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The energy scale of dark energy, ∼2 × 10−3 eV, is a long way off compared to all known fundamental
scales—except for the neutrino masses. If dark energy is dynamical and couples to neutrinos, this is no
longer a coincidence. The time at which dark energy starts to behave as an effective cosmological constant
can be linked to the time at which the cosmic neutrinos become nonrelativistic. This naturally places the
onset of the Universe’s accelerated expansion in recent cosmic history, addressing the why-now problem of
dark energy. We show that these mechanisms indeed work in the growing neutrino quintessence model—
even if the fully nonlinear structure formation and backreaction are taken into account, which were
previously suspected of spoiling the cosmological evolution. The attractive force between neutrinos arising
from their coupling to dark energy grows as large as 106 times the gravitational strength. This induces very
rapid dynamics of neutrino fluctuations which are nonlinear at redshift z ≈ 2. Nevertheless, a nonlinear
stabilization phenomenon ensures only mildly nonlinear oscillating neutrino overdensities with a large-
scale gravitational potential substantially smaller than that of cold dark matter perturbations. Depending on
model parameters, the signals of large-scale neutrino lumps may render the cosmic neutrino background
observable.
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I. INTRODUCTION

The cosmological constant Λ has emerged as the standard
explanation for the observed accelerated expansion of the
Universe [1,2]. Together with the assumption of cold dark
matter (CDM), it forms the remarkably successful concord-
ance model ΛCDM [3]. The proposed alternatives to the
cosmological constant are already many—more complicated
and often a worse fit to observational data [4]. A new model
should only be added to this list if it provides theoretical
advantages or phenomenological aspects that neither the
cosmological constant nor its most prominent competitors
can offer. Growing neutrino quintessence (GNQ) was
proposed in this spirit [5,6]. It addresses both the cosmo-
logical constant problem (why is the energy density of dark
energy so small?) and the why-now problem (why has dark
energy just started to dominate the energy budget of the
Universe?) [7,8]. On the phenomenological side, it predicts a
time-varying neutrino mass and the formation of large-scale
neutrino overdensities that might be detectable by their
gravitational potentials [9].

As a quintessence model [10,11], GNQ describes the
dark energy by a dynamical scalar field, the cosmon φ.
Analogous to the inflaton in inflationary theories of the
early Universe, the cosmon can describe an accelerated
expansion of the Universe at late times. The similarity of
the mechanism even allows for a unified picture in which
the same field is responsible for both the early and the late
accelerating epochs [12,13]. Quintessence models address
the cosmological constant problem: the energy density of
dark energy decays, during most of the cosmological
evolution, just like that of radiation and matter. Its small
size today is then simply a consequence of the large age of
the Universe.
In contrast to the simplest quintessence models, GNQ

includes a mechanism for a natural crossover to the
accelerated phase. No fine-tuning of the self-interaction
potential is needed. Instead, a coupling between the
cosmon and the neutrinos affects the dynamics of dark
energy. The event of the cosmic neutrinos becoming
nonrelativistic—which, due to their small masses, happens
in relatively recent cosmic history—triggers the onset of
dark energy domination. The present dark energy density is
correlated to the present value of the neutrino mass [5].*ayaita@thphys.uni‑heidelberg.de
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Within a quantum gravity setting the change in the ratio
between neutrino masses and the electron mass may be
associated to a crossover between two fixed points [14].
A substantial effect of neutrinos on the overall cosmic

evolution requires a coupling between the cosmon and the
neutrinos, which is substantially larger (say a factor 102)
than the gravitational coupling. A cosmon coupling to
neutrinos, rather than to electrons or nucleons can have
a natural explanation in a particle physics setting [6].
Such a coupling has, however, a decisive impact on the
evolution of perturbations in the neutrino density. The
perturbations become nonlinear even on very large scales
[9]. Furthermore, the expansion history can be affected by a
nonlinear backreaction effect [15]. These technical com-
plications motivated a comprehensive simulation technique
[16]. The technique has by now matured and allows us to
obtain full cosmological evolutions of the model. In the
technically simpler case of a constant coupling parameter,
its preliminary results already inspired a consistent physical
picture and an approximation scheme for the nonlinear
evolution [17]. In this work, wewill turn to the more natural
yet technically challenging case of a field-dependent
coupling. Again, a coherent (though fundamentally differ-
ent) physical picture of the cosmological evolution will
emerge. Our results for the first time show the full
cosmological evolution of GNQ until redshift zero.
A relation between dark energy (in the form of a scalar

field) and the neutrino masses has earlier been studied in
models of “mass-varying neutrinos” (MaVaNs) [18]. These
models share certain features with GNQ, in particular the
instability problem of neutrino perturbations [19–21]. The
cosmon-neutrino coupling, once strong enough, can lead to
the formation of large nonlinear neutrino lumps. These
lumps would, as a backreaction effect, influence the
expansion dynamics of the Universe. They could even
prevent the Universe from entering a phase of accelerated
expansion. For GNQ, the strong backreaction effect of
stable neutrino lumps on the expansion dynamics has been
shown in a simulation [16]. Our results, however, provide a
counterexample in which—in spite of the instability of
perturbations—the backreaction effect remains small and
the expansion dynamics is affected only marginally. We
anticipate this numerical result in Fig. 1. Although we will
encounter sizable backreaction effects in the interaction of
dark energy and neutrinos, the backreaction effect on the
combined cosmon-neutrino fluid is hardly visible. The
evolution of the energy density of this fluid is very similar
to that of a cosmological constant. The main distinction is
the presence of a small fraction of early dark energy.
This work is organized as follows. The next section

covers a brief overview of the fundamentals of the model
and the most important insights into its cosmological
evolution that preceded this work. Section III will explain
the main ideas of the simulation method. The numerical
results in Sec. IV are followed by a physical interpretation

in Sec. V sketching a coherent physical picture of the
evolution. The work concludes in Sec. VI.

II. GROWING NEUTRINO QUINTESSENCE

A. Basic concepts

In this section, we briefly collect and explain the main
ingredients that make up the GNQ model. In a nutshell,
these are the cosmon φ described as a scalar field with a
canonical kinetic term and a self-interaction potential VðφÞ
and the neutrinos whose masses are assumed to depend on
φ. The field dependence of the neutrino mass defines an
interaction between the cosmon and the neutrinos whose
coupling parameter β is a measure of how strong this field
dependence is.
Let us take the time to go through this in more detail. The

Lagrangian of the cosmon alone is of standard form

−Lφ ¼ 1

2
∂λφ∂λφþ VðφÞ: ð1Þ

Here and in the following, we use the metric signature
ð−;þ;þ;þÞ and units where the reduced Planck mass is
unity, implying 8πG ¼ 1. We assume an exponential
potential VðφÞ ∝ expð−αφÞ [22]. The details of the poten-
tial do not matter as long as it gives rise to suitable scaling
solutions ensuring—for a wide range of initial conditions—
that dark energy decays just as the dominant component
(radiation and later matter). In our case, the constraints on
early dark energy require α≳ 10 [23–25]. The scaling

