 5 74.86 74.94 75.69
Hðz ¼ 0.200Þ 72.9� 29.6 74.90 74.99 75.74
Hðz ¼ 0.270Þ 77� 14 77.87 78.00 79.03
Hðz ¼ 0.280Þ 88.8� 36.6 78.32 78.44 79.52
Hðz ¼ 0.352Þ 83� 14 81.63 82.80 83.19
Hðz ¼ 0.400Þ 95� 17 83.97 84.16 85.76
Hðz ¼ 0.480Þ 97� 62 88.08 88.31 90.26
Hðz ¼ 0.593Þ 104� 13 94.30 94.60 97.07
Hðz ¼ 0.680Þ 92� 8 99.42 99.77 102.64
Hðz ¼ 0.781Þ 105� 12 105.70 106.10 109.46
Hðz ¼ 0.875Þ 125� 17 111.85 112.31 116.12
Hðz ¼ 0.880Þ 90� 40 112.18 112.64 116.48
Hðz ¼ 1.037Þ 154� 20 123.08 123.64 128.24
Hðz ¼ 1.300Þ 168� 17 142.90 143.61 149.54
Hðz ¼ 1.363Þ 160.0� 33.6 147.91 148.66 154.91
Hðz ¼ 1.430Þ 177� 18 153.35 154.14 160.74
Hðz ¼ 1.530Þ 140� 14 161.66 162.52 169.64
Hðz ¼ 1.750Þ 202� 40 180.73 181.73 190.02
Hðz ¼ 1.965Þ 186.5� 50.4 200.35 201.49 210.95

1Note that the effective variation of cðzÞ at maximum redshift
expected from the fiducial model is not exactly equal to 0.1%, but
slightly less, ∼0.08%. The same holds true also for the 1% case,
which is more exactly ∼0.8%. We used the 0.1% and 1% notation
merely for an easier readability.
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the error from the chosen Planck fiducial model. The same
holds true for the angular diameter distance measurements,
which are all consistent with data in the error confidence
level, σDA

, we have from present surveys. For the rate
expansionH we have somemore tension with data (the bold
numbers), but our proposed VSL models are still consistent
with the theoretical ΛCDM model from the Planck results,
which we use as fiducial in a “standard context.”
In [43] many ongoing and future surveys are analyzed,

among them BOSS, eBOSS, HETDEX, DESI, Euclid,
and WFIRST-2.4. In particular, the authors focus on the
constraints onDA andH from a BAO analysis and conclude
that the best results are from the ESA mission Euclid: in
Table 6 of [43], they show the percentage errors onDA=rsðz�Þ
and H · rsðz�Þ for 15 redshift bins (of width 0.1) in the
redshift range [0.6;2.1] covered by Euclid. Once we have the
fiducial mock data, Dfid

A =rfids ðz�Þ and Hfid · rfids ðz�Þ, derived
from the three models described above, we can easily
calculate the corresponding errors σDA=rsðz�Þ and σH·rsðz�Þ
from columns 2 and 3 in Table 6 of [43].
Euclid will be considered like a sort of “pessimistic”

scenario in our work because, at least using the available
forecast estimation we have now, the SKA results [44]
should be much better than Euclid’s, even if in a smaller
redshift range, but still reaching the values we need in order
to determine the maximum redshift zM (thus, up to z ≈ 1.8).
In [44] the percentage errors on DA and H expected from
this survey are shown in their Fig. 5; we can use them, once
given the fiducial values for these quantities, to calculate
their corresponding errors. In our work, results from SKA
will be an “optimistic” scenario.
Anyway, we will not work directly on the fiducial model

values. Instead, we will randomly pick up values of
DA=rsðz�Þ andH · rsðz�Þ (orDA andH) from a multivariate
Gaussian centered on the fiducial values, and with a total
covariance matrix built up from the errors we derived in the
way previously described, and assuming an additional
correlation factor between them, equal to r ∼ 0.4, as
derived in [45]. Such a procedure is needed in order to
give to mock data an intrinsic dispersion closer to the real
one. Finally, of course, we cannot rely on the results from
only one single random run. Instead, we produce 103

random mock data sets, in the way just described, and we
test our algorithm on each of them. Thus, our final results
will then be a statistical output on an ensemble of possible
universes observationally compatible with the starting
fiducial model. We want to clarify that this (i.e., the making
of mock cosmological data) is the only step in our work
where we need to assume a cosmological model. This
choice is quite unavoidable in order to have a reference
point for establishing the goodness of our analysis, but it is
a quite common procedure in forecast analysis. Moreover,
the choice to test our method on a large number of data sets
will greatly smear the effects of this initial input, which,
anyway, is absolutely not in contrast with the (up to some

limit, as clarified in the previous section) model independ-
ence of our method.

