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Gravitational waves are propagating undulations in the spacetime fabric, which interact very weakly
with their environment. In cosmology, gravitational-wave distortions are produced by most of the
inflationary scenarios and their anticipated detection should open a new window to the early Universe.
Motivated by the relative lack of studies on the potential implications of gravitational radiation for the
large-scale structure of the Universe, we consider its coupling to density perturbations during the
postrecombination era. We do so by assuming an Einstein–de Sitter background cosmology and by
employing a second-order perturbation study. At this perturbative level and on superhorizon scales, we find
that gravitational radiation adds a distinct and faster growing mode to the standard linear solution for the
density contrast. Given the expected weakness of cosmological gravitational waves, however, the effect of
the new mode is currently subdominant and it could start becoming noticeable only in the far future.
Nevertheless, this still raises the intriguing possibility that the late-time evolution of large-scale density
perturbations may be dictated by the long-range (the Weyl), rather than the local (the Ricci) component of
the gravitational field.
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I. INTRODUCTION

Cosmological gravitational waves, namely pure-tensor
(transverse-traceless) perturbations, are one of the promi-
nent predictions made by the simplest and most popular
models of inflation [1]. The detection of these distortions
will provide the testing ground for the various inflationary
models, while mapping the gravitational-wave back-
ground could lead to the phenomenological reconstruction
of the inflaton. According to the standard scenario,
primordial gravitational waves originate as subhorizon
quantum fluctuations, which are stretched on super-
Hubble scales by the exponential expansion of the de
Sitter phase. Once there, they “freeze-out” as classical
Weyl-curvature distortions that interact very weakly with
their environment. Because of that, the detection (direct or
indirect) of a cosmological gravitational-wave background
should provide us with valuable new information about
the very early stages of our Universe. An announcement
of a possible indirect detection of such inflationary
gravitational waves was made by the BICEP2
Collaboration in March 2014 [2]. Although the confi-
dence in this first-ever detection has now subsided [3], the
search for a primordial gravitational-wave background
continues [4].
Distortions in the long-range component of the gravi-

tational field interact with those in the density of the
matter, though typically not at the linear level. In the

literature there are already second-order studies looking
into the effects of scalar density perturbation on gravita-
tional waves (e.g. see [5] and references therein). Here we
will consider the opposite, namely the implications of
gravitational radiation for the evolution of density pertur-
bations during the dust epoch. A related study, looking at
the effects of relic gravitons on scalar curvature perturba-
tions throughout the radiation and the dust eras, has also
recently appeared in the literature [6], following earlier
quantum mechanical studies of the de Sitter phase [7]. It
was shown in [6] that inflationary produced, large-scale
gravitational waves add a weak growing mode to the
evolution of curvature perturbations during both the radi-
ation and the dust eras. The effect of the new mode was
found to depend on the ratio between the graviton energy-
density and that of the dominant matter component [6].
Here, we arrive at analogous results by looking into the
gravitational-wave effects on superhorizon-sized density
perturbations during the dust era and by using considerably
different analytical techniques.
Our study is nonperturbative, in the sense that it starts

from the fully nonlinear expressions before reducing them to
their linear and second-order limits (around a chosen
background). This is achieved by employing the covariant
1þ 3 splitting of the Weyl tensor, in order to describe the
gravitational waves, instead of perturbing the background
metric. Assuming an Einstein–de Sitter background, we
isolate the gravitational waves and use the transverse
component of the shear tensor to describe these distortions
at the linear level. Confining to superhorizon scales, we then
look into the effects of the Weyl field on the evolution of
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overdensities/underdensities to second order.We arrive at an
inhomogeneous differential equation with source terms due
to the gravitational waves. Solving this equation we recover
the standard growing and decaying modes of the linear
analysis, plus a new gravitationally induced mode that
grows considerably faster than its first-order counterpart.
Nevertheless, the expectedweakness of cosmological gravi-
tational waves means that the aforementioned additional
mode is currently still subdominant and can only have a
measurable effect in the far future. Put another way, our
second-order study suggests thatWeyl-curvature distortions
could in principle dictate the evolution of large-scale density
perturbations, although this will probably happen only at
very late times. We should also note that, given the purely
geometrical nature of the interaction under consideration,
the matter component does not need to be necessarily
baryonic. Therefore, our analysis and results apply to
ordinary pressure-free dust and to nonbaryonic cold dark
matter (CDM) as well.
During our analysis we also encounter the so-called

“gauge issue”, stemming from the fact that in cosmological
perturbation studies we deal with two spacetimes. An
idealistic one, which usually coincides with a Friedmann-
Lemaître-Robertson-Walker (FLRW) model, and a more
realistic perturbed spacetime that is expected to describe the
actual Universe. To proceed one needs to establish an one-
to-one mapping, namely a “gauge”, between these two
spacetimes and in many occasions the results depend on the
chosen gauge. We bypass the gauge problem, by employing
a new variable that is gauge invariant to second order.
The aforementioned quantity has the advantages of being
covariantly defined, directly related to (scalar) density
perturbations and very simple to construct. On the downside,
to guarantee mathematically the gauge invariance of our
second-order results, we must confine to the uniform
component of the linear overdensities/underdensities.
Physically, this assumption implies that we consider the
average linear density contrast inside the associated over-
density/underdensity. The latter is a fairly common practice
in nonlinear perturbation studies [8].
We start with a general introduction to the 1þ 3 covariant

formalism in Sec. II and then proceed to discuss the basics
of the Friedmannian cosmologies in Sec. III. In the next
two sections (IV and V) we consider the linear evolution
of gravitational waves and density perturbations respec-
tively. The nonlinear interaction between these two physical
entities is presented in Sec. VI. There, we also address the
gauge issue and provide an analytical solution for the
second-order evolution of (scalar) density perturbations in
the presence of gravitational-wave distortions. Finally, we
discuss the implications of our results in Sec. VII. For the
interested reader, we have also included two appendixes
with additional technical details.

II. THE 1þ 3 COVARIANT APPROACH TO
GRAVITATIONAL WAVES

The 1þ 3 covariant approach (see [9,10] for recent
reviews) describes physics by introducing a family of
(fundamental) observers, which split the spacetime into
time and 3-D space. Then, all variables, operators and
equations decompose into their temporal and spatial parts.

A. Kinematics

Consider a family of observers “living” along worldlines
with local coordinates xa ¼ xaðτÞ, where τ is the observers’
proper time. The (timelike) 4-velocity tangent to these
worldlines is ua ¼ dxa=dτ, so that uaua ¼ −1. This 4-
velocity vector defines the temporal direction, while the
tensor hab ¼ gab þ uaub projects into the three-dimensional
hypersurfaces orthogonal to ua [9,10]. The ua-field and its
tensor counterpart hab facilitate a unique decomposition of
any spacetime quantity, operator and equation into their
timelike and spacelike components.
The motion of the fundamental observers is character-

ized by a set of irreducible kinematic quantities, which
emerge from the 1þ 3 covariant decomposition of the 4-
velocity gradient [9,10]:

∇bua ¼ σab þ ωab þ
1

3
Θhab − Aaub: ð1Þ

In the above, σab ¼ Dhbuai and ωab ¼ D½bua� are respec-
tively the shear and the vorticity tensors, Θ ¼ Daua is
the volume scalar and Aa is the 4-acceleration vector (with
σabub ¼ 0 ¼ ωabub ¼ Aaua).

