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The linear halo bias is the response of the dark matter halo number density to a long-wavelength
fluctuation in the dark matter density. Using abundance matching between separate universe simulations
which absorb the latter into a change in the background, we test the consistency relation between the
change in a one-point function, the halo mass function, and a two-point function, the halo-matter cross-
correlation in the long-wavelength limit. We find excellent agreement between the two at the 1%–2% level
for average halo biases between 1≲ b̄1 ≲ 4 and no statistically significant deviations at the 4%–5% level
out to b̄1 ≈ 8. The halo bias inferred assuming instead a universal mass function is significantly different
and inaccurate at the 10% level or more. The separate universe technique provides a way of calibrating the
linear halo bias efficiently for even highly biased rare halos in the Λ cold dark matter model. Observational
violation of the consistency relation would indicate new physics, e.g. in the dark matter, dark energy, or
primordial non-Gaussianity sectors.
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I. INTRODUCTION

Dark matter halos, which host observable galaxies and
galaxy clusters, are biased tracers of the underlying dark
matter density field of the large-scale structure of the
Universe [1]. Therefore, understanding the mass, redshift,
and scale dependence of halo bias is important for
extracting cosmological information, on e.g. dark energy,
massive neutrinos, and the statistics of the primordial
perturbations [2–5], from ongoing and future wide-area
galaxy surveys such as the Dark Energy Survey [6]; Dark
Energy Spectrograph Instrument [7]; the Subaru Hyper
Suprime-Cam/Prime Focus Spectrograph Survey [8,9]; and
ultimately Large Synoptic Survey Telescope [10], Euclid
[11], and Wide-Field Infrared Survey Telescope [12].
Whereas near the nonlinear scale a single definition of

the halo bias does not suffice due to a host of effects that
influence the clustering of halos ([13,14], see Ref. [15] for a
recent review), the linear response of dark matter halos to
the dark matter density field is much better understood. In
particular, under the peak-background split approach [16],
the halo bias can be modeled through the halo mass
function. Under the assumption that it is a universal
function of the variance of the dark matter density field,
this provides a simple expression for the halo bias [17–23].
More directly, the halo bias can be measured from the

cross-correlation of halos with the dark matter distribution
in the large-scale limit—the clustering bias [2,22,24–26].
Previous works [22,27–29] have shown that the universal
mass function bias approximates the clustering bias, at least
at the 10% level, but were inconclusive beyond this

level partly because the two biases were not always
self-consistently estimated from the mass functions and
the clustering correlations in same simulations.
References [27,28] claimed evidence for inconsistency near
this level. Consistency between the bias and the mass
function is important for dark energy tests that utilize both
the abundance and clustering of halos (e.g. Refs. [30,31]).
In this paper, we consider a related but alternative way of

understanding and calibrating the linear halo bias. As in the
peak-background split approach, the linear halo bias is
modeled as the response of the number density of halos,
or halo mass function, to a change in the background dark
matter density field. Unlike the universal mass function
implementation, this linearized change in the background
is modeled throughout the whole past temporal history of the
density fluctuation using the separate universe simulation
approach developed in Refs. [32,33] (see also Refs. [34–37]).
The induced change in the mass function yields the response
of halo number densities to the background dark matter
density, or “response bias”. Defined in this way, the response
bias is quite general in the sense that it does not assume the
universality of the halo mass function and it includes all the
effects of mergers and mass accretion that are correlated with
the background density mode. It can also be easily extended
to baryonic and galaxy formation effects using simulations
that include them.
We furthermore use a consistent set of simulations to

address whether the response bias matches the clustering
bias and also compare the results with the fitting formula of
clustering bias in Ref. [22]. Observational violation of this
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consistency relation would indicate new physics where
the dark matter, dark energy, primordial non-Gaussianity,
or other effects provide alternate means of producing
a mass function response to the dark matter density
fluctuation.
The outline of this paper is as follows. In Sec. II, we

define response bias and clustering bias in a ΛCDM
cosmology, give a brief review of the separate universe
simulation, and then propose the abundance matching
method for calibrating the response bias. We present results
and tests of the consistency of response and clustering
biases in Sec. III. We discuss the results in Sec. IV. In the
Appendixes, we present robustness checks on the bias
results and compare them with inferences from the uni-
versal mass function assumption.

