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The halo model is a theoretically and empirically well-motivated framework for predicting the statistics
of the nonlinear matter distribution in the Universe. However, current incarnations of the halo model suffer
from two major deficiencies: (i) they do not enforce the stress-energy conservation of matter; (ii) they are
not guaranteed to recover exact perturbation theory results on large scales. Here, we provide a formulation
of the halo model (EHM) that remedies both drawbacks in a consistent way, while attempting to maintain
the predictivity of the approach. In the formulation presented here, mass and momentum conservation are
guaranteed on large scales, and results of the perturbation theory and the effective field theory can, in
principle, be matched to any desired order on large scales. We find that a key ingredient in the halo model
power spectrum is the halo stochasticity covariance, which has been studied to a much lesser extent than
other ingredients such as mass function, bias, and profiles of halos. As written here, this approach still does
not describe the transition regime between perturbation theory and halo scales realistically, which is left as
an open problem. We also show explicitly that, when implemented consistently, halo model predictions do
not depend on any properties of low-mass halos that are smaller than the scales of interest.
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I. INTRODUCTION

In the halo model (see [1] for a review), all matter in the
Universe is assumed to be within virialized structures,
called halos. Under this assumption, the statistics of matter
on all scales are determined by the statistics of these halos
as well as their density profiles. Most incarnations of the
halo model further assume that halos are mutually exclu-
sive, such that each mass element is part of one and only
one halo, and we will do so as well here.
Currently, frequently employed incarnations of the halo

model (e.g. [2–21]) have two major deficiencies: (i) they do
not enforce the physical constraint of stress-energy con-
servation of matter; (ii) they are not guaranteed to recover
exact perturbation theory (PT) results on large scales.
The most widely known symptom of these deficiencies
is the k-independent white noise contribution to the matter
power spectrum PmmðkÞ of the 1-halo term on large scales.
The goal of this paper is to address these issues while
attempting to preserve the successes of the halo model,
namely its predictivity: the ability to provide a reasonably
good description of matter and halo statistics over a wide
range of scales with few free parameters.
For this reason, we also demand (iii) self-consistency,

namely that the same set of parameters describes the non-
linear n-point correlations of matter as well as the cross-
correlations of matter with halos. This crucially requires that
nonlinear and nonlocal bias is incorporated in the model.
Further, we demand that the halo model also consistently
describe the cross-correlation of the nonlinearmatter density
with the initial conditions, i.e. in case of the power spectrum,
the matter power spectrumPmmðkÞ and the cross-correlation
(propagator) between the initial density field evolved

forward using PT, and the final, nonlinear density fields,
P1mðkÞ. The former receives stochastic contributions, while
the latter only contains the deterministic terms, i.e. contri-
butions that correlate with initial perturbations with wave
numbers of the order of k and smaller. PmmðkÞ and P1mðkÞ
canbeused to extract the stochastic contribution to thematter
power spectrum in simulations [22,23].
To this end, we describe how the halo model can be

constructed consistently up to a given order, with a finite set
of free parameters, so that it is guaranteed to satisfy mass and
momentumconservationonscalesmuchlarger thanindividual
halos, aswell asmatching theexactperturbative solution to the
same order on large scales, including effective beyond-fluid
terms (but see next paragraph). In this sense, the halo model
consistentlyextends thepredictionsoftheeffectivefield theory
(EFT) of large-scale structure (LSS) [24] into the nonlinear
regime.Of course, on fully nonlinear scales the predictions are
not guaranteed to be correct or within a rigorously calculable
theoretical uncertainty of the correct answer. Since various
implementations of the halo model paradigm have been
presented in the literature, we will adopt the shorthand
EHM for the specific construction presented here.
There is a further well-known trouble with the halo

model which we do not address: in the transition region
between large scales where perturbation theory is valid, and
small scales that are mostly determined by halo density
profiles (1-halo regime), the halo model is known to not
describe simulation results well. Moreover, the situation
becomes worse when going to higher order in PT. As the
focus of this paper is on a consistent description of large
scales, we will not have much to say on this here. It is likely
however that the halo model implementation presented here
will need to be extended to solve this issue (see Sec. IV).
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Let us briefly describe the relation to previous attempts at
resolving the abovementioned issues of the halo model. Note
that these attempts were partially motivated by modeling the
transition regime mentioned above. References [25,26]
(Halo-PT) performed a separation of matter statistics into
n-halo terms inLagrangian space. This offers the advantageof
a simple implementation of mass conservation. On the other
hand, one needs to assume a specific exclusion model for
halos, and it is not possible to specify the bias parameters of
halos in the model. Thus, a consistent connection to pertur-
bation theory on large scales does not appear to be feasible in
this approach. Further, as pointed out in [25], the stochastic
contribution toPmmðkÞ does not scale as k4 in the low-k limit,
as required by mass and momentum conservation, but as k2.
References [27,28] give a prescription (Halo-Zel’dovich)

for the matter power spectrum and its covariance based on
the power spectrum in the Zel’dovich approximation, to
which a power series in k2 is added. The latter can be
interpreted as an expansion of the mean halo profile. At low
k, the lowest order coefficient can be matched to the 1-loop
power spectrum predicted by perturbation theory, in order
to achieve the correct large-scale limit. For this, Ref. [28]
had to introduce a compensating kernel in order to cancel
the k0 contribution from the profile expansion. Note that the
stochastic and deterministic contributions to PmmðkÞ are not
modeled separately in this approach, which only considers
their sum. Since the model is built on the matter power
spectrum in the Zel’dovich approximation, nonlinear halo
bias is not included in this prescription.
Thus, while these ansatzes recognize the problems of the

standard halo model, and point to possible approaches to
solve the transition regime problem, they do not satisfy all
of the conditions (i)–(iii) mentioned above in their current
form, since they do not consistently describe halo corre-
lations and the stochastic contribution to PmmðkÞ.
The outline of the paper is as follows. Section II describes

the general procedure for constructing EHM, and spells
out the assumptions made; this section constitutes the core of
the paper. We then describe the lowest order (tree-level)
incarnation of EHM and its prediction for the matter power
spectrum in Sec. III. Section IV discusses aspects of the next-
to-leading order (1-loop) EHM power spectrum prediction.
After that, we consider the tree-level bispectrum in Sec. V.
Section VI contains a brief discussion of the matter velocity
field. We make some comments regarding the relation to the
EFT of LSS in Sec. VII, before concluding in Sec. VIII. The
appendixes discuss the issue of the low-mass cutoff and halo
triaxiality, and present the expressions for the bispectrum
that are too lengthy for the main text. The discussion of the
low-mass cutoff in Appendix A is also relevant for other
frequently used versions of the halo model.

II. GENERAL SELF-CONSISTENT HALO MODEL

In this section we describe the general procedure for
relating the matter density perturbation,

δmðx; τÞ≡ ρðx; τÞ
ρ̄ðτÞ − 1; ð1Þ

where ρ̄ is the background density, to halo properties. We
begin by allowing for fully general halo clustering and
profiles. Afterwards, we assemble δm and show what
constraints mass and momentum conservation of matter
place on the halo properties.

A. Halo clustering

Let us begin with the description of the halo density field
at fixed mass M. In slight abuse of notation, we denote the
local number density of halos per logarithmic mass interval
as nðM;x; τÞ. This will not lead to confusion as we will
never consider any other type of halo mass function. The
cosmological average of the same quantity is defined as
n̄ðM; τÞ. The number density perturbation of halos at a
given mass is correspondingly denoted as

δh;Mðx; τÞ≡ nðM;x; τÞ
n̄ðM; τÞ − 1: ð2Þ

Let us consider large scales, that is, scales much larger
than the Lagrangian radius RLðMÞ. The EHM ansatz we
will pursue here assumes that all higher derivative terms are
supplied by halo profiles. Then, it is sufficient to describe
the clustering of halos at lowest order in derivatives,
significantly reducing the number of free parameters of
the model. Relaxing this assumption is one possibility to
address the failures of EHM in the transition regime
(Sec. IV) however. The equivalence principle guarantees
the absence of halo velocity bias at lowest order in
derivatives [29]. In other words, at lowest order in deriv-
atives halos move along the trajectories of the matter fluid
itself. We can then write, to any given order in perturbation
theory,

δh;Mðx; τÞ ¼
X
O

fbOðM; τÞ þ ϵOðM;x; τÞg½O�ðx; τÞ

þ ½ϵ�ðM;x; τÞ; ð3Þ

where bOðM; τÞ are bias parameters, and ½O� are renor-
malized bias operators constructed out of the density,
tidal field and convective time derivatives of the same.1

Complete bases for the bias expansion have been described
in [29,30]; renormalization of bias operators is described in
[31,32]. The fields ϵ, ϵO are stochastic fields with zero
means which are completely characterized by their
moments h½ϵ�ðM;x; τÞ½ϵ�ðM0;x; τÞi and so on (again, this
holds at lowest order in derivatives). The explicit bias
expansion to linear order [Eq. (22)] and second order

1Note that it would be more accurate to write ½ϵOO�, since this
combination is renormalized jointly.
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[Eq. (46)] will be given below. In general, the bias
parameters of halos are not uniquely determined by their
mass, a phenomenon known as assembly bias. We neglect
this effect in the main text and discuss it briefly in Sec. VIII.