1 For our purposes the key
variable is the shear tensor, which describes kinematic
anisotropies and is directly related to gravitational waves in
perturbed FLRW cosmologies. At the nonlinear level, the
shear evolution is monitored by the propagation equation
[9,10]

_σhabi ¼ −
2

3
Θσab − σchaσcbi − ωhaωbi þ DhaAbi

þ AhaAbi − Eab þ
1

2
πab; ð2Þ

while it obeys the constraints

Dbσab ¼
2

3
DaΘþ curlωa þ 2εabcAbωc − qa ð3Þ

and

Hab ¼ curlσab þ Dhaωbi þ 2Ahaωbi: ð4Þ

1Round brackets denote symmetrization, square brackets
imply antisymmetrization and angled brackets indicate the
projected, symmetric and trace-free part of a tensor. In particular
Dhbuai ¼ DðbuaÞ − ðDcuc=3Þhab.
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Note that overdots denote time derivatives (e.g.
_σab ¼ uc∇cσab). Also, ωa ¼ εabcω

bc=2, curlωa ¼
εabcDbωc and curlσab ¼ εcdhaDcσdbi by definition, with
Da ¼ hab∇b representing the three-dimensional covariant
derivative operator. Finally, qa and πab are the energy-flux
vector and the anisotropic pressure of the matter respec-
tively (with πab ¼ πhabi and qaua ¼ 0¼ πabub), while Eab

and Hab are the electric and magnetic components of the
Weyl (conformal curvature) tensor (see below).

B. Long-range gravity

General relativity interprets gravity as the result of
spacetime curvature, while the spacetime itself is treated
as a four-dimensional Riemannian manifold. More specifi-
cally, the part of the gravitational field which is caused by
the local presence of matter is monitored by the Ricci
component of the Riemann curvature tensor. Gravity at a
distance, on the other hand, is governed by the Weyl part of
the Riemann tensor. This splitting of the gravitational field
into its local and long-range components is reflected in the
decomposition

Rabcd ¼ Cabcd þ
1

2
ðgacRbd þ gbdRac − gbcRad − gadRbcÞ

−
1

6
Rðgacgbd − gadgbcÞ: ð5Þ

In the above, Rabcd is the Riemann tensor, Cabcd is the Weyl
tensor, Rab ¼ Rc

acb and R ¼ Ra
a are the Ricci tensor and

the Ricci scalar respectively and gab the spacetime metric.
By construction, Rabcd ¼ Rcdab, Rabcd ¼ R½ab�½cd�, Ra½bcd� ¼
0 and Rab ¼ RðabÞ. Also, the Weyl tensor obeys the
symmetries of the Riemann tensor and it is traceless as well.
Local gravity is described by the Ricci field and it is

monitored by the Einstein field equations. The Weyl tensor,
on the other hand, satisfies the Bianchi identities,

∇dCabcd ¼ ∇½bRa�c þ
1

6
gc½b∇a�R; ð6Þ

which could be seen as the field equations of the nonlocal
gravitational field, that is of tidal forces and gravitational
waves. Within the framework of the 1þ 3 covariant
formalism, the Weyl tensor splits into its electric and
magnetic components, defined by

Eab ¼ Cacbducud and Hab ¼
1

2
εa

cdCcdbeue; ð7Þ

respectively [9,10]. Employing the Eab and Hab tensors,
which are both spatial, symmetric and trace free
(i.e. Eabub ¼ 0 ¼ Habub, Eab ¼ Ehabi and Hab ¼ Hhabi),
the Weyl tensor decomposes into its irreducible parts
according to

Cab
cd ¼ 4ðu½au½c þ h½a½cÞEb�d� þ 2εabeu½cHd�e

þ 2u½aHb�eεcde: ð8Þ

Once the ua-field has been introduced, the Bianchi
identities split into their temporal and spatial parts.
Then, by means of decomposition (8) the timelike compo-
nent of the Bianchi identities provides the propagation
formulas [9]

_Ehabi ¼ −ΘEab −
1

2
ðρþ pÞσab þ curlHab −

1

2
_πab

−
1

6
Θπab −

1

2
Dhaqbi − Ahaqbi

þ 3σhac
�
Ebic −

1

6
πbic

�

þ εcdha

�
2AcHbid − ωc

�
Ebid þ

1

2
πbid

��
ð9Þ

and

_Hhabi ¼−ΘHab−curlEabþ
1

2
curlπabþ3σhacHbic−

3

2
ωhaqbi

−εcdha

�
2AcEbid−

1

2
σcbiqdþωcHbid

�
: ð10Þ

Similarly, the spacelike part of the decomposed Bianchi
identities leads to the constraints

DbEab ¼
1

3
Daρ −

1

2
Dbπab −

1

3
Θqa þ

1

2
σabqb − 3Habω

b

þ εabc

�
σbdHcd −

3

2
ωbqc

�
ð11Þ

and

DbHab ¼ ðρþ pÞωa −
1

2
curlqa þ 3Eabω

b −
1

2
πabω

b

− εabcσ
b
d

�
Ecd þ 1

2
πcd

�
: ð12Þ

The above govern the action of gravity at a distance and
typically obey wavelike solutions.

III. FRIEDMANNIAN COSMOLOGIES

The observational data, along with the Copernican
principle, imply that the Universe is uniform (i.e. homo-
geneous and isotropic) on very large scales. These sym-
metries are consistent with the Robertson-Walker geometry,
which determines the metric tensor, and with a perfect-fluid
energy-momentum tensor for the matter. All these suggest
that the FLRW models provide a good description of our
Universe on sufficiently large scales.

GRAVITATIONAL-WAVE IMPLICATIONS FOR STRUCTURE … PHYSICAL REVIEW D 93, 063520 (2016)

063520-3



A. The FLRW models

The uniformity of the FLRW spacetimes demands that
any quantity which induces inhomogeneity or anisotropy
must vanish identically. This in turn guarantees that only
time-dependent scalars survive in the related equations. As
a result, the only nontrivial relations emerging from the
Einstein field equations are Raychadhuri’s formula

_H ¼ −H2 −
1

6
ðρþ 3pÞ þ 1

3
Λ; ð13Þ

together with the continuity equation

_ρ ¼ −3Hðρþ pÞ; ð14Þ

withH ¼ _a=a representing the Hubble parameter andΛ the
cosmological constant. An additional important formula is
the integral of (13), namely

H2 ¼ 1

3
ρ −

K
a2

þ 1

3
Λ; ð15Þ

where K ¼ 0, �1 is the curvature index of the spatial
sections. The above, together with (13), comprise the so-
called Friedmann equations.

