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Eternal inflation is studied in the context of warm inflation. We focus on different tools to analyze
the effects of dissipation and the presence of a thermal radiation bath on the fluctuation-dominated regime,
for which the self-reproduction of Hubble regions can take place. The tools we explore are the threshold
inflaton field and threshold number of e-folds necessary to establish a self-reproduction regime and the
counting of Hubble regions, using generalized conditions for the occurrence of a fluctuation-dominated
regime. We obtain the functional dependence of these quantities on the dissipation and temperature. A
Sturm-Liouville analysis of the Fokker-Planck equation for the probability of having eternal inflation
and an analysis for the probability of having eternal points are performed. We have considered the
representative cases of inflation models with monomial potentials of the form of chaotic and hilltop ones.
Our results show that warm inflation tends to initially favor the onset of a self-reproduction regime for
smaller values of the dissipation. As the dissipation increases, it becomes harder than in cold inflation (i.e.,
in the absence of dissipation) to achieve a self-reproduction regime for both types of models analyzed. The
results are interpreted, and explicit analytical expressions are given whenever that is possible.
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I. INTRODUCTION

One of the most peculiar consequences of inflation is the
possibility of leading to a self-reproduction regime (SRR)
of inflating Hubble regions (H regions), a phenomenon that
became known as eternal inflation (for reviews, see, e.g.,
Refs. [1–3]). In eternal inflation the dynamics of the
Universe during the inflationary phase is considered in a
global perspective and refers to a semi-infinity (past finite,
future infinity) mechanism of self-reproduction of causally
disconnected H regions [4–7]. Looking at the spacetime
structure as a whole, the distribution of H regions resembles
much like that of a bubble foam. This scenario seems to
be a generic feature present in several models of inflation.
In recent years, eternal inflation attracted renewed attention
due to several factors. One of them is the seemingly
intrinsic connection between eternal inflation and extra
dimensions theories, like string theory, and its multitude of
possible solutions describing different false vacua, each one
yielding its own low-energy constants [1,8,9], leading to
what has been known by the “multiverse”, when combined
with eternal inflation.
Collisions between pocket universes could upset in some

level the homogeneity and isotropy of the bubble we live
in and, therefore, lead to some detectable signature in the
cosmic microwave background radiation (CMBR). This

has then led to different proposals to test eternal inflation
[10–15]. Eternal inflation has also been recently studied in
experiments involving analogue systems in condensed
matter. For example, in Ref. [16], an analogue model using
magnetic particles in a cobalt-based ferrofluid system has
been used to show that thermal fluctuations are capable
of generating 2þ 1-dimensional Minkowski-like regions
inside a larger metamaterial that plays the role of the
background of the multiverse. From the model building
point of view, a relatively recent trend is to look for new
models, or specific regimes in known models, where SRR
may be suppressed. If eternal inflation does not take place,
then its typical conceptual and predictive problems could
be avoided, thus allowing the return of a more simple
picture of universe evolution. For example, in Ref. [17], it is
discussed as an extension of a cold inflationary scenario
where some requirements are established such that a SRR
could be suppressed. In Ref. [18], the authors discuss the
possibility of preventing a SRR given a negative running of
the scalar spectral index on superhorizon scales, motivated
by earlier results from Planck [19] and by the BICEP2
experiment [20]. In a more recent work [21], it is discussed
how backreaction effects impact on the stochastic growth of
the inflaton field. The authors in Ref. [21] have concluded
that for a power law and Starobinsky inflation, the strength
of the backreaction is too weak to avoid eternal inflation,
while in cyclic Ekpyrotic scenarios, the SRR could be
prevented.
In this work, we want to study and then establish the

conditions for the presence of a SRR under the framework
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of the warm inflation picture [22]. In the standard infla-
tionary picture, usually known as cold inflation, it is
typically assumed that the couplings of the inflaton field
to other field degrees of freedom are negligible during
inflation, becoming only relevant later on in order to
produce a successful preheating/reheating phase, leading
to a thermal radiation bath when the decay products of the
inflaton field thermalize. In cold inflation, density fluctua-
tions are mostly sourced by quantum fluctuations of the
inflaton field [23]. On the other case, in the warm inflation
picture, it may happen that the couplings among the various
fields are sufficiently strong to effectively generate and
keep a quasiequilibrium thermal radiation bath throughout
the inflationary phase. In this situation, the inflationary
phase can be smoothly connected to the radiation domi-
nated epoch, without the need, a priori, of a separate
reheating period (for reviews, see, e.g., Refs. [24,25]). In
warm inflation, the primary source of density fluctuations
comes from thermal fluctuations, which originate in the
radiation bath and are transferred to the inflaton in the form
of adiabatic curvature perturbations [26,27].
We know from many recent studies [28–34] that dis-

sipation and stochastic noise effects are able to strongly
modify the inflationary dynamics. This in turn can lead to
very different predictions for observational quantities, like
for the tensor-to-scalar ratio, the spectral index, and non-
gaussianities, when compared to the cold inflation case.
Thus, it is natural to expect that those intrinsic dynamic
changes in warm inflation due to dissipation and the
presence of the thermal radiation bath can and should
potentially affect the predictions concerning eternal infla-
tion as well.
Warm inflation has been studied only from the “local”

perspective, where only the space-time region causally
accessible from one worldline is described. On the other
hand, the insertion of a warm inflation features in the
context of a “global” picture, where the eternal inflation
description becomes relevant, has been neglected so far.
The different predictions of cold and warm inflation
concerning the conditions for the establishment of a
SRR regime could result in one more tool to select the
most realistic model given appropriate observational con-
straints. The main question we aim to address in this paper
is how the presence of dissipation, stochastic noise, and a
thermal bath generated through dissipative effects during
warm inflation will affect the global structure of the
inflationary universe. For this, we develop a generalized
eternal inflation model of random walk type in the context
of warm inflation and use standard tools like the Sturm-
Liouville analysis (SLA) of the Fokker-Planck equation
associated with the random process and the analysis of
the presence of eternal points, which allow us to verify
the presence of a fluctuation-dominated range (FDR). In
addition, we introduce the analysis of the threshold value of
the inflaton field and the threshold number of e-folds for

the existence of a FDR and the counting of Hubble regions
produced during the global (warm) inflationary evolution
in order to assess how warm inflation modifies typical
measures of eternal inflation. In this work, we do not intend
to address the known conceptual and prediction issues
usually associated with eternal inflation (for a recent
discussion of these issues and for the different point of
views on these matters, see, e.g., Refs. [35–37]).
This paper is organized as follows. In Sec. II, we briefly

review the basics of random walk eternal inflation in the
cold inflation context. The different ways of characterizing
eternal inflation, and those that we will be using in this
work are also reviewed. In Sec. III, the ideas of warm and
eternal inflation are combined and a generalized model is
described. The relevant results are discussed in Sec. IV
and, finally, our concluding remarks are given in Sec. V. We
also include two appendixes where we give some of the
technical details used to derive our results and also to
explain the numerical analysis we have employed.

II. CHARACTERIZING ETERNAL INFLATION:
A BRIEF EXPOSITION

Eternal inflation refers to the property of the inflationary
regime having no end when we look at the spacetime
structure as a whole. This scenario is a generic feature
present in several inflation models, provided that certain
conditions are met, as we will discuss below.
Mathematically, the formulation that allow us to model
eternal inflation is mostly conveniently expressed in terms
of the Starobinsky stochastic inflation program, which
describes the backreaction of the short wavelength modes,
which get frozen at the horizon crossing, into the dynamics
of the long wavelength inflaton modes [38,39]. In this
context, the standard equation of motion for the inflaton
field φ can be written as a Langevin-like equation of the
form [38]

_φ ¼ fðφÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dð2ÞðφÞ

q
ζ; ð2:1Þ

where fðφÞ≡−V;φ=ð3HðφÞÞ and Dð2ÞðφÞ ¼ H3ðφÞ=ð8π2Þ
are, respectively, the drift and diffusion coefficients, and ζ
is a Gaussian noise term that accounts for the quantum
fluctuations of the inflaton field, whose correlation function
is given by hζðtÞζðt0Þi ¼ δðt − t0Þ. In de Sitter spacetime,
we can show that the inflaton fluctuations grow linearly as a
function of time [40–42],

hφ2ðtþ ΔtÞi − hφ2ðtÞi ∼ H3

4π2
Δt: ð2:2Þ

It is assumed that when subhorizon modes cross the
horizon (∼H−1), they become classical quantities in a
sufficiently small time interval. Consequently, the large-
scale dynamics for the inflaton can be seen as a random
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walk with a typical stepsize ∼H=ð2πÞ in a time interval
∼H−1. Defining φdðtÞ as the deterministic dynamics for the
inflaton field, we can distinguish between two typical
regimes: i) if _φdH−1 dominates over the fluctuations, the
slow-roll evolution of the inflaton field is essentially
deterministic; ii) in the opposite case, when the fluctuations
dominate over the _φdH−1 term, then the inflaton dynamics
can be treated as a random walk, and we have a FDR. In
the FDR, random fluctuations of the inflaton field may
advance or delay the onset of the reheating phase in
different regions, avoiding global reheating. Given a value
of φ that is nearly homogeneous in a region of the order of
magnitude of the horizon size (known as the Hubble
region or H region) and has a value that satisfies the FDR,
this H region will expand, generating seeds for new H
regions, and this process goes on indefinitely towards
future. In a sense, one can say that a requirement for the
presence of a SRR is that the inflationary dynamics goes
through a FDR.
The fluctuations of the inflaton field are represented in

Eq. (2.1) by the noise term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dð2ÞðφÞ

q
ζ, whereas the term

fðφÞ represents the deterministic evolution. Therefore, a
FDR occurs when the following condition is satisfied [2]:

jfðφÞj
H

≪

ffiffiffiffiffiffiffiffiffiffiffi
2Dð2Þ

H

s
: ð2:3Þ

More precisely, the time evolution of the inflaton field
is strongly nondeterministic while the diffusion term
dominates over the drift one. We call Eq. (2.3) the FDR
condition.
The FDR condition provides the values of the inflaton

field for which a FDR is set, serving as a sufficient tool to
look for the presence of eternal inflation. However, we will
see in the following sections that as we leave the cold
inflation context and generalize the FDR condition to warm
inflaton, it acquires a nontrivial dependence in the thermal
bath variables, and we need to introduce additional tools in
order to appreciate the presence of eternal inflation. For the
sake of comparison, we perform these approaches for both
cold and warm inflation.
In the following subsections, we introduce the SLA of

the Fokker-Planck equation and the analysis of the presence
of eternal points, which are generic for both cold and warm
inflation cases.