FIG. 1. The transition to dark energy domination in nonlinear
growing neutrino cosmology. The figure shows the energy
fraction of the coupled cosmon-neutrino fluid as obtained in a
nonlinear simulation (red solid) and a purely homogeneous
computation (black dashed). The two lines almost coincide,
demonstrating the smallness of the “backreaction”. The individ-
ual components are the cosmon (gray dotted) and the neutrinos
(green dotted). The cosmological evolution of the dark energy
fraction is compared to a cosmological constant normalized to the
same present-day dark energy density (blue dot-dashed).
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solution should hold as long as neutrino masses play
no role.
The second ingredient is the dependence of the neutrino

masses on φ [6]. For simplicity, we only consider the average
neutrino mass mν instead of the full mass matrix Mν of the
three light neutrinos. A dependence mν ¼ mνðφÞ occurs if a
fundamental mass scale M in the mechanism of neutrino
mass generation depends on φ. For example, in the cascade
or induced triplet mechanism [26–29], the neutrino masses
are proportional to M−2

t where Mt denotes the mass of a
heavy SUð2ÞL triplet. IfMt depends on φ such that it reaches
a small value near φ ¼ φcrit, the average neutrino mass can
be approximated, in the range of interest, by the ansatz

mνðφÞ ¼
m̄

φcrit − φ
ð2Þ

with a parameter m̄ [6]. The formal pole at φcrit is never
reached by the cosmological solution and may be considered
as an artifact of the approximation. Also the behavior far
away from this pole is not important for our considerations
as, in this case, the cosmon-neutrino coupling is negligible.
We can thus employ the relation given by Eq. (2) for the full
cosmological evolution.
The cosmon-neutrino coupling β quantifies the strength

of the field dependence of mν. It is defined as

βðφÞ≡− d lnmνðφÞ
dφ

¼ − 1

φcrit − φ
; ð3Þ

where, in the last step, we have used the explicit depend-
ence of Eq. (2). When φ approaches φcrit, the coupling
becomes strong and successfully stops the evolution of the
cosmon. However, other functional shapes for β are
possible as well. For instance, a technically simple choice
is a constant coupling β ¼ const implying an exponential
mass dependence mνðφÞ ∝ expð−βφÞ. A growing neutrino
mass requires a negative coupling parameter β < 0. We
assume that only neutrinos have a sizable coupling to the
cosmon. This is motivated in particle physics by a cross-
over in the flow of couplings within the beyond standard
model sector, which first manifests itself in the neutrino
sector through the dependence of neutrino masses on some
heavy scale [30].
The coupling between the cosmon and the neutrinos

manifests itself as an energy-momentum exchange between
the two components. This energy-momentum transfer is
proportional to the coupling parameter βðφÞ and reads

∇λT
μλ
ðφÞ ¼ þβðφÞTðνÞ∂μφ; ð4Þ

∇λT
μλ
ðνÞ ¼ −βðφÞTðνÞ∂μφ; ð5Þ

where TðνÞ ≡ Tλ
ðνÞλ ¼ −ρν þ 3pν denotes the trace of

the neutrino energy-momentum tensor. Quintessence

couplings of this simple type are discussed in early works
on coupled dark energy [31,32].
Inserting the cosmon’s energy-momentum tensor in

Eq. (4) yields the field equation

∇λ∇λφ − V;φðφÞ ¼ βðφÞTðνÞ: ð6Þ

It shows that the cosmon-neutrino coupling becomes only
effective once the right-hand side βTðνÞ is comparable to or
larger than the potential derivative V;φ. As long as the
neutrinos are relativistic with wν ≈ 1=3, the trace TðνÞ ¼
−ρνð1 − 3wνÞ and thereby the effect of the coupling is
negligible. In this sense, the neutrinos becoming non-
relativistic serves as a trigger event. On the other hand,
also βðφÞ grows towards large negative values as φ rolls
down its potential towards φcrit. This ensures that, even-
tually, the effect of the coupling cancels the effect of the
potential derivative. In that case, the evolution of the
cosmon is essentially stopped, and the dark energy approx-
imately acts as a cosmological constant with vacuum
energy VðφcritÞ. We will find that φ, and therefore the
neutrino masses, oscillate around a slowly increasing value.
For a neutrino particle on a classical path, the coupling

implies the equation of motion [16]

duμ

dτ
þ Γμ

αβu
αuβ ¼ βðφÞ∂μφþ βðφÞuλ∂λφuμ; ð7Þ

where uμ is the four-velocity and τ denotes the proper time.
The left-hand side is simply the motion under gravity,
whereas the right-hand side includes the effects of the
cosmon-neutrino coupling. For the (spatial) velocities uk,
the first term β∂kφ is similar to a potential gradient in
Newtonian gravity and can be interpreted as an attractive
force between the neutrinos. In the limit of small velocities,
it is about 2β2 stronger than gravity [33]. For relativistic
velocities, it becomes negligible as the other contributions
grow quadratically with components of the four-velocity
uμ. In this case, the coupling is only important in the second
term on the right-hand side, which, however, cannot change
the direction of motion of the particle. Thus, the cosmon-
mediated attraction of neutrinos is only effective in the
nonrelativistic case.
A second important ingredient is the replacement of the

Hubble damping by “cosmon acceleration.” Neglecting the
(spatial) gradients ∂kφ (and, similar, for the metric), Eq. (7)
becomes (u0 ¼ γ)

duk

dt
¼ ½βðφÞ _φ − 2H�uk; ð8Þ

dγ
dt

¼ ½βðφÞ _φ −H� γ
2 − 1

γ
: ð9Þ

(This is consistent with the defining relation
γ2 ¼ 1þ a2ukuk.) For an expanding universe, the positive
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sign of H induces a damping of all motions. We will find
that the contribution ∝ β _φ overwhelms the Hubble damp-
ing for important periods in the formation of nonlinear
neutrino structures. The acceleration of all neutrino
motions for _φ < 0will play a crucial role for the dissolution
of previously formed neutrino lumps.