B. The Einstein–de Sitter universe

The simplest of the FLRW spacetimes is the so-called
Einstein-de Sitter universe, which is spatially flat, has zero
cosmological constant and contains pressureless matter (i.e.
“dust”). This model is believed to provide an accurate
description of our cosmos from the time of equipartition
until the onset of the recent accelerated phase.
Setting K ¼ 0 ¼ Λ ¼ p on to the right-hand side of

Eqs. (14) and (13), the latter lead to the familiar solution

ρ ¼ ρ0

�
a0
a

�
3

and a ¼ a0

�
t
t0

�
2=3

; ð16Þ

with the zero suffix indicating the beginning of the dust era.
Then, it is straightforward to show that H ¼ 2=3t and ρ ¼
4=3t2 throughout that period. In what follows, the Einstein–
de Sitter model will form our unperturbed (zero-order)
background universe.

IV. COSMOLOGICAL GRAVITATIONAL WAVES

Typical inflationary models produce gravitational waves,
the relative strength of which depends primarily on the
energy scale of inflation and on the reheat temperature.
These waves cross outside the Hubble horizon during the
exponential expansion phase and remain there before
reentering at some later epoch. The earlier the time of exit
the later that of reentry.

A. Isolating the gravitational waves

The long-range gravitational field is monitored by the
electric and magnetic parts of the Weyl tensor, the trans-
verse part of which can and has been used to describe
cosmological gravitational waves [11]. When the cosmic
medium is a perfect fluid and the background universe is an
FLRW model, the aforementioned Weyl components obey
the following set of linear relations:

_Eab ¼ −3HEab −
1

2
ðρþ pÞσab þ curlHab; ð17Þ

_Hab ¼ −3HHab − curlEab; ð18Þ

DbEab ¼
1

3
Daρ and DbHab ¼ ðρþ pÞωa: ð19Þ

The first two of the above expressions are propagation
formulas, describing the time evolution of the Weyl field.
Equations (19a) and (19b), on the other hand, are con-
straints satisfied on the observers’ 3-D rest space at
all times.
Gravitational waves are pure-tenor perturbations,

which means that the related information is encoded in
the transverse part of the Weyl field. Therefore, to
isolate the gravitational waves, one needs to ensure
that the transversality condition is always preserved.
Mathematically, this is achieved by imposing the linear
3-D constraints

DbEab ¼ 0 and DbHab ¼ 0; ð20Þ

at all times. The above appear to hold as long as Daρ ¼
0 ¼ ωa to first approximation, which means to (artificially)
switch off the linear effects of density inhomogeneities and
vorticity. Nevertheless, to guarantee that transversality is
preserved in time, once it is imposed on the initial hyper-
surface, one needs to demand that DaΘ ¼ 0 at the same
perturbative level as well.

B. The role of the shear tensor

Shear perturbations describe shape distortions analogous
to those induced by propagating gravitational waves. On a
flat FLRW background, the linear shear tensor evolves
according to

_σab ¼ −2Hσab − Eab; ð21Þ

while it satisfies the associated 3-D constraints

Dbσab ¼
2

3
DaΘþ curlωa; ð22Þ
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Hab ¼ curlσab þ Dhaωbi ð23Þ

and the linearized Gauss-Codacci equation [9]

Rhabi ¼ −Hσab þ Eab; ð24Þ

where Rhabi is the symmetric and trace-free part of the
(perturbed) 3-D Ricci tensor. Following (22), when
Daρ ¼ 0 ¼ DaΘ ¼ ωa, the shear is also transverse (i.e.
Dbσab ¼ 0 to first order) and the same is also true forRhabi
[see constraint (24)].
What is more important is that, under these constraints,

the linear shear evolution dictates that of the magnetic Weyl
tensor [see Eq. (23)] and then [by means of (17)—see also
(21)] that of its electric counterpart. Consequently, on a
FLRW background, the linear evolution of gravitational-
wave perturbations is solely monitored by the shear. The
latter obeys the formula

σ̈ab ¼ −5H _σab −
1

2

�
ρ − 3p −

2K
a2

�
σab þ D2σab; ð25Þ

obtained after taking the time derivative of (21) and then
using (17), together with the vorticity-free version of (23)
and the linear relation curlHab ¼ ð3K=a2Þσab − D2σab
(e.g. see Sec. III.6 in [9]). Note that D2 ¼ DaDa is the
3-D covariant Laplacian operator. The above is a wavelike
equation with additional terms due to the expansion, the
presence of matter and the nonzero background curvature.

C. Linear gravitational waves

After equilibrium we are dealing with nonrelativistic
matter of zero pressure (i.e. p ¼ 0). Therefore, assuming
spatial flatness in the background (i.e. setting K ¼ 0) and
then harmonically decomposing Eq. (25), we arrive at

σ̈ðnÞ ¼ −5H _σðnÞ −
3

2
H2

�
1þ 2

3

�
λH
λn

�
2
�
σðnÞ; ð26Þ

since 3H2 ¼ ρ to zero order. Here, we have introduced the

splitting σab¼
P

nσðnÞQ
ðnÞ
ab , with DaσðnÞ¼0 and QðnÞ

ab rep-
resenting (pure) tensor harmonic functions [i.e.Qab¼Qhabi,
DbQab¼0¼ _Qab and D2Qab¼−ðn=aÞ2Qab]. Also, λH ¼
1=H and λn ¼ a=n are the Hubble radius and the physical
wavelength of the shear perturbation respectively (with n >
0 being the comoving wave number).
After equipartition we have a ∝ t2=3 and H ¼ 2=3t.

Then, on superhorizon scales (i.e. for λH=λn ≪ 1),
Eq. (26) simplifies to2

3t2σ̈ðnÞ þ 10t _σðnÞ þ 2σðnÞ ¼ 0 ð27Þ

and accepts the power-law solution

σðnÞ ¼ C1t−1=3 þ C2t−2: ð28Þ

Therefore, during the dust era, gravitationally induced (i.e.
pure-tensor) shear perturbations decay as σ ∝ t−1=3 on
super-Hubble scales (e.g. see [9]). This linear result will
be used later to study the effects of gravitational waves on
density perturbations at second order.

V. COSMOLOGICAL DENSITY PERTURBATIONS

Inhomogeneities in the density of the baryonic
component typically start growing after recombination,
once matter has decoupled from the background radiation
field. Perturbations in the CDM sector, on the other
hand, may start condensing (much) earlier. Note that the
high isotropy of the Cosmic Microwave Background
(CMB) suggests that the amplitude of the former type of
distortions at decoupling should be very small (of the
order of 10−5).