A. Fokker-Planck equation

Statistical properties of φ can be obtained through the
probability density function Pðφ; tÞdφ. This is a function
that describes the probability of finding the inflaton field
at a value φ at time t, where the values of φ are measured
in a worldline randomly chosen at constant x coordinates
in a single H region. Pðφ; tÞ is known as the comoving

probability distribution and satisfies the following Fokker-
Planck equation:

∂P
∂t ¼ ∂

∂φ
�
−Dð1ÞðφÞPþ ∂

∂φ ðDð2ÞðφÞPÞ
�
: ð2:4Þ

However, when one is interested in the global perspective,
one has to consider the volume weighted distribution,
PVðφ; tÞ, where the volume contains many H regions.
The expression PVðφ; tÞdφ is defined as the physical three-
dimensional volume

R ffiffiffiffiffiffi−gp
d3x of regions having the value

φ at time t. This distribution satisfies the equation

∂PV

∂t ¼ ∂
∂φ

�
−Dð1ÞðφÞPV þ ∂

∂φ ðDð2ÞðφÞPVÞ
�
þ 3HðφÞPV;

ð2:5Þ

where the fundamental difference in relation to Eq. (2.4)
is the presence of the 3HðφÞPV term, which describes
the exponential growth of a three-dimensional volume in
regions under inflationary expansion. We can also write a
Fokker-Planck equation for the distribution PVðφ; tÞ, nor-
malized to unity, PPðφ; tÞ≡ PVðφ; tÞ=hexp ð3

R
dtHÞi, but

it is sufficient for our analysis to work with PV .
To completely specify the probability distribution

function, one needs to assume certain boundary conditions.
Exit boundary conditions, ∂

∂φ ½Dð2ÞðφÞP�φ¼φc
¼ 0 and

∂
∂φ ½Dð2ÞðφÞPV �φ¼φc

¼ 0, and/or absorbing boundary con-
dition, PðφcÞ ¼ 0, are typically imposed at the end of
inflation (reheating boundary or surface), φc ¼ φf, and at
the beginning of inflation, φc ¼ φi, where φi and φf are,
respectively, the initial and final values for the inflaton
field. In our analysis, we will adopt the Itô ordering and the
proper-time parametrization (for discussions concerning
gauge dependence and factor ordering issues, see, for
example, Ref. [43]).
A general overdamped Langevin equation of the form

_φ ¼ fðφÞ þ g1ðφÞζ1ðtÞ þ g2ðφÞζ2ðtÞ; ð2:6Þ

with noises ζ1 and ζ2 satisfying

hζiðtÞi ¼ 0;

hζiðtÞζiðt0Þi ¼ δðt − t0Þ;
hζiðtÞζjðt0Þi ¼ θδðt − t0Þ; ð2:7Þ

possesses an associated Fokker-Planck equation (following
the Itô prescription) given by
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∂
∂t Pðφ; tÞ ¼ −

∂
∂φ ½Dð1ÞPðφ; tÞ� þ ∂2

∂φ2
½Dð2ÞPðφ; tÞ�

¼ −
∂
∂φ

�
Dð1ÞPðφ; tÞ − ∂

∂φ ½Dð2ÞPðφ; tÞ�
�
:

ð2:8Þ

The drift and diffusion coefficients are given, respectively,
by [44]

Dð1Þ ¼ fðφÞ;

Dð2Þ ¼ g1ðφÞ2
2

þ θg1ðφÞg2ðφÞ þ
g2ðφÞ2

2
: ð2:9Þ

B. Sturm-Liouville analysis

Looking at the Fokker-Planck equation, Eq. (2.8), we
can identify the following differential operator:

LFP ¼ −
∂
∂φDð1ÞðφÞ −Dð1ÞðφÞ ∂

∂φþ ∂2

∂φ2
Dð2Þ

þ ∂
∂φDð2Þ ∂

∂φþDð2Þ ∂2

∂φ2
; ð2:10Þ

which, in the light of Eq. (2.8), allow us to write the
differential equation

LFPPðφ; tÞ ¼ −
∂
∂φ Sðφ; tÞ; ð2:11Þ

where Sðφ; tÞ ¼ Dð1ÞPðφ; tÞ − ∂
∂φ ½Dð2ÞPðφ; tÞ� is called the

probability current.
We can write the general solution of the Fokker-Planck

equation, Eq. (2.11), as

Pðφ; tÞ ¼
X
n

CnPnðφÞeΛnt; ð2:12Þ

where Cn are constants and the sum is performed over all
eigenvalues Λn of the operator given by Eq. (2.10), which
in turn satisfies the following eigenvalue equation:

LFPPnðφÞ ¼ ΛnPnðφÞ: ð2:13Þ

It is easy to show that the operator LFP, Eq. (2.10), is not
Hermitian. By redefining variables such that [2,43],

φ →
Z

dσ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dð2ÞðσÞ

q
;

∂
∂φ →

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dð2ÞðφÞ

q ∂
∂σ ;

PnðφÞ →
1

Dð2ÞðσÞ3=4 exp

2
641
2

Z
dσ

Dð1ÞðσÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dð2ÞðσÞ

q
3
75ψnðσÞ;

ð2:14Þ

we can transform the original Fokker-Planck equation into
a Sturm-Liouville problem. The advantage of this trans-
formation rests in the fact that the Sturm-Liouville operator
is self-adjoint on the Hilbert space, and its eigenvalues λ,
LSLyλðxÞ ¼ λyλðxÞ, are real. Inserting the above trans-
formations in Eq. (2.13), we obtain a new eigenvalue
equation, which can be expressed as

∂2

∂σ2 ψnðσÞ − VSðσÞψnðσÞ ¼ ΛnψnðσÞ; ð2:15Þ

where the effective potential VS is defined in terms of the
drift Dð1ÞðσÞ and diffusion Dð2ÞðσÞ coefficients. For our
purpose, we write VS in terms of the old variable φ, which
gives

VSðφÞ ¼
3

16

ðDð2Þ
;φ Þ2

Dð2Þ −
Dð2Þ

;φφ

4
−
Dð2Þ

;φ Dð1Þ

2Dð2Þ þDð1Þ
;φ

2
þ ðDð1ÞÞ2

4Dð2Þ :

ð2:16Þ

One can interpret Eq. (2.15) formally as a time inde-
pendent Schrödinger equation describing a particle in a
potential VS with energy values −Λn. The same procedure
can be performed for the volume weighted distribution
PVðφ; tÞ equation, which is given by

½LFP þ 3H�PVn
ðφÞ ¼ Λ0

nPVn
ðφÞ; ð2:17Þ

which adds a −3H term to the effective poten-
tial, Eq. (2.16).
To analyze the Fokker-Planck equation, one can make

use of the Sturm-Liouville theory [2,43]. The Schrödinger-
like equation for the comoving probability distribution
Pðϕ; tÞ, Eq. (2.15), is a particular case of the general
Sturm-Liouville problem. Instead of considering Pðϕ; tÞ
for our analysis, it is more useful to consider the volume
weighted distribution PVðϕ; tÞ due to its physical relevance.
For each of these distributions, we can write the solution
Ψðx; tÞ ¼ P

nψnðxÞeΛnt, with energy values En ¼ −Λn.
For the distribution PVðϕ; tÞ, we can write PVðϕ; tÞ ¼P

nPVn
ðxÞeΛ0

nt. If Λ0
0 > 0 (E0

0 < 0), the physical volume of
the inflating regions grows with time, and eternal self-
reproduction is present. Taking the boundary conditions
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into account, the following expression can be written for
the zeroth eigenvalue [2,43]:

Λ0 ¼ −minψðσÞ

R
dσ½ðdψn

dσ Þ2 þ VSðσÞψ2
n�R

dσψ2
n

: ð2:18Þ

From Eq. (2.18), we can see that the only possibility
compatible with eternal self-reproduction is if there is at
least a range σ1 < σ < σ2, such that the effective potential
VSðσÞ is negative. Since the magnitude of the derivative
term in the numerator of Eq. (2.18) is not determined, the
SLA of the Fokker-Planck equation cannot ensure the
presence of eternal inflation. However, when we analyze
VSðσÞ together with the FDR condition, Eq. (2.3), a
conclusive SLA can be performed.
For the numerical analysis performed in Sec. IV, we

found that it is more convenient to analyze VSðσÞ in terms
of the inflaton amplitude φ, instead of σ. Since inflationary
dynamics is given in the variable φ, we use the functional
relation between φ and σ, given by the first expression in
Eq. (2.14), to write VS as a function of φ.

C. Eternal points analysis

Finally, a third tool typically used to study the presence
of eternal inflation is to look for the presence of eternal
points. Eternal points are comoving worldlines x that never
reach the reheating surface, i.e., are those points for which
inflation ends at t ¼ ∞. Therefore, if one is able to proof
the existence of eternal points, eternal inflation occurs. The
existence of eternal points can be addressed by solving a
nonlinear diffusion equation for the complementary prob-
ability of having eternal points [2]

Dð2ÞðφÞX̄00ðφÞ þDð1ÞðφÞX̄0ðφÞ þ 3HðφÞX̄ðφÞ ln X̄ðφÞ ¼ 0;

ð2:19Þ

where prime indicates a derivative with respect to φ∶0≡
d=dφ. X̄ is related to X by X ¼ 1 − X̄, where X is the
probability of having eternal points. Eternal points exist
when there is a nontrivial solution for XðφÞ. An approxi-
mate solution for Eq. (2.19) is obtained in the FDR
[neglecting the Dð1ÞX̄0 term] when using the ansatz

X̄ðφÞ ¼ e−WðφÞ; ð2:20Þ

where we have assumed W to be a small varying function,
W00 ≪ ðW0Þ2. In terms of WðφÞ, Eq. (2.19) takes the form

Dð2ÞðW0Þ2 − 3HW ¼ 0: ð2:21Þ

The solution to the above equation can be formally
expressed as

WðφÞ ¼ 1

4

�Z
φ

φth

ffiffiffiffiffiffiffiffiffi
3H

Dð2Þ

r
dφ

�2

; ð2:22Þ

where φth is the threshold amplitude value for the inflaton
field, obtained from Eq. (2.3) and represents the boundary
of the fluctuation-dominated range of φ where eternal
inflation ends.

III. GENERALIZING ETERNAL INFLATION
IN THE CONTEXT OF WARM

INFLATION DYNAMICS

In the first-principles approach to warm inflation, we
start by integrating over field degrees of freedom other than
the inflaton field. The resulting effective equation for the
inflaton field turns out to be a Langevin-like equation
with dissipative and stochastic noise terms. An archetypal
equation of motion for the inflaton field can be written
as [24,45]

Φ̈ðx; tÞ þ ½3H þϒ� _Φðx; tÞ − 1

a2
∇2Φðx; tÞ þ V;ΦðΦÞ

¼ ξTðx; tÞ; ð3:1Þ

where ϒ ¼ ϒðΦ; TÞ is the dissipation coefficient, whose
functional form depends on the specifics of the micro-
physical approach (see, e.g., Refs. [46,47] for details), and
ξTðx; tÞ is a thermal noise term coming from the explicit
derivation of Eq. (3.1) and that satisfies the fluctuation-
dissipation relation,

hξTðx;tÞξTðx0;t0Þi¼2ϒTa−3δð3Þðx−x0Þδðt− t0Þ: ð3:2Þ

Following the Starobinsky stochastic program, we per-
form a coarse graining of the quantum inflaton field Φ,
by decomposing it into short and long wavelength parts,
Φ< and Φ>, respectively,

Φðx; tÞ ¼ Φ<ðx; tÞ þ Φ>ðx; tÞ: ð3:3Þ

In order to define Φ<, a filter functionWðk; tÞ is introduced
such that it eliminates the long wavelength modes
(k < aH), resulting in