II. HALO BIAS

A. Halo response vs clustering bias

Dark matter halos of a given massM are biased tracers of
the underlying dark matter density field. On large scales
where the dark matter density fluctuations δ ¼ δρm=ρm are
still in the linear regime jδj ≪ 1, we can think of biasing as
the linearized response of the halo number density to
changes in the dark matter density, implicitly of some
linear wave number k,

b1ðMÞ≡ dδh
dδ

¼ d ln nlnM
dδ

; ð1Þ

where the mass function nlnMðMÞ is the differential number
density of halos per logarithmic mass interval. We will call
this quantity the response bias.
This definition of the linear density bias is quite general

as it includes any effect that is correlated with the change
in δ, as designated by the total derivative in Eq. (1). For
example, the halo density in a given mass range can change
due to mass accretion, minor mergers, and major mergers.
A change in δ could also be correlated with changes in the
dark energy or massive neutrino density that could likewise
influence halo numbers through their impact on the history
of structure formation, e.g. the halo accretion and merger
history [4,38–41]. Intrinsic non-Gaussian correlation
between long-wavelength initial curvature fluctuations
and small-scale power in the density field can also change
the response in a scale-dependent way [2].
On the other hand, we can define the linear density bias

directly via cross-correlation of halos with the cold dark
matter distribution,

b1ðMÞ ¼ lim
k→0

Phδðk;MÞ
PδδðkÞ

; ð2Þ

where

hδ�hðkÞδðk0Þi ¼ ð2πÞ3δðk − k0ÞPhδðkÞ;
hδ�ðkÞδðk0Þi ¼ ð2πÞ3δðk − k0ÞPδδðkÞ: ð3Þ

We will call this form for b1 the “clustering bias”.
Equations (1) and (2) characterize the same physical
quantity since the mass function response can come from
any effect that is correlated with δ. Uncorrelated changes in
the halo density, e.g. from stochasticity in the bias, can
affect the autocorrelation of halos but by definition do not
change the cross-correlation.
In this paper, we focus on the most fundamental response,

that of the direct influence of the long-wavelength dark
matter density fluctuation on the halo number density in the
Lambda cold dark matter (ΛCDM) cosmology with
Gaussian initial conditions. The critical assumption that
we seek to test is the extent to which this local number
density depends only on the local mean dark matter density.
In this case, the equivalence of Eqs. (1) and (2) forms a
consistency relation between the change in a one-point
function, the halo mass function, and a two-point function,
the halo-matter cross-correlation in the long-wavelength
limit. Validation of this consistency relation would allow
two alternate means of calibrating the bias in simulations.
Observational tests of this consistency can in principle
uncover new physics beyond ΛCDM where the dark matter,
dark energy, or primordial non-Gaussianity provides alter-
nate means of producing a mass function response to δ.
Specifically, as detailed in the next section, we will use

separate universe (SU) simulations to test this consistency
relation. In this approach, the fluctuation in the dark matter
density is characterized by changes to cosmological
parameters or spatially constant background densities to
match the mean fluctuation δb ¼ δ. This should be com-
pared with the well-known peak-background or universal
mass function approach to quantifying b1 through the mass
function nlnM. Here, it is assumed that the mass function
can be described as a universal function of the peak height
ν ¼ δc=σðMÞ, the ratio of the collapse threshold of halos δc
relative to the rms linear density fluctuations in a radius that
encloses the mass M at the background density σðMÞ.
Changing the collapse threshold via shifting the back-
ground δc → δc − δb then changes the number density of
halos, providing an approximation for b1 through Eq. (1).
Both the separate universe and the universal mass

function approach seek to characterize the response bias
through replacing δ with a change in the background δb.
However, the former does not rely on the existence of a
universal mass function or the idea of a strict collapse
threshold of dark matter halos. All types of responses of the
mass function to the background, including the highly
nonlinear processes of the merger history of halos, etc., are
automatically included in the simulations. Although we
only test N-body effects and dark matter halos here, this in
principle applies to baryonic effects and galaxy tracers
through simulations that incorporate them. We present the
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separate universe approach in the main text and its
comparison to the universal mass function approach in
Sec. II B.