A. Describing density inhomogeneities

Variations in the density distribution of the matter
(baryonic or CDM), as seen between two neighboring
observers, are monitored by the dimensionless gradient [12]

Δa ¼
a
ρ
Daρ: ð29Þ

The latter carries collective information for all three types of
density inhomogeneities, namely scalar, vector and (trace-
free) tensor. One can decode this information by taking the
comoving gradient of Δa and then introducing the splitting

Dab ¼ aDbΔa ¼
1

3
Dhab þDhabi þD½ab�; ð30Þ

with D ¼ aDaΔa, Dhabi ¼ aDhbΔai and D½ab� ¼ aD½bΔa�
by definition [13]. The scalar D describes what we com-
monly refer to as density perturbations, namely overden-
sities or underdensities in thematter distribution, and closely
corresponds to the more familiar density contrast δ ¼ δρ=ρ
(e.g. see [9,12]). The symmetric and trace-free tensor Dhabi
monitors changes in the shape of the inhomogeneity (under
constant volume). Finally, the antisymmetric tensorD½ab� is
related to rotational perturbations (e.g. vortices) in thematter
density.

B. Linear density inhomogeneities

Consider a perturbed spatially flat FLRW spacetime,
with zero cosmological constant, containing a single
barotropic fluid. To linear order, inhomogeneities in the

2Alternatively, we could have arrived at Eq. (27), and therefore
at solution (28), by setting p ¼ 0 ¼ K in (25) and dropping the
shear Laplacian from the right-hand side of the same expression.
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density distribution of the matter evolve according to the
system [13]

_Δa ¼ 3wHΔa − ð1þ wÞZa ð31Þ

and

_Za ¼ −2HZa −
1

2
ρΔa −

3

2
aDap

− a½3H2 þ 1

2
ρð1þ 3wÞ�Aa þ aDaDbAb; ð32Þ

where the gradient Za ¼ aDaΘ describes spatial variations
in the universal volume expansion and w ¼ p=ρ is the
barotropic index of the matter [13]. Also, the 4-acceleration
satisfies the linear conservation law [9,10]

ρð1þ wÞAa ¼ −Dap: ð33Þ

After recombination, and until the onset of the recent
accelerated phase, the energy density of the Universe
is dominated by pressureless dust. Assuming matter with
zero pressure (baryonic or CDM) means that the
barotropic index and the 4-acceleration vanish as well
(i.e. w ¼ 0 ¼ Aa). Then, the set of (31) and (32)
reduces to

_ΔðkÞ ¼ −ZðkÞ and _ZðkÞ ¼ −2HZðkÞ −
1

2
ρΔðkÞ; ð34Þ

after harmonically decomposing the perturbations [12]. In

particular, after setting Δa ¼ ΔðkÞQ
ðkÞ
a and Za ¼ ZðkÞQ

ðkÞ
a ,

with DaΔðkÞ ¼ 0 ¼ DaZðkÞ and _QðkÞ
a ¼ 0, where QðkÞ

a are
standard vector harmonic functions. Recalling that H ¼
2=3t and ρ ¼ 4=3t2 when pressure-free dust dominates
the energy density of the Universe, the above system
accepts the solution

ΔðnÞ ¼ C1t2=3 þ C2t−1 ð35Þ

and

ZðnÞ ¼ C3t−1=3 þ C4t−2: ð36Þ

Therefore, during the dust era, linear inhomogeneities
in the density distribution of the matter grow as
Δ ∝ t2=3, while those in the Hubble expansion decay
as Z ∝ t−1=3.
Taking the comoving 3-gradient of (31) and (32), setting

the pressure to zero and using the linear commutation laws
ðaDbΔaÞ· ¼ aDb

_Δa and ðaDbZaÞ· ¼ aDb
_Za, we arrive at

_Dab ¼ −Zab and _Zab ¼ −2HZab −
1

2
ρDab; ð37Þ

with Zab ¼ aDbZa.
3 Introducing the harmonic splitting

Dab ¼ DðkÞQ
ðkÞ
ab andZab ¼ ZðkÞQ

ðkÞ
ab , where DaDðkÞ ¼ 0 ¼

DaZðkÞ and _QðkÞ
a ¼ 0, with QðkÞ

a being standard tensor
harmonic functions, the above systems solve to give

DðnÞ ¼ ~C1t2=3 þ ~C2t−1 ð38Þ
and

ZðnÞ ¼ ~C3t−1=3 þ ~C4t−2: ð39Þ
According to solutions (35) and (38), during the dust era,

all types of linear density inhomogeneities, namely over-
densities/underdensities, shape distortions and vortices,
obey the same evolution law (see also [14]). Moreover,
following solutions (36) and (39), the same is also true for
the linear inhomogeneities in the expansion.

VI. ALLOWING FOR GRAVITATIONAL-WAVE
EFFECTS

At the linear level, there is no coupling between
gravitational-wave distortions and density perturbations.
In order to investigate the effects of the Weyl field, one
needs to go to a higher perturbative level and in particular to
include second-order terms into the equations.

A. Nonlinear density perturbations

Suppose that the cosmic medium is a single barotropic
(perfect) fluid. Then, for zero rotation and in the absence of
a cosmological constant, inhomogeneities in the density
distribution of the matter are monitored by the nonlinear
propagation formulas [9]

_Δhai ¼ wΘΔa − ð1þ wÞZa − σabΔb ð40Þ
and

_Zhai ¼ −
2

3
ΘZa −

1

2
ρΔa −

3

2
aDap

− a
�
1

3
Θ2 þ 1

2
ðρþ 3pÞ

�
Aa þ aDaDbAb

− σabZb − 2aDaσ
2 þ 2aAbDaAb þ aðDbAbÞAa

− að2σ2 − AbAbÞAa; ð41Þ
where _Δhai ¼ hab _Δa and _Zhai ¼ hab _Za by definition.
However, when dealing with a single perfect (barotropic)
fluid, the nonlinear momentum-density conservation law
[see Eq. (33) in Sec. V B] ensures that the 4-acceleration
vanishes for zero pressure. In that case it is straightforward to

3In analogy with (30), the variable Zab splits into its trace, its
antisymmetric and its symmetric and trace-free component
according to Zab¼ðZ=3ÞhabþZhabiþZ½ab�, where Z¼ aDaZa,
Zhabi ¼ aDhbZai and Z½ab� ¼ aD½bZa�.
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show that _Δhai ¼ _Δa and _Zhai ¼ _Za. Therefore, after matter-
radiation equality, the system (40) and (41) simplifies to

_Δa ¼ −Za − σabΔb ð42Þ
and

_Za ¼ −
2

3
ΘZa −

1

2
ρΔa − σabZb − 2aDaσ

2; ð43Þ

respectively. The above set, together with the associated
propagation formula of the shear (see Sec. II A earlier),
monitors the nonlinear evolution of inhomogeneities in the
density of a universe dominated by pressureless matter
(baryonic and/or CDM).