Φ<ðx; tÞ≡ ϕqðx; tÞ

¼
Z

d3k

ð2πÞ3=2 Wðk; tÞ½ϕkðtÞe−ik·xâk

þ ϕ�
kðtÞeik·xâ†k�; ð3:4Þ

where ϕkðtÞ are the field modes in momentum space, and
â†k and âk are the creation and annihilation operators,
respectively. The simplest filter function that is usually
assumed in the literature has the form of a Heaviside
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function, Wðk; tÞ ¼ Θðk − ϵaðtÞHÞ, where ϵ is a small
number.
Using the field decomposition defined in Eq. (3.3), we

obtain the following equation for the long wavelength
modes:

Φ̈>ðx; tÞ þ 3Hð1þQÞ _Φ>ðx; tÞ−
1

a2
∇2Φ>ðx; tÞ þV;ϕðΦ>Þ

¼ ξqðx; tÞ þ ξTðx; tÞ; ð3:5Þ

where the quantum noise is given by

ξqðx; tÞ ¼ −
� ∂2

∂t2 þ 3Hð1þQÞ ∂∂t −
1

a2
∇2

þ V;ϕϕðΦ>Þ
�
Φ<ðx; tÞ; ð3:6Þ

and Q ¼ ϒ=3H is the dissipative ratio. The two-point
correlation function satisfied by the quantum noise is given
in the Appendix A.
We are interested in a field that is nearly homogeneous

inside a H region, then we can consider the approximation
Φ>ðx; tÞ ≈ φðtÞ. In addition, we consider the slow-roll
approximation to obtain a Langevin-like equation of the
form of Eq. (2.6). From these requirements, Eq. (3.5) gives

_φ ¼ fðφÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dð2Þ

ðvacÞ

q
ζqðtÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dð2Þ

ðdissÞ

q
ζTðtÞ; ð3:7Þ

where hζiðtÞζiðt0Þi ¼ δðt − t0Þ for i ¼ q, T, for the quantum
and dissipative noises, respectively. In Eq. (3.7), the drift
term is given by

fðφÞ ¼ −
V;φðφÞ

3Hð1þQÞ ; ð3:8Þ

while the diffusion coefficients are given by (see
Appendix A, for details)

Dð2Þ
ðvacÞ ¼

H3

8π2
ð1þ 2n~kÞ; ð3:9Þ

Dð2Þ
ðdissÞ ¼

H2T
80π

Q
ð1þQÞ2 ; ð3:10Þ

where n~k is the statistical occupation number for the
inflaton field when in a thermal bath [31], which is
evaluated at the lower limit scale separating the quantum
and thermal fluctuations, chosen as ~k=a ≈ TH, where
TH ¼ H=ð2πÞ is the Gibbons-Hawking temperature.
Equation (3.7) is the warm inflationary analogous to the

Starobinsky cold inflation one, Eq. (2.1), now accounting
for the backreaction of both quantum and thermal noises
(see, e.g., Ref. [31], where these equations are explicitly
derived in the context of warm inflation for more details).

Equation (3.7) reduces to Eq. (2.1) in the cold inflation
limit, where Q → 0; T → 0; n~k → 0. Some other useful
limiting cases of Eq. (3.7) are: i) the weak warm inflation
(WWI) limit Q ≪ 1; T=H ≪ 1; ii) the weak dissipative
warm inflation (WDWI) limit Q≪1;T=H≫1; and iii) the
strong dissipative warm inflation (SDWI) limit Q ≫ 1;
T=H ≫ 1. For example, writing n~k ¼ 1=½expðTH=TÞ − 1�,
in the WDWI limit, we have that

_φ ≈ −
V;φðφÞ
3H

þH3=2

2π

ffiffiffiffiffiffiffiffiffiffi
2
T
TH

s
ζqðtÞ; ð3:11Þ

while in the SDWI limit, we obtain that

_φ ≈ −
V;φðφÞ
3HQ

þH3=2

2π

ffiffiffiffiffiffiffiffiffiffi
2
T
TH

s
ζqðtÞ: ð3:12Þ

From Eqs. (3.11) and (3.12), one notices that the drift
coefficient is attenuated due to the presence of dissipation,
whereas dissipation plays no significant role for diffusion
in both Q ≪ 1 and Q ≫ 1 limits. The opposite situation
happens when accounting for the effect of the temperature,
which always tends to enhance the diffusion coefficient in
warm inflation, while its effects on the drift term is only
manifest through the dependence of the dissipation coef-
ficient on the temperature.
The homogeneous background inflaton field is defined

as the coarse-grained field integrated in a H-region volume:
ϕðtÞ ¼ ð1=VHÞ

R
d3xΦðx; tÞ, where VH ¼ 4π

3H3. The back-
ground equation of motion for ϕðtÞ becomes

ϕ̈ðtÞ þ 3Hð1þQÞ _ϕðtÞ þ V;ϕ ¼ 0: ð3:13Þ

The radiation energy density produced during warm
inflation is described by the evolution equation

_ρR þ 4HρR ¼ ϒ _ϕ2; ð3:14Þ

where ρR ¼ CRT4, CR ¼ π2g�=30 and g� is the effective
number of light degrees of freedom.1 In the slow-roll
regime, Eqs. (3.13) and (3.14) can be approximated to

3Hð1þQÞ _ϕ≃ −V;ϕ; ð3:15Þ

ρR ≃ 3

4
Q _ϕ2; ð3:16Þ

while the slow-roll conditions in the warm inflation case are
given by

1In all of our numerical results, we will assume for g� the
Minimal Supersymmetric Standard Model value g� ≈ 228.75 as a
representative value. In any case, our results are only weakly
dependent on the precise value of g�.
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ε ¼ 1

16πG

�
V;φ

V

�
2

< 1þQ; ð3:17Þ

η ¼ 1

8πG

V;φφ

V
< 1þQ; ð3:18Þ

β ¼ 1

8πG

ϒ;φV;φ

ϒV
< 1þQ; ð3:19Þ

where G ¼ 1=ð8πM2
p) is the Newtonian gravitational con-

stant and Mp ¼ mp=
ffiffiffiffiffiffi
8π

p
is the reduced Planck mass.

In this work, we will be using in our analysis monomial
forms for the inflaton, which are the chaoticlike and hill-
toplike potentials. The chaoticlike potentials are defined as

VðφÞ ¼ V0

�
φ

Mp

�
2n
; ð3:20Þ

where n is a positive integer. The other class of potentials are
the hilltop ones [48], with potential defined as

VðφÞ ¼ V0

�
1 −

jγj
2n

�
φ

Mp

�
2n
�
: ð3:21Þ

In Eqs. (3.20) and (3.21), V0 ¼ λM4
p=ð2nÞ and γ is a free

parameter. Here, we will consider the cases for n ¼ 1
(quadratic), n ¼ 2 (quartic), and n ¼ 3 (sextic) chaotic
potentials, whereas for the hilltop potential, we will study
the cases for n ¼ 1 (quadratic) and n ¼ 2 (quartic), for some
values of the constant γ motivated by the recent Planck
analysis for these type of potentials [49]. Note that the hilltop
potential, Eq. (3.21), is usually written in the literature as
V ¼ Λ4ð1 − φp=μpÞ. Thus, we identify V0 ¼ Λ4, p ¼ 2n
and μ2n ¼ ð2n=jγjÞM2n

p for comparison. Note that chaotic
monomial potentials for the inflaton, in the cold inflation
picture, are highly (for the quartic and sextic cases) or
marginally (for the quadratic case) disfavored by the Planck
data. However, they are still in agreement with the Planck
data in the context of warm inflation (see, e.g., Ref. [31] and,
in particular, Ref. [32] for a detailed analysis for the case of
the quartic chaotic potential in warm inflation). This is why
we have included the potentials of the form of Eq. (3.20) in
our analysis. On the other hand, hilltop potentials are found
to be in agreement with the Planck data in both cold and
warm inflation pictures. Both chaotic and hilltop potentials
are also representative examples of large field (chaotic) and
small field (hilltop) models of inflation. We thus expect that
other forms of potentials that fall into those categories should
also have similar results to the ones we have obtained using
the above form of potentials.
For the dissipation coefficientϒ appearing in the inflaton

effective equation of motion, we will consider the micro-
scopically motivated form, that is a function of the temper-
ature and the inflaton amplitude, given by [24,46,47]

ϒ ¼ Cφ
T3

φ2
; ð3:22Þ

where Cφ is a dimensionless dissipation parameter that
depends on the specifics of the interactions in warm
inflation. The dissipation coefficient Eq. (3.22) is obtained
in the so-called low temperature regime for warm inflation.
For example, this form of dissipation can be derived for
the case of a supersymmetric model for the inflaton and
the interactions, whose superpotential is of the form,
W ¼ gΦX2=2þ hXY2

i =2, with chiral superfields Φ, X,
and Yi, i ¼ 1;…; NY . In the regime where the X fields
have masses larger than the temperature and Yi are light
fields, mY ≪ T, we have that [47]: Cφ ≃ 0.02h2NY .
It is worth to call attention to the fact that depending on

the chosen initial conditions for φ and Q, inflation can
begin in some dissipative regime and end in another one. In
chaotic inflation, Q is a quantity that always increases with
time. If one starts at the WWI or WDWI regimes, it is
possible to occur a dynamical transition to the SDWI
regime as the dynamics proceeds. For example, if the
system starts in the WDWI regime, there are two possibil-
ities: the system remains in the WDWI regime until the end
of inflation, or it enters in the SDWI regime before its end.
Therefore, if these dissipative dynamical transitions occur,
the only natural direction is WWI → WDWI → SDWI. On
the other hand, in the case of hilltop inflation, it can happen
that Q decreases with time. Thus, transitions between
regimes can occur in the opposite direction to that in the
case of chaotic inflation: SDWI → WDWI → WWI.
In warm inflation, dissipation and temperature effects

can enhance or suppress eternal inflation depending on the
regime we are analyzing. On one hand, we expect that
thermal fluctuations, similar to the role played by quantum
fluctuations in cold inflation, should enhance eternal
inflation. But dissipation can act in the opposite direction,
by damping the fluctuations and regulating the rate at
which energy from the inflaton field is transferred to the
radiation bath, acting as a suppressor of eternal inflation. In
our numerical results, we will see the nontrivial effects from
these two opposite quantities, which can be expressed in
terms of the dissipation ratio Q ¼ ϒ=ð3HÞ and the temper-
ature ratio T=H. For convenience, these quantities are
expressed in terms of their values at a horizon crossing,
since this is the point we can make contact with observa-
tional constraints. For instance, the primordial power
spectrum at a horizon crossing can be written as [31,32]

ΔðtotÞ
R ¼ ΔðvacÞ

T þ ΔðdissÞ

¼
�
H�
_ϕ

�
2
�
H�
2π

�
2
�
1þ 2n� þ

�
T�
H�

�
2

ffiffiffi
3

p
πQ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3þ 4πQ�
p

�
;