B. Separate universe technique

To calibrate numerically the response of the halo mass
function to a background mode, we use the SU simulation
technique [32–35]. We follow Ref. [32] and refer the reader
there for details.
In summary, the long-wavelength density fluctuation δb

is absorbed into the background density ρ̄mW of a separate
universe,

ρ̄mW ¼ ρ̄mð1þ δbÞ; ð4Þ

where the quantities with subscript “W” denote the quan-
tities in a separate universe.
The separate universe consequently has a different

expansion history, and accordingly we need to change
cosmological parameters for the flat ΛCDM cosmology, to
the first order of δb, as

δh
h
≡H0W −H0

H0

¼ − 5Ωm

6

δb
D
; ð5Þ

where the linear growth rate is normalized as
lima→0D ¼ a. Since δb=D is independent of time, the
SU is characterized by a simple constant shift in param-
eters. Similarly, the other parameters need to be changed to

δΩm

Ωm
¼ δΩΛ

ΩΛ
¼ −δΩK ¼ −2 δh

h
: ð6Þ

Thus, in the presence of a δb > 0, the properties of
smaller-scale structures including the abundance of halos
experience the accelerated growth of a closed universe.
Finally, the separate universes have to be compared at the

same time, which corresponds to a different value of the
scale factor,

aW ≃ a

�
1 − δb

3

�
: ð7Þ

Because of this difference, the SU simulations are most
naturally set up as a Lagrangian approach where the
simulation volumes match in their comoving rather than
physical volume (cf. Ref. [32] for an alternative method
that matches physical volumes at a specific time). This
splits the response of the mass function into two pieces. The
first corresponds to the change due to the growth of
structures, including processes such as shell crossing, mass
accretion, and the merger of halos,

bL1 ðMÞ≡ ∂ ln nLlnM
∂δb ¼ ∂ ln nlnM

∂δb
����
Vc

; ð8Þ

where jVc
denotes the separate universe response at fixed

comoving volume. “L” superscripts refer to that fact that
this generalizes the concept of Lagrangian bias to the whole
volume rather than individual N-body particles or halos.
The second is due to the change in the physical volume and
hence physical densities due to Eq. (7) or

∂ ln a3W
∂δb ¼ −1: ð9Þ

The sum of these two effects is then the Eulerian response
bias

b1ðMÞ≡ bL1 ðMÞ þ 1: ð10Þ

It is important to note that this is a definition and hence is
exact, rather than an approximation that relies on halo
number conservation. This is the growth-dilation derivative
technique developed in Ref. [33] as applied to the mass
function response. Calibrating the response bias with
separate universe simulations therefore amounts to deter-
mining the derivative of the Lagrangian mass function nLlnM
with respect to the background density fluctuation δb
in Eq. (8).

C. Abundance matching

Much of the response of the Lagrangian mass function
nLlnM to δb comes from small changes in the mass of
individual halos rather than a change in the net number of
halos in the volume. Therefore, measuring the response by
binning halos into finite mass ranges is very inefficient (see
Appendix A 2), since the mass change associated with a
small δb only shifts the mass of halos near bin edges.
Given the pairs of SU simulations with the same Gaussian

random fields, in principle the same halos could be identified
in each and the response calculated from the average change
in the mass. However, in practice, the identity of halos can
be easily affected by mergers. Even for those halos for which
a one-to-one correspondence exists, their change in mass is
not uniquely determined by M due to differences in the
environment around halos of the same M which introduces
scatter into the mapping. This suggests that we need to find a
statistic that does not rely on a one-to-one correspondence
between SU halos in mass of which the ensemble average
recovers the desired response in numbers.
Abundance matching of the cumulative number density

or mass function of halos above a given mass thresholdMth
provides such a statistic [42,43]. Defining

nðMth; δbÞ≡
Z

∞

Mth

dM
M

nLlnMðM; δbÞ; ð11Þ

we change the threshold MthðδbÞ to keep the cumulative
number density in the comoving volume fixed when
varying δb,
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dnðMth; δbÞ
dδb