B. The second-order interaction

In what follows we will focus exclusively on the role
of gravitational-wave distortions, as these propagate
through the transverse component of the shear, on density
perturbations. More specifically, we will consider the
effects of these distortions at the second perturbative
level. We will therefore need to introduce a background
model, which in our case will coincide with the Einstein–
de Sitter universe (see Sec. III B earlier). Within this
approximation scheme the nonlinear expressions (42) and
(43) reduce to

_Δa þ Za ¼ − ~σab ~Δb ð44Þ
and

_Za þ 2HZa þ
1

2
ρ̄Δa ¼ − ~σab ~Z

b − 2aDa ~σ
2; ð45Þ

respectively. Note that the variables Δa and Za (and their
temporal derivatives), seen on the left-hand sides of the
above, are treated as second-order perturbations, which
makes H ¼ Θ̄=3 the background Hubble parameter and ρ̄
the associated matter density. Consequently, to maintain
the second perturbative order of both (44) and (45), the
variables ~σab, ~Δa, ~Za and ~σ seen on the right-hand sides
will be treated a linear perturbations. Hence, from here
onwards, “overbars” will always indicate zero-order
variables and “tildes” first-order ones. In addition, assum-
ing that the shear is entirely due to gravitational-wave
distortions, we may only account for its divergence-free
component (i.e. set Db ~σab ¼ 0 to first order). We finally
note that, in accord with Eq. (44), gravitational waves do
not directly induce density inhomogeneities to second
order. Nevertheless, the last term of (45) suggests that the
shear gradients can in principle trigger distortions in the
volume expansion, which then can lead to density
perturbations [see Eq. (44)].
The rest of this work looks into the second-order effects

of gravitational waves on preexisting (scalar) density

perturbations, namely on overdensities/underdensities in
the matter distribution (baryonic and/or CDM). Thus,
following Sec. VA (see also footnote 3 in Sec. V B), our
next step is to take the comoving 3-divergence of Eqs. (44)
and (45). On doing so, and after keeping up to second-order
terms, we arrive at4

_Dþ Z ¼ −2~σab ~D
habi ð46Þ

and

_Z þ 2HZ þ 1

2
ρ̄D ¼ −2~σab ~Z

habi − 2a2D2 ~σ2: ð47Þ

Note that in deriving the above, we have accounted for the
divergence-free nature of the gravitationally induced shear
(i.e. the fact that Db ~σab ¼ 0 at the linear perturbative level
—see Sec. IV B earlier). We have also employed the
auxiliary second-order commutation laws aDa _Δa ¼ _Dþ
~σab ~D

habi and aDa _Za ¼ _Z þ ~σab ~Z
habi (see Appendix A for

details on their derivation).
Focusing on superhorizon-sized perturbations, with

λ=λH ≪ 1 at all times, we can safely ignore the shear
Laplacian on the right-hand side of Eq. (47). Then, taking
the time derivative of (46) and using (47), together with the
linear evolution laws (21), (37) and the first-order con-
straint (24), gives

D̈þ 2H _D −
1

2
ρ̄D ¼ 2H ~σab ~D

habi þ 4~σab ~Z
habi

þ 2 ~Rhabi ~D
habi: ð48Þ

This differential equation monitors the evolution of large-
scale scalar density perturbations (i.e. overdensities/under-
densities), driven by gravitational-wave distortions, at the
second perturbative level. To solve the above, we recall
that ~σab ∝ t−1=3, ~Dhabi ∝ t2=3, ~Zhabi ∝ t−1=3 and ~Rhabi ∝
t−4=3 to first order (see Secs. IV C and V B earlier). Then,
without any loss of generality, the second-order driving
terms on the right-hand side of Eq. (48) can be written in
the form

~σab ~D
habi ¼ ~σ0 ~D0

�
t
t0

�
1=3

; ð49Þ

4The second-order expressions (46) and (47) have been derived
after introducing the Einstein–de Sitter background, obtaining the
second-order limit of Eqs. (42), (43) and then taking the comoving
3-divergences of the latter. Strictly speaking, however, one should
take the 3-divergences of the nonlinear expressions (42), (43) first,
and then introduce the Einstein–de Sitter background that will
eventually lead to the second-order propagation equations of D
and Z. Nevertheless, as well will show in Appendix B, the
aforementioned difference in the derivation does not alter the
final outcome of the analysis. For this reason, here, we have chosen
to follow the simplest approach.
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~σab ~Z
habi ¼ ~σ0 ~Z0

�
t0
t

�
2=3

ð50Þ

and

~Rhabi ~D
habi ¼ ~R0

~D0

�
t0
t

�
2=3

; ð51Þ

where the zero suffix denotes the time of recombination.5

The latter marks the decoupling between ordinary
matter and radiation and the onset of (baryonic) structure
formation. Finally, recalling that H ¼ 2=3t and
ρ̄ ¼ 4=3t2 after equipartition, expressions (48)–(51)
combine to

3t2D̈þ 4t _D − 2D ¼ 2α0

�
t
t0

�
4=3

; ð52Þ

with α0 being a dimensionless parameter. This has been
evaluated at recombination and carries the (second-order)
driving effect of the gravitational waves on D. Also, α0
can generally vary in space and it is given by

α0 ¼ 2~σ0 ~D0t0 þ 6~σ0 ~Z0t20 þ 3 ~R0
~D0t20: ð53Þ

The set of (52) and (53) governs the evolution of (scalar)
density perturbations in the presence of cosmological
gravitational waves, on superhorizon scales and during
the postrecombination era, to second perturbative order.
Equation (52) can be solved analytically, but before we
proceed to its solution we should first consider the so-
called “gauge issue.”

C. The gauge issue

Cosmological perturbation theory is generally suscep-
tible to gauge-related problems [15]. These stem from the
fact that, technically speaking, when studying cosmological
perturbations, we deal with two spacetimes. The first is the
(fictitious) background spacetime (W̄), which usually
coincides with one of the FLRW models. The second is
the perturbed spacetime (W) that is thought to provide a
more realistic description of the actual Universe. To
proceed, one needs to introduce a one-to-one mapping
(i.e. a gauge) between the aforementioned two spacetimes.