ð3:23Þ
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where ΔðvacÞ
T ¼ ΔðvacÞð1þ 2n�Þ is the vacuum power spec-

trum of cold inflation ΔðvacÞ with the enhancement due to a
nonvanishing statistical distribution for the inflaton field in
the thermal bath, n� ≡ nk� . The term ΔðdissÞ is the con-
tribution to the power spectrum due to dissipation. All
quantities in Eq. (3.23) are evaluated at the scale of a
horizon crossing, with k� ¼ a�H�. We will assume that
the distribution function nk� for the inflaton is that of
thermal equilibrium and, thus, is given by the Bose-
Einstein distribution form, nk� ¼ 1=½expðH�=T�Þ − 1�.
This assumption obviously depends on the details of the
microphysics involved during warm inflation. Some physi-
cally well motivated interactions of the inflaton field with
other degrees of freedom during warm inflation, that are
able to bring the inflaton to thermal equilibrium with the
radiation bath, have been discussed in Refs. [32,47]. In this
work, we will not consider further these possible details
involving model building in warm inflation, but we will
consider both possibilities, of an inflaton in thermal
equilibrium, thus with a Bose-Einstein distribution form,
and also the case where the inflaton might not be in thermal
equilibrium with the radiation bath, in which case, it
might have a negligible statistical distribution nk ≈ 0.
Note that in the limit ðQ�; T�; n�Þ → 0, one recovers the
standard cold inflation primordial spectrum as expected,
ΔR ¼ H4=ð4π2 _ϕ2Þ.
Recently [33], it was also shown that by accounting for

noise effects in the radiation bath in the perturbation
expressions, there can be an additional enhancement of
the spectrum in the dissipation term in Eq. (3.23) by a factor
of Oð40Þ, giving

ΔðdissÞ → ΔðdissÞ
RN ≈

�
H�
_ϕ

�
2
�
H�
2π

�
2 T�
H�

80
ffiffiffi
3

p
πQ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3þ 4πQ�
p :

ð3:24Þ

For the numerical analysis shown in the next section, we
will consider the power spectrum given by Eq. (3.23), but
we also consider the correction (3.24) due to the possibility
of extra random terms in the full perturbation equations.
This, together with the considerations on nk explained
above, will help us to better assess the effects that these
contributions have on the emergence of eternal inflation in
warm inflation.
The expression for the primordial spectrum given above,

Eq. (3.23), or with the correction given by Eq. (3.24) is a
good fit for the complete numerical result obtained from the
complete set of perturbation equations in warm inflation
[33] for small values of Q� ≲ 0.1. In our numerical studies,
we will restrict the analysis up to this value of dissipation
ratio, though it could be extended to larger values of Q� by
coupling the equations to those of the full perturbation
equations, but we refrain to do this given the numerical time
consuming involved. Besides, the analysis for Q� ≲ 0.1

will already suffice to make conclusions on the nontrivial
effects that dissipation, noise, and the thermal radiation
bath will have in the emergence of a SRR in warm inflation.
Given the primordial spectrum, the model parameters,

including those for the inflaton potentials we consider in
this work, Eqs. (3.20) and (3.21), are then constrained such
that they satisfy the amplitude of scalar perturbations,
ΔR ≃ 2.25 × 10−9, in accordance to the recent data from
Planck [49].
Note that from the evolution equations, Eqs. (3.13) and

(3.14), with ϒ defined by Eq. (3.22), and the constraint on
the inflaton potential given by the normalization on the
amplitude of the primordial spectrum, one obtains a func-
tional relation between Q� and T�=H�. In Fig. 1, we plot
the functional relation between T�=H� and Q�. In this
figure, we also consider the cases where the particle
distribution is given by nk ¼ 0 and where radiation noise
contribution to the power spectrum is taken into account,
for future reference. It is important to highlight that the
curves T�=H� ×Q� are approximately potential indepen-
dent, and they are also only mildly dependent on g�. Thus,
Fig. 1 also represents the functional relation for the hilltop
potentials used in the analysis done in the next section.
Given the relation between T�=H� andQ�, we are free to

choose one of these variables when presenting our analysis.
We choose Q�, since it is the most transparent one, and for
the corresponding values of T�=H� for each value of Q� in
the analysis, the reader is referred to consult the results of
Fig. 1. Thus, the effects of Q and T on the establishment
of a SRR can be adequately addressed and contrasted with
the cold inflation case. Further details about the way we
perform the numerical analysis are also explained in
Appendix B.
In the particular case of Eq. (3.7), we consider the

thermal and quantum noises as uncorrelated ones, since

10
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FIG. 1. T�=H� as a function of Q�. The results are shown for
two particular choices of the particle distribution, nk ¼ 0 and for
nk ¼ nBE, and by also accounting for the effects of the radiation
noise correction in the power spectrum, Eq. (3.24) and in the
absence of these effects, Eq. (3.23).
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they have distinct origins (see, e.g., Ref. [31]). This
corresponds to assume that the noises in Eq. (2.6) are
uncorrelated, i.e., θ ¼ 0. Then, comparing the Langevin
equations given by Eq. (2.6) with Eq. (3.7) and the
coefficients given by Eq. (2.9) with Eqs. (3.8) and (3.9),
the drift and diffusion Fokker-Planck coefficients are,
respectively, given as follows:

Dð1Þ ¼ −
V;φðφÞ

3Hð1þQÞ ; ð3:25Þ

Dð2Þ ¼ H3

8π2

�
1þ 2n~k þ

�
T
H

�
πQ

10ð1þQÞ2
�
: ð3:26Þ

Then, starting from Eq. (3.7), it is possible to derive a
Fokker-Planck equation that preserves the form of the
original model given by Eq. (2.4).

IV. RESULTS

To assess the effects of dissipation and thermal fluctua-
tions on the presence or absence of a SRR, we consider the
tools described in the previous section. Thus, we will be
making use of the effective potential VS, the counting of H
regions, the threshold inflaton field ϕth, and the threshold
number of e-folds Nth in terms of the dissipation ratio Q
and T=H. The analysis of VS and of the counting of H
regions produced in the SRR are presented in parallel as
complementary, as well as the analysis of φth and Nth.
For the whole analysis, we have used the FDR condition,

Eq. (2.3), to determine the regions of parameters for which
eternal inflation occurs. This condition is our main tool of
analysis, which will become more transparent represented
graphically by the aforementioned variables.
In warm inflation, the analysis of VS and the counting

of H regions are performed in the case where inflaton
particles rapidly thermalize and are given by a Bose-
Einstein distribution, nk ¼ nBE. The analysis of φth and
Nth, additionally consider the possibility where the inflaton
particle distribution is negligible, nk ¼ 0. It is also analyzed
the case where we consider the radiation noise (RN)
contribution to the power spectrum, represented by the
enhancement given in Eq. (3.24).
It is useful to write Eq. (3.7) and all related quantities in

terms of dimensionless variables. We introduce the follow-
ing set of transformations that we will be considering
throughout this work:

φ ¼ Mpx; V ¼ λM4
pv=ð2nÞ;

H ¼ λ1=2MpL=ð
ffiffiffiffiffiffi
6n

p
Þ; T ¼ λ1=2MpT 0=ð

ffiffiffiffiffiffi
6n

p
Þ;

ϒ ¼ λ1=2Mpϒ0=
ffiffiffiffiffiffi
6n

p
; ζT ¼ ð6nÞ1=4λ1=4M1=2

p ζ0T=
ffiffiffi
3

p
;

ζq ¼ ð6nÞ1=4λ1=4M1=2
p ζ0q=

ffiffiffi
3

p
; t ¼ 3t0=ð

ffiffiffiffiffiffi
6n

p
λ1=2MpÞ:

ð4:1Þ

For example, in terms of the dimensionless variables
defined above, the dissipation coefficient ϒ, Eq. (3.22)
is written as

ϒ0 ¼ Cφλ

6n
T 03

x2
: ð4:2Þ

The evolution of the inflaton field, Eq. (3.7), expressed
in terms of the drift and diffusion coefficients, Eqs. (3.25)
and (3.26), in terms of the dimensionless variables (4.1)
becomes

∂x
∂t0 ¼ −

v;x
2nLð1þQÞ þ

ffiffiffiffiffi
3λ

p

6n
L3=2

2π
ð1þ 2n~kÞζ0q

þ
ffiffiffiffiffi
3λ

p

6n
L3=2

2π

�
T 0

L

�
πQ

10ð1þQÞ2 ζ
0
T: ð4:3Þ

From Eq. (4.3), we find that the volume weighted prob-
ability distribution is the solution of the following dimen-
sionless Fokker-Planck equation:

∂
∂t0 PVðx; t0Þ ¼

∂
∂x

�
v;x

2nLð1þQÞPVðx; t0Þ
�

þ ∂2

∂x2
�

λ

12n2
L3

8π2

�
1þ 2n~k

þ
�
T 0

L

�
πQ

10ð1þQÞ2
�
PVðx; t0Þ

�

þ 3L
2n

PVðx; t0Þ: ð4:4Þ

Using the dimensionless variables introduced in
Eq. (2.14) into Eq. (4.4), it is possible to rewrite the
Fokker-Planck equation (4.4) into a Schrödinger-like equa-
tion, whose effective potential is given by

VSðσÞ ¼
3

16

ðDð2Þ
;x Þ2

Dð2Þ −
Dð2Þ

;xx

4
−
Dð2Þ

;x Dð1Þ

2Dð2Þ þDð1Þ
;x

2

þ ðDð1ÞÞ2
4Dð2Þ −

3L
2n

: ð4:5Þ

In all situations, we take into account the field backreaction
on geometry, since we are primarily interested in studying
the global structure of the inflationary universe.
In the next subsections, we use the SLA to extract

the relevant information from the above effective
potential VS, in the cold and warm inflation cases, and
for both types of inflaton potentials considered in this work,
given by Eqs. (3.20) and (3.21). The analysis of VS is
performed comparatively with the number of H regions,
expð3Þ × ðNe − NthÞ, for a total number of e-folds
Ne > Nth, which gives the counting of H regions produced
in the FDR.
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We will omit the analysis of X̄ in the warm inflation
case because, as we will see in the following, this analysis
is qualitatively equivalent to the one provided by VS, while
in cold inflation, we present both for the sake of
completeness.
In the following, we present results for the cold inflation

scenario, for each inflaton potential model considered.
Thereafter, we will extend these results to include the
effects of dissipation and thermal radiation in order to
establish whether they can enhance or suppress eternal
inflation.