B. Cosmon-neutrino structure formation for
constant coupling

Understanding structure formation in GNQ is not only
important to make contact with various observational
constraints such as from the cosmic microwave background
(CMB) or galaxy surveys. It even is a prerequisite for
obtaining reliable estimates of the expansion dynamics.
This is because, as we will review in this section, nonlinear
perturbations in the cosmon-neutrino fluid can lead to
strong backreaction effects. They alter cosmological aver-
ages of the neutrino mass and equation of state, which, in
turn, influences the evolution of dark energy at the back-
ground level. We explain this by briefly reviewing the main
steps undertaken by previous works that have shed light on
the issue [9,15–17,21,33–36]. These works focused on the
constant coupling model where β does not depend on φ. It
is technically simpler and may be regarded as a useful
approximation in the case where βðφÞ does not vary much
in late cosmology. Obtaining a realistic accelerated expan-
sion requires couplings of order β ∼ −102 if the potential is
exponential with α≳ 10.
The large value of the coupling implies a fast growth of

linear neutrino perturbations. The transition to the nonlinear
regime can be associated roughly with the moment at which
the dimensionless power spectrum Δ2

νðkÞ ¼ k3PνðkÞ=ð2π2Þ
reaches order unity. In contrast to the CDM case, this
transition occurs even on very large scales leading to a
breakdown of linear perturbation theory [9]. Let anlðkÞ
denote the cosmic scale factor at which Δ2

νðkÞ¼1 in linear
perturbation theory. Figure 2 shows the transition to non-
linearity (in the Newtonian gauge) for β ¼ −52, α ¼ 10, and
a relatively large present-day average neutrino mass m0

ν≈
2.3 eV. Although the details depend on the precise param-
eters chosen, the qualitative finding is generic and has its
origin in the instability of linear perturbations (cf. Sec. II A).
The first scales to enter the nonlinear regime are of

comoving size λ ∼ 100h−1 Mpc (cf. Fig. 2). The over-
densities at this scale evolve into massive neutrino lumps
that are stable for constant β. Although the picture will be
different for the varying (i.e. cosmon-dependent) coupling
βðφÞ investigated in this work, cf. Eq. (3), it is worthwhile
to discuss the main effects in the technically simpler setting
of a constant coupling β ∼ −102. They will reappear, albeit
in a weaker form, in the varying coupling model and play a
role in the physical interpretation of our results.
Two properties of the lumps were identified that imply a

backreaction effect altering the expansion dynamics [35].
They both lead to a suppression

jTðνÞj < jThom
ðνÞ j ð10Þ

of the actually averaged trace of the neutrino energy-
momentum tensor as compared to the trace obtained in a
purely homogeneous computation that neglects the non-
linear perturbations. It is, however, this trace TðνÞ that enters
the cosmon field equation, Eq. (6). The more severely the
trace is suppressed, the less effective is the coupling in
stopping the evolution of the cosmon.
First, during the lump formation, the neutrinos are

accelerated to higher velocities. This can lead, in particular
close to the lumps’ centers, to relativistic neutrino veloc-
ities. Those neutrinos no longer contribute to TðνÞ as the
energy-momentum tensor of relativistic particles is approx-
imately traceless. Second, similar to a gravitational poten-
tial well, the local cosmon perturbation δφ is negative in
lumps, leading to neutrino masses mνðφ̄þ δφÞ that are
smaller inside the lumps than expected for the cosmological
average field φ̄. As TðνÞ ∝ mν, this substantially weakens
the effect of the coupling as most neutrinos will be located
in lumps. The effect can be physically understood as an
approximate mass freezing within lumps—the nonlinear
lumps approximately decouple from the background; the
local value φl of the cosmon within the lumps no longer
follows the evolution of the homogeneous component φ̄
[35]. We illustrate this schematically in Fig. 3. In this
illustration, a stable lump is located at r ¼ 0; within some
time interval Δt, the cosmon evolves by Δφl within and by
Δφ̄ far outside the lump. The figure tells us that φl < φ̄ and
Δφl < Δφ̄. Stated differently, the background component
φ̄ feels a smaller neutrino mass mνðφÞ < mνðφ̄Þ, which, in
addition, depends more weakly on φ̄ [15]. This weaker
dependence can be expressed as a weaker effective
coupling

FIG. 2. Onset of nonlinearity for neutrino fluctuations. We
show the scale factor anl at which different scales enter the
nonlinear regime. Compare with the corresponding figure in
Ref. [9].
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βeff ≡− d lnmνðφÞ
dφ̄

; jβeff j < jβj: ð11Þ

It postpones the onset of the accelerated expansion [16].
For constant β, a clear physical picture and a resulting

approximation scheme have emerged that describe the
cosmological evolution after the formation of lumps
[17]. Despite relativistic neutrino velocities in the lumps’
cores, the total lumps—also including the local cosmon
perturbation—behave like nonrelativistic objects. This is
because the negative pressure contribution of the local
cosmon perturbation just cancels the positive neutrino
pressure. The mutual attraction between these cosmon-
neutrino lumps and the interaction between the nonrela-
tivistic cosmon-neutrino lump fluid and the background
cosmon φ̄ are governed by effective couplings weaker than
the fundamental coupling β.
In this work, we investigate a field-dependent β given by

Eq. (3). We will find that important features behave
qualitatively different since lumps turn out to be no longer
stable.

III. METHOD

A. An N-body approach

Usually,N-body simulations are employed to understand
the nonlinear small-scale dynamics of a cosmological
model whereas the evolution of the homogeneous back-
ground and of large-scale linear perturbations can be
obtained by simpler means. Not so in GNQ: The effects
of nonlinear perturbations have an impact on all scales
including the homogeneous background (cf. Sec. II B). As
a consequence, a nonlinear method is bitterly needed in
order to understand the cosmological dynamics of
the model.

The first step towards anN-body simulation of GNQwas
to incorporate the cosmon-mediated attraction between
neutrinos in the Newtonian limit [36]. In this setting, the
attractive force is analogous to gravity but stronger by a
factor 2β2. The simulation was capable of describing the
first stages of the nonlinear evolution in which large
neutrino lumps started to form. However, the simplifying
assumptions of the approach subsequently broke down.
First, the approach is only valid for nonrelativistic neutrino
velocities, but the neutrinos reached, due to the attractive
force, the relativistic regime. Second, the neutrino masses
were assumed to only depend on the background cosmon φ̄
rather than on the local cosmon value φ; this is a good
approximation as long as the local cosmon perturbations
are sufficiently small, i.e. mνðφÞ ≈mνðφ̄Þ. Inside neutrino
lumps, this no longer holds.
These issues were addressed by a comprehensive sim-

ulation method specifically designed for GNQ [16]. The
latter allows for relativistic neutrinos whose motion is
described by the full equation of motion, Eq. (7). The local
neutrino mass variations are included by actually solving
the nonlinear field equation for the local cosmon perturba-
tion δφ (cf. Sec. III B). The backreaction effects (explained
in Sec. II B) are accounted for by solving the equations for
the homogeneous background simultaneously with the
nonlinear perturbations.
Every neutrino particle p with four-velocity uμ, proper

time τ, and trajectory xμp gives rise to an energy-momentum
contribution

Tμν
ðpÞðxÞ ¼

1
ffiffiffiffiffiffi−gp

Z
dτmνðφðxpÞÞuμuνδ4ðx − xpÞ ð12Þ

with the determinant g of the metric and the Dirac delta
function. From this, not only the perturbations of the energy
density δρν and of the pressure δpν, the anisotropic shear
Σi

j, but also the background quantities ρ̄ν ¼ −T̄0
ðνÞ0 and

p̄ν ¼ T̄i
ðνÞi=3 can be calculated as sums over particle

contributions [16]. These are the actual cosmological
averages

T̄μν
ðνÞ ¼

R
V d

3x ffiffiffiffiffiffiffigð3Þ
p Tμν

ðνÞR
V d

3x ffiffiffiffiffiffiffigð3Þ
p ð13Þ

that appear in the background equations. Here, gð3Þ is the
determinant of the spatial metric, and V is the comoving
simulation volume. In this way, the background quantities
are directly linked to the perturbed quantities, thereby
including the backreaction effects.
The anisotropic shear Σi