B. Gaussian processes

Once we have our set of data and related errors, we can
apply GPs in order to reconstruct the observational quan-
tities of interest (yr and yt) and calculate the position of the
maximum ðzMÞ. GPs are very helpful because they incor-
porate in a very natural and straightforward way correla-
tions between data, even when expressed in the form of a
nondiagonal covariance matrix, which is our case now. For
all of the details about GPs, see the related literature
[40,41]; here, we will discuss in more detail only some
aspects of their implementation that are necessary for our
purposes.

(i) In [11] we used a simple Gaussian as the covariance
function relating two points at different redshifts, z
and z̄. In [41] it is shown that such a choice, for the
quantities we are considering, can lead to an under-
estimation of the errors of the reconstruction. A
more suitable choice, in this sense, would be the
Matérn ð9=2Þ function, given by

kðz; z̄Þ ¼ σ2f exp

�
−
3ðz − z̄Þ

l

�

×

�
1þ 3jz − z̄j

l
þ 27ðz − z̄Þ2

7l2

þ 18jz − z̄j3
7l3

þ 27ðz − z̄Þ4
35l4

�
; ð16Þ

where σf, the signal variance, and l, the character-
istic length scale, are the hyperparameters of the
proposed correlation.

(ii) For each one of the 103 mock data sets we have
created, we employ a Markov chain Monte Carlo
method in order to find the values of the hyper-
parameters which optimize the reconstruction of DA
and H, following [41].

(iii) Once we have found such optimized reconstruction
parameters, we evaluate the GPs’ output functions,
i.e., yt and yr, on aΔz ¼ 0.01 redshift grid, ten times
finer than the Euclid and SKA forecasted bins.

(iv) Such a finer grid is useful for implementing a
numerical algorithm to calculate zM for each simu-
lation. We finally have 103 sets of GP-reconstructed
ðyGPt ; σGPyt Þ’s and ðyGPr ; σGPyr Þ’s and, using Eq. (7), we
can estimate zM for each of them.

Such a finer grid is useful for implementing a numerical
algorithm to calculate zM for each simulation.

(i) We have 103 sets of GP-reconstructed ðyGPt ; σGPyt Þ’s
and ðyGPr ; σGPyr Þ’s: we randomly pick up ∼160 sets in
the ½−4σGP; 4σGP� confidence level for each quan-
tity, which we then combine, obtaining a total of
∼2.5 × 104 (yGPt ; yGPr ) pairs.
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(ii) For each pair, we fit yGPt and yGPr with a high order
polynomial in the redshift range [1., 2.] (for Euclid;
the maximum redshift is 1.8 for SKA), and we find
zM numerically for each of them using Eq. (7).

Thus, we end with a set of ∼2.5 × 104 zM ’s from which we
can derive the mean value zM for our statistical ensemble,
and the related error σzM.

C. Speed of light measured

Once we have ðzM; σzMÞ, we only need to calculate the
quantity DAðzÞ ·HðzÞ=c0, using the GP-reconstructed data
set and, using Eqs. (4) and (8), we can constrain the value of
the speed of light. We choose to normalize the quantity
DAðzÞ ·HðzÞ with c0; thus, in the context of a constant
speed of light, we expect to find DAðzMÞ ·HðzMÞ=c0 ≈ 1
with some error, while in VSL theories it can be ≠ 1.
One important question should be discussed at this point:

a very useful relation for determining the speed of light at
far cosmological epochs is Eq. (4); Eq. (7) is a completely
equivalent way to write it, absolutely necessary for the
determination of zM, but quite useless for checking the
constancy of the speed of light. Stated in another way,
BAOs are necessary for the determination of zM, using
Eq. (7), but cannot be used to measure the speed of light,
using Eq. (4). This is clearly understandable if we take a
careful look at the way the radial mode, which can be
measured from BAOs, is defined: the measured length, yr,
which is actually what one can see in the galaxy distribu-
tion, combines information from both the speed of light and
the expansion rate H. In order to use Eq. (4), we need to
determine H from what we see, but we cannot actually use
the BAO radial model yr because, in this case, we would
need some assumption on the speed of light functional
form, which is, of course, unknown to us (at least if one
assumes it can be varying).
However, even if we cannot use BAOs from SKA,