¼ 0: ð12Þ

We use ð…;pÞ to denote a quantity for which we omit the
parameter p where no confusion should arise.
Abundance matching balances two effects to keep the

number density the same, as illustrated in Fig. 1. The first is
the boundary effect of halos moving across a threshold
shifted by s due to the change in dδb,

d lnMth ≡ sðMthÞdδb: ð13Þ

The second is the integrated change in the mass function
itself, which is the effect we want to extract for estimating
the response bias. Abundance matching sets these to be
equal,

nLlnMðMthÞsðMthÞ ¼
Z

∞

Mth

dM
M

∂nLlnM
∂δb ; ð14Þ

which also follows algebraically from Eqs. (11) and (12).
Measuring the mass shift s associated with matching the

abundance therefore provides a way of estimating the
average response bias above threshold,

b̄L1 ðMth;∞Þ≡ 1

nðMthÞ
Z

∞

Mth

dM
M

bL1n
L
lnM

¼ 1

nðMthÞ
Z

∞

Mth

dM
M

∂ ln nLlnM
∂δb nLlnM

¼ nLlnMðMthÞsðMthÞ
nðMthÞ

: ð15Þ

We emphasize that such an estimation of the response bias
does not rely on any assumption on the universality of the
halo mass function.
Note that measuring this quantity also defines the

average bias in a finite mass bin,

b̄L1 ðM1;M2Þ≡
RM2

M1
d lnMbL1n

L
lnMRM2

M1
d lnMnLlnM

¼ nLlnMðM1ÞsðM1Þ − nLlnMðM2ÞsðM2Þ
nðM1Þ − nðM2Þ

: ð16Þ

In the limit that M2 → M1 from above, this quantity is
simply the Lagrangian bias or mass function response itself
bL1 ðM1Þ and is equivalent to replacing the formal definition
in terms of derivatives,

bL1 ðMÞ ¼ − ∂s
∂ lnM − s

∂ ln nLlnM
∂ lnM : ð17Þ

with a finite difference approximation. Since the clustering
bias also must be explicitly estimated from finite mass
binning, it is in fact Eq. (16) that should be directly
compared with it. As a shorthand convention, we plot
the average bias in a bin as

bL1 ðMÞ ≈ b̄L1 ðM1;M2Þ ð18Þ

using the average mass of halos in the bin

M ≡
RM2

M1
d lnMMnLlnMRM2

M1
d lnMnLlnM

: ð19Þ

Following our notational convention, we also take

b̄L1 ðMÞ ¼ b̄L1 ðM;∞Þ ð20Þ

when no confusion will arise.
To measure these response bias quantities directly, we

need the estimators of the cumulative mass function nðMÞ,
the threshold mass shift sðMÞ, and the differential mass
function nLlnMðMÞ in the Lagrangian volume. We consider
their explicit construction in Sec. III C.

III. METHODOLOGY AND RESULTS

In this section, we describe the methodology to calibrate
the model ingredients needed to estimate response and
clustering halo biases using suites of simulations in the
fiducial cosmology and its separate universe pairs. We then
show the main results that establish their consistency.

A. Simulations

We simulate the fiducial ΛCDM cosmology specified in
Table I. Each pair of separate universe simulations has the