B. Halo profiles

Further, we also need a prescription for the density
profiles of halos, which we write as

ρðr;M; τÞ ¼ Myðr;M; τÞ: ð4Þ

We enforce the following mass constraint for the profile:

Z
ρðr;M; τÞd3r ¼ M

Z
yðr;M; τÞd3r ¼ M: ð5Þ

In EHM, this constraint is essential in order for Eq. (3) to be
consistent, and for exact perturbation theory to be matched
on large scales. It states that the mass function and bias
parameters defined in Sec. II A completely characterize the
mass distribution on large scales (at lowest order in
derivatives), while the halo profiles provide the detailed
distribution on small scales. We denote the Fourier trans-
form of yðr;M; τÞ (which is dimensionless) as yðk;M; τÞ.
Let us assume a mean spherically averaged profile

yðr;M; τÞ (we generalize this below). Besides the mass,
the halo profile, averaged over an ensemble of halos within
a finite region, also depends on the local density and tidal
field. In general, we should perturbatively expand the
profiles in the local gravitational observables in the same
way as the halo abundance [Eq. (3)], where now the bias
parameters and stochastic fields become functions of r as
well. This formidable set of free functions can however be
reduced by using the fact that spherically averaged halo
profiles are usually well described by a single number
(apart from the mass), for example, in case of the NFW
profile [33], the concentration c. Then, it is sufficient to
write y ¼ yðr;M; τ; cÞ and expand the concentration in a
bias expansion of the same type as in Eq. (3),

cðM;x; τÞ
c̄ðM; τÞ ¼ 1þ

X
O

fbcOðM; τÞ þ ϵcOðM;x; τÞg½O�ðx; τÞ

þ ½ϵc�ðM;x; τÞ; ð6Þ

where c̄ðM; τÞ denotes the mean halo concentration.
Assuming that the fractional fluctuations in the concen-
tration are much less than one, we can then expand

yðr;M; τ; cðx; τÞÞ ¼ yðr;M; τ; c̄Þ
þ ycðr;M; τ; c̄Þ½bc1ðM; τÞδðx; τÞ
þ ½ϵc�ðM;x; τÞ þ � � �� ð7Þ

where

ycðr;M; τ; cÞ≡ ∂
∂ ln c yðr;M; τ; cÞ: ð8Þ

Note that Eq. (5) implies that
R
d3rycðr;M; τ; cÞ ¼ 0.

In general, we should also take into account that halos
are triaxial. This was investigated in [34]. Moreover, the
orientation of the axes will correlate with large-scale tidal
fields. We study this in Appendix B, and find that, under
reasonable assumptions, the terms introduced by allowing
for halo triaxiality are degenerate with those obtained
through the isotropic profile expansion Eq. (7). Thus, we
can effectively account for triaxiality through this expan-
sion. This is very useful as it reduces the number of free
parameters in the halo model predictions.
Let us consider the Fourier transform of the profile on

large scales, i.e. at low k. Equation (5) implies that
yðk → 0;M; τÞ ¼ 1. Moreover, we can expand

yðk;M; τ; cÞ ¼k→0
1 − aMk2R2

M þOðk4Þ; ð9Þ

where RM is the Eulerian halo radius (e.g. R200) and aM is a
mildly mass-dependent number of the order of one that
depends on the exact profile and mass-concentration
relation assumed. Equation (9) will be useful when con-
sidering the low-k limit of matter statistics in the halo
model. Further, we immediately see that

ycðk;M; τ; cÞ ¼k→0 −
∂aM
∂ ln c k

2R2
M þOðk4Þ; ð10Þ

scaling as k2 in the k → 0 limit.

C. Matter density

Following the halo model paradigm, the matter density
perturbation δm is given by a superposition of halos
weighted by their density profiles. Let us denote the
frequently appearing mass-weighting integral as

Z
dρðM; τÞ≡

Z
d lnM

M
ρ̄
n̄ðM; τÞ: ð11Þ

Note that dρ is dimensionless, and that
R
dρðM; τÞ ¼ 1 in

order to satisfy globalmass conservation at the background
level, which corresponds to the well-known integral con-
straint on the mass function.2 Equation (11) formally
requires a parametrization n̄ðM; τÞ for all masses. We
discuss this issue at the end of this section.
The fractional matter density perturbation is then, in full

generality, given by

2Note that we do not need to assume that the mass function is
universal, i.e. determined by a function f½δc=σðMÞ�.
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1þ δmðxÞ ¼
Z

dρðMÞ
Z

d3y½1þ δh;MðyÞ�

× y½x − y;M; cðyÞ�; ð12Þ

where here and in the following we drop the explicit time
argument for clarity (in the following, we always work at
some fixed time τ).
Equation (12) by itself is not sufficient however, since

δh;M in turn is constructed from δm. Here, we introduce the
following procedure. First, one expands δh;M and cðyÞ to a
fixed order in perturbation theory. For example, to match
PT predictions for the 1-loop power spectrum, we need to
expand δh;M to third order in perturbations (Sec. IV).
For consistency, one should similarly expand c (around
c̄) to third order, unless those terms are numerically
suppressed (see Sec. III). As we noted above, Eq. (5)
ensures that the terms involving the concentration are
higher order in derivatives. Then, the desired statistics of
δm are given as convolutions of correlators of the renor-
malized operators appearing in the bias expansion Eq. (3)
[and Eq. (6)] with the halo density profiles. We see explicit
examples of this in the following sections. This approach
assumes that all corrections to the PT matter density field
are effectively modeled by the halo profiles yðy;M; cÞ. We
discuss the issues related to this assumption in Sec. IV.
It is important to emphasize again that allmatter and halo

statistics follow unambiguously from this procedure, so
that the same set of halo properties n̄ðMÞ, bOðMÞ, yðk;MÞ
describe all these observables. Further, in most studies to
date, halo model statistics were derived at tree level in
perturbation theory. In EHM, this is not necessary, and the
halo model can be extended to match perturbation theory at
any desired order. We see one example (and the associated
issues) in Sec. IV.
The bias expansion Eq. (3) describes the distribution of

matter among halos on large scales, i.e. scales much larger
than typical sizes of halos, independently of their internal
structure. Combining this with the fact that halos are
comoving with matter on large scales, it is easy to see
that local mass and momentum conservation simply imply
the following constraints on the bias parameters and
stochasticities:

Z
dρðMÞbOðMÞ ¼

�
1 O ¼ δ

0 otherwiseZ
dρðMÞ½ϵ�ðM;kÞ ¼k→0

0þOðk2Þ
Z

dρðMÞ½ϵOðMÞO�ðkÞ ¼k→0
0þOðk2Þ; ð13Þ

which hold at all times. The first line states that the mass-
weighted mean linear bias of halos should be 1, while the
corresponding mean bias vanishes for all nonlinear terms.
The conditions on ϵ, ϵO are to be understood as constraints

on the auto and cross correlations between the renormalized
stochastic fields in the low-k limit. That is, they imply for
example

Z
dρðMÞ

Z
dρðM0Þh½ϵOðMÞO�ðkÞ½ϵO0 ðM0ÞO0�ðk0Þi0

¼k→0Oðk4Þ: ð14Þ

One can also interpret the stochasticity constraints locally
however: if we consider the matter density at a given point,
coarse grained on a sufficiently large scale (much larger
than the radius of typical halos), then the stochasticity of
halos of various mass cancels after mass weighting. That is,
there might be more halos at some fixed mass in a given
realization of initial phases, but this has to be compensated
by a smaller number of halos at other masses such that the
total amount of matter is locally conserved.
Apart from ensuring mass and momentum conservation,

these conditions are sufficient to ensure that on scales larger
than halos, the matter density Eq. (12) reduces to the
perturbation theory prediction at the desired order. The
constraint on the stochasticity will become particularly rel-
evant inthefollowingsections,as it is responsibleforremoving
the constant tail of the standard 1-halo term in the low-k limit.
Naturally, any constraints that can be placed on the opposite,
small-scale limit are very useful as anchor points. First, most
obviously, one can use the existing, very accurate measure-
ments of mean halo profiles. Second, we can also place
physical constraints on the stochastic terms in thehigh-k limit.
Before turning to this limit, let us discuss another issue

related to Eq. (13). The integral
R
dρðMÞ formally extends to

arbitrarily small halo masses, far beyond the range that is
empirically calibrated with simulations. In fact, for standard
parametrizations of the mass function, the mass-weighting
integrals in Eq. (13) typically converge very slowly towards
low masses. Since properties of very low-mass halos are
poorly constrained by simulations, this raises the question of
whether the halo model predictions discussed here and
presented in the literature actually rely on extremely low-
mass halos whose properties are poorly known.
Fortunately, as we show in Appendix A, the answer is

no. Specifically, if the properties of halos are calibrated to a
minimum mass Ms, then one can cut off the mass-
weighting integral below Ms, and introduce compensating
parameters to enforce the conditions in Eq. (13). After this
procedure, any systematic uncertainties in the halo model
predictions due to the mass cut scale as ðkRMs

Þ2. These
systematics reach 10% at a scale of

k10% ≈ 5.6hMpc−1
�

Ms

1010h−1M⊙

�
−1=3

: ð15Þ

Given the current advanced state of high-resolution sim-
ulations, this is not likely to be an important constraint for
cosmological applications of the halo model. Note that the
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procedure we describe in Appendix A applies to any halo
model prescription that involves integrals over halo masses.