j is no longer negligible once
the neutrinos reach relativistic velocities. Assuming the
Newtonian gauge

ds2 ¼ −ð1þ 2ΨÞdt2 þ a2ð1 − 2ΦÞdx2; ð14Þ

FIG. 3. The local value of the cosmon effectively decouples
from the background evolution leading to an approximate mass
freezing within lumps. We use arbitrary units in this schematic
plot, where the core of the potential well is typically of the size of
several megaparsecs and the depth of the potential well is of order
φ̄ − φð0Þ ∼ 10−2 [16].
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it implies a difference Ψ ≠ Φ between the two gravitational
potentials. This is accounted for by solving the well-known
Poisson equation for Φ −Ψ.
The simulation includes also CDM as nonrelativistic

particles accelerated by the Newtonian gravitational poten-
tial Ψ. In GNQ, also the neutrino perturbations contribute
to Ψ such that additional forces act on CDM particles
potentially increasing their peculiar velocities [37].
The N-body simulation is specified by a number of

physical and numerical parameters [16]. The most impor-
tant numerical parameters are the comoving box volume
V ¼ L3, the number Nν of neutrino and Nm of effective
CDM particles, the initial scale factor ai, and the resolution,
i.e. the number Nc of cells. A fixed, equilateral cubic lattice
is used. This is sufficient as cosmon-neutrino structures
form on relatively large scales. On this lattice, the gravi-
tational potentials Ψ, Φ, and the cosmon perturbation δφ
are calculated.
The initial conditions at ai are taken from linear pertur-

bation theory [9]. The evolution of CDM particles in the
N-body simulation starts even earlier than ai since non-
linearities in CDM perturbations occur at much smaller scale
factors than in the neutrino perturbations. The simulation is
governed by a global time parameter for which we use the
scale factor a. As the dynamical time scale of the cosmon-
neutrino interaction varies with the coupling β, it is adequate
to let the time steps depend on β, i.e. Δa ¼ ΔaðβÞ.

B. The cosmon field equation

A technical difficulty lies in nonlinearities in the field
equation for cosmon perturbations δφ. Whereas the per-
turbation δφ generally remains rather small, the steepness
of the mass functionmνðφÞ expressed by the large values of
β can invalidate the linear approximation

mνðφÞ ≈mνðφ̄Þ − βðφ̄Þmνðφ̄Þδφ: ð15Þ
This can arise for two reasons. First, if stable cosmon-
neutrino lumps form, the local neutrino mass within lumps
effectively freezes while the mass far outside the lumps
continues to grow (cf. Fig. 3). Second, for very large
coupling parameters, e.g. for φ close to φcrit in Eq. (3), the
linear approximation of the mass function can even break
down without a mass-freezing effect.
The nonlinear mass function enters the field equation for

δφ by virtue of the trace TðνÞ ∝ mνðφÞ. The equation for δφ
is obtained from the fundamental field equation for φ,
Eq. (6), which we split into a homogeneous and a
perturbative part. The homogeneous part reads

̈φ̄þ 3H _̄φþ V;φðφ̄Þ ¼ −βðφÞTðνÞ: ð16Þ

In the perturbative part, we neglect the time derivatives of
δφ and the nonlinearities in δφ except for the coupling
parameter and the mass function [16]:

1

a2
Δδφ − V;φφðφ̄Þ þ 2Ψð ̈φ̄þ 3H _̄φÞ ¼ δðβðφÞTðνÞÞ: ð17Þ

Here, the right-hand side is defined as the perturbation

δðβðφÞTðνÞÞ ¼ βðφÞTðνÞ − βðφÞTðνÞ ð18Þ

and can be highly nonlinear in δφ. The solution of Eq. (17)
by an iterative Fourier-based method broke down once the
nonlinearities became severe; for the constant coupling
model, this happened at a≳ 0.5 [16]. We have imple-
mented a Newton-Gauß-Seidel (NGS) multigrid relaxation
method recently developed for modified gravity [38] to
overcome these difficulties. Thereby, stable solutions of the
cosmological evolution can be obtained.
We write Eq. (17) schematically as

L½δφ�≡ Δδφ − F½δφ� ¼ 0 ð19Þ
with nonlinear functionals L and F. The NGS solver
applies an iterative prescription which, similar to
Newton’s method, is based upon finding the root of the
linearized functional in each iteration step. However, the
linearization is done at every lattice point x individually; no
functional derivative is performed. The main step of the
iteration is thus

δφðnþ1ÞðxÞ ¼ δφðnÞðxÞ − L½δφðnÞ�ðxÞ
∂L½δφ�=∂δφðxÞ ; ð20Þ

where the derivative in the denominator is just a usual
partial derivative with respect to the value δφðxÞ. The
coupling between neighboring cells is accounted for by the
iterative procedure. We split the derivative as follows:

∂L½δφ�
∂δφðxÞ ¼

∂ðΔδφðxÞÞ
∂δφðxÞ − ∂F½δφ�

∂δφðxÞ : ð21Þ

Approximating the Laplacian by a seven-point stencil gives
us −6=Δx2 for the first term on the right-hand side if Δx is
the comoving lattice spacing. In the second term, the
crucial δφ dependence comes from the product βmν,

∂½βðφÞmνðφÞ�
∂δφ ¼ β;φðφÞmνðφÞ − β2ðφÞmνðφÞ: ð22Þ

For the varying coupling model investigated in this work,
Eq. (3), the coupling βðφÞ and the mass function mνðφÞ
grow large for φ → φcrit. When the background cosmon φ̄
is very close to the barrier φcrit, the perturbation δφ has to be
calculated very accurately. A small numerical error might
lead to exceeding the barrier, φ̄þ δφ > φcrit, which gives
unphysical results. If this is an issue, a change of variables
is appropriate that automatically enforces the barrier
φ < φcrit. This is achieved by solving the field equation
for the variable uðxÞ defined by
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euðxÞ ≡ φcrit − φðxÞ: ð23Þ

Regardless of which values uðxÞ obtains in the NGS solver,
calculating back to δφðxÞ will give a value respecting the
barrier. The resulting term ΔeuðφðxÞÞ is represented by finite
differences as proposed by Ref. [39]. The NGS solver uses
multigrid acceleration and the so-called full approximation
scheme, which is suited for highly nonlinear problems. Full
details are given in Ref. [38].