Euclid, or WFIRST-2.4, there is still a way these surveys
(at least the optical ones, i.e., Euclid or WFIRST-2.4) can be
useful to us: as mentioned in the Introduction, the same

galaxies which are used to measure BAOs (or, better, the
fraction of them corresponding to ETGs) can be used as
cosmic chronometers, thus giving us direct measurements of
HðzÞ, free of any degeneracy and/or assumption on the
possible time variability of cðzÞ. Such a use is quite
interesting because we can note down the close analogy
of such probes with a laboratory experiment: here we would
have DA from BAOs, a length which plays the role of a
standard (cosmological) ruler, and H−1 from cosmic chro-
nometers, with the dimension of time, as a (cosmologi-
cal) clock.
A preliminary study about the capability of future

surveys in this context is discussed in [30], where a
simulated Euclid-type survey gives a minimum ∼5% error
on H, when accounting for statistical errors only. Better
performances should be obtained with WFIRST-2.4, which
is going to observe more galaxies than Euclid. However, in
the following, we will assume that the errors onH are those
expected from BAO observations, which are smaller than
this limit. This does not invalidate our method; in some
ways, our analysis will give us a clear idea about how much
can we expect from it, and it will give us an indication
about the properties a survey should have in order to be
sensitive to the signal we are searching for. If an already-
planned survey is not going to reach such a limit, this does
not exclude the possibility that, in the future, we can have
such a detection by means of more advanced instruments.

IV. RESULTS AND DISCUSSION

All of the results from applying our method to the mock
data that we have produced are summarized in Table II and
depicted in Fig. 2, where we show, separately, expectations
from assuming errors on DA and H as they come from
Euclid and SKA for the three cosmological scenarios we
have considered. Note that the errors shown in the table are
not the usual ones, except for those on zM. Instead, given
that we have been working on an ensemble of 103 possible
observational sets, we give our results in the form average
of the median from the ensemble � average of the median

TABLE II. Results.