D. Stochasticity in the high-k limit

The stochastic terms ϵ, ϵO are nonperturbative and
numerically important in the high-k limit. For scales much
smaller than the sizes of halos (of a given mass), the
stochasticity in the halo abundance should approach
Poisson statistics governed by the local halo abundance
n̄ðMÞ½1þ δh;M�. This is because Poisson statistics apply if
the wavelength 1=k of a given mode is much smaller than
the mean interhalo separation, that is, if n̄=k3 ≪ 1. Further,
since halos are nonoverlapping in the halo model (each
matter particle only belongs to one parent halo), halos of
different mass have independent Poisson noise. These are
significant constraints, since in this limit, they completely
determine the moments of ½ϵ� as well as all ½ϵO�. This works
as follows. For clarity, we drop the brackets around ϵ, ϵO in
the remainder of this section, keeping in mind that we
always deal with the renormalized fields.
Consider halos within an infinitesimal logarithmic mass

interval d lnM centered around a fixed mass M, and a
fictitious small volume element V around point x such that

N̄ ≡ Vn̄d lnM ≪ 1: ð16Þ

The Poisson assumption states that the halo number within
this volume follows a Poisson distribution,

NðxÞ ∼ Poisson

�
N̄

�
1þ

X
O

bO½O�ðxÞ
��

: ð17Þ

Here, the operators ½O�ðxÞ are considered to be coarse
grained on some larger scale (of the order of the halo radius,
for example). We can subtract the mean, which corresponds
to the deterministic part of the bias expansion Eq. (3), and
call the remainder N̄ϵpðxÞ with hϵpi ¼ 0. Equation (17)
then specifies the moments of ϵp, i.e.

hϵ2pi ¼
1

N̄

�
1þ

X
O

bO½O�ðxÞ
�

hϵ3pi ¼
1

N̄2

�
1þ

X
O

bO½O�ðxÞ
�
; ð18Þ

and so on. On the other hand, we have a specific
perturbative expansion of the stochasticity in Eq. (3), which
yields

ϵpðxÞ ¼ ϵðxÞ þ
X
O

½ϵOO�ðxÞ: ð19Þ

By matching Eq. (19) to the moments derived from
Eq. (18), and using the fact that there is only a single
random field ϵp (at fixed halo mass), we can then uniquely

determine the moments of ϵ and ϵO, order by order.
Performing a Fourier transform within the volume V, we
then obtain the desired high-k limit of the moments in
Fourier space. For example, at linear order we simply have

hϵðM;kÞϵðM0;k0Þi0 ¼k→∞ δDðlnM − lnM0Þ
n̄ðMÞ ; ð20Þ

where a prime denotes that the momentum conserving delta
function has been dropped. At second order, we obtain the
following two additional constraints:

hϵðM;kÞϵðM0;k0ÞϵðM00;k00Þi0

¼k→∞ δDðlnM − lnM0ÞδDðlnM − lnM00Þ
½n̄ðMÞ�2

hϵðM;kÞϵδðM0;k0Þi0

¼k→∞ 1

2
b1ðMÞ δDðlnM − lnM0Þ

n̄ðMÞ : ð21Þ

These are all stochastic moments that exist at second order
(Sec. V). The second line of Eq. (21) is directly related to
the halo sample variance discussed in [10]. Note that both
Eqs. (20) and (21) violate the constraints Eq. (13) in the
opposite, large-scale limit. This already shows that a scale-
dependent stochasticity is a necessary part of a consistent
formulation of the halo model. The entire reasoning of this
section also applies to the stochastic fields appearing in the
profile expansion Eq. (6). Moreover, in the high-k limit
these fields are uncorrelated with the stochasticity in the
halo number.

III. LOWEST-ORDER HALO MODEL
AND POWER SPECTRUM

The lowest-order consistent incarnation of the halo
model expands Eq. (3) to linear order,

δh;MðxÞ ¼ b1ðMÞδ1ðxÞ þ ½ϵ�ðM;xÞ; ð22Þ

where δ1 denotes the linear density field. In addition, the
profiles are expanded via Eq. (7),

yðr;M; cðxÞÞ ¼ yðr;M; c̄Þ
þ ½bc1ðMÞδ1ðxÞ þ ½ϵc�ðM;xÞ�ycðr;M; c̄Þ:

ð23Þ

The matter density perturbation is then given as a mass-
weighted integral of the halo number density convolved
with the halo density profile as in Eq. (12).
Let us first look at the matter propagator, i.e. the cross-

correlation of δm with the PT-evolved density field (here
just the linear density field) in Fourier space,
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P1mðkÞ ¼
Z

dρðMÞ½b1ðMÞyðk;MÞ þ bc1ðMÞycðk;MÞ�

× PLðkÞ; ð24Þ

where here and in the following we drop the explicit
concentration argument when it is set to the mean value
c̄ðMÞ, and PL denotes the linear matter power spectrum.

Using the low-k behavior of y and yc and Eq. (13), we see
that in the low-k limit we recover

P1mðkÞ ¼ PLðkÞ½1þOðR2
HMk

2Þ�; ð25Þ

where

R2
HM ≡

Z
dρðMÞaMb1ðMÞR2

M: ð26Þ

This is the characteristic scale that appears in the low-k limit of EHM, and it is of the order of RM� , where M� is defined
through σðM�Þ ¼ δc; that is, RHM is of the order of the typical Eulerian halo radius. Note that this scale is smaller than the
nonlinear scale 1=kNL where the density contrast becomes of the order of 1.
We now turn to the matter power spectrum. This is given by

PmmðkÞ ¼
Z

dρðMÞ
Z

dρðM0Þfyðk;MÞyðk;M0Þ½b1ðMÞb1ðM0ÞPLðkÞ þ Pϵϵ
MM0 ðkÞ�

þ 2yðk;MÞycðk;M0Þ½b1ðMÞbc1ðM0ÞPLðkÞ þ Pϵϵc

MM0 ðkÞ�
þ ycðk;MÞycðk;M0Þ½bc1ðMÞbc1ðM0ÞPLðkÞ þ Pϵcϵc

MM0 ðkÞ�g; ð27Þ

where we have defined

Pϵaϵb

MM0 ðkÞ≡ h½ϵa�ðM;kÞ½ϵb�ðM0;k0Þi0: ð28Þ

Equations (24) and (27) differ from the standard halo model
power spectrum in two respects: the stochasticity cova-
riances Pϵaϵb

MM0 ðkÞ and the terms from the expansion of halo
concentration in long-wavelength perturbations, propor-
tional to yc. We examine both of them in the following
sections.
First, however, we consider the low-k limit of Eq. (27).

The constraints Eq. (13) imply that

Z
dρðMÞPϵ

MM0 ðk → 0Þ ¼ 0þOðk2Þ
Z

dρðMÞ
Z

dρðM0ÞPϵ
MM0 ðk → 0Þ ¼ 0þOðk4Þ: ð29Þ

For the cross-correlation between ϵ, ϵc on the other hand,
we only demand

R
dρðMÞ R dρðM0ÞPϵϵc

MM0 ¼ Oðk2Þ. The
first line here says that in the low-k limit, the halo
stochasticity covariance has (at least) one zero eigenvalue,
with the corresponding eigenvector given by mass weight-
ing (see also [35–37]). Reference [36] performed a detailed
analysis in simulations. Indeed, they find that the lowest
eigenvalue of Pϵϵ

MM0 is significantly lower than the shot
noise 1=n̄ðMÞ of halos in the mass range they considered.
Further, the corresponding eigenvector is close to mass
weighting. Similar results were found in [38].