IV. RESULTS

The generic finding of our simulations is a strong
oscillatory behavior of the neutrino perturbations—mildly
nonlinear neutrino overdensities continuously form and
dissolve. In contrast to the stable neutrino lumps in the
constant coupling model (cf. Sec. II B), these short-lived
overdensities never reach high density contrasts. So, neither
do they induce a large gravitational potential comparable to
that of cold dark matter nor do they decouple from the
evolution of the homogeneous background. The expansion
dynamics is only slightly affected, cf. Fig. 4. In particular,
the effective average cosmon-neutrino coupling differs only
mildly from the microscopic coupling β. A standard epoch
of accelerated expansion results from the effective stop of
the cosmon evolution.
The numerical method (cf. Sec. III), however, is not yet

sufficiently fast and robust to explore the parameter space
of the field-dependent coupling model, Eq. (3). A crucial
parameter is the normalization m̄ of the average neutrino
mass defined in Eq. (2). For large m̄, the cosmological
evolution becomes more similar to the constant coupling
case. The short-lived overdensities are more concentrated
and massive, and a reliable numerical treatment of the
violent oscillatory behavior in combination with these

concentrated lumps has not yet succeeded. For small m̄,
the neutrinos are lighter and accelerate to highly relativistic
velocities in the process of the formation and dissolution of
the short-lived overdensities. Our method is not yet capable
of accurately resolving the collective motion of neutrinos
very close to the speed of light.
The results presented at this stage are thus obtained for

an exemplary set of parameters. They will be followed by
more comprehensive studies once the numerical methods
are sufficiently refined. The neutrino mass parameter m̄ is
chosen as m̄ ¼ 0.5 × 10−3 eV corresponding to a present-
day neutrino mass mνðt0Þ ≈ 0.2 eV. In the exponential
potential of the cosmon, we choose α ¼ 10. The comoving
box of size V ¼ ð600h−1 MpcÞ3 is divided into Nc ¼ 1283

cells. The number of effective neutrino and matter particles
is chosen equal to the number of cells,Nν ¼ Nm ¼ Nc. The
simulation starts for matter at aini;m ¼ 0.02 and adds
neutrinos at aini;ν ¼ 0.15. The initial perturbations are
characterized by a nearly scale invariant spectrum,
ns ¼ 0.96, with scalar amplitude As ¼ 2.3 × 10−9 at the
pivot scale kpivot ¼ 0.05 Mpc−1.
The form of the coupling βðφÞ is not restricted to the one

in Eq. (3). As long as it is increasing steeply with the field,
we expect a cosmology similar to the one discussed in this
paper. In particular we expect oscillating neutrino pertur-
bations. The constant coupling model and the presented
field-dependent coupling model can be seen as two extreme
cases. Between these two cases we expect models with a
moderate field dependence of the coupling, in which the
lumps are more stable than in the varying coupling model,
but not as concentrated as in the constant coupling model.
Those models might still have a realistic overall cosmology,
but also interesting and observable deviations from a
ΛCDM-like cosmology.

A. Cosmic neutrinos

One cycle of disappearance and reappearance of mildly
nonlinear neutrino overdensities is shown in Fig. 5. Large-
scale neutrino lumps have formed at a ¼ 0.45. At the
intermediate scale factor a ¼ 0.475, however, the neutrino
distribution again is almost homogeneous. Shortly after-
wards, the overdensities appear again. Even in their centers,
neutrino lumps hardly reach density contrasts above order
10. The number of structures within the whole 600h−1 Mpc
simulation box is very small. The overdensities thus form
on a scale of roughly λ ∼ 100h−1 Mpc. This is similar to the
constant coupling model in which, however, the lumps
subsequently shrink to the size of several megaparsecs and
subhalos form [16]. In order to guarantee that the simu-
lation box is a representative cosmological volume and to
generally avoid box size effects, a larger simulation box
would be desirable. Due to the corresponding loss of
resolution or, if more cells are used, the increased numeri-
cal effort, this analysis is postponed to future work. Our

FIG. 4. The conformal Hubble parameter aH calculated using
the simulation (red solid line) compared to the homogenous
computation (black dashed line). The backreaction effects of the
neutrino lumps on the expansion history are small.
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preliminary tests indicate that our findings are robust with
respect to box size.
A period of overdensity formation is initiated by a low

neutrino equation of state wν ≈ 0. As discussed in the
context of the neutrino equation of motion, Eq. (7), the
bending of neutrino trajectories and therefore the formation
of neutrino overdensities is most effective in this case. The
effect is strengthened when the cosmon φ̄ has come close to
the critical value φcrit implying large neutrino masses by
Eq. (2) and according to Eq. (3) a strong coupling. During
the formation of lumps the coupling is enhanced compared
to other periods by a factor of about 62, where both the
mass and the coupling contribute the same factor. This adds
to the effect of vanishing pressure.
After the stage of neutrino lump formation, the cosmon

“bounces” against the barrier, and _̄φ switches sign becom-
ing negative. The cosmon acceleration ∝ β _φ − 2H in
Eq. (8) becomes then positive. Rather than as a damping,
it acts as an accelerant and leads to relativistic neutrino
velocities high enough such that the neutrinos fly out of the
lumps. Consequently, a period of lump formation is
followed by a period of lump dissolution. Subsequently,
_̄φ turns again positive due to the gradient of the cosmon
potential and a new period of lump formation begins.
These cycles of slowdown and speedup are visualized

in Fig. 6. None of these oscillatory features are visible in
a purely homogeneous calculation, which would predict a
neutrino equation of state very close to zero. It is the
proper treatment of nonlinear perturbations that uncovers
why the instability of neutrino perturbations is not
“catastrophic” [19]. The instability, only present for
nonrelativistic neutrinos and leading to the formation
of neutrino lumps, is counteracted by the neutrinos

turning relativistic again. This constitutes a nonlinear
stabilization mechanism.

B. Dark energy

The periods of nonrelativistic neutrino velocities wν ≈ 0
are essential for stopping the evolution of the cosmon and
ensuring a phase of accelerated expansion (cf. Sec. II A).
The periodically reached relativistic neutrino velocities
render the stopping mechanism slightly less effective as
they suppress the coupling term ∝ Tλ

ðνÞλ in Eq. (6). This is

visible in the evolution of the cosmon equation of state wφ,
cf. Fig. 7. The equation of state wφ approaches the
cosmological constant value wΛ ¼ −1 although the full
simulation taking the effect of periodically relativistic
neutrino velocities into account approaches this value a

FIG. 5. Forming and dissolving mildly nonlinear neutrino
overdensities. Simulation cells with a neutrino number density
contrast nν=n̄ν ≥ 5 are marked red.

FIG. 6. Evolution of the average equation of state wν of
neutrinos in the simulation (red solid line) as compared to a
purely homogeneous computation (black dashed line).

FIG. 7. Evolution of the equation of state wφ of dark energy in
the simulation (red solid line) and in a homogeneous computation
(black dashed line). The double peak structure reflects the
oscillation of φ in an effective potential.
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bit more slowly. Albeit clearly visible, this backreaction
effect does not significantly postpone the onset of the
accelerated expansion as seen in Fig. 1.
The oscillations in Fig. 7 show a simple pattern.