A. Chaotic and hilltop models in the cold inflation case

As a warm up, let us apply the methods described in
Sec. II to characterize eternal inflation for the case of cold
inflation, i.e., initially in the case of absence of thermal and
dissipative effects. In the cold inflation case, the evolution
of the inflaton field, Eq. (4.3) is given by

∂x
∂t0 ¼ −xn−1 þ

ffiffiffiffiffi
3λ

p

6n
x3n=2

2π
ζ0q; ð4:6Þ

where the dimensionless variables (4.1) were used. Then,
the volume weighted probability distribution is the solution
of the following Fokker-Planck equation:

∂
∂t0 PVðx; t0Þ ¼

∂
∂x ½x

n−1PVðx; t0Þ�

þ ∂2

∂x2
�

λ

12n2
x3n

8π2
PVðx; t0Þ

�

þ 3xn

2n
PVðx; t0Þ; ð4:7Þ

which is a particular case of Eq. (4.4). Using the drift and
diffusion coefficients of Eq. (4.7) in Eq. (4.5), the explicit
form of the effective potential VS is promptly obtained, for
both the chaotic and the hilltop potentials.
For the chaotic model, the effective potentials for n ¼ 1,

n ¼ 2, and n ¼ 3 become, respectively,

Vn¼1
S;chaotic ¼ −

3

2
xþ λ

512π2
xþ 3

2
x−1 þ 24π2

λ
x−3;

Vn¼2
S;chaotic ¼ −

λ

512π2
x4 −

3

4
x2 þ 5

2
þ 96π2

λ
x−4;

Vn¼3
S;chaotic ¼ −

5λ

1536π2
x7 −

1

2
x3 þ 7

2
xþ 216π2

λ
x−5: ð4:8Þ

For the hilltop model, we obtain that

Vn¼1
S;hillop ¼ −

3
ffiffiffi
v

p
2

þ γ

4
ffiffiffi
v

p þ λγ
ffiffiffi
v

p
256π2

þ
�

5λ

2048π2
ffiffiffi
v

p þ 1

2v3=2
þ 6π2

λv5=2

�
γ2x2;

Vn¼2
S;hillop ¼ −

3
ffiffiffi
v

p
4

þ 3

8

�
λ

ffiffiffi
v

p
128π2

þ 1ffiffiffi
v

p
�
γx2

þ
�

5λ

8192π2
ffiffiffi
v

p þ 1

4v3=2
þ 6π2

λv5=2

�
γ2x6; ð4:9Þ

where v is typically v ≲ 1 during the FDR.
From Eqs. (4.8) and (4.9), due to the typical smallness of

λ and γ, one observes that in both effective potentials the
negative terms are dominant for high (low) values of x in
chaotic (hilltop) inflation. Since high (low) x0 are the
typical initial values for chaotic (hilltop) inflation, these
negative terms dominate for adequate suitable values of x0.
For chaotic inflation, as inflation evolves from high x ¼ x0
values to smaller x, the positive terms of order Oðλ−1Þ
increase and tend to become more relevant, whereas for
hilltop inflation, the terms of orderOðγÞ andOðλ−1γ2Þ tend
to increase as inflation evolves from small x ¼ x0 values to
higher x. These positive terms continuously increase the
values of VS to less negative ones during inflation, which
proceeds until VS > 0 at the end of inflation. From
Eq. (2.18), we have discussed that eternal inflation is
possible to occur if there is an interval of φ (i.e., σ) where
VS < 0, which can be achieved for these different forms of
effective potentials. For inflation beginning at an initial
field configuration that respects the FDR condition,
Eq. (2.3), we obtain a sufficiently negative VS for eternal
inflation to occur and, as the effective potential becomes
less negative, eternal inflation eventually ceases for some
less negative VS, when the FDR condition is no longer
satisfied, i.e., ðdψn=dσÞ2 dominates over VS in Eq. (2.18).
Together with the obtained effective potentials, we use

the dimensionless version of the FDR condition, Eq. (2.3),
to obtain xth, which is the (threshold) value of x for which
the FDR ends. If the condition Eq. (2.3) gives a xth between
x0 and xf , it means that a FDR is present. In addition, for the
value of xth for each potential, we can obtain the respective
threshold number of e-folds Nth.
In Figs. 2 and 3, we show the behavior of the effective

potential VS for the chaotic and hilltop inflation cases,
respectively. Each curve represents an inflationary evolu-
tion where we choose some Ne > Nth, which means that
eternal inflation occurs, and is separated in dashed and solid
lines segments, which represent two distinct regimes. The
dashed segment of the negative part of VS corresponds to
the FDR, which begins at the lowermost points (the
beginning of inflation and SRR, at x ¼ x0) and ends at
where dashed and solid line segments encounter (the end of
FDR, at x ¼ xth). The remaining part of the curves
correspond to the deterministic regime, which begins at
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x ¼ xth for VS < 0 and ends in the topmost point at x ¼ xf ,
where inflation ends and VS > 0. Particularly, in Fig. 2, the
initial point ½x0; VSðx0Þ� is always the rightmost point on
the curve (recalling that x decreases during the chaotic
evolution), and in Fig. 3, it is the leftmost point (recalling
that x increases during the hilltop evolution). In both cases,
the vertical axis is constrained for a matter of scale, thus
omitting the final value ½xf; VSðxfÞ�.
The dashed curves in Figs. 2 and 3 represent the Ne–Nth

e-folds of eternal inflation where a SRR occurs, which
means that for eternal inflation to happen, inflation needs to
begin at an initial inflaton field value adequate to provide
the sufficient number of e-folds Ne > Nth. The greater the
length of the dashed curves, the greater is the difference
Ne–Nth, indicating a stronger SRR. In the opposite case,
the smaller we choose Ne–Nth, the dashed line becomes
smaller till it disappears for Ne ≤ Nth, remaining the solid
curve. For eternal inflation to occur for the case of the
chaotic inflation, the initial value for the inflaton field, φ0,
needs to be sufficiently large (φ0 ≫ MP), whereas for

hilltop inflation it needs to be sufficiently small
(φ0 ≪ MP), i.e., very close to the top of the potential at
the origin.
The values of xth given by the FDR condition (related

to each Nth shown in the figures) are xth ¼ 2.0 × 103;
5.5 × 102; 3.0 × 102 in the chaotic cases (Fig. 2) for n ¼ 1,
2, 3, respectively, and in the hilltop cases (Fig. 3) by xth ¼
7.0 × 10−3 (γ ¼ 10−3) and xth ¼ 3.5 × 10−4 (γ ¼ 10−2)
for n ¼ 1, and xth ¼ 0.698 (γ ¼ 10−5) and xth ¼ 0.276
(γ ¼ 10−4) for n ¼ 2. In each case, we have set a value of
Ne such that a SRR is viable, i.e., VS exhibits a negative
interval that contains a FDR.
In the Fig. 4, we show the behavior of the probability of

having no eternal points for the chaotic [panel (a)] and hilltop
[panel (b)] potentials. In the horizontal axis, we plot values
of x between x0 and xth (FDR range), suitably parametrized
by the variable x=xth − 1 in the chaotic case and 1 − x=xth, in
the hilltop case. The initial points are at the rightmost ones of
the curves, indicating that eternal points are initially present
(X̄ ≈ 0) and vanish at the end of FDR (X̄ ≈ 1).
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FIG. 2. The effective potential VS for: (a) quadratic, (b) quartic, and (c) sextic chaotic inflation, respectively. The dashed curves show
the fluctuation-dominated range. The values of Ne chosen for each panel are given, respectively, by (a) 107, (b) 105, and (c) 104.
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FIG. 3. The effective potential VS for quadratic [panels (a) and (b)] and quartic [panels (c) and (d)] hilltop inflation for some
representative values of γ. The dashed curves show the fluctuation-dominated range. The chosen values of γ and Ne for each panel are
given, respectively, by (a) 10−3 and 8.4 × 103, (b) 10−2 and 1.2 × 103, (c) 10−5 and 1.3 × 105, and (d) 10−4 and 105.
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As expected, we observe that both tools we have used to
assess the presence of a SRR produce results that are
compatible between them. Due to this compatibility, in the
following analysis, extended to the case of warm inflation,
we omit the study of eternal points for the reason of not
being repetitive in performing both qualitative VS and
eternal points analysis. In its place, we introduce the
counting of H regions versus dissipation in parallel to
the analysis for VS, which is a quantitative tool and more
adequate for describing the emergence of eternal inflation
when considering now the effects of dissipation and
radiation.

B. Chaotic warm inflation

Let us initially study the case of warm inflation with the
chaotic type of potentials. For the polynomial potential in
the warm inflation case, the evolution of the inflaton field,
Eq. (4.3), is given by

∂x
∂t0 ¼ −

xn−1

1þQ
þ

ffiffiffiffiffi
3λ

p

6n
x3n=2

2π
ð1þ 2n~kÞζ0q

þ
ffiffiffiffiffi
3λ

p

6n
x3n=2

2π

�
T 0

xn

�
πQ

10ð1þQÞ2 ζ
0
T: ð4:10Þ

The volume weighted probability distribution is the sol-
ution of the Fokker-Planck equation, Eq. (4.4), given by

∂
∂t0 PVðx; t0Þ ¼

∂
∂x

�
xn−1

ð1þQÞPVðx; t0Þ
�

þ ∂2

∂x2
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λ

12n2
x3n

8π2

�
1þ 2n~k

þ
�
T 0

xn

�
πQ

10ð1þQÞ2
�
PVðx; t0Þ

�

þ 3xn

2n
PVðx; t0Þ: ð4:11Þ

From the Fokker-Planck equation, we can obtain the
effective potential using Eq. (2.16). The expression for
VS is too large to be presented in the text; thus, we chose to
present some suitable representative results by numerical
integration.
In Fig. 5, we present the functional relation between the

threshold values of the inflaton field φth and dissipation
ratio Q�. As expected, in all panels, we recover the cold
inflation values for sufficiently small Q�. The solid curves
in the panels represent the cases where the inflaton particle
distribution is given by the Bose-Einstein one. The addi-
tional dash-dotted and dashed curves represent the cases
for which the inflaton particle distribution is negligible and
for which the radiation noise contribution to the power
spectrum is taken into account, respectively.
For the quadratic potential (n ¼ 1), shown in panel (a) of

Fig. 5, as we increase the value of Q�, a notable nonlinear

behavior emerges: for Q� approximately between 10−12

and 7 × 10−5, the condition for the presence of a FDR is
alleviated, since the threshold value φth in this interval
becomes smaller than the cold inflation value (dotted
curve). However, for Q� ≳ 7 × 10−5, the behavior is
reversed and then it is noted that the establishment of a
FDR is unfavored in comparison to the cold inflation case,
since higher values of φth demand a higher initial condition
for inflaton field, φ0, for eternal inflation to occur.
When we account for the radiation noise effect (dashed

curve), it becomes relevant only forQ� ≳ 2 × 10−4 and acts
by increasing even more the value of φth in comparison to
the solid curves, thus turning the FDR suppression ten-
dency of warm inflation stronger. A simple reasoning about
this behavior can be obtained analyzing Eqs. (3.23) and
(3.24). Since the radiation noise contributes with a multi-
plicative factor Oð40Þ to the dissipative power spectrum,
the effects inherent to warm inflation (FDR suppression
which manifests at larger values for the dissipation and
thus, damping effects are stronger) are expected to be
enhanced. On the other hand, in the case where nk is
negligible (dash-dotted curve), for Q� ≳ 10−12 a FDR is
more favored than in cold inflation, being more prominent
at Q� ≈ 10−2. Therefore, comparing the results shown by
the dash-dotted and solid curves, one notices the deleteri-
ous role of the inflaton thermalization to the establishment
of a FDR.
For the quartic potential (n ¼ 2), shown in panel (b) of

Fig. 5, one observes the same qualitative behavior of the
quadratic case. For Q� approximately between 10−10 and
1 × 10−6 (inset plot), a FDR is favored in comparison to
cold inflation, whereas for higher values ofQ� the presence
of a FDR is harder to be achieved. Like in the quadratic
case, the effect of the radiation noise on the power spectrum
makes a FDR even harder to be achieved when Q� ≳ 10−4

and the effect of a negligible nk has the same FDR favoring
behavior.
The sextic potential (n ¼ 3) case, shown in panel (c) of

Fig. 5, does not favor a FDR for very small Q� like we
have seen for the quadratic and quartic cases. The
occurrence of a FDR is always disfavored for
Q� ≳ 10−8, whereas for lower Q� the values of φth does
not fall bellow the cold inflation one. However, the
qualitative behavior of φth due to the effects of radiation
noise and negligible nk are exactly the same of the
aforementioned potentials.
Due to the qualitative similarity of the dependencies of