FIG. 1. Abundance matching relates the number density
weighted bias above threshold mass Mth to the shift of that
threshold. The halo abundance above Mth grows in proportion to
the bias function when increasing δb, which we can compensate
by moving Mth accordingly. This figure graphically illustrates
Eq. (14).
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same realizations of the initial Gaussian random density
field, in order to reduce the sample variance in the change
of the mass function.
We set up the initial conditions using CAMB [44,45],

and 2LPTIC [46], with 10243 particles at ai ¼ 0.02. We
then employ L-Gadget2 [47] with a 20483 TreePM grid
to produce the simulations. For calibrating the response
bias, we employ Nsim ¼ 32 simulations with Vc ¼
ð500 Mpc=0.703Þ3 for each of 3 δb ¼ 0, �0.01 at z ¼ 0.
The separate universe variations all have the same comov-
ing volume Vc in Mpc3 (see Sec. II B).
The δb ¼ �0.01 pairs are used in abundance matching,

and the δb ¼ 0 simulations are used to calibrate the mass
function (see Sec. II B). Since measuring the clustering bias
for rare high mass halos requires more numbers than the
response bias, we supplement these with Nsim ¼ 25 sim-
ulations with Vc ¼ ð1 Gpc=0.703Þ3 fiducial simulations at
δb ¼ 0. The particle masses for the two box sizes are
1.4 × 1010M⊙ and 1.1 × 1011M⊙ respectively, which limits
the minimum halo mass that we can robustly identify as we
shall now discuss.

B. Halo finding and catalog

While the choices made in halo finding can affect the
mass function and bias results, for tests of the correspon-
dence between the SU response bias and clustering bias,
what is important is that we apply the same halo finding
technique to each. In practice, we use an algorithm similar
to that in Ref. [48] to identify halos as spherical overdense
regions centered around local density peaks as we now
describe.
We first locate local density maxima by assigning

particles to a 10243 grid, using the nearest-grid-point
scheme. We find local density maximum grid points that
are denser than their six immediate neighbors. Starting at
the center of mass associated with each local maxima, we
grow a halo until the enclosed mass reaches an effective
overdensity of

ΔW ¼ Δ
1þ δb

¼ 200

1þ δb
ð21Þ

defining a trial radius rtr. The 1þ δb factor makes sure that
the spherical overdensity is 200 times the global mean
matter density. We refine the center of the halo by locating
the center of mass iteratively in shrinking radii from rtr=3
to rtr=15 or until only 20 particles remain. We then regrow
the halo around this center until the overdensity criteria
Eq. (21) is exactly satisfied, with sub-particle resolution. To

achieve this, we assume the mass of the last particle is
uniformly distributed in a spherical mass shell lying
between the last two particles and interpolate to the exact
radius r. The mass of all particles within r gives the halo
mass M.
Each simulation provides a catalog of the positions and

masses of these halos. We ignore halos with< 100 particles
when creating the catalog. We retain halos with 100–400
particles to eliminate edge effects in the mass function
determinations below but only report results for halos with
≥ 400 particles [48] (see also Appendix A 3). To remove
subhalos in the catalog, starting from the most massive
halos, we compare pairs of halos in descending order in
mass and discard the smaller halo of the pair if the center of
one resides in the other.

C. Halo mass functions and mass shift

As discussed in Sec. II C, we measure the response bias
through an abundance matching technique to reduce the
shot noise in its determination. This technique requires us
to estimate the cumulative and differential mass function in
the fiducial model as well as the mass shift from matching
the �δb pairs of SU simulations. We show here that these
can be robustly estimated without binning the halo catalogs
in mass. Coarse binning would miss the small changes in
mass due to δb, whereas fine binning would be subject to
severe shot noise.
We start by combining the halo catalogs of all Nsim

simulations of the same δb and Vc into a single halo catalog
ordered from highest to lowest mass i > j for Mi < Mj
with total number Ntot. We construct a table for the
cumulative abundance above a given mass object in the
catalog as

lnM ¼ ½lnM1;… lnMNtot
�T;

n ¼ ½1=2;…; Ntot − 1=2�T
NsimVc

; ð22Þ

which we will denote as the data vector nðlnM; δb; VcÞ.
Here, we count the halo with mass Mi as one-half above
and one-half below Mi due to discreteness and recall Vc is
the comoving volume in Mpc3 and is fixed in the
SU simulations when varying δb.
Next, we construct a data vector of mass shifts by

abundance matching. Since we have rank ordered the
vector from highest to lowest mass, at a given i, the
abundances match by definition

niðlnMþ
i ;þδb; VcÞ ¼ niðlnM−

i ;−δb; VcÞ ð23Þ

but relate to different masses. Note that the total length of
the vectors can differ, and so the matching stops at
i ¼ minðNþ

tot; N
−
totÞ. We then form the elements of the mass

shift data vector as

TABLE I. Parameters of baseline flat ΛCDM model [5].