Repeatedly, wφ reaches the value −1. These are turning
points where _̄φ switches sign and thus encounters a zero
where wφ ¼ −1 holds exactly. Narrow and wide minima
alternate. The narrow minima occur when φ̄ bounces
against the steep barrier at φcrit. The wide minima are
related to the other turning point when φ̄ has climbed the
gently inclined scalar self-interaction potential Vðφ̄Þ. The
decay of the oscillation amplitude for growing a is a
consequence of the damping term 3H _̄φ in Eq. (16).
The evolution of the cosmon φ̄ is reflected in the

evolution of the coupling parameter βðφ̄Þ and the average
neutrino mass mνðφ̄Þ, cf. Fig. 8. They are both proportional
to the inverse of φcrit − φ̄ (which is the distance to the
barrier), Eqs. (3) and (2), and reach extrema at the turning
points of φ̄. As the cosmon perturbations δφ remain small,

it is justified to assume βðφÞ ≈ βðφ̄Þ and mνðφÞ ≈mνðφ̄Þ
for the averages; this is different from the constant coupling
case, cf. Sec. II B. Figure 8 tells us that the backreaction
effect is most pronounced at the cusps of the plots. The
coupling reaches values β ≈ −1.2 × 103, and the highest
average neutrino mass is mν ≈ 0.6 eV. At the opposite
point of the oscillation, the coupling parameter is around
β ≈ −2 × 102, and the mass is at mν ≈ 0.1 eV. As the
precise oscillatory pattern will sensitively depend on the
chosen model parameters, we conclude that the varying
coupling model will not predict a precise value for the
present-day neutrino mass but rather a range.

C. Neutrino lump gravitational potential

The only way for cosmological observations to detect the
large neutrino overdensities is via the effects of their
gravitational potentials. These gravitational potentials have
an impact on the evolution of CDM perturbations, in
particular on the peculiar velocity field [37]. More impor-
tant, they can leave direct observational traces on the
cosmic microwave background via the Integrated-Sachs-
Wolf effect. The quantitative results on these gravitational
potentials will thus ultimately decide whether the GNQ
model will prove viable in light of various observational
constraints. Although answering this question is beyond the
scope of this work as it requires an exploration of the
model’s parameter space, we show the results obtained for
the exemplary set of parameters employed here in Fig. 9.
The neutrino-induced gravitational potential Φν is sub-
dominant, by 2 orders of magnitude, compared to the CDM
potential Φm. More precisely, the figure shows the dimen-
sionless spectra ΦνðkÞ, ΦmðkÞ (cf. also Ref. [16]).
Between the different comoving scales, we observe a

phase shift. During the dissolution process, small scales
are washed out more rapidly than large scales. Inversely,
during the formation process, small-scale perturbations
build up faster.
Even though the neutrino-induced gravitational potential

is small at late time the neutrinos could have a more
substantial effect on the density perturbations over time.
For example such a cumulative effect happens for standard
massive neutrinos which suppress the growth of density
perturbations on small scales [40,41]. We do not expect an
effect of similar size in GNQ from the neutrino perturba-
tions. Before the neutrinos become nonrelativistic the only
difference to ΛCDM with relativistic neutrinos is the
presence of a dynamical early dark energy component
which suppresses the growth of matter perturbations
compared to ΛCDM. This is small for a large enough
parameter α in the cosmon potential. Neutrino perturba-
tions are only important at late times after neutrinos became
nonrelativistic. Since the formation of neutrino structures is
dominated by the cosmon-neutrino interaction, we can get
an estimate of the effect of neutrino perturbations on the
matter perturbations by running a simulation in which the

FIG. 8. Evolution of the coupling parameter βðφÞ and the
average neutrino mass mνðφÞ in the simulation (red solid line) as
compared to a purely homogeneous computation (black dashed
line). The nonlinear effects (backreaction) enhance the peaks and
lead to a small shift.
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neutrinos do not source the Poisson equation for the
gravitational potential. As the lower plot of Fig. 9 shows,
the effect of the neutrinos on the matter is on the
subpercent level.
We find that, for most of the cosmic history, the cosmon-

induced gravitational potential is one order of magnitude
smaller than the one induced by neutrinos. Only around
a ¼ 1 on large scales, it becomes comparable to the one
induced by neutrinos.

V. PHYSICAL PICTURE

A. Effective cosmon dynamics

Our aim is an analytic understanding of the time
evolution of the average cosmon field φ̄ in the presence
of inhomogeneous and possibly rapidly moving neutrinos.
For this purpose, we employ an effective potential Veffðφ̄Þ

which depends, in addition to φ̄, also on a characteristic
neutrino momentum p and the average neutrino density n̄ν.
Both p and n̄ν may depend on the scale factor a or other
cosmological quantities, but are assumed to show no
explicit dependence on φ̄. The time evolution of φ̄ will
then be governed by the equation of motion

̈φ̄þ 3H _̄φþ Veff;φ̄ðφ̄Þ ¼ 0: ð24Þ

The derivative Veff;φ̄ is composed of the self-interaction
part V;φ̄ and a contribution from the cosmon-neutrino
interaction given by the right-hand side of Eq. (16),

Veff;φ̄ðφ̄Þ ¼ V;φ̄ðφ̄Þ þ βTðνÞ: ð25Þ

For an estimate of the coupling term, we assume that it can
be written in the form

βTðνÞ ¼
∂m̄νðφ̄Þ
∂φ̄

n̄ν
γ̄
; ð26Þ

with m̄νðφ̄Þ the average neutrino mass and n̄νðaÞ ∝ a−3 the
(known) average neutrino number density. The exact
formula would be a sum over individual particle contribu-
tions, where the right-hand side for each particle is just as in
Eq. (26) if we replace γ̄ by the usual Lorentz factor γ
(cf. Ref. [16]). The effective Lorentz factor γ̄ is assumed to
depend on φ̄ only through m̄νðφ̄Þ. Then, dimensional
analysis implies that γ̄ is a function of the combination
p2=m̄2

νðφ̄Þ, where p is some appropriate characteristic
momentum for the neutrinos and p ¼

ffiffiffiffiffi
p2

p
. In principle,

the difference between the average of ∂mν=∂φ and
∂m̄ν=∂φ̄ is included in the factor γ̄. For the present scenario,
our numerical simulations show that these two quantities
are approximately equal since the neutrino density pertur-
bation sourcing the cosmon perturbation δφ never reaches
large values during the cosmic evolution.
The effective potential can now be defined as

Veffðφ̄Þ ¼ Vðφ̄Þ þ n̄νm̄νðφ̄Þγ̂; ð27Þ

with γ̂ related to γ̄ by

γ̂ þ ∂γ̂
∂ ln m̄ν

¼ 1

γ̄
: ð28Þ

Employing that γ̂ is a dimensionless function of p2=m̄2
ν,

Eq. (28) follows directly from Eq. (24) and the definition of
γ̄ by Eq. (26). For the case of a free particle with

γ̄2 ¼ 1þ p2

m̄2
νðφ̄Þ

; ð29Þ

one obtains γ̂ ¼ γ̄. For more general momentum distribu-
tions of neutrinos, the functions γ̄ðp2=m̄2