Changing the aforementioned correspondence, while keep-
ing the background spacetime fixed, is known as a gauge
transformation. The latter differs from an ordinary coor-
dinate transformation because it changes the event in the
background spacetime that corresponds to a given event in
its physical counterpart. As a result, the solutions of the
perturbed differential equations may be gauge dependent
and they may contain spurious gauge modes of no real
physical substance (e.g. see [16]). The 1þ 3 covariant
approach to cosmological perturbations bypasses the gauge
problem by using gauge-invariant variables (see [12] for
details and also for an illuminating discussion of the gauge
issue in cosmology). At the linear level, this is achieved by
appealing to the Stewart-Walker lemma [17]. According to
the latter, a first-order variable is gauge invariant when it
vanishes in the background, or when it is a constant scalar
there. Following [18], when the aforementioned require-
ments also hold at the linear level, the variable in question is
gauge invariant at second order as well.
The variables used in our linear analysis satisfy the

criteria for gauge invariance, given the uniformity of our
FLRW background. This is no longer true at second order,
however, since the density contrast (D) has both temporal
and spatial dependence at the linear level. To bypass this
mathematical problem we will from now on only consider
the homogeneous component of the linear density pertur-
bations (i.e. assume that D ¼ DðtÞ to first order).6 Then,
sinceD ∝ t2=3 at the linear level, it follows that the quantity

D ¼ t−2=3D ð54Þ

will be constant to first order. Therefore, according to [18],
the above defined scalar is gauge invariant at the second
perturbative level (where it can have both temporal and
spatial dependence). Moreover, starting from Eq. (52), it is
straightforward to show that the new variable satisfies the
second-order differential equation

3t2D̈þ 8t _D ¼ 2β0

�
t
t0

�
2=3

; ð55Þ

where β0 ¼ α0=t
2=3
0 is generally a function of space and α0

has been defined in (53). The above accepts the power-law
solution, which after evaluating the integration constants
reads5Using the linear evolution laws of the shear and the density

perturbation, the scalar ~σab ~D
habi reads ~σab ~D

habi¼ð ~σ011 ~Dh11i
0 þ

~σ022 ~D
h22i
0 þ ~σ033 ~D

h33i
0 Þðt=t0Þ1=3. Then, the sum ~σab ~D

habi can always
be written in the form (49). Note that we have assumed (for
simplicity) that the 3 × 3matrices ~σab and ~Dhabi are diagonal. Also,
the quantities ~σ011, ~D

h11i
0 , etc., have been evaluated at t ¼ t0 ¼ tRC

and they are generally functions of space. Similarly, one can show
that the sums ~σab ~Z

habi and ~Rhabi ~D
habi can be written in the form

(50) and (51) respectively.

6Only the 3-divergence (D ¼ aDaΔa) of Δa is assumed
to be spatially homogeneous at the linear level. To second
order, the scalar D is allowed to vary both in time and
in space. Also, the linear spatial gradient Δa ¼ ða=ρÞDaρ has
both temporal and spatial dependence. In cosmology, the best-
known example of a spatially homogeneous 3-divergence ob-
tained from an inhomogeneous vector field is perhaps the Hubble
parameter (H, with 3H ¼ Daua) of an FLRW spacetime.
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D ¼ −
2

5

�
_D0

H0

−
3

7
β0

��
t0
t

�
5=3

þD0 þ
2

5

_D0

H0

−
3

5
β0

þ 3

7
β0

�
t
t0

�
2=3

; ð56Þ

with D0, _D0 and β0 being functions of space in general
(evaluated at t ¼ t0 ¼ 2=3H0).

7 Recasting this solution,
which contains one decaying, one constant and one
growing mode, in terms of D ¼ t2=3D [see definition
(54)] leads to

D¼2

5

�
D0−

_D0

H0

þ3

7
α0

��
t0
t

�
þ3

5

�
D0þ

2

3

_D0

H0

−α0

��
t
t0

�
2=3

þ3

7
α0

�
t
t0

�
4=3

; ð57Þ

guaranteeing that Dðt ¼ t0Þ ¼ D0. According to the
above, in the presence of gravitational-wave distortions,
(scalar) density perturbations grow as D ∝ t4=3 ∝ a2 to
second order (see Sec. VI D next for further discussion
on this result). Strictly mathematically speaking, how-
ever, solutions (56) and (57) are gauge invariant only for
the spatially homogeneous component of the linear
density perturbations. Having said that, the gauge
dependence of a variable does not necessarily guarantee
the presence of unphysical spurious modes in the
associated solution. It is therefore likely that our sec-
ond-order results cover the whole range of density
perturbations and not only those with a uniform linear
component. We also note that, from the physical point of
view, setting D ¼ DðtÞ to first order means that the
scalar D monitors the average value of the linear density
contrast inside the associated overdensity/underdensity, a
fairly common practice in nonlinear perturbation studies
(e.g. see Sec. VIII in [8]).

D. Implications

Ignoring the second-order interaction terms (i.e. setting
β0 ¼ 0) on the right-hand side of (57) reproduces the
standard linear solution, where the dominant mode grows
as D ∝ t2=3 ∝ a. When the effects of gravitational radi-
ation are included, however, the second-order solution
contains a faster growing mode (with D ∝ t4=3 ∝ a2).
Therefore, qualitatively speaking, the interaction between
cosmological gravitational waves and density perturba-
tions (baryonic and/or CDM) increases the growth rate

of the latter. Quantitatively speaking, however, the
coefficients of solution (57) indicate that this new
(gravitationally induced) mode will dictate the evolution
of density perturbations if α0 ≳D0, or if α0 ≳ _D0=H0,
depending on which one of D0 and _D0=H0 is larger. For
simplicity, but without any real loss of generality, we
may assume that D0 ∼ _D0=H0 and set D0 ∼ ~D0 as the
initial conditions at the start of the second-order inter-
action between gravitational waves and density perturba-
tions. Then, the new fast-growing mode on the right-hand
side of (57) will dominate if α0 ≳ ~D0. However, recalling
that H ¼ 2=3t after matter-radiation equality, definition
(53) recasts into

α0 ¼
4

3

~σ0
H0

~D0 þ
8

3

~σ0
H0

~Z0

H0

þ 4

3

~R0

H2
0

~D0: ð58Þ

Consequently, since ~D0, ~σ0=H0, ~Z0=H0 and ~R0=H2
0 are

all much smaller than unity, we deduce that α0 ≪ ~D0. In
practice, this ensures that the gravitationally induced
mode of (57) can only dominate at very late times.
This is not surprising, in view of the (expected) extreme
weakness of cosmological gravitational waves (i.e. the
fact that ~σ0=H0 ≪ 1).8 More specifically, comparing
the two growing modes of solution (57) shows that
Weyl-curvature distortions will start dictating the
evolution of large-scale overdensities/underdensities at
t ¼ tGW , when

α0

�
tGW
t0

�
2=3 ≳ ~D0: ð59Þ

Then, given that α0 ∼ ð ~σo=H0Þ ~D0, we estimate that

tGW ∼
�
H0

σ0

�
3=2

t0 ≫ t0; ð60Þ

where t0 ¼ tRC ∼ 105 yr is the age of the Universe at
recombination. To obtain a rough estimate of tGW , recall
that the high isotropy of the CMB demands that
σ0=H0 ≲ 10−5 at last scattering. Then, Eq. (60) leads to
tGW ≳ 1015=2tRC, which translates into tGW ≳ 105=2t�, with
t� ∼ 1010 yr representing the current age of the Universe.
Overall, our second-order analysis suggests that the

Weyl (rather than the Ricci) component of the gravitational
field may become the key factor driving the growth of
density perturbations (baryonic and/or CDM) at very late

7Solution (56) can be also obtained by introducing the variable
Z ¼ t1=3Z, which is constant at the linear level and therefore
gauge invariant to second order [when Z ¼ ZðtÞ to first order].
Then, on large scales, 3t _Dþ 2Dþ 3Z ¼ −6t1=3 ~σab ~D

habi and
3t _Zþ 3Zþ 2D ¼ −6t4=3 ~σab ~Z

habi, which solves analytically to
give (56).