Using that yðk;MÞ → 1 for k → 0, we then see that
PmmðkÞ has the same low-k behavior Eq. (25) as P1mðkÞ.
Moreover, the stochastic contributions, i.e. all terms that
involve Pϵ~ϵ

MM0 , scale as k4 in the low-k limit, just as
demanded by mass and momentum conservation. The
leading contribution to PmmðkÞ is then

PmmðkÞ ¼ PLðkÞ þOðR2
HMk

2ÞPLðkÞ
þO½k4; k4PLðkÞ�: ð30Þ

Note that the 1-loop matter power spectrum contributes
terms that also scale as k2PLðkÞ, but involve 1=kNL instead
of RHM. This shows that one needs to carry out the “halo
model at 1-loop,” by extending Eq. (22) to third order, in
order to obtain a consistent matching to beyond-perfect-
fluid terms in the EFT.
Figure 1 (red solid line) shows the deterministic con-

tribution from the expansion of the halo density, i.e. the first
term in the second line of Eq. (27). This is the standard
2-halo term. Given the discussion in the previous para-
graph, we do not expect this to be a good match to the true
nonlinear power spectrum from simulations. For our
numerical results, we assume a flat ΛCDM cosmology
with cosmological parameters given by Ωm ¼ 0.27,
h ¼ 0.7, Ωbh2 ¼ 0.023, ns ¼ 0.95, σ8 ¼ 0.791. We use
the Sheth-Tormen mass function [39] and associated linear
bias, and the concentration-mass relation of [40]. We
assume that halo masses are given in terms of a mean
interior density equal to the virial density ρvir ¼ 363ρ̄ for
this cosmology. All results are shown for z ¼ 0.
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A. Halo stochasticity

The last term in the first line of Eq. (27) is the halo model
prediction for the stochastic part of the matter power
spectrum. Here, by stochastic we mean that it does not
correlate with the initial conditions on the scale k (or at
larger scales). In the halo model, this is controlled by the
halo stochasticity covariance Pϵϵ

MM0 ðkÞ. Clearly, this is a key
ingredient of the halo model, as important though much
less well studied than the mass function, linear bias,
and halo profiles. The standard halo model assumes a
k-independent diagonal covariance following Poisson
statistics,

Pϵϵ;std
MM0 ¼ δDðlnM − lnM0Þ

n̄ðMÞ ; ð31Þ

which, following Sec. II D, is only justified in the high-k
limit, i.e. well within halos. Moreover, it clearly does not
satisfy Eq. (29) and thus violates mass and momentum
conservation. Thus, we need to come up with a more
physical parametrization of Pϵϵ

MM0 at low k, which asymp-
totes to Eq. (31) if k is larger than the mean interhalo
separation, which is directly related to the Lagrangian radii
RLðMÞ, RLðM0Þ, respectively.

One possibility is to simply subtract the trace to ensure a
zero eigenvalue corresponding to mass weighting,

Pϵ
MM0 ðkÞ ¼ δDðlnM − lnM0Þ

n̄ðMÞ − ΘMM0 ðkÞ MM0

ρ̄hMiρ
; ð32Þ

where hMiρ is defined as

hMiρ ≡
Z

dρðMÞM: ð33Þ

Here, ΘMM0 ðkÞ is an interpolating function that asymptotes
to 1 for k → 0, satisying Eq. (29), while approaching zero
in the high-k limit. To be specific, we choose

ΘMM0 ðkÞ ¼ ½1þ ðk½RLðMÞ þ RLðM0Þ�=2Þ4�−1; ð34Þ

where the transition scale is given by the halo Lagrangian
radii following our considerations above. Note that, for a
covariance of the form Eq. (32), we need ΘMM0 ðkÞ to scale
as 1þOðk4Þ in the low-k limit in order to satisfy the
conditions Eq. (13) for all k. While different forms of
interpolating functions could be chosen, we expect the
transition to be related to RL. The detailed shape of the
interpolation is not expected to have a significant impact on
the power spectrum prediction, as the transition happens on
scales where the power spectrum is still dominated by the
deterministic contribution (see Fig. 1).
Equation (32) is certainly not the only possible choice.

For example, Ref. [36] derived a covariance given by3

Pϵ
MM0 ðk → 0Þ ¼ δDðlnM − lnM0Þ

n̄ðMÞ − b1ðMÞM
0

ρ̄

− b1ðM0ÞM
ρ̄
þ b1ðMÞb1ðM0Þ hMiρ

ρ̄
: ð35Þ

It is easily verified that this ansatz indeed satisfies Eq. (29),
assuming the first line in Eq. (13) holds. We could thus
multiply the last three terms by the interpolating function
ΘMM0 ðkÞ and insert into Eq. (27). However, the additional
terms [in particular, the last term in Eq. (35)] grow rapidly
towards high k due to their mass weighting, so that they
dominate the matter power spectrum for k≳ 0.5hMpc−1

despite the suppression by the interpolating function
Eq. (34); this result is insensitive to the shape and steepness
of ΘMM0 ðkÞ. Thus, we cannot attain our desired high-k
limit, which is the standard 1-halo term based on Eq. (31).
We instead work with Eq. (32) here, but conclude that
simulation measurements of halo stochasticity on large and
intermediate scales are essential in order to properly
calibrate the halo model prediction.

FIG. 1. Contributions to the lowest-order halo model matter
power spectrum Eq. (27) at z ¼ 0. The red solid line shows the
deterministic contribution [first term in the second line of
Eq. (27)], i.e. the standard 2-halo term, while the green long-
dashed line is the stochastic contribution (second term in the same
line). For comparison, we also show the standard 1-halo term as a
black thin short-dashed line. The light blue dot–long-dashed line
shows the deterministic contributions from the concentration
expansion [first terms in the third and fourth lines of Eq. (27)].
Finally, the stochastic terms of the concentration expansion
[second terms in the same lines of Eq. (27)] are shown as a
blue dot-dashed line. The linear power spectrum is shown as a
thin dotted line.

3Note that this was derived using a standard halo model ansatz
based on Eq. (31) which does not enforce mass and momentum
conservation.
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The stochastic contribution to the matter power spectrum
[second term in the second line of Eq. (27)] is shown as a
green long-dashed line in Fig. 1. We also show the standard
1-halo prediction with its unphysical k0 behavior at low k
(black short-dashed line). As expected, Eq. (32) yields the
desired k4 behavior of the stochastic contribution, while
asymptoting to the standard 1-halo term for k≳ 0.5hMpc−1.
Qualitatively, this is what one expects for the stochastic
contribution in the halo model, although the quantitative
behavior for k≲ 1hMpc−1 can of course be modified
significantly by changing the low-k limit of Pϵϵ

MM0 and/or
the interpolating function Eq. (34). The result appears
roughly consistent with the findings of [23] (e.g. blue curve
in Fig. 8 of that reference), who isolated the stochastic
contribution to the power spectrum in simulations by
subtracting the part correlated with long-wavelength corre-
lations. Interestingly, they find a slightly shallower scaling
with k than k4 even for k≲ 0.1hMpc−1. Whether this really
implies the existence of another scale much below kNL
remains to be seen.
At this point, it is also worth discussing the usual 1-halo vs

2-halo separation. The first term in the second line of
Eq. (27) corresponds to the standard 2-halo term. One could
refer to the second stochastic term as a 1-halo term, even
though it involves a covariance between different halo
masses. Alternatively, one could only refer to that part of
the stochastic contribution that is proportional to δDðlnM −
lnM0Þ as a 1-halo contribution, while the remainder of the
stochastic part is considered a contribution to a modified
2-halo term (see also [9,41]). In any case, this separation is
somewhat arbitrary and a matter of definition, as everything
should be derived from the physical assumptions described
in Sec. II rather than a separation of the statistics into
n-halo terms.