νÞ and γ̂ðp2=m̄2
νÞ

FIG. 9. Top: Comparison between the neutrino-induced gravi-
tational potential Φν and the total gravitational potential Φ during
the first oscillations at three large comoving scales. Bottom:
Comparison of the total gravitational potential obtained from a
simulation in which the Poisson equation is not sourced by the
neutrinos, with the one obtained from the full simulation. The
overall effect of the varying neutrino masses on the gravitational
potential remains on the subpercent level.
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may be somewhat more complicated, but the qualitative
relation remains similar.
We next need to understand the time evolution of the

characteristic neutrino momentum p. We distinguish for
each oscillation period two stages. The first stage is
characterized by the importance of inhomogeneities in the
cosmon field, occurring when φ̄ is close to the critical value
φcrit. There, the neutrino mass is close to its maximum, and
p2 ≪ m̄2

νðφ̄Þ such that γ̄ ≈ γ̂ ≈ 1. The spatial cosmon
gradients in the neutrino equation of motion, Eq. (7), lead
to the growth of p2 and to the formation of neutrino
overdensities. We identify a second stage when φ̄ is no
longer close to φcrit. Here, inhomogeneities in the cosmon
field are no longer decisive, and the overall dynamics is
dominated by cosmon acceleration. We will argue that, for
this second stage, p2 is (almost) conserved. The effective
potential Veffðφ̄Þ then only depends on the value of p2 that
has been reached during the first stage.
For a single particle in a homogeneous background, the

combination p=a is conserved due to translation symmetry.
In the absence of gravity (for constant a), this follows
directly from the neutrino equation of motion, Eq. (7), in
the case where spatial gradients of φ can be neglected,

duk

dt
¼ βðφ̄Þ _̄φuk: ð30Þ

This equation of motion conserves the relativistic momen-
tum p ¼ mνðφ̄Þu. Beyond small effects from the expanding
scale factor, any additional change of p has to arise from
inhomogeneities. These are small during the second stage.
We plot, in Fig. 10, the effective potential given by

Eq. (29), taking the parameters from the simulation around

the oscillation at a ≈ 0.5. The homogeneous computation
that we show as a comparison employs p ¼ 0. The cosmon
φ̄ oscillates around the minimum of the effective potential
according to the effective equation of motion, Eq. (24). The
asymmetry of the effective potential explains the double
peak structure discussed in Sec. IV B.
The identification of the characteristic neutrino momen-

tum p as the decisive parameter for the cosmon dynamics
opens the door to effective descriptions no longer relying
on a full cosmological simulation. For example, the
momentum buildup during overdensity formation might
be estimated in a suitable spherical collapse approach [42]
or even with an adaption of linear perturbation theory. A
detailed investigation of these routes is beyond the scope of
this paper and left for future work.

B. Effective neutrino dynamics

Within the structure formation cycle, we consider first
the period of approximate homogeneity for which the
cosmon acceleration has violently disrupted the previously
formed overdensities. During this period, the effects of the
mutual attraction of the neutrinos are suppressed due to
their relativistic velocities. The decisive conserved quantity
is the relativistic momentum p whose value is determined
by the preceding period of overdensity formation. Of
course, p shrinks due to the ordinary Hubble damping,
but this effect is small because it is linked to a much larger
time scale, 1=H, as compared to the dynamic time scale of
the cosmon-neutrino coupling, which is 1=jβ _̄φj. During this
approximately homogeneous phase, the neutrinos influence
the cosmon evolution via the effective potential Veffðφ̄;pÞ
according to Eq. (24). For large enough φcrit − φ̄, there will
be a turnaround with φ̄ increasing subsequently until a new
phase of lump formation sets in.
The cosmon and the neutrinos can exchange energy.

As a consequence the cosmon energy density is slightly
decreasing. This is compensated by a slightly increasing
neutrino energy density (cf. Fig. 1), so that the total
energy density of the cosmon-neutrino fluid is constant.
This effect can be taken into account by an increasing
effective potential. This increase happens on a time scale
of the order of 1=H and has only a small quantitative
influence.
We next discuss the phase of lump formation. During

this phase, the influence of neutrino inhomogeneities on the
effective potential Veffðφ̄;pÞ is small, and we may use the
homogeneous computation (p ¼ 0). Indeed, when φ̄ comes
close to φcrit (where overdensities form), the neutrinos
become nonrelativistic due to their rapidly growing masses,
and the homogeneous computation of Veff is fairly accu-
rate. In principle, the validity of the homogeneous compu-
tation could be spoiled by the type of backreaction effects
encountered in the constant coupling model, cf. Sec. II B,
where the local cosmon value effectively freezes and no
longer follows the homogeneous component. We do not

FIG. 10. Effective cosmon potential Veffðφ̄Þ for the nonlinear
(red solid) and the homogeneous case (black dashed). For
comparison, we also show the self-interaction potential Vðφ̄Þ
(gray dotted) without the effects of the cosmon-neutrino cou-
pling. Units of V are set by the normalization factor
Vð0Þ ¼ 1.06 × 10−7 Mpc−2.
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observe these effects, here, since the neutrino overdensities
never become large.
Taking things together, we end with a rather simple

qualitative understanding of the role of nonlinearities. The
evolution of the cosmon average field φ̄ is rather indepen-
dent of the details of the lump formation process. We only
need to understand the small increase of the characteristic
neutrino momentum p during each phase of lump for-
mation. On the other hand, for the stages of lump
formation, the cosmon field dynamics can be approximated
by neglecting the backreaction effects (e.g. p ¼ 0 in Veff ).
The details of the stages of lump dissolution are not

crucial because the overall picture there is just given by the
conservation of the momentum distribution fðpÞ. The latter
provides an explanation for some of the observations made
in Sec. IVA. Not only did the lumps periodically appear
and disappear—they occurred roughly in a similar shape as
in the preceding period. Furthermore, the periodic minima
in the neutrino equation of state wν, cf. Fig. 6, reach higher
values every time rather than always shrinking to wν ¼ 0.
This cannot be explained by the spatial distribution of the
neutrino density which is, to a very good approximation,
homogeneous after each dissolution phase. It is the con-
servation of the neutrino momentum distribution fðpÞ
during the dissolution process that tells us that the over-
density formation process does not start from a clean state.
When the overdensities are just to form again, the neutrino
velocities are already pointing to the—previous and next—
overdensities’ centers. The momentum buildup during
overdensity formation then adds up with the preceding
momentum. In each iteration, the momentum thus takes on
larger values, and the equation of state after overdensity
formation has increased compared to the last iteration.
Rather than describing the process of overdensity for-

mation in an adapted linear perturbation theory or spherical
collapse scheme, we content ourselves here with a brief
qualitative discussion explaining the main effects. This will
make plausible our finding that the neutrino-induced
gravitational potentials remain small compared to those
of CDM (cf. Fig. 9). A refined analysis will be the subject
of future work. The overdensities form when the cosmon
comes close to φcrit, the barrier in the effective potential
Veff . The spatial cosmon gradients become important
compared to the time derivative. The coupling parameter
β reaches order −103, cf. Fig. 8.
Although the resulting forces on the neutrinos are