Euclid

Δc=c0 zM cðp > 1Þ c1σðp > 1Þ c2σðp > 1Þ c3σðp > 1Þ
1% 1.559þ0.054

−0.051 1.00872þ0.00003
−0.00003 (1) 0.99993þ0.00013

−0.00024 (0.32) 0.99436þ0.00023
−0.00041 (0) 0.98879þ0.00032

−0.00056 (0)
0.1% 1.587þ0.058

−0.052 1.000880þ0.000006
−0.000006 (0.98) 0.99199þ0.00014

−0.00024 (0.001) 0.98636þ0.00024
−0.00038 (0) 0.98072þ0.00034

−0.00053 (0)
SKA

Δc=c0 zM cðp > 1Þ c1σðp > 1Þ c2σðp > 1Þ c3σðp > 1Þ
0% 1.593þ0.018

−0.017 1:þ3×10−7

−4×10−7
0.99708þ0.00003

−0.00004 0.99524þ0.00006
−0.00007 0.99339þ0.00008

−0.00008
1% 1.561þ0.017

−0.017 1.00873þ0.00001
−0.00001 (1) 1.00585þ0.00003

−0.00003 (1) 1.004036þ0.00005
−0.00005 (1) 1.00221þ0.00008

−0.00009 (1)
0.1% 1.590þ0.018

−0.017 1.000880þ0.000001
−0.000001 (1) 0.99797þ0.00003

−0.00003 (0) 0.99612þ0.00006
−0.00006 (0) 0.99428þ0.00008

−0.00008 (0)
0.1% ðerr=3Þ 1.590þ0.006

−0.006 1.0008800þ0.0000001
−0.0000001 (1) 0.999834þ0.000009

−0.000009 (0) 0.99917þ0.00001
−0.00001 (0) 0.998510þ0.00002

−0.00002 (0)
0.1% ðerr=10Þ 1.590þ0.003

−0.003 1.0008800þ0.0000003
−0.0000002 (1) 1.00032þ0.00014

−0.00018 (0.94) 0.99996þ0.00023
−0.00029 (0.44) 0.99961þ0.00032

−0.00040 (0.10)
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of the standard deviation from the ensemble. We also have
to specify the notation we used: c is the measured value
from the experiment, i.e., cðzMÞ, normalized to the present
value c0; c1σ, c2σ, c3σ , are the lower limits at, respectively,
the 1σ, 2σ, and 3σ confidence levels. We only consider the
lower limits because, in all of the models, we have assumed
that the speed of light in the past was greater than the
present value; thus, any deviation from constancy is
possibly detectable only if the lower limits are greater
than c0. The choice of models with a different trend would
have been completely equivalent, implying only that we
should have focused on the upper limits instead of the lower
ones; however, all of the conclusions that we draw would
have been completely equivalent to the present ones. The
p > 1 number is the probability of having a cðzMÞ ≠ c0 in
our ensemble (e.g., the normalized number of simulations
for which a clear nonconstant signal can be detected);
higher values of p > 1 mean, of course, that the survey is
more likely to observe a deviation from constancy of the
speed of light.
As a preliminary check, we have tested our algorithm in

the case of a nonvarying speed of light. The expected
maximum from the fiducial model is zM ¼ 1.589, and we
recover, in the case of SKA, a value that is highly consistent
with this estimation. As expected, even the value of cðzMÞ
is very consistent with the expected c0, and there is a very
small dispersion of the values from the 103 models we have
considered. Thus, we can finally conclude that our method
works quite well, as we are able to recover the input model
with a very good accuracy.

The central point here is the lower limit detection: from
the Δc ¼ 0 case, we can see that the average 1σ limit is
≈0.003. So, the main question to be answered now is the
following: is this accuracy enough to detect a possible VSL?
To answer this, we consider the VSL model with a 1%

variation in c. First of all, again, the detection of zM is good:
the expected value is zM ¼ 1.561, and we recover 1.559
and 1.561, respectively, with Euclid and SKA, with both of
the errors fully compatible with the expected input. What is
interesting to note is the improvement in the determination
of the maximum which is achieved when moving from one
survey to another. In particular, the error on zM from SKA is
∼30% smaller than the same estimation from Euclid. This,
of course, will also result in a better constraint on cðzMÞ.
Effectively, if we examine the 1σ lower limit, we can see
how Euclid will be hardly able to detect such an order of
variation in the speed of light, with only 32% of our
simulations clearly detecting a deviation from 1 (i.e., from
c0 and, thus, constancy) at1σ.On the other hand, SKAwill be
extremely useful, with a clear detection even at 3σ. We point
out that in [11] we concluded that Euclid would have been
able to detect such a variation at 2σ; here the signal is
worsened by the change of the correlation function in the
GPs.Using theMatérn ð9=2Þ function, instead of aGaussian,
as the GP correlation kernel made the errors much more
realistic, but also larger than those that we obtained in [11],
and this is reflected in such new results for Euclid.
Things go a little worse for smaller variations: it is clear

that a 0.1% variation in c will hardly be very detectable,
even with SKA: even if the corresponding values for zM
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FIG. 2. Probability distribution of c1σ , c2σ , and c3σ (from dark to light grey) from 103 simulations in different survey configurations.
The vertical black dot-dashed line is for cðzMÞ ¼ c0.
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and cðzMÞ can be recovered, the sensitivity will not be
enough to discriminate between such a small deviation and
the constancy. Thus, we have to assume that the sensitivity
of at least these two already-planned surveys will not be
enough to detect a VSL too much smaller than ∼1%.
For this reason, we have explored whether there is any

chance for some future more extreme galaxy survey to
perform better. Building a reliable galaxy survey in all
possible details has many constructive difficulties and it is
beyond the purpose of this work. We have thus carried out a
naive “rule-of-thumb” analysis: we have assumed a SKA-
style survey (i.e., with the same redshift range and bins as
SKA), but with a better performance, quantified as smaller
errors on DA and H, and actually possible if the number of
observed galaxies is increased. We have first considered the
case where the errors onDA andH are reduced by one third
(this is approximately the same improvement one has when
moving from Euclid to SKA). However, even in this case,
the 0.1% variation is still beyond possibility. In order to
find out something at the 1σ level, you need to reduce the
errors by a factor of 10.
It is clear that to set a limit detection at 0.1% for a VSL