φth and Nth on Q�, we choose to present plots only for the
former and obtain a semianalytic approximation for the
functional dependence of Nth on φth, which can be found to
be well approximated by the expression

Nth ¼
1

4n

�
φth

Mp

�
2

: ð4:12Þ
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This solution was obtained by integrating Eqs. (B4) and
(B5) analytically and inspecting the dominant terms. This
result shows that Nth possesses the same qualitative
behavior of φth with respect to making a FDR easier or
harder to be achieved due to the combined effects of
dissipation and thermal radiation. This means that the
higher the value of φth we need for eternal inflation to
occur, the larger is the number of e-folds of inflation
required to accomplish it and vice versa. Although
Eq. (4.12) does not contain any explicit dissipative or
thermal variable, the calculation of the values of φth already
incorporate these effects.
Next, we present in Figs. 6, 7, and 8, the results for the

effective potential VS as a function of the dimensionless
inflaton field [panel (a) in each of the figures] for some
representative values ofQ�. We also show in parallel [panel
(b) in each of the figures], the corresponding counting of H
regions as a function ofQ�, for each of the chaotic inflation
potential models considered. For each pair of plots for VS

and H regions counting, we have set up an adequate initial
condition φ0 for the cold inflation case such that a FDR is
present. This same initial condition φ0 was then used to
obtain all warm inflation curves of VS and for each point
of the plots of counting of H regions. From this per-
spective, of same value for φ0 for both cold and warm
inflation cases, one can inspect whether the FDR gen-
erated in the cold inflation case is still sustained or
becomes suppressed when dissipative effects are present.
In the plots of VS, the curves are separated in FDR and
deterministic parts as described in the previous subsec-
tion for the cold inflation situation. One notices that the
lengths of the parts corresponding to FDR increase or
decrease due to the dependence of φth on dissipation and
temperature [see Figs. (1) and (5)], thus revealing the
enhancement or suppression of the FDR for each repre-
sentative value of Q�. In turn, the plots of H regions
counting exhibit the number of H regions produced in the
FDR parts shown in the plots for VS.
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FIG. 5. The threshold values of ϕth versusQ� for the: (a) quadratic, (b) quartic, and (c) sextic chaotic inflation cases, respectively. The
solid (dash-dot) curves correspond to thermal (negligible) inflaton distribution nk while the dashed curve corresponds to the thermal
inflaton distribution and also by accounting for radiation noise effects, given according to Eq. (3.24).
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For the quadratic potential case, shown in Fig. (6), we
observe in panel (a) that the FDR dash-dotted lines
increase until Q� ≈ 1.1 × 10−7, which reveals a favoring
tendency to eternal inflation in comparison to cold
inflation. Increasing Q�, this behavior is reversed and
for Q� ≳ 1 × 10−4, eternal inflation is disfavored. Panel
(b) corroborates this behavior in terms of the increase
and subsequent decrease of the production of H regions.
The corresponding value of temperature (at that particular
time) for which the production of H regions decreases, i.e.,
eternal inflation gets disfavored, is T th ≳ 1.6 × 107 GeV.
One also notes that the counting of H regions falls to zero
forQ� ≳ 3 × 10−2. The solid grey curve in panel (a) shows
an example where no FDR is present. This fall means that
the chosen φ0 of cold inflation is not above the threshold
value to produce a FDR in warm inflation with such values

of Q�. This result is in complete consistency with the ones
shown in Fig. 5(a).
The quartic potential case, shown in Fig. 7, is qualita-

tively similar to the quadratic case. Panel (a) shows that a
FDR is more favored than in cold inflation for values Q�
between 1.8 × 10−9 and 6.8 × 10−7, but for higher values of
Q� the tendency is the suppression of the FDR. In panel (b),
we ignore the mentioned negligible FDR favoring for very
low Q� (no inset plot) and reiterate that for Q� ≳ 1 × 10−6

eternal inflation is disfavored in comparison to cold
inflation as the solid curve drops below cold inflation
dotted one. The corresponding value of temperature in this
case is T th ≳ 9.1 × 1010 GeV. For the chosen value of φ0,
for Q� ≳ 4 × 10−6, eternal inflation is completely sup-
pressed. This result also corroborates the one shown in
Fig. 5(b).
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FIG. 7. The effective potential VS as a function of x ¼ ϕ=Mp, panel (a), for some representative values of Q� and the counting of H
regions versus Q�, panel (b), for the quartic chaotic inflation potential. It was taken Ne ¼ 4 × 104 for the cold inflation case (Q ¼ 0).
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FIG. 6. The effective potential VS as a function of x ¼ ϕ=Mp, panel (a), for some representative values of Q� and the counting
of H regions versus Q�, panel (b), for the quadratic chaotic inflation potential. It was taken Ne ¼ 1.5 × 106 for the cold inflation
case (Q ¼ 0).
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The case of a sextic potential, shown in Fig. 8, panel
(a) shows that the FDR is always disfavored as we increase
Q�. For Q� ≳ 5 × 10−8, the lengths of the FDR curves
becomes smaller in comparison to the cold inflation case
until it disappears for Q� ≈ 2 × 10−6. The exactly same
behavior is shown in panel (b), where the production of H
regions falls below the cold inflation value for correspond-
ing values of temperature of T th ≳ 3.9 × 1012 GeV, and
eventually is totally suppressed. These results are again
consistent to those shown in Fig. 5(c).
With the assistance of Fig. 1, we notice that the FDR

favoring intervals of Q� obtained in the quadratic and
quartic cases occur for T=H ≲ 1, which is a regime between
cold and warm inflation regimes, which we called WWI.
For the typical warm inflation picture (where T=H ≳ 1),
one observes that dissipation has the tendency to suppress
the establishment of a SRR for the case of the chaotic
potential models in warm inflation, in comparison to the
cold inflation case.

C. Hilltop warm inflation case

We now discuss and present our results for the hilltop
potential case, given by Eq. (3.21). Equation (4.3) can be
specialized in order to describe the inflaton dynamics under
this potential
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∂t0 ¼
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The modified Fokker-Planck equation for the volume
distribution PV , Eq. (4.4), can be written as
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For the analysis of the hilltop case, we set two values of γ
for each fixed n. Namely, we set γ ¼ 10−3 and γ ¼ 10−2 for
n ¼ 1, and γ ¼ 10−5 and γ ¼ 10−4 for n ¼ 2. These values
of γ are motivated by those values considered in the recent
Planck’s observational constraints on inflation based on the
hilltop potential [49] [note also that in [49], these values
were given in terms of log ðμ=MpÞ instead].
In Figs. 9 and 10, we present the functional dependence

of φth and Nth on the dissipation ratio Q� for the hilltop
potential model cases. Differently to what we have seen in
the chaotic potential case, for hilltop inflation the relation
between φth andNth is much more involved. Thus, we show
the numerical results for both in this case. The numerical
results for φth and Nth as a function of Q� are shown in
Figs. 9 and 10 for the quadratic and for the quartic hilltop
inflation potential cases, respectively. Panels (a) and (b) of
each figure show the functional dependence of φth on Q�
for each aforementioned choice of γ, whereas panel
(c) shows the functional dependence of Nth on Q�. Note
that for sufficiently small values for Q�, the cold inflation
limit is recovered in all panels, as expected.
The quadratic inflation case for γ ¼ 10−3 is shown in

panel (a) of Fig. 9. One observes that as we increaseQ�, the
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FIG. 8. The effective potential VS as a function of x ¼ ϕ=Mp, panel (a), for some representative values of Q� and the counting of H
regions versus Q�, panel (b), for the sextic chaotic inflation potential. It was taken Ne ¼ 8 × 103 for the cold inflation case (Q ¼ 0).
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value of φth is larger than in the cold inflation case (which is
better seen in the inset plot). For hilltop inflation potential,
this means that the SRR is favored. In other words, since for
given values of Q�, the amplitude of the inflaton increases,
i.e., moves away from the top of the potential, the region of
field values between cold and warm inflation values of φth
become now available for the SRR. Consequently, we see
that a larger region of field values in warm inflation
becomes suitable for leading to eternal inflation than in
the cold inflation case. This favoring occurs for Q� ≳ 10−7

and is more pronounced at Q� ≈ 4 × 10−6 and Q� ≈ 10−2.
However, for Q� ≳ 10−2, the behavior is reversed and the
FDR tends to be unfavored for Q� ≳ 2 × 10−2. This same
FDR friendly behavior happens for the quadratic case
with γ ¼ 10−2, shown in panel (b), which occurs for Q� ≳
4 × 10−11 and stabilizes for Q� ≳ 5 × 10−5. In contrast,
panel (c) reveals that the threshold number of e-folds Nth
increases with dissipation for both choices of γ, which

indicates that the establishment of a SRR is harder to be
achieved for higher values ofQ�. These results involving φth
and Nth seem contradictory to the ones seen for the chaotic
inflation potential cases, wherewewould expect growing φth
for growing Nth and vice versa. However, this apparent
contradiction can be dissolved when we realize that at the
same time that dissipative effects become sufficiently sig-
nificant at the threshold instant to increase the values of φth,
the inflaton field value at the end of inflation, φf , becomes
smaller due to dissipation, thus increasing Nth.
The quartic inflation cases for γ ¼ 10−5 and γ ¼ 10−4

are shown in panel (a) and (b) of Fig. 10, respectively. For
both cases, eternal inflation is continuously suppressed as
we increase Q� from approximately 10−8 to greater values.
These behaviors are in agreement with the respective
results of Nth given in panel (c), since we now expect that
in the hilltop inflation potential lower values of φth will
disfavor a FDR, which corresponds to greater values ofNth.
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FIG. 9. The threshold values of ϕth [panels (a) and (b)] and Nth [panel (c)] versus Q� for the quadratic hilltop inflation potential case.
Panels (a) and (b) correspond to the representative choices γ ¼ 10−3 and γ ¼ 10−2, respectively, whereas panel (c) covers both γ ¼ 10−3