2β2 ∼ 106 times stronger than gravity, several factors hinder
the formation of highly concentrated lumps. First, the
period of time during which the cosmon is close to φcrit
and the neutrinos are nonrelativistic is limited to roughly
Δa ∼ 10−2, cf. Figs. 6 and 7. The nonrelativistic neutrinos
are not fast enough to form overdensities beyond roughly
δν ∼ 10−2 as seen in the simulation. After the cosmon has
bounced against the barrier and _̄φ is negative, the cosmon
acceleration increases all neutrino velocities along their

respective directions of motion. At first, the overdensities
continue to grow as the neutrino velocities were on average,
during the nonrelativistic period, targeting towards the
centers of the forming overdensities. This explains why
the maxima of the neutrino-induced gravitational potential
occur at later times than the bouncing of φ̄ against the
barrier, cf. Fig. 9. However, during the cosmon acceler-
ation, the neutrino masses rapidly decrease. Consequently,
although the number overdensities grow, the effect on the
gravitational potential is only moderate. At its maxima, the
large-scale gravitational potential induced by neutrinos is
only at the percent level compared to the CDM potential.
For small scales, the neutrinos form even less over-

densities compared to δm. The relative importance of the
neutrino gravitational potential therefore decreases towards
smaller length scales.

VI. CONCLUSION

The growing neutrino quintessence model with a field-
dependent coupling βðφÞ shows violent nonlinear dynam-
ics of the coupled cosmon-neutrino fluid, and yet an overall
phenomenology similar to the standardΛCDM picture. The
accelerated expansion is almost the same as for ΛCDM
(cf. Fig. 1), while large-scale neutrino overdensities remain
small enough so that their induced gravitational potentials
are subdominant to those of cold dark matter. At the
fundamental level, however, the model is not anywhere
near ΛCDM. Rather than being a parameter, the present
dark energy density results from the stop of a scaling
solution by a cosmological trigger event, namely neutrinos
becoming nonrelativistic. In the process, the coupling
parameter between the neutrinos and dark energy dynami-
cally reaches order βðφÞ ∼ −103 (cf. Fig. 8), inducing an
attraction between neutrinos 106 times stronger than
gravity. This may serve as an example that a standard
overall phenomenology still leaves room for new physics,
without unnaturally small parameters.
The average neutrino mass mν is small in the early

Universe. For most of the cosmological evolution, the dark
energy scalar field rolls down steadily its potential towards
larger values, and the average neutrino mass grows with
time. In the recent epoch, however, the cosmon field value
oscillates and so do the neutrino masses. For the inves-
tigated parameters, mν oscillates between about 0.15 and
0.6 eV (cf. Fig. 8). Nonrelativistic neutrinos experience an
attractive force due to the coupling βðφÞ substantially
stronger than gravity. Furthermore, Hubble damping is
replaced by cosmon acceleration.
The violent nonlinear behavior of neutrino perturbations

manifests itself in the repeated rapid formation and dis-
solution of large-scale overdensities (cf. Fig. 5). Rather
than becoming nonrelativistic once and for all, the neu-
trinos are accelerated to relativistic velocities periodically
(cf. Fig. 6). This effectively stabilizes the evolution of
perturbations, and the “catastrophic” instability first
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discussed in the context of MaVaNs is avoided [19]. The
(short-lived) overdensities induce oscillating gravitational
potentials, whose relative strength compared to those of
cold dark matter remains at the percent level (cf. Fig. 9).
By virtue of the coupling between dark energy and the

neutrinos, the nonlinear dynamics of neutrino perturbations
exert a backreaction effect on the evolution of dark energy
at the background level. Relativistic neutrino velocities
reduce the strength of the effect of the coupling and thereby
weaken the dark energy stopping mechanism. Although the
backreaction is clearly visible quantitatively for the equa-
tions of state of individual components, it does not alter the
qualitative picture with a usual crossover to the accelerated
expansion epoch (cf. Fig. 7). For our parameter set, the
backreaction effect becomes negligible for the evolution of
the overall energy fraction for the coupled cosmon-neutrino
fluid which constitutes dark energy, see Fig. 1. This finding
is in contrast to the constant coupling model in which stable
neutrino lumps form and effectively decouple from the
homogeneous component. There, a much stronger back-
reaction effect substantially postpones the onset of the
accelerated expansion [16] and makes it difficult to find
realistic models [43].
We have obtained our numerical results from anN-body-

based simulation technique [16], specifically developed for
the growing neutrino quintessence model, together with a
Newton-Gauß-Seidel solver for the local dark energy
perturbations [38]. Our method (described in Sec. III)
has allowed us to show, for the first time, the nonlinear
evolution of the model until redshift zero. Earlier attempts
had to stop at z ≈ 1 and were restricted to the technically
simpler constant coupling model [16,36]. Still, the very
strong coupling parameters and the violent perturbation
evolution have so far prevented a scan of the model’s
parameter space for the field-dependent coupling model.
This, however, would be a decisive step towards a con-
frontation of the model with observational constraints.
Further efforts are required to render the numerical method
faster and more robust.
A complementary road consists in a semianalytical

approach allowing for a simplified yet reliable description
of the cosmological dynamics. In the constant coupling
model, this had inspired the physical picture of a cosmon-
neutrino lump fluid [17]. We have laid the ground here for
such an effective description of the field-dependent cou-
pling model, whose cornerstones we have explained in
Sec. V. In periods during which the cosmon evolves rapidly,
the neutrino momenta are approximately conserved.
This conservation has enabled us to define an effective

self-interaction potential for the scalar field VeffðφÞ
(cf. Fig. 10) that fully describes the evolution of the
homogeneous dark energy. For the neutrino component,
our findings motivate an adapted spherical collapse
approach that would allow us to estimate the momentum
buildup during the overdensity formation process. Such a
semianalytical approach will be shaped along with the
continuing work on the numerical simulation method.
Despite the important steps still to be done, the overall

picture for the confrontation of growing neutrino quintes-
sence with observations already takes a clear shape. For the
varying coupling βðφÞ and the parameter set chosen for the
present paper, the background evolution is essentially
indistinguishable from the ΛCDM model. (The small
fraction of early dark energy can be further reduced by a
larger value of the parameter α.) Also the gravitational
potential induced by the neutrino lumps seems too small for
an easy observational detection. Such models appear to be
compatible with present observations to the same degree as
ΛCDM. On the other side, the models with constant
coupling β may allow for parameters such that the present
dark energy can be adjusted to the observed value. In this
case, we expect much stronger neutrino-induced gravita-
tional potentials observable by the Integrated-Sachs-Wolf
effect or other tests. It is obvious that, for part of the
parameter space, growing neutrino quintessence deviates
substantially from observation and the ΛCDM model.
Large parameter regions lie between the two extremes.
They will allow for clear signals for future observations
without being inconsistent with present observations.
The cosmic neutrino background may finally become
observable.
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