8Since the shear tensor is directly related to the energy density
of gravitational-wave perturbations (e.g. see [19]) and the Hubble
parameter to the energy density of the dominant background
matter, the dimensionless ratio ~σ=H also measures the relative
strength between the Weyl and Ricci components of the gravi-
tational field.
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times. Intuitively, one could explain this result by recalling
that after equipartition the matter density, which determines
the local (i.e. the Ricci) part of the gravitational field, drops
as ρ ∝ a−3. The divergence-free component of the shear, on
the other hand, determines the far (i.e. the Weyl) field and
decays slower, as σ ∝ a−1=2. This means that, although
the gravitationally induced mode on the right-hand side
of solution (57) may be still too weak to have a measurable
effect on density perturbations crossing inside the horizon
at the present time, it could eventually dominate in the far
future.
The results reported here, which have been obtained by

means of covariant techniques, are largely in agreement
with those obtained in [6] using Bardeen’s formalism, save
for the fact that our analysis is confined to the postequili-
brium Universe only and to super-Hubble scales. More
specifically, it was found in [6] that long-wavelength relic
gravitons contribute a weak growing mode to scalar
curvature perturbations, which depends on the ratio
between the graviton energy density and that of the
dominant matter component. The latter is directly related
to the dimensionless ratio ~σ=H that conveys the gravita-
tional-wave effects on density fluctuations here (see foot-
note 8). Note that, although curvature distortions and
density perturbations are not the same, they are related.9

Furthermore, the gravitationally induced mode reported
in [6] was attributed to the slow decay of the graviton
energy density, relative to that of the matter, during both the
radiation and the dust eras. The same reasoning was also
adopted here (see previous paragraph).

VII. DISCUSSION

Structure formation scenarios have a long history in the
literature, essentially starting with the pioneering work of
Jeans on gravitational instability in the beginning of the last
century. Cosmological perturbation theory is the corner-
stone upon which all structure formation studies are based.
So far, most of the analytical work is confined to the linear
regime. The nonlinear approaches are mainly numerical,
unless extra simplifying conditions are imposed, with the
spherical collapse model and the Zel’dovich approximation
being the best-known examples. Most of the nonlinear

studies consider the evolution of structure, once the
protogalactic cloud has “decoupled” from the background
Hubble expansion, “turned around” and started to collapse.
Nevertheless, nonlinearities could in principle also affect
the early stages of structure formation. On substantially
large (superhorizon) scales, all local (causal) physical
processes are entirely unimportant. There, the perturbations
are primarily affected by the background expansion and, to
a lesser degree, by distortions in the curvature of the
spacetime. Weyl-curvature distortions, such as those trig-
gered by cosmological gravitational waves, interact with
inhomogeneities in the matter density, thought only at
second order. Here, we have considered the aforementioned
interaction at the second perturbative level and on super-
Hubble scales. We did so by assuming an Einstein–de Sitter
background, neglecting cosmic rotation and taking into
account only the divergence-free (i.e. the pure-tensor)
component of the linear shear perturbations. Our results
appear to be in close agreement with those recently
reported in [6], although the two approaches are quite
different formalistically.
Studies of cosmological perturbations are hampered by

the so-called gauge issue, which could in principle lead to
spurious (gauge-dependent) solutions. To avoid the prob-
lem, one could choose the best-fit gauge for the study or
employ a gauge-independent analysis. The latter should
involve the use of physically unambiguous gauge-invariant
variables, which are however difficult to construct, espe-
cially at perturbative levels higher than the linear. In this
study, we utilized the results of the linear theory to
construct a simple variable that is directly related to (scalar)
density perturbations, namely to overdensities/underden-
sities, and which is also gauge invariant to second order.
Mathematically speaking, we have achieved this by focus-
ing on the uniform (i.e. the spatially homogeneous)
component of the linear density perturbation. Note that
it is the only spatial divergence ( ~D ¼ aDaΔa) that is
uniform to first order and not the density gradient
[Δa ¼ ða=ρÞDaρ] itself. Physically, this is like saying that
our linear density contrast has been averaged over the
overdensity/underdensity, something fairly common in
nonlinear perturbation studies. Although strictly theoreti-
cally our assumption confines the gauge invariance of our
analysis to a specific subset of density perturbations,
namely those with uniform linear density contrast, it is
likely that in practice our results cover the full range of
these distortions. Alternative gauge-invariant quantities that
could rigorously address this issue may be possible to
construct, though it is also likely that the physical gain will
not compensate for the increased mathematical complexity.
A well-known result of the linear study is that, after

equipartition, perturbations in the density of the matter
(baryonic or CDM) grow in tune with the dimensions of the
Universe. In other words, D ∝ t2=3 ∝ a, where a is the
cosmological scale factor. Our second-order analysis

9Following [10,20], let us consider the (linear) relation
ζ ¼ −R − ðHρ=ρ0Þδ, whereH ¼ aH by definition and the prime
indicates differentiation with respect to the conformal time. The
scalars R and δ describe curvature and density perturbations in
the comoving-orthogonal gauge. Then, ζ describes curvature
perturbations in the uniform-density gauge and it is directly
related to the density perturbations in the spatially flat gauge.
During the dust era Hρ=ρ0 ∝ a−1. Hence, when the curvature
distortion scales as R ∝ a and the associated power spectrum as
PR ∝ a2 (as reported in [6]), the density fluctuation is expected
to scale δ ∝ a2 (as found here). For further discussion and details
on the so-called Bardeen variables the reader is referred to
Sec. X.2 in [10] and to Sec. VII in [20].
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argues that, when the effect of gravitational-wave distortions
is also accounted for, the growth rate increases toD ∝ t4=3 ∝
a2 on superhorizon scales. One might be therefore led to
conclude that Weyl-curvature distortions might have sub-
stantially accelerated the growth of large-scale density
perturbations and thus assisted the formation of structure
in the Universe. Nevertheless, a closer look reveals that this
is very unlikely to have happened because of the (antici-
pated) extreme weakness of cosmological gravitational
waves. The latter essentially guarantees that the aforemen-
tioned faster-growing mode can have a measurable effect on
the evolution of density perturbations only in the far future.
All these might change, however, if an analogous effect was
to be observed on subhorizon scales as well. In any case, the
possibility that theWeyl, rather than theRicci, component of
the gravitational field could dictate the evolution of density
inhomogeneities at late times remains. Intuitively, one could
explain this by recalling that the local (the Ricci) field
depletes faster than its long-range (Weyl) counterpart. Then,
although Weyl-curvature distortions might play an entirely
unimportant role for long, given enough time, they could
eventually dominate.