B. Concentration expansion

Let us now turn to the terms in the third and fourth lines of
Eq. (27), involving yc, which come from the perturbative
expansion of the concentration c. First, consider the deter-
ministic terms ∝ PLðkÞ. Figure 1 shows these terms,
assuming bc1 ¼ b1 which is almost certainly a significant
overestimation of the effect, given the fairly small environ-
ment dependence observed for the halo concentration in
simulations [42]. In fact, this contribution is entirely domi-
nated by the cross term given on the third line of Eq. (27).
Clearly, this contribution is significantly smaller and shifted
to higher k compared to the terms from the expansion of
δh;M. The main reason for this is that the change of halo
profiles due to a change in concentration happens on fairly
small scales, of the order of the scale radius of these halos.
Further, jycðk;MÞj is at most ∼0.4; that is, halo profiles do
not respond strongly to a change in concentration.
Turning to the stochastic terms, we now need a para-

metrization of Pϵϵc
MM0 ðkÞ, scaling as Oðk2Þ for k → 0, and

Pϵcϵc

MM0 , which has no low-k constraint. Let us consider the

latter. The simplest assumption to make is that each halo’s
concentration is drawn from a log-normal distribution with
fixed scatter σln c around the mean relation c̄ðMÞ. Then, we
have

Pϵcϵc

MM0 ¼ σ2ln c
n̄

δDðlnM − lnM0Þ: ð36Þ

The result, using σln c ¼ 0.4 (of the order of what was found
for the scatter in concentration in [42]), is also shown in
Fig. 1. Again, we find this to be a small contribution to
PmmðkÞ, mainly relevant around k ∼ 2hMpc−1. The final
remaining term is the stochastic cross-correlation between
halo number density and concentration Pϵϵc

MM0 ðkÞ. This is
expected to be smaller than the stochastic autocorrelations
of halo number and profiles, because it is constrained to
vanish on both small and large scales: mass conservation
implies a k4 scaling for k → 0, while for scales k≳ 1=RM
within halos, profiles and number density have to be
independent random variables. This means Pϵϵc

MM0 ðkÞ can
only be relevant on a fairly narrow range of scales around
k ∼ 1=ðRM þ RM

0Þ. For this reason, we do not investigate
this term further here.
In summary, in the case of the simple concentration

expansion of halo profiles performed here, the effects are
suppressed compared to the expansion of δh;M, so that,
depending on the application and range of wave numbers of
interest, they can be neglected. We stress however that this
assumes that the impact of the large-scale environment on
halo profiles is well captured by a change in concentration.
If in reality there is a significant effect on the outer regions
of halo profiles, then this could make the power spectrum
contributions from the profile expansion more significant
and push them to larger scales. This is well worth
investigating in simulations. We leave this to future work.

IV. MATTER POWER SPECTRUM BEYOND
TREE LEVEL

The previous section described the leading order pre-
diction of the halo model, which only matches linear
perturbation theory on large scales. Let us now turn to
the next higher order incarnation of EHM, where we go to
third order in PT. Our goal is to outline the overall features
of the result and highlight open issues. We neglect the terms
arising from the expansion of the concentration throughout
this section.
Let us begin with the deterministic contributions to the

matter power spectrum. These can be written as

PmmðkÞjdet ¼
Z

dρðMÞ
Z

dρðM0Þyðk;MÞyðk;M0Þ

× fb1ðMÞb1ðM0Þ½PLðkÞ þ P1-loopðkÞ�
þ PMM0

nlb ðkÞg; ð37Þ

where
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P1-loopðkÞ ¼ hδð2ÞðkÞδð2ÞðkÞi0 þ 2hδð1ÞðkÞδð3ÞðkÞi0 ð38Þ

is the 1-loop matter power spectrum [43], and δðnÞ denotes
the matter density at nth order in PT. PMM0

nlb ðkÞ contains all
nonlinear bias terms that are relevant at 1-loop order,

PMM0
nlb ðkÞ ¼

X1-loop
fO;O0g≠fδ;δg

bOðMÞbO0 ðM0Þh½O�ðkÞ½O0�ðk0Þi0:

ð39Þ

The full expression for the 1-loop halo power spectrum can
be found in [44,45]. In analogy with Eq. (38), these terms
can be divided into quadratic bias terms which scale
similarly to hδð2Þδð2Þi and cubic bias terms which scale
similarly to hδð1Þδð3Þi. The numerically largest term of the
former category is given by

b1ðMÞb2ðM0Þhδð2ÞðkÞ½δ2�ðk0Þi0

¼ b1ðMÞb2ðM0Þ
Z

d3q
ð2πÞ3 F2ðq;k− qÞPLðqÞPLðk− qÞ;

ð40Þ

where F2 is the symmetrized second-order perturbation
theory kernel [43]. We use the second-order bias derived
from the Sheth-Tormen mass function for our results [note
that this satisfies Eq. (13)]. At 1-loop order, the third-order
renormalized bias contributions to Eq. (39) are all degen-
erate and can be grouped as a single contribution [44]:

X
O¼Oðδ3Þ

b1ðMÞbOðM0Þhδð1ÞðkÞ½O�ðkÞi0

¼ b1ðMÞb3nlðM0Þσ23ðkÞPLðkÞ; ð41Þ

where σ23ðkÞ is a filtered version of the linear power
spectrum. The filter is defined explicitly in [44]. For
illustrative results, we use the prediction from local
Lagrangian biasing [45],

b3nlðMÞ ¼ 32

315
½b1ðMÞ − 1�: ð42Þ

Let us also give the expression for the 1-loop propagator,
i.e. the cross-correlation of the PT-evolved initial density
field and the nonlinear matter density:

P1mðkÞ ¼
Z

dρðMÞyðk;MÞ
�
b1ðMÞ½PLðkÞ þ P1-loopðkÞ�

þ
X

O¼Oðδ2Þ
bOðMÞhδð2ÞðkÞ½O�ðkÞi0

þ
X

O¼Oðδ3Þ
bOðMÞhδð1ÞðkÞ½O�ðkÞi0

�
; ð43Þ

where the leading contributions to the second and third
lines are given by Eqs. (40)–(41) without the factor b1ðMÞ.
Let us finally turn to the stochastic terms at 1 loop,

given by

PmmðkÞjstoch ¼
Z

dρðMÞ
Z

dρðM0Þyðk;MÞyðk;M0Þ

×

�
Pϵϵ
MM0 ðkÞ þ

Z
d3q
ð2πÞ3P

ϵδϵδ
MM0 ðqÞPLðjk− qjÞ

þC1 þC2k2
�
: ð44Þ

There is only a loop additional contribution to the matter
power spectrum which involves Pϵδϵδ defined following
Eq. (28). In order to enforce Eq. (14), we add counterterms
C1 and C2, whose values are uniquely determined given
Pϵδϵδ
MM0 ðkÞ. These counterterms ensure that the final contri-

bution scales as k4 in the low-k limit. While evaluating this
term requires a parametrization of Pϵδϵδ

MM0 , we have performed
a rough evaluation using a form inspired by the high-k limit
discussed in Sec. II D. Including the counterterms, this
contribution was found to be of the order of a few percent
of the tree-level stochastic term for k≲ 0.5hMpc−1. Given
the lack of knowledge about Pϵδϵδ

MM0 on large and intermediate
scales, we do not show it here.
Figure 2 shows the contribution ∝ b1ðMÞb1ðM0Þ in

Eq. (37), as well as the two terms Eq. (40) and Eq. (41)
which are a subset of PMM0

nlb ðkÞ. Note that, after mass
weighting, both Eqs. (40) and (41) yield negative contri-
butions to Eq. (37). We also show the linear and 1-loop
matter power spectra as well as the tree-level stochastic
term. It is clear that the latter, together with the term scaling
as b1ðMÞb1ðM0Þ, dominate the EHM power spectrum. The
nonlinear biases are suppressed by the conservation con-
ditions Eq. (13), so that they only begin to contribute on
scales of the order of the halo radius [where yðk;MÞ begins
to be appreciably different from 1]. This suppression is
even stronger for terms that scale as ðb2Þ2.
Thus, although Fig. 2 does not show all EHM contri-

butions, we can already draw some conclusions. For
comparison, we also show in Fig. 2 the nonlinear matter
power spectrum evaluated for our fiducial cosmology by
the Coyote emulator [46], which is accurately calibrated on
simulations. This illustrates the well-known fact that P1-loop
overpredicts the true nonlinear power spectrum measured
in N-body simulations. The stochastic contribution, at least
assuming our parametrization Eq. (32), only exacerbates
this problem. The fact that some of the nonlinear bias terms
are negative will not solve this issue in the range
k ∼ 0.2–1hMpc−1, as they are too small numerically.
This problem occurs on intermediate scales, which are

too small for perturbation theory to be valid, but still larger
than the Eulerian radius of halos. Thus, one cannot expect
rigorous physical solutions by extrapolating from either
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regime. Note that the predictions in the intermediate regime
also depend on which perturbative scheme is used, e.g.
Eulerian standard perturbation theory (SPT) vs Lagrangian
perturbation theory (LPT): different schemes are only
guaranteed to give the same result on scales where
perturbation theory is valid and will diverge on fully
nonlinear scales.
In the framework of the halo model, these issues arise

because we assume perturbation theory to describe δh;M
correctly down to halo scales, which does not hold. For
example, nonperturbative effects such as halo exclusion are
not included by definition. One approach to address the
mismatch on intermediate scales is to perform a matching
to simulations. In particular, one can match the halo
propagator, which for 1-loop SPT is given in analogy to
Eq. (43), by