might be problematic. We are not aware of any cosmological
direct or indirect measurement of c which can be used as a
comparison tool; in most cases, the speed of light is simply
assumed to be constant and equal to the commonvaluec0. On
the other hand, in the literature, there aremanymeasurements
of another quantity which is strictly related to c, namely, the
fine-structure constant α, which is defined exactly as
α≡ e2=ðℏcÞ, where e is the electron charge and ℏ the
reduced Planck constant. There aremany observationswhich
are compatible with a varying α [4,46], but these variations
are always very small, at least< 10−4; that is the reason why
there is debate about whether they are really consistent or
whether, instead, we should more correctly assume that α is
constant. However, if we center on its definition, it is easy to
check that, if the other parameters involved in its definition
ðe;ℏÞ are assumed to be constant, then Δα=α ¼ −Δc=c0.
Thus,wewould expect a variation forc of the sameorder, i.e.,
< 10−4. The question here is more subtle, in any event. In
fact, in principle, even a large variation in the speed of light
could be compatible with such orders of magnitudes for the
variation in α, if we admit that the other parameters can also
vary. However, in this case we would have an unpleasant
“fine-tuning” and would degenerate into a conspiracy plot
from many different aspects of physics because, in order to
accommodate such small variations in α, we would need
either a larger variation from each of the other parameters to
compensate for each other or roughly the same order of
magnitude variation for each one of them.
Thus, assuming that such measurements of variation of α

are correct, it is a conservative assumption to expect the
same order of variation for c. Reading the literature, it is
easy to check to see that the most used varying α detectors
are quasars—in particular, their spectra and quasars are not

cosmological-scale structures. What we are effectively
measuring is a possible local variation of α. Instead, in
our method, we are going to measure c from the cosmo-
logical-scale distribution of galaxies, which is many order
of magnitudes larger than the quasar scale. The only similar
probe which might be compared to our results is the CMB:
from the first Planck release, a possible limit has been
detected on the variation of α at a redshift z ∼ 103 of the
order of Δα=α≲ 0.4%; see [47] and [48]. However, the
constraint from [47] is plagued by a strong degeneracy with
a cosmological parameter, the Hubble constant H0, result-
ing in a tension which is only mildly reduced by joining
CMB observations with some archival BAO data sets, and
adding a prior onH0. Moreover, it is worth pointing out that
this is not a directmeasurement of α: a variation is assumed,
and then parametrized in a very simple, but arbitrary, way.
From this point of view, we would like to stress that our
“optimistic scenario” of VSL detection from SKA is highly
competitive with CMB observations, and it would be
obtained without any assumption on other possible cosmo-
logical parameters. It would be a direct measurement, and
not indirectly inferred. Then, the constraint from [48]
searches for an even more extreme variation: not only time
but also spatial variation, for which the signal can be even
smaller. Actually, their conclusion is that even if there is any
variation, this is consistent with zero.
Finally, taking into account all such results and argu-

ments, if we focus on our hypothesis about the sensitivity of
futuristic surveys, one question which should be answered
lastly is as follows: is it technically possible to achieve such
small errors from galaxy surveys and thus be able to
measure finer variations of c? From a quantitative point of
view, the answer is not easy because, as we have said
above, it would involve many technical problems.
However, at least qualitatively, we feel confident enough
that the 0.1% limit in VSL detection is within the reach of
future observations. In [13] (Fig. 2.21) and in [43] (Fig. 3),
the observational errors from many ongoing and planned
future surveys are shown. As can be easily checked by a
simple visual inspection, Euclid errors are expected to be
about one tenth that of the errors obtained from already
completed survey like the WiggleZ Dark Energy Survey.
Thus, the level of improvement that we have considered
should be possible. Moreover, it is also clear that any
technical improvement will be useful: based on modern
technology, ground based telescopes like DESI and SKA
[44] are already almost as competitive as space ones like
Euclid and WFIRST-2.4, with SKA errors that should be
one third that of Euclid ones. Thus, we expect that in the
future, even if still not planned, it will surely be possible to
further improve space-based surveys and obtain even better
constraints. One point we have to remember, however, is
that the H measurements from such future galaxy surveys
are strictly related to cosmic chronometers, whose errors
are somewhat larger than the ones we have used here and
which were estimated from a BAO analysis. This makes
things more difficult, but not impossible.
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