Ωm Ωb h ns σ8

0.310 0.04508 0.703 0.964 0.785
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si ¼
lnMþ

i − lnM−
i

2δb
;

lnMi ¼
lnMþ

i þ lnM−
i

2
; ð24Þ

which we denote as sðlnM;VcÞ.
We then estimate the underlying smooth functions

n̂ðlnM; δb ¼ 0; VcÞ and ŝðlnM;VcÞ from these data
vectors using the penalized spline technique described in
detail in Appendix A 1, with two spline knots per dex in
mass

ln n̂ðlnMÞ ¼ SflnnðlnMÞg; ð25Þ

ŝðlnMÞ ¼ SfsðlnMÞg; ð26Þ

where Sfg denotes the smoothing operator. Finally, we
estimate the differential mass function as the derivative of
n̂ðlnMÞ,

n̂lnMðlnMÞ ¼ − dn̂ðlnMÞ
d lnM

: ð27Þ

Using mock catalogs drawn from a known mass function,
we demonstrate in Appendix A 1 that the bias of estimators
in Eqs. (25) and (27), if any, is better than the subpercent
level and much smaller than the statistical error. To quantify
the statistical error, we sample with replacement from the
Nsim simulations to make a bootstrap resampled construc-
tion of n̂, ln n̂lnM, and ŝ. By repeating this procedure 100
times, we measure the bootstrap error as the standard
deviation of the resamples.
We present the mass function measurement in Fig. 2 as

well as the fitting function from Ref. [48], with the latter
labeled as “T08” in this paper. Their difference is con-
sistent with the stated precision of the fitting formula but
is typically much larger than the bootstrap error. Figure 3
shows the mass shift estimate from all pairs of separate
universe simulations. The bootstrap error is of the order
of a few percent or better over the mass range
6 × 1012 ∼ 2 × 1015M⊙. Note the turn located between
1014M⊙ and 1015M⊙ corresponds to the transition
between polynomial and exponential regions in the halo
mass function in Fig. 2.

D. Response vs clustering bias

From the estimates of the mass functions and the shift of
threshold mass, we construct the response bias cumulative
from a threshold b̄1ðMÞ ¼ b̄1ðM;∞Þ using Eq. (15) as
shown in Fig. 4. We compare this result to the fitting
formula for b1ðMÞ from Ref. [22] integrated over the self-
consistent mass function from Ref. [48]. Our results are
systematically low by ∼2% at the low mass end and differ
by up to 6% at the high mass end.

In Fig. 5, we show the average bias in five logarithmi-
cally spaced mass bins per dex plotted as b1ðMÞ ¼
b̄1ðM1;M2Þ using Eqs. (16) and (18). We compare this
to the unbinned b1ðMÞ from Ref. [22] for reference.
To calibrate clustering bias, we follow Eq. (2) and

measure the auto matter power spectrum Pδδ and the cross
halo-matter power spectrum Phδ. We bin halos in either the

FIG. 2. Cumulative (thick solid green) and differential (thin
solid blue) mass functions at z ¼ 0 calibrated by penalized-spline
smoothing the cumulative number density of all ð500 Mpc=hÞ3
fiducial simulations. Shaded regions show the standard deviation
of bootstrap resamples. The T08 fitting mass functions [48]
(dashed black) are also shown for reference with the lower panel
showing the difference for each case.