P1hðk;MÞ ¼ b1ðMÞ½PLðkÞ þ P1-loopðkÞ�
þ

X
O¼Oðδ2Þ

bOðMÞhδð2ÞðkÞ½O�ðkÞi0

þ
X

O¼Oðδ3Þ
bOðMÞhδð1ÞðkÞ½O�ðkÞi0; ð45Þ

to simulations by rescaling it with a function υðk;MÞ. Then,
by rescaling the profiles yðk;MÞ → yðk;MÞυðk;MÞ, the
matter propagator P1mðkÞ should be described correctly to

the extent that the basic assumption of the halo model is
valid. A similar matching of Phhðk;M;M0Þ can be used to
determine Pϵϵ

MM0 ðkÞ.
We leave this to future work, but point out that

modifications to the profiles yðk;MÞ as a way to fit
intermediate scales have also been proposed in [27],
who expanded the profile on large scales in powers of
k2. Reference [23] discussed a subtraction of the high-k
contribution of the loop integrals to Eq. (38) as an effective
profile.
Common to all these attempts at solving the issue of

intermediate scales is the fact that we need to introduce
another scale that is larger than the typical halo size (and
close to the nonlinear scale). This is clear from Fig. 2, and
given that the typical wave number corresponding to halo
radii is of the order of kHM ∼ π=RHM ∼ 8hMpc−1. The
necessity of adding nonperturbative terms involving a new
scale not directly related to halo profiles breaks with the
philosophy of the halo model as outlined in the
Introduction, i.e. that predictions should be given com-
pletely in terms of perturbation theory and well-defined
properties of halos. Moreover, the distinction between
deterministic and stochastic contributions is blurred in this
transition regime. Nevertheless, the goal is to sufficiently
constrain the additional terms to keep the halo model
predictive, in particular, by considering various statistics
such as matter and halo power spectra and bispectra. We
leave the whole question of intermediate scales as an open
issue for future work.

V. BISPECTRUM

We now consider the bispectrum (three-point function)
of matter, and present the EHM prediction at tree level.
Given our findings from Sec. III, we drop the terms coming
from the concentration expansion, simplifying the expres-
sions considerably. At tree level, we then need to expand
Eq. (3) to second order. This yields

δh;Mðx; τÞ ¼ b1ðM; τÞδðx; τÞ þ 1

2
b2ðM; τÞ½δ2�ðx; τÞ

þ 1

2
bs2ðM; τÞ½ðsijÞ2�ðx; τÞ

þ ½ϵ�ðM;x; τÞ þ ½ϵδδ�ðM;x; τÞ; ð46Þ
where we have slightly changed notation to match
standard convention for the density biases, and sij ≡
ð3ΩmH2=2Þ−1ð∂i∂j − δij∇2ÞΦ is a scaled version of the
tidal field. The resulting expression for the matter bispec-
trum is given in Eq. (C1).
The two main differences to commonly used halo model

bispectra are that first, we are including the two second-
order bias terms, with respect to density squared and tidal
field squared [third and fourth lines in Eq. (C1)]. The tidal
bias [47,48] has not been included in halo model calcu-
lations of the bispectrum so far (e.g. [19,49]), but is

FIG. 2. Illustration of some of the contributions to the 1-loop
halo model matter power spectrum Eq. (37) at z ¼ 0. The red
solid line shows the contribution ∝ b1ðMÞb1ðM0Þ [terms in
brackets in the second line of Eq. (37)]. The green long-dashed
line is the same stochastic contribution as in Fig. 1. The light blue
dot–long-dashed line shows the contribution from Eq. (40), while
the third-order bias contribution [Eq. (41)] is shown as a blue dot-
dashed line. The linear power spectrum is shown as a thin dotted
line as in Fig. 1, while the thin dashed line shows the matter
power spectrum at 1 loop. The thin dot–long-dashed line shows
the nonlinear power spectrum from the Coyote emulator [46].
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straightforward to include once a parametrization of bs2ðMÞ
is given which satisfies Eq. (13).
Second, the general stochastic terms which need to be

included at this order are given in the last line of Eq. (C1).
Let us repeat them here:

Bmmmðk1; k2; k3Þ ¼stoch
Z

dρðM1Þ
Z

dρðM2Þ
Z

dρðM3Þ

× yðk1;M1Þyðk2;M2Þyðk3;M3Þ
× fBϵ

M1M2M3
ðk1; k2; k3Þ

þ ½PLðk2ÞPϵδϵ
M1M3

ðk3Þ
þ PLðk3ÞPϵδϵ

M1M2
ðk2Þ� þ 2permg; ð47Þ

where

Bϵ
M1M2M3

ðk1; k2; k3Þ≡ h½ϵ�ðM1; k1Þ½ϵ�ðM2; k2Þ½ϵ�ðM3; k3Þi0
Pϵδϵ
M1M2

ðkÞ≡ h½ϵδ�ðM1;kÞ½ϵ�ðM2;k0Þi0: ð48Þ

We thus need a parametrization of Bϵϵϵ
M1M2M3

and Pϵδϵ
M1M2

(since we are working at tree level, we do not need to
perform any renormalization on ϵ and ϵδδ). In the high-k
limit, we can use the prediction of Poisson sampling from
the local deterministic halo abundance, Eq. (21). At low k,
Eq. (13) requires that the mass-weighted integral of these
quantities over any of the masses Mi vanishes. We can
immediately generalize our interpolating ansatz Eq. (32) to
Pϵδϵ
M1M2

through

Pϵδϵ
M1M2

ðkÞ ¼ 1

2

b1ðM1Þ
n̄ðM1Þ

δDðlnM1 − lnM2Þ

−
1

2
ΘM1M2

ðkÞ M1M2

ρ̄hb1Miρ
b1ðM1Þb1ðM2Þ; ð49Þ

where

hb1Miρ ≡
Z

dρðMÞb1ðMÞM: ð50Þ

In Appendix C we also give a somewhat more lengthy
expression for Bϵϵϵ which satisfies the corresponding
constraints [Eq. (C4)]. While it is a simple extension of
Eq. (32), it clearly is not the only possible choice. Again,
we stress that further numerical investigations of halo
stochasticity, including its three-point function, as a func-
tion of scale are necessary in order to obtain an accurate
halo model bispectrum.
Nevertheless, via Eqs. (49) and (C4), and given bias

parameters b2ðMÞ, bs2ðMÞ, Eq. (C1) yields a consistent
matter bispectrum obeying all symmetries of the matter
density, and asymptoting to the tree-level matter bispectrum
on large scales. It does not include the effect of a
modulation of halo profiles by large-scale density pertur-
bations, as we have found it to be numerically small in the

case of the power spectrum, but this can be easily added
back in. Of course, we expect the same issues on inter-
mediate scales to arise that appear for the power spectrum.

VI. MATTER VELOCITY FIELD

So far, we have only considered the matter density field,
since this is phenomenologically the most important
quantity for large-scale structure. Let us now consider
how the nonlinear matter velocities are described in the
self-consistent halo model approach pursued here. First of
all, since the single-stream fluid picture breaks down on
nonlinear scales, our goal has to be to derive the velocity
distribution at a given point ðx; τÞ.
Let us denote the matter velocity predicted by perturba-

tion theory, at the relevant order used in the halo model, by
vPT. As argued in Ref. [29], halo velocities are unbiased
with respect to matter velocities up to higher derivative
terms; that is, the velocity of the effective halo fluid
obtained by coarse graining the halo distribution is given by

vh;Mðx; τÞ ¼ vPTðx; τÞ þOð∇2vPT;∇δPTÞ: ð51Þ

Since these higher derivative terms are assumed to be given
entirely by the halo profiles in our approach, we set
vh;M ¼ vPT. Then, the velocity distribution at ðx; τÞ in
the halo model is given by4

Pðv;xÞ ¼
Z

dnðMÞ
Z

d3y½1þ δh;MðyÞ�

× Pv;hðv − vPTðxÞ;M;x − yÞ; ð52Þ

where we have dropped the time argument for clarity, andR
dnðMÞ≡ ðR n̄ðMÞd lnMÞ−1 R n̄d lnM is the normalized

integral over the halo number density (that is, without mass
weighting). Pv;hðv;M; rÞ denotes the mean normalized
velocity distribution within halos of mass M at radius r.
By construction, this obeys

Z
d3vPv;hðv;M; rÞ ¼ 1 and

Z
d3vvPv;hðv;M; rÞ ¼ 0: ð53Þ

For spherically symmetric halos, Pv;h can be written as

Pv;hðv;M; rÞ ¼ Pvðv∥ ¼ v · r̂; v⊥ ¼ jv − ðv · r̂Þr̂j;M; rÞ;

i.e. in terms of the joint distribution of radial and tangential
velocities. See [50,51] for examples of modeling this
velocity distribution.

4Here, we are working in the nonrelativistic limit and ignore
corrections of the order of v2.