Note added.—Recently the first ever detection of astro-
physical gravitational waves, emitted during the merging of
two massive black holes, was announced by the LIGO
Collaboration [21].

APPENDIX A: NONLINEAR
COMMUTATION LAWS

By definition aDa _Δa ¼ ahab∇b
_Δa and _Δa ¼ ub∇bΔa.

Combining these two expressions, employing the Ricci
identities and using decomposition (1) gives

aDa _Δa ¼ ahab∇buc∇cΔa þ ahabuc∇b∇cΔa

¼ 1

3
ΘΔþ ðσab − ωabÞΔab þ ahabð∇bΔaÞ·

þ ahabucRbcadΔd; ðA1Þ

with Rabcd representing the Riemann tensor. Using the
symmetries of the curvature tensor (see Sec. II B), the
above leads to the nonlinear commutation law

aDa _Δa ¼ σabDhabi − ωabD½ab� þ _D − aAa _Δa

− auaAb∇bΔa þ auaRabΔb

¼ _Dþ σabDhabi − ωabD½ab� þ
1

3
aΘAaΔa − aAa _Δa

− aqaΔa þ aðσab þ ωabÞΔaAb; ðA2Þ

since Rab ¼ Rc
acb is the Ricci tensor and qa ¼ −habRacuc

is the energy flux vector [9,10]. The latter vanishes when
matter has the form of a perfect fluid and the same also
holds for the 4-acceleration (Aa) when the pressure is zero

[see Eq. (33) in Sec. V B]. Then, if we ignore the effects of
vorticity, the above reduces to

aDa _Δa ¼ _Dþ σabDhabi: ðA3Þ

In an exactly analogous way (and under the same
conditions) we obtain the nonlinear commutation
law aDa _Za ¼ _Z þ σabZhabi.

APPENDIX B: ALTERNATIVE DERIVATION
OF THE D̈-EQUATION

In Sec. VI B we derived the differential equation of the
density contrast (D), namely Eq. (48), after introducing the
Einstein–de Sitter background. This allowed us to obtain
the second-order limit of (42) and (43), before taking the
comoving 3-divergences of these expressions. As stated in
footnote 4, here we will do the reverse. We will first take the
nonlinear spatial divergences of Eqs. (42), (43) and then
obtain the second-order limits of the resulting expressions.
Assuming zero cosmological constant and neglecting

any cosmic vorticity, the comoving 3-divergences of
Eqs. (42) and (43) lead to the nonlinear expressions

aDa _Δa ¼ −Z − aΔbDaσab − σabDhabi; ðB1Þ

and

aDa _Za ¼ −
2

3
ΘZ −

1

2
ρD −

2

3
ZaZa −

1

2
ρΔaΔa

− aZbDaσab − σabZhabi − 2a2D2σ2; ðB2Þ

respectively. Introducing an Einstein–de Sitter background
will allow us to take the second-order limits of these
equations. In doing so, we will only account for the
divergence-free part of the linear shear perturbation (i.e.
set Db ~σab ¼ 0 to first order). Then, using the auxiliary
second-order commutation laws aDa _Δa ¼ _Dþ σabDhabi

and aDa _Za ¼ _Z þ σabZhabi (see Appendix A), the system
(B1) and (B2) reduces to

_Dþ Z ¼ −2~σab ~D
habi ðB3Þ

and

_Z þ 2HZ þ 1

2
ρ̄D ¼ −

2

3
~Za

~Za −
1

2
ρ̄ ~Δa

~Δa

− 2~σab ~Z
habi; ðB4Þ

on super-Hubble scales (where the shear Laplacian is
negligible). We note that the scalars D and Z on the left-
hand sides of (B3) and (B4) are second-order perturbations,
which makes H and ρ̄ zero-order variables (see also
Sec. VI B earlier). In analogy, the quantities ~Δa, ~Za,
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~Dhabi, ~Zhabi and ~σab have perturbative order one. Comparing
(B4) to Eq. (47) in Sec. VI B, we notice that the different
derivation scheme has already added two extra terms to its
right-hand side. In what follows, we will consider the
implications of these additional terms.
Taking the time derivative of Eq. (B3) and using (B4),

together with the linear relations (21), (24) and (37), gives

D̈þ 2H _D −
1

2
ρ̄D ¼ 1

2
ρ̄ ~Δa

~Δa þ 2

3
~Za

~Za þ 2H ~σab ~D
habi

þ 4~σab ~Z
habi þ 2 ~Rhabi ~D

habi; ðB5Þ

where ~Rhabi is the linear 3-Ricci tensor. To second order
~Δa

~Δa ∝ t4=3, ~Za
~Za ∝ t−2=3, ~σab ~D

habi ∝ t1=3, ~σab ~Z
habi ∝ t−2=3

and ~Rhabi ~D
habi ∝ t−2=3 (see Secs. IV B, IV CandV B),while

H ¼ 2=3t and ρ̄ ¼ 4=3t2 to zero order. Employing these
evolution laws, we can recast Eq. (B5) into

3t2D̈þ 4t _D − 2D ¼ 2α0

�
t
t0

�
4=3

: ðB6Þ

This expression is (formalistically) identical to Eq. (52)
obtained in Sec. VI B and therefore accepts the same
solution, namely

D¼ 2

5

�
D0−

_D0

H0

þ3

7
α0

��
t0
t

�

þ3

5

�
D0þ

2

3

_D0

H0

−α0

��
t
t0

�
2=3

þ3

7
α0

�
t
t0

�
4=3

: ðB7Þ

Theonly difference between the above and solution (57) is in
the dimensionless coefficient α0, which carries the com-
bined effect of the second-order source terms. Here, this
factor is no longer given by (58) but by

α0 ¼ ~Δ2
0 þ

4

9

�
~Z0

H0

�2

þ 4

3

~σ0
H0

~D0 þ
8

3

~σ0
H0

~Z0

H0

þ 4

3

~R0

H2
0

~D0: ðB8Þ

As in Eq. (58), the linear quantities ~Δ0, ~Z0, ~D0, ~Z0, ~σ0
and ~R0 have been evaluated at recombination (i.e.
t0 ¼ tRC) and they can generally vary in space. In
contrast to (58), there are two additional terms on the
right-hand side of the above (the first two). Nevertheless,
since ~Δ0, ~Z0=H0 ≪ 1, the aforementioned extra
source terms do not alter the overall effect of the
gravitational waves, as described in Sec. VI D.10 The
Weyl field could still drive scalar density perturbations to
a considerably faster growth rate, but only at very
late times.
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