FIG. 3. Threshold mass shift as a response of varying δb at fixed
cumulative abundance at z ¼ 0. The solid blue line and shaded
region show the smoothed estimate and the bootstrap error.
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same five logarithmic mass bins per dex or cumulative
above threshold and assign the particles or halos in each bin
to a 2563 grid with the cloud-in-cell (CIC) scheme and
apply the Fast Fourier Transform (FFT) before deconvolv-
ing the CIC window.
For halos in a mass bin ½M1;M2�, we can estimate the

clustering bias following Eq. (2),

ˆ̄b1ðM1;M2Þ ¼
P

jkj<kmax
hδ�hðkÞδðkÞiP

jkj<kmax
hδ�ðkÞδðkÞi ; ð28Þ

where the average is over the Nsim simulations of the same
volume. This quantity matches its response bias analog in
Eq. (16) since linearity in δh implicitly weights the statistic
by number density. We only use large-scale modes up to
kmax ¼ 0.03h=Mpc and show the scale dependence on kmax
in Appendix A 3. We conclude that kmax is at most a source
of systematic error that is comparable to our statistical error.
Given the lack of high mass halos in the ð500 Mpc=hÞ3

simulation volumes, we combine these estimates with the
ð1 Gpc=hÞ3 simulations according to the expected inverse
shot variance weight, i.e. eight times higher weight for the
larger volume simulations down to their eight times higher
minimummass. In Appendix A 3, we show results from the
two sets separately to test for resolution and volume effects.
To estimate the errors, we bootstrap resample with the Nsim
of each set.
We compare the clustering and response bias in Figs. 4

and 5. The agreement in the 1≲ b̄1 ≲ 4 region is an

excellent 1%–2%. For the higher bias of rarer halos, the
statistical errors for both quantities increase, but the agree-
ment is better than the 4%–5% level for b̄1 ≲ 8. The bias in
mass bins is slightly noisier but still consistent within the
bootstrap errors for 1≲ b1 ≲ 8.
In addition to abundance matching, we also measure the

response bias directly from the change of number counts in
the same set of mass bins. We present the comparison
between the two methods in Appendix A 2, both to
demonstrate the robustness of abundance matching and
to show its statistical efficiency.

IV. DISCUSSION

The linear halo bias is the response of the halo number
density to a change in the long-wavelength dark matter
density as manifest in the cross-correlation between the
clustering of halos and the dark matter. In this paper, we
have used the separate universe simulation technique to
calibrate the response bias of halos by treating the long-
wavelength density mode as a change in the background
density in a separate universe. By using pairs of SU
simulations with the same realizations of the initial
Gaussian random seeds, we can reduce sample variance
effects when comparing the mass functions in two separate
universes.
Rather than comparing the mass functions at each mass

bin in the SU simulations, we introduced an alternative
method, the abundance matching method for the compari-
son, where we adjust the mass threshold so as to have the

FIG. 4. Average bias for halos with mass > M. The solid blue
line and shaded area show the SU response bias with bootstrap
errors, whereas the dashed red line and shaded area show the same
for the clustering bias. The dotted line shows the bias of T10 [22]
integrated over the mass function of T08 [48] for comparison.

FIG. 5. Average bias for halos in mass bins. Blueþ points show
the SU response bias with bootstrap errors centered on average
masses (19), and red × points show the same for the clustering
bias. The dotted line shows the fitting formula of the clustering
bias from T10 [22].
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same cumulative abundance of halos above the mass
threshold in the separate universes. We show how to
calibrate the response bias from the mass threshold shift
and the mass functions. The method can robustly extract the
effect of subtle changes in the mass of individual halos,
caused by the different merger and accretion histories in the
paired SU simulations, and thus outperform the direct
method by a factor of 3–5 in statistical power.
We found agreement between the response and cluster-

ing biases at the 1%–2% level for average biases 1≲ b̄1 ≲ 4
and no significant deviations at the 4%–5% level out to
b̄1 ∼ 8. This excellent agreement provides a precise test of
the consistency relation between the changes in a one-point
function, the halo mass function, and a two-point function,
the halo-matter cross-correlation in the large-scale limit that
can in principle test for new physics in the dark matter, dark
energy, or primordial non-Gaussianity sectors. Our results
are systematically lower than the bias given by the T10
fitting formula [22] by 2% and differ by up to 6% at high
mass end.
Our method can be easily extended to including other