TOWARDS A SELF-CONSISTENT HALO MODEL FOR THE … PHYSICAL REVIEW D 93, 063512 (2016)

063512-11



Equation (52) can then be generalized by allowing for a
dependence of the velocity distribution on the halo con-
centration, for example, leading to an expansion analogous
to that discussed in Sec. II B. Further, one can straightfor-
wardly apply the same type of reasoning to obtain the
momentum density, or mass-weighted velocity.

VII. CONNECTION TO THE EFT

The EHM approach described in Sec. II predicts, by
construction, a matter density field which matches the
results of perturbation theory to any desired order on large
scales. Beyond the large-scale limit, the halo profiles lead
to higher derivative terms ∝ ∇2δ, ð∇δÞ2, and so on. Further,
the halo model contains a stochastic contribution to the
matter density field, i.e. a contribution which does not
correlate with long-wavelength perturbations. All these
contributions satisfy the requirement of large-scale mass
and momentum conservation as long as the conditions
Eq. (13) are satisfied.
In this sense, this halo model approach consistently

extends the predictions of EFT of LSS to nonlinear scales,
which necessarily implies that the halo model is not
guaranteed to be within a well-defined theoretical uncer-
tainty from the true answer when going beyond perturba-
tive scales k=kNL ≪ 1. A detailed study of the connections
of the halo model to the EFT, while interesting, is beyond
the scope of this paper. We just make two comments of
general interest here.
Matching to EFT parameters: As emphasized in Sec. II,

one key virtue of EHM is that it can be taken beyond tree
level. In the form that we have defined the implementation
there, corrections to the perfect fluid description, i.e. the
terms added by the EFT, are exclusively provided by the
halo profiles. The results in Sec. IV already show however
that the EHM ansatz fails to even roughly predict param-
eters such as the effective sound speed cs: EHM predicts a
scale kHM ¼ π=RHM, while simulation measurements (e.g.
[52]) find that the correct scale is kNL ≪ kHM. There is no
reason to expect that this problem will be solved by higher
loops; instead one has to separately model the transition
regime as discussed at the end of Sec. IV.
Higher derivative terms: In the halo model, δm is written

as a convolution of a scalar δh;M with a profile yðrjMÞ,
where the profile is assumed to generate all higher
derivative terms. For this reason, we only obtain higher
derivative terms of the type ∂2O and ∂iO∂iO0, whereO,O0
are scalar operators appearing in the expansions Eqs. (3)
and (7). The second type is generated by having both
∂2ðOO0Þ and Oð∂2O0Þ in the expansion. This also holds
when including the dependence of halo profiles and
triaxiality on long-wavelength perturbations. Hence, the
halo model, as described in Sec. II, does not generate higher
derivative terms of the form ∂isjk∂ksij or similar terms for
other nonscalar operators, which are, in general, present in
the EFT. This is a prediction which can be tested on

simulations, by comparing the measured amplitude (on
scales within the perturbative regime) of higher derivative
terms of the type ∂isjk∂ksij with, for example, ∂isjk∂isjk.
The halo model as described here only produces the second
term. Of course, it is always possible to explicitly include
any higher derivative term in the expansion of the halo
overdensity Eq. (3).

VIII. CONCLUSIONS

We have presented a general procedure (EHM) for
constructing a halo model description of the nonlinear
large-scale structure which guarantees mass and momen-
tum conservation on large scales. This procedure allows for
perturbation theory results to be matched to any given
order. Finally, a single set of input ingredients (mass
function, bias parameters, profiles, and stochasticity
covariances) describes all matter and halo auto and cross
correlations.
We have attempted to write down the most general

expression for the matter density field that follows from the
basic halo model assumption stated at the beginning of
Sec. I and that remains predictive. For this reason, we have
only allowed terms at lowest order in derivatives in the halo
density expansion Eq. (3), thereby declaring that halo
profiles are responsible for all higher derivative terms in
the matter density field. While the number of input
parameters in the model increases as one goes to higher
order (in particular, the bias parameters of halos), these
parameters can be measured in simulations (e.g.
[44,45,47,53]) or predicted via the peak-background split
approach for example. The key virtues of the halo model,
namely simple, numerically cheap predictions for nonlinear
matter statistics on all scales that are physically motivated,
are retained in any case.
The new ingredients discussed here for the first time are

the halo stochasticity covariance, the concentration expan-
sion allowing for the dependence of halo profiles on the
environment, and a clarification of the impact of low-mass
halos on halo model predictions. The last point, discussed
in detail in Appendix A, also applies to existing formula-
tions of the halo model.
Perhaps the most important conclusion of this work

is that the halo stochasticity covariance is a key ingredient
of the halo model, and likely to be numerically important in
the transition region between the classic 2-halo and 1-halo
regimes. This quantity has clearly not been studied in
sufficient detail so far, with the most detailed studies being
Refs. [36,38]. Here, we have described a general procedure
to derive the high-k limit of the stochasticity (in the 1-halo
regime) in terms of the perturbative bias parameters and
mass function.
The prescription given here does not by itself address the

failure of the halo model to describe the transition region
between PT scales and the 1-halo regime. In fact, going to
1-loop order in the power spectrum, we found that the halo
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model performs worse than perturbation theory on scales
k ∼ 0.2–1hMpc−1. This will most likely require additional
ingredients (see e.g. [23,27] for related approaches). We
leave this as a major open problem for future work.
Turning to halo profiles, we have allowed for the

spherically averaged halo profiles as well as halo triaxiality
to depend on long-wavelength perturbations. In order to
avoid many free functions of scale, we have parametrized
this dependence only through the concentration. This
however can easily be augmented to include the environ-
mental dependence of halo outskirts as well. Interestingly,
we found that halo triaxiality is likely to be unimportant in
practice, as it is largely degenerate with the expansion of
the spherically averaged profiles.
A detailed comparison of the halo model power spectrum

and bispectrum with simulation results is left for future
work. This will also necessitate more study of the halo
stochasticity. In order to be a fair comparison, this has to
make use of state-of-the-art numerically calibrated halo
mass function, biases, and profiles.
Let us also briefly discuss assembly bias, i.e. the fact that

the large-scale properties of halos depend on more than just
the halo mass (e.g. [54–56]). In principle, assembly bias
can be straightforwardly included in the halo model, by
promoting the integral over mass in Eq. (12) to a multi-
dimensional integral over mass, formation time, and/or
other quantities. Correspondingly, the mass function n̄,
mean concentration c̄, bias parameters bO and bcO, as well
as stochastic fields ϵO, ϵcO all become functions of mass,
formation time, and so on. Note that assembly bias can only
affect halo model predictions if both profiles and biases
and/or stochastic fields depend on additional variables, for
example, if at fixed mass halos with higher concentration
are more biased. These effects thus only become relevant in
the intermediate to 1-halo regime.
Finally, the halo model can also be generalized to a

model for galaxy statistics via the halo occupation distri-
bution (HOD) approach. In the spirit of the approach
described here, the HOD for halos of a given mass should
also be allowed to depend on the long-wavelength pertur-
bations via an expansion of the same type as in Eq. (3). Of
course, assembly bias effects can also be included as
described just above. These are expected to be more
important for galaxy clustering than for the matter density
field; for example, certain types of galaxies may live
preferentially in early- or late-forming halos. We leave
this to future work.
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APPENDIX A: ON THE LOW-MASS CUTOFF
OF HALOS

The halo model is based on parametrizations of the
abundance, bias parameters, and profiles of halos, all as a
function of mass. Clearly, these are only calibrated over a
certain mass range in simulations. At high masses, there is
no obstacle, in principle, to measuring halo properties
accurately. A practical issue is that halos become exponen-
tially rare at very high masses. However, this also makes
them phenomenologically unimportant. For this reason,
any extrapolation used at high masses is likely to be well
under control.
On the other hand, properties of low-mass halos are

poorly constrained by simulations due to resolution limits.
The mass-weighting integrals, for example in Eq. (13),
converge very slowly towards low masses. This raises the
question of whether the halo model predictions actually
rely on extremely low-mass halos whose properties are
poorly known.
Here, we show that this is not the case. Consider the

case where the mass function, bias and profiles are well
calibrated to a minimum mass Ms. We show that the
uncertainties to the halo model predictions introduced by
halos of mass below Ms are of the order of ðkRMs