(black dashed curves) and γ ¼ 10−2 (gray dashed curves) choices. The solid (dash-dot) curves correspond to thermal (negligible)
inflaton distribution nk, while the dashed curve corresponds to thermal inflaton distribution accounting for radiation noise contribution.
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In both Figs. 9 and 10, we also analyze the effect of a
negligible inflaton particle distribution nk ≈ 0. In Figs. 9
and 10, this case is represented by dash-dotted lines in all
panels. The behavior is similar to the chaotic inflation case;
the curves ascend in comparison to the nk ¼ nBE cases
(solid curves), which again reinforces the importance of the
thermalized inflation particles in the suppression of eternal
inflation. In the quadratic inflation case, the establishment
of a SRR is always favored, whereas in the quartic case
eternal inflation is negligibly favored for very low values of
Q� and becomes significantly suppressed for Q� ≳ 10−2. In
both figures, we also see the effect of radiation noise
contribution to the power spectrum, given according to
Eq. (3.24). Its effect is opposite to that of negligible nk; in
the quadratic case with γ ¼ 10−3, the curves descend from
nk ¼ nBE case forQ� ≳ 5 × 10−5, whereas for the quadratic
case with γ ¼ 10−2 and for both quartic values of γ in the
quartic potential the descent happens for Q� ≳ 10−4. In the

quadratic case with γ ¼ 10−3 (γ ¼ 10−2), eternal inflation
is favored for Q� ≳ 10−4 (Q� ≳ 3 × 10−2), whereas in the
quartic case eternal inflation is always favored for
Q� ≳ 10−4. This effect of the radiation noise is consistent
to what we expected before in the chaotic inflation potential
cases. The effect of the radiation noise is more pronounced
at larger dissipation. These larger values of dissipation
imply in a larger damping of fluctuations that might
otherwise lead to a SRR.
Finally, in Figs. 11 and 12, we present the effective

potential VS as a function of the (dimensionless) inflaton
field for some representative values of Q� [panels (a) and
(b)] and the functional dependence of the counting of H
regions on Q� [panel (c)], for the quadratic and quartic
hilltop potentials, respectively. Panels (a) and (b) of each
figure show the plots of VS for each choice of γ, whereas
panels (c) exhibit the counting of H regions for both choices
of γ. As in the chaotic inflation case, we choose suitable
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FIG. 10. The same as in Fig. 9, but for the quartic hilltop inflation potential case. Panels (a) and (b) correspond to the representative
choices γ ¼ 10−5 and γ ¼ 10−4, respectively, whereas panel (c) covers both γ ¼ 10−5 (black curves) and γ ¼ 10−4 (gray curves) choices.
The solid (dash-dot) curves correspond to thermal (negligible) inflaton distribution nk, while the dashed curve corresponds to thermal
inflaton distribution accounting for radiation noise contribution.
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values of φ0 for the cold inflation cases such that a FDR
is present and use it to obtain the warm inflation results.
We can now contrast the panel (a) of Fig. 11 with the
corresponding panel (a) of Fig. 9. Observing both panels,
one notes that the FDR is favored in the range 10−7 ≲
Q� ≲ 2 × 10−2 in comparison to the cold inflation case and
unfavored outside this range. Quantitatively, the region of
the potential that corresponds to the FDR (i) increases
for 10−7 ≲Q� ≲ 4 × 10−6, (ii) decreases in the range
4 × 10−6 ≲Q� ≲ 8 × 10−4, (iii) increases for 8 × 10−4≲
Q� ≲ 8 × 10−3, and (iv) decreases for Q� ≳ 8 × 10−3,
getting shorter than the cold inflation case for Q�≳
2×10−2. Analogously, we perform a joint analysis of
panels (b) of Figs. 9 and 11. For Q� ≳ 4 × 10−11 in both
panels (b), one observes that the FDR abruptly increases for
increasing Q� until Q� ≈ 10−6, where FDR continuous to
increase but in a small rate. These minor details involving

representative values of Q� are important only to contrast
the corresponding panels of Figs. 9 and 11, but the main
interest is in the FDR-favoring behavior that we observe
for the quadratic hilltop potential case. Analogously, we
contrast panels (a) and (b) of Fig. 12 to the respective
panels (a) and (b) from Fig. 10. One notices that for both
cases the lengths of the FDR curves decrease until it
disappear for sufficiently high value of Q�, which corre-
sponds to the decrease of the values of φth. The plots of the
counting of H regions, given in the panels (c) of Figs. 11
and 12, mimic the results of panels (a) and (b) like in the
chaotic inflation case; the amount of H regions increases
when FDR is favored, decreases when it is unfavored, and
falls to zero when the chosen φ0 is smaller than φth for the
specific value of Q�. Like in the cases of the monomial
chaotic potential, the corresponding values of temperature
for which eternal inflation gets disfavored in comparison to
cold inflation are T th ≳ 4.0 × 1012 GeV for the quadratic
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FIG. 11. The effective potential VS as a function of ϕ for some representative values of Q� [panels (a) and (b)] and the counting of H
regions versusQ� [panel (c)], for the quadratic hilltop inflation potential case. Panels (a) and (b) correspond to the representative choices
of γ ¼ 10−3 and γ ¼ 10−2, respectively, whereas panel (c) covers both γ ¼ 10−3 (black curve) and γ ¼ 10−2 (gray curve) choices. We
have chosen Ne ¼ 8300 (γ ¼ 10−3) and Ne ¼ 1050 (γ ¼ 10−2) for cold inflation cases.
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case with γ ¼ 10−3 and T th ≳ 2.6 × 107 GeV (T th≳
1.6 × 107 GeV) for the quartic case with γ ¼ 10−5

(γ ¼ 10−4), whereas for the quadratic hilltop case with
γ ¼ 10−2 eternal inflation is favored for the entire range of
Q� analyzed. Once again, these plots reveal the deleterious
behavior of warm inflation to the establishment of the SRR
in the quartic hilltop potential case. In the quadratic hilltop
potential case, however, warm inflation enhances the
eternal inflation mechanism from the point of view of a
fixed φ0.

V. CONCLUSIONS AND FINAL REMARKS

In this work, we have developed a generalized approach
to eternal inflation of the random walk type under the
framework of warm inflation. Thus, the combined effects
of dissipation, the corresponding stochastic term, and
the presence of a thermal radiation bath are accounted
for. To understand the influence of these effects on the

self-reproduction regime of the inflationary universe, we
have performed a comprehensive numerical analysis of
how relevant quantities that characterizes eternal inflation
in the cold inflation case are modified due to the presence
of dissipation and a thermal radiation bath. Since eternal
inflation is mainly characterized by the presence of a FDR,
the main tool we have used was a generalized condition for
the occurrence of a FDR, which is used for obtaining and
interpreting the results.
Taking cold inflation as a reference, within the context of

the warm inflation picture, we have obtained information
about the functional relation between the threshold inflaton
field φth and also for the threshold number of e-foldsNth, in
terms of the dissipation ratio Q (where we used its value at
the moment of horizon crossing as a reference). In addition
to the usual case where the statistical occupation number is
given by the Bose-Einstein distribution, i.e., assuming a
thermal equilibrium distribution for the inflaton, we have
also presented the cases where its particle distribution is

0.45 0.54 0.63 0.72 0.81
 φ /M

P

-2.9

-2.7

-2.5

-2.3

-2.1

-1.9
V

S

Cold Inflation
Q

*
=2.2E-7

Q
*
=1.E4-6

Q
*
=1.3E-5

Q
*
=1.2E-4

Q
*
=1.2E-3

Q
*
=1.1E-2

Q
*
=1.0E-1

(a)

0.18 0.21 0.25 0.28 0.32
 φ /M

P

-3.0

-2.8

-2.6

-2.4

-2.3

-2.1

V
S

Cold Inflation
Q

*
=2.2E-7

Q
*
=1.4E-6

Q
*
=1.3E-5

Q
*
=1.2E-4

Q
*
=1.2E-3

Q
*
=1.1E-2

Q
*
=1.0E-1

(b)

10
-8

10
-6

10
-4

10
-2

Q
*

0

8×10
5

2×10
6

2×10
6

3×10
6

4×10
6

4×10
6

H
-r

eg
io

ns
 c

ou
nt

in
g

WI, n=2 and γ =1E-5
WI, n=2 and γ =1E-4

CI counting: 2.7E6 (γ =1E-4)

CI counting: 4.3E6 (γ =1E-5)

(c)
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negligible and where the dissipative power spectrum might
get additional contributions due to radiation noise effects,
as recently studied in Ref. [33]. Using the model indepen-
dent relation betweenQ� and T�=H�, we were able to focus
the analysis only as a function of Q�, but always con-
comitantly keeping track of the influence of the temper-
ature of the thermal bath.
In addition to the analysis of φth and Nth, we have

performed a SLA of the corresponding Fokker-Planck
equation for the probability of having eternal inflation,
translated in terms of the effective potential VS. In parallel
to the analysis of VS, we have also analyzed the depend-
ence of the number of H regions produced in the FDR as a
function of Q�.
We have considered as examples of inflation models, the

cases of monomial potentials of the chaotic type (quadratic,
quartic, and sextic chaotic inflation potentials) and hilltop-
like (quadratic and quartic hilltop potentials). To study how
the typical dynamics displayed in warm inflation affects
eternal inflation, we have performed our analysis in a range
of values for the dissipation ratioQ� varying from very low
values (reaching the cold inflation limit) up to Q� ¼ 0.1,
where the analytical expression for the primordial spectrum
is found to be in good agreement with full numerical
calculations of the perturbations in warm inflation [33].
For the chaotic potential cases, the dependence of both

φth and Nth on Q� reveals that in the typical warm inflation
regime dissipation and thermal fluctuations have the
tendency of suppressing eternal inflation in comparison
to the cold inflation case, whereas in the WWI regime,
eternal inflation is slightly favored for the quadratic
potential case. When we account for the radiation noise
contribution to the power spectrum, the suppression ten-
dency becomes even stronger for typical warm inflation
values. This is expected because, as shown in Ref. [33],
these effects become more relevant for larger values of the
dissipation. But this is when dissipation damps more
efficiently the fluctuations that might otherwise favor
eternal inflation to appear. However, in the case where
the particle distribution function is negligible, eternal
inflation effects becomes enhanced for the whole interval
of Q�. This can be traced to the fact that the quantum noise
effects have a larger amplitude, thus favoring the conditions
for the emergence of eternal inflation.
For the hilltop potential cases, the dependence of φth on

Q� reveals that eternal inflation is favored for the quadratic
potential and unfavored for the quartic potential. In the
case of the quadratic potential, both φth and Nth grows for
increasing Q�, which means that at the same time dis-
sipation and thermal fluctuations demand a less restricted
value of φth for eternal inflation to happen but, on the other
hand, requires a larger amount of e-folds for it to take place.
Therefore, depending on the point of view of fixed φ0 or
fixed number of e-folds, eternal inflation is favored or
unfavored, respectively. In the case of the quartic potential,

φth decreases for increasing Q�, while Nth increases, which
means that for both point of views described for the
quadratic case, both dissipation and thermal radiation tend
to suppress eternal inflation. When we account for the
radiation noise contribution to the power spectrum, the
FDR favoring tendency in the quadratic potential is
attenuated whereas for the quartic potential it turns the
suppression tendency stronger for sufficiently large values
of Q�, which are responsible for fluctuation damping.
When one considers a negligible particle distribution for
the inflaton field, the establishment of a SRR is favored for
the whole interval of Q� in the quadratic potential case,
whereas for the quartic case, FDR is negligibly enhanced
for very small Q� and becomes significantly suppressed for
higher Q�.
In summary, our results show that in the chaotic inflation

case, dissipation and thermal fluctuations tend to suppress
eternal inflation in the typical warm inflation dynamics.
This suppression is more pronounced when radiation noise
effects on the power spectrum are accounted for (which, as
already mentioned above, happens for larger values of
dissipation) and eternal inflation is alleviated when the
statistical distribution of the inflaton is neglected. On the
other hand, in the hilltop inflation case, for the quadratic
potential, the main tendency is to favor eternal inflation
when we depart from the same φ0, but to disfavor it when
we analyze the case where a fixed number of
e-folds is assumed. In the quartic case, however, warm
inflation effects tend to suppress the SRR for the whole
interval of Q�, which happens for both fixed φ0 or number
of e-folds. When radiation noise is included, eternal
inflation is even more suppressed for typical warm inflation
values and also suppressed for negligible nk at sufficiently
high Q�.
Based on the analysis performed, the introduction of

warm inflation effects in the eternal inflation scenario
seems to be deleterious to the establishment of a self-
reproduction regime, although for some particular choices
of potential and parameters, it is possible to have excep-
tions where eternal inflation is enhanced. This happens
particularly for small values of the dissipation term, in
which case, the fluctuations favoring the presence of a
eternal inflation regime might even be enhanced compared
to cold inflation. Our results show the nontrivial effects that
dissipation, stochastic noises, and the presence of a thermal
radiation bath, hallmarks of the warm inflation picture, can
have in the global dynamics of inflation and, as studied in
this paper, on one of the most peculiar predictions of the
inflationary scenario, eternal inflation.
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APPENDIX A: DERIVATION of Dð2Þ

The stochastic equation of motion for the inflaton field
that involves both quantum (vacuum) and thermal (dis-
sipative) noises, Eq. (3.7), can be rewritten as

_φ ¼ −
V;φ

3Hð1þQÞ þ ηqðtÞ þ ηTðtÞ; ðA1Þ

where the two-point correlation function for the thermal
noise [24,25] is given by

hηTðx;tÞηTðx0;t0Þi¼ 2Q
3ð1þQÞ2

�
T
H

�
a−3δ3ðx−x0Þδðt− t0Þ;

ðA2Þ

where the thermal noise has been rescaled to ηT ¼
ζT=½3Hð1þQÞ� from Eq. (3.1), after we take the slow-
roll approximation.
In the case of the quantum noise, we can perform the

two-point correlation function for Eq. (3.6) in the slow-roll
approximation:

ξqðx; tÞ ≈ −3Hð1þQÞ ∂∂tΦ<ðx; tÞ: ðA3Þ

The correlation function for the quantum noise is given
by Eq. (2.12) in Ref. [31] in the absence of a thermal bath.
This expression can be generalized for the case of warm
inflation, which is given by Eq. (4.7) in Ref. [31], although
obtained for a different coarse graining of the inflaton field.
From Eq. (3.6), but in momenta space and expressing that
equation in the conformal time variable, τ ¼ −½aðtÞH�−1,
we obtain that

hξqðk; tÞξqðk0; t0Þi ¼ δðkþ k0Þðττ0Þ2H4ð1þ 2nkÞ
× ½fkðτÞf�kðτ0Þð1þ nkÞ
þ f�kðτÞfkðτ0Þnk�: ðA4Þ

For the quantum noise in the slow-roll approximation,
Eq. (A3), one obtains

fkðτÞ ¼ −
3ð1þQÞ

τ

∂Wðk; τÞ
∂τ ϕkðτÞ; ðA5Þ

with

ϕkðτÞ ¼
H

ffiffiffi
π

p
2

ðjτjÞ3=2Hð1Þ
μ ðkjτjÞ; ðA6Þ

whereHð1Þ
μ ðkjτjÞ is the Hankel function of the first kind and

μ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9=4 − 3η

p
, where η is the slow-roll coefficient given

in Eq. (3.17).
Using the step filter function Wðk; τÞ ¼ Wðkþ ϵτÞ and

performing the inverse space-Fourier transform of
Eq. (A4), one obtains that

hξqðx; tÞξqðx0; t0Þi ¼ H3ϵ3

16π
jHð1Þ

μ ðϵÞj2ð1þ 2n~kÞ

×
sin½ϵaðtÞHjx − x0j�
ϵaðtÞHjx − x0j δðt − t0Þ; ðA7Þ

where

n~k ¼
1

exp ðϵH=TÞ − 1
: ðA8Þ

One particularly convenient choice for ϵ is ϵ ¼ 1=ð2πÞ,
which introduces the ratio TH=T in the particle distribution,
where TH ¼ H=ð2πÞ is the Gibbons-Hawking temperature,
and warm and cold inflation regimes can be naturally
defined in terms of TH, T > TH and T < TH, respectively.
For this choice of ϵ and due to the fact that the slow-roll
coefficient η is very small during inflation, one can
approximate Eq. (A7) to

hξqðx; tÞξqðx0; t0Þi

¼ H3

4π2
ð1þ 2n~kÞ

sin½aðtÞTHjx − x0j�
aðtÞTHjx − x0j δðt − t0Þ: ðA9Þ

To obtain the Fokker-Planck diffusion coefficient, we
need to rewrite Eq. (A1) in the form of Eq. (3.7). The
coefficients are obtained by multiplying the noises, whose
correlation function are given by δðt − t0Þ (with the proper
normalizations considered). In addition, we take the limit
of one worldline x ¼ x0. In this case, the quantum noise
becomes simply

ηq ¼
H3=2

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2n~k

p
ζq; ðA10Þ

and we obtain hζqðtÞζqðt0Þi ¼ δðt − t0Þ. On the other hand,
the thermal correlation Eq. (A2) involves a spatial Dirac-
delta function, δ3ðx − x0Þ, and a a−3 factor. Since we want
the correlation function accumulated in one Hubble time,
Δt ≈H−1, one obtains a−3 ¼ exp ð−3HΔtÞ ≈ 20. On the
other hand, one notice that δ3ðx − x0Þ corresponds to an
inverse volume factor. The natural volume to be taken is the
de Sitter volume of the horizon, VH, which we obtain using
the length scale ≈H−1, and associate it with the spatial
Dirac delta, δðx − x0Þ → 1=VH ¼ 1=ð 4π

3H3Þ. Therefore, one
can approximate the correlation function for the thermal
noise ηT , Eq. (A2), as
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hηTðtÞηTðt0Þi ¼
H3

4π2
πQ

10ð1þQÞ2
�
T
H

�
δðt − t0Þ: ðA11Þ

From this result, we can rewrite

ηT ¼ H3=2

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πQ

10ð1þQÞ2
�
T
H

�s
ζT; ðA12Þ

and where hζTðtÞζTðt0Þi ¼ δðt − t0Þ.
From Eqs. (A1), (A10), and (A12), one obtains

_φ ¼ −
V;φ

3Hð1þQÞ þ
H3=2

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2nk

p
ζq

þH3=2

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
T
H

�
πQ

10ð1þQÞ2
s

ζT; ðA13Þ

which, compared to Eq. (3.7), finally gives

Dð2Þ ¼ Dð2Þ
ðvacÞ þDð2Þ

ðdissÞ

¼ H3

8π2

�
1þ 2nk þ

πQ
10ð1þQÞ2

�
T
H

��
: ðA14Þ

APPENDIX B: NUMERICAL ANALYSIS

In order to perform the numerical analysis, we have
integrated the background equations along with the Fokker-
Planck coefficients. The background equations of warm
inflation in the slow-roll approximation (SRA), Eqs. (3.15)
and (3.16), can be suitably rewritten in terms of the number
of e-folds Ne as

dϕ=MP

dNe
¼ −

�
ϕ

MP

�
κ

ð1þQÞ ; ðB1Þ

d lnQ
dNe

¼ 1

ð1þ 7QÞ ð10ϵ − 6ηþ 8κÞ; ðB2Þ

dlnðT=HÞ
dNe

¼ 2

ð1þ7QÞ
�
2þ4Q
1þQ

ϵ−ηþ1−Q
1þQ

κ

�
; ðB3Þ

where κ ¼ M2
PðV;ϕ=ϕ

V Þ. From these equations, the second
and third ones are given specifically for the dissipation term
ϒ considered in this work, Eq. (3.22).
These SRA equations for the chaotic potential,

Eq. (3.20), are given by

dϕ=MP

dNe
¼ −

2n
1þQ

�
ϕ

MP

�
−1
; ðB4Þ

d lnQ
dNe

¼ 4nð7 − nÞ
1þ 7Q

�
ϕ

MP

�
−2
; ðB5Þ

d lnðT=HÞ
dNe

¼ 8nð1þ nQÞ
ð1þQÞð1þ 7QÞ

�
ϕ

MP

�
−2
; ðB6Þ

while for the hilltop potential, Eq. (3.21), these are given by

d lnϕ=MP

dNe
¼ jγj

1þQ

ð ϕ
MP

Þ2n−2

1 − jγj
2n ð ϕ

MP
Þ2n

; ðB7Þ

d lnQ
dNe

¼ −
γ

1þ 7Q

ð ϕ
MP

Þ2n−2

1 − jγj
2n ð ϕ

MP
Þ2n

×

"
14 − 12n −

5jγjð ϕ
MP

Þ2n

1 − jγj
2n ð ϕ

MP
Þ2n

#
; ðB8Þ

d lnðT=HÞ
dNe

¼ −
2jγj

1þ 7Q

ð ϕ
MP

Þ2n−2

1 − jγj
2n ð ϕ

MP
Þ2n

×

"
2

1þQ
− 2n −

1þ 2Q
1þQ

jγjð ϕ
MP

Þ2n

1 − jγj
2n ð ϕ

MP
Þ2n

#
:

ðB9Þ

In terms of the dimensionless variables,

L ¼ v; ðB10Þ

Q ¼ ϒ0=3L; ðB11Þ

ϵ ¼ 1

2
ðV;x=VÞ2; ðB12Þ

η ¼ V;xx=V; ðB13Þ

κ ¼ ðV;x=xÞ=V; ðB14Þ

the dimensionless versions of the SRA equations presented
above keep their forms, except for the identification of
the dimensionless inflaton field x ¼ ϕ=MP. In terms of
these variables, the dimensionless Fokker-Planck coeffi-
cients Dð1Þ and Dð2Þ, Eqs. (3.25) and (3.26), are given,
respectively, by

dð1Þ ¼ −
v;x

2nLð1þQÞ ; ðB15Þ

dð2Þ ¼ λ

12n2
L3

8π2

�
1þ 2

eL=T
0 − 1

þ
�
T 0

L

�
πQ

10ð1þQÞ2
�
;

ðB16Þ

where
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Dð1Þ ¼
ffiffiffiffiffiffi
λ

6n

r
M2

pdð1Þ; ðB17Þ

Dð2Þ ¼
ffiffiffiffiffiffiffiffi
2nλ
3

r
M3

pdð2Þ: ðB18Þ

The FDR condition given in the main text, Eq. (2.3), in
terms of the dimensionless variables becomes

v0ðxÞ
L2ð1þQÞ≪

ffiffiffiffiffiffi
λ

6n

r
L
2π

�
1þ 2

eL=T
0−1

þ
�
T 0

L

�
πQ

10ð1þQÞ2
�
1=2

:

ðB19Þ

The FDR ends when this equation becomes an equality,
which provides us with the value x ¼ xth for which this

regime ends. This is the dimensionless version of φ ¼ φth,
x ¼ xth that we have used in our results.
We have analyzed eternal inflation with the concomitant

study of φth and Nth when varying the dissipation ratio Q�.
This has been done by integrating the background SRA
equations backwards from the end of inflation (given by
the slow-roll parameters) for our chosen Q� interval (by
choosing a suitable Qf value). Since eternal inflation
occurs from the beginning of inflation until some
x¼xth, we perform a backwards loop on the number of
e-folds for Eq. (B19) from xf (where the FRD condition is
not satisfied) until the FDR condition becomes an equality,
obtaining x ¼ xth. Finally, the value of the number of e-
folds at x ¼ xth gives us Nth. This procedure is repeated for
each value of Q�, and we obtain the functional relations
φ ¼ φthðQ�Þ and N ¼ NthðQ�Þ.
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