Þ2. If the
scales of interest are k ≪ 1=RMs

, then this is a negligible
uncertainty on the halo model predictions.
To prove this, we introduce a low-mass cutoffMs so that

all mass-weighting integrals become

Z
dρðMÞ →

Z
∞

lnMs

d lnM
M
ρ̄
n̄ðlnMÞ: ðA1Þ

In order to fix global mass conservation, we add an
effective term to the mass function at the cutoff,

n̄ðMÞ → n̄ðMÞ þ n̄sδDðlnM − lnMsÞ; ðA2Þ

where n̄s is determined by requiring

Z
lnMs

d lnM
M
ρ̄
n̄ðlnMÞ þMs

ρ̄
n̄s ¼ 1: ðA3Þ

Similarly, in order to ensure the consistency condition for
b1 [Eq. (13)], we let

b1ðMÞ ¼
�
b1ðMÞ M > Ms

b1s M ¼ Ms;
ðA4Þ

and require

Z
lnMs

d lnM
M
ρ̄
n̄ðMÞb1ðMÞ þMs

ρ̄
n̄sb1s ¼ 1: ðA5Þ

Corresponding conditions are to be placed on the other
biases bOðMÞ. For simplicity, we restrict ourselves to the
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matter statistics in the linear version of EHM here.
The deterministic contributions to P1mðkÞ and PmmðkÞ
involve the following integral:

Z
dρðMÞb1ðMÞyðk;MÞ

→
Z
lnMs

d lnM
M
ρ̄
n̄ðMÞb1ðMÞyðk;MÞþMs

ρ̄
n̄sb1syðk;MsÞ

¼kRMs≪1
1−k2

�Z
lnMs

d lnM
M
ρ̄
n̄ðMÞb1ðMÞaMR2

M

þMs

ρ̄
n̄sb1saMs

R2
Ms

�
; ðA6Þ

where in the last line we have used Eq. (A4) and the low-k
limit of the profile Eq. (9). Taking the derivative with
respect to lnMs of this expression, it is easy to verify that
this result is independent of Ms up to corrections of the
order of ðkRMs

Þ2.
We now consider the stochastic contribution. In order to

satisfy Eq. (13), we add an additional stochastic field ϵs
which only contributes to the stochasticity of halos of mass
Ms. We require ϵsðkÞ to satisfy, in the same sense as
Eq. (13),

Z
lnMs

d lnM
M
ρ̄
n̄ðMÞϵðM;kÞ þMs

ρ̄
n̄sϵsðkÞ ¼ OðR2

Ms
k2Þ:

ðA7Þ

Since ϵs is supposed to describe halos of mass ≤ Ms, we
require the scaling in terms of RMs

given on the rhs of
Eq. (A7). Taking the autocorrelation of this equation then
implies

��Z
lnMs

d lnM
M
ρ̄
n̄ðMÞϵðM;kÞ þMs

ρ̄
n̄sϵsðkÞ

�

×
�Z

lnMs

d lnM0 M
0

ρ̄
n̄ðM0ÞϵðM0;k0Þ þMs

ρ̄
n̄sϵsðk0Þ

�	0

∝ ðRMs
kÞ4: ðA8Þ

The stochastic contribution to PmmðkÞ,
Z

dρðMÞ
Z

dρðM0ÞPMM0
ϵ ðkÞyðk;MÞyðk;M0Þ; ðA9Þ

can then easily be shown, via Eqs. (9) and (A7), to scale as
k4 and depend on Ms only through terms of the order
of ðRMs

kÞ2.
We conclude that, for k < 1=RMs

whereMs is the lowest
mass for which halo properties are well calibrated, the halo
model predictions are under accurate theoretical control.

APPENDIX B: HALO TRIAXIALITY

Dark matter halos are triaxial, and the orientation of the
axes, as well as having a random component, correlates
with large-scale tidal fields sij. At linear order in the tidal
field, this coupling can generally be of the form, dictated by
symmetry,

yðr;M; τ; cÞjsij ¼
�
1þ fcsðr;M; τÞsij

rirj

r2

�
yðr;M; τ; cÞ;

ðB1Þ

where fcsðr;M; τÞ is a general function. Of course, in order
to retain the predictivity of the halo model, we would like to
reduce this to a number in analogy to the concentration
expansion introduced above. One possible choice would be
to assume that the tidal field distorts halos in a homologous
way,

yðr;M;τ;cÞjsij ¼ y

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2þbcsðM;τÞsijrirj
q

;M;τ;c
�
; ðB2Þ

which implies fcs ¼ bcsð∂ ln y=∂ ln rÞ=2. However, the inte-
gral over this quantity does not vanish, and thus violates the
constraint Eq. (5). Let us thus instead choose, for illus-
trative purposes,

yðr;M; τ; cÞjsij ¼ yðr;M; τ; cÞ

þ bcsðM; τÞsij
∂i∂j

∂2
ycðr;M; τ; cÞ; ðB3Þ

which satisfies Eq. (5). Note that for typical universal halo
profiles (such as NFW or Einasto) the functions yc and
∂y=∂ ln r are very similar. Equation (B3) is sufficient at
linear order, but can be extended to higher order in the same
way as Eq. (6), including all terms that have the same trace-
free symmetric structure. At quadratic order, this will
involve δsij, ski skj − δijðsklÞ2=3 and ϵtssij.
Now, when written in the form Eq. (B3), the terms from

bcs and higher order tidal coupling are all degenerate with
terms in the concentration bias expansion. This is because
higher derivatives are always contracted with the sij, i.e.
∂i∂jsij, ∂isik∂jsjk and so on, which brings them into the
form ∂2δ, ð∂iδÞ2, etc. However, what if we allow the tidal
coupling to have a different r dependence than the specific
form ð∂i∂j=∂2Þyc? At low k, the Fourier space version of
∂y=∂sij, when enforcing mass conservation, has to be
given by

∂y
∂sij ðk;MÞ ¼k→0

aR2
Mkikj þOðk4Þ; ðB4Þ

where a is a constant. Again, this will lead to the same term
at leading order as the concentration expansion.
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Finally, we should also take into account random
triaxiality of halos; this was the case studied by [34].
This can be achieved simply by replacing sij in the relations
above with a stochastic trace-free tensor field ϵtij. The
conclusions remain the same: these terms scale in a very
similar way as the stochastic terms in the concentration
expansion.
Thus, only by choosing a functional form for ∂y=∂sij

that is significantly different from the profile expansion
∂y=∂ ln c can the tidal coupling of halo triaxiality produce a
significant difference to the terms already included in the
concentration expansion. Moreover, this difference will
only appear at fairly high k. It thus seems likely that halo

triaxiality will be a subdominant component of the halo
model. The terms found by [34] in the halo model matter
bispectrum would thus be effectively captured, in our
formulation, by second and third moments of ϵc and ϵcδ
(as well as their cross-correlations with ϵδ and ϵ, respec-
tively). Note that we have not written these terms in
Sec. V.

APPENDIX C: HALO MODEL BISPECTRUM

Using the second-order bias expansion Eq. (46), and
neglecting the concentration expansion, we obtain the
following result for the matter bispectrum in the halo model:

Bmmmðk1; k2; k3Þ ¼
Z

dρðM1Þ
Z

dρðM2Þ
Z

dρðM3Þyðk1;M1Þyðk2;M2Þyðk3;M3Þ

×

�
b1ðM1Þb1ðM2Þb1ðM3ÞBTðk1; k2; k3Þ þ b2ðM1Þb1ðM2Þb1ðM3ÞPLðk2ÞPLðk3Þ þ 2 perm

þ bs2ðM1Þb1ðM2Þb1ðM3Þ
�
ðk̂2 · k̂3Þ2 −

1

3

�
PLðk2ÞPLðk3Þ þ 2 perm

þ Bϵ
M1M2M3

ðk1; k2; k3Þ þ ½PLðk2ÞPϵδϵ
M1M3

ðk3Þ þ PLðk3ÞPϵδϵ
M1M2

ðk2Þ� þ 2 perm

�
; ðC1Þ

where the tree-level matter bispectrum is given by

BTðk1; k2; k3Þ ¼ 2F2ðk1;k2ÞPLðk1ÞPLðk2Þ þ 2 perm; ðC2Þ

and the stochastic terms are defined in Eq. (48).
One possible form of Bϵϵϵ that satisfies Eq. (13) in the low-k limit, i.e.

Z
dρðM1ÞBϵϵϵ

M1M2M3
ðk1; k2; k3Þ ¼k1→0

0; ðC3Þ

can be constructed as follows:

Bϵ
M1M2M3

ðk1; k2; k3Þ ¼
δDðlnM1 − lnM2ÞδDðlnM1 − lnM3Þ

½n̄ðM1Þ�2

þ ΘM1M2M3
ðkÞ

�
−
M1M2

ρ̄hMiρ
δDðlnM2 − lnM3Þ

n̄ðM2Þ
þ M1

ρ̄2hMi2ρ

�
M1 −

1

3

hM2iρ
hMiρ

�
M2M3

þ 2 cyclic perm

�
. ðC4Þ

Here, we have defined hM2iρ ≡
R
dρðMÞM2, and generalized Eq. (34) to

ΘM1M2M3
ðkÞ ¼ ½1þ ðk½RM1

þ RM2
þ RM3

�Þ4�−1: ðC5Þ
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