effects in halo bias beyond the flat ΛCDM cosmology. It
would be straightforward to apply SU techniques in cos-
mological hydrodynamical simulations for studying effects
of baryonic physics on the large-scale halo bias. Further,
massive neutrinos and/or dark energy change the growth of
long-wavelength dark matter perturbation and will in turn
cause changes in the response of the halo mass function.
Primordial non-Gaussianity causes additional mode cou-
pling between the long- and short-wavelength modes,
inducing a characteristic scale-dependent effect on the halo
bias at large scales [2]. Different halos of the same mass can
have different large-scale bias if the halos experience differ-
ent assembly histories—the so-called assembly bias [39,49].
A generalization of the SU simulation technique can give a
better handle on calibrating these modifications in the halo
bias by reducing the sample variance effects for both the
long-wavelength and short-wavelength modes.
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APPENDIX A: ROBUSTNESS OF TECHNIQUES

In this Appendix, we describe our smoothing procedure
and demonstrate its robustness when applied as a mass
function estimator in Appendix A 1. Appendix A 2 shows
the robustness and statistical power of the abundance
matching technique compared with the direct measurement
of abundance changes in fixed mass bins. We test the
dependence of the clustering bias on kmax, the resolution,
and the volume in Appendix A 3.

1. Spline smoothing robustness

The halo abundance and mass shift measured from a
simulation are defined at a discrete set of masses of its
constituent halos. Instead of the commonly adopted method
that bins the noisy data in mass, we smooth the cumulative
mass function and mass shift and demonstrate its advantage
and robustness below.
Among all the twice differentiable functions that model

our discrete observations ðxi; yiÞ, i ¼ 1;…; n, we look for
the fðxÞ ¼ f̂ðxÞ that minimizes

Xn
i¼1

½yi − fðxiÞ�2 þ λ

Z
xn

x1

f00ðxÞ2dx: ðA1Þ

The first term is the residual sum of squares, which
encourages f̂ðxÞ to fit the data well, while the second
one is a penalty term that suppresses variability. The non-
negative smoothing parameter λ controls the tradeoff
between fidelity and smoothness or bias and variance.
When λ ¼ 0, the resulting f̂ðxÞ becomes the interpolating
spline, while when λ → ∞, it converges to the linear least
squares.
It can be shown that the solution that minimizes Eq. (A1)

is a natural cubic spline with knots at xi (see e.g. Ref. [50]),
known as a smoothing spline. This procedure is non-
parametric but is computationally intense for a large
number of data points. In practice, we can greatly improve
the performance and avoid overfitting by using a smaller
number of knots. This latter approach is sometimes referred
to as the penalized spline.
Consider the function estimates of the form

fðxÞ ¼ βTbðxÞ≡Xm
j¼1

βjbjðxÞ; ðA2Þ

where bTðxÞ≡ ½b1ðxÞ;…; bmðxÞ� are the basis functions
for natural cubic splines with m knots. So we can write
Eq. (A1) in terms of the bases

jy −Bβj2 þ λβTΩβ; ðA3Þ
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where Bij ≡ bjðxiÞ and Ωjk ≡ R
bj00ðxÞbk00ðxÞdx, with i ¼

1;…; n and j; k ¼ 1;…; m. The coefficients βT ≡
½β1;…; βm� that minimize Eq. (A3) are

β̂ ¼ ðBTBþ λΩÞ−1BTy; ðA4Þ

and thus our function estimate

f̂ðxÞ ¼ bTðxÞðBTBþ λΩÞ−1BTy

≡ SfyðxÞg; ðA5Þ

where Sfg denotes the smoothing operator that maps
discrete data to the estimate of a continuous function.
The fitted values at xT ≡ ½xi;…; xn� are

ŷ ≡ f̂ðxÞ ¼ Sy; ðA6Þ

where the matrix S≡BðBTBþ λΩÞ−1BT acts linearly on
the data yT ≡ ½yi;…; yn�.
To avoid either overfitting or oversmoothing, we

choose the smoothing parameter λ by cross-validation.
Specifically, the criterion of the leave-one-out cross-
validation (LOOCV) is widely used [50]. In LOOCV,
we successively take each data point i as a validation point
for the smoothing operation trained on the remaining n − 1
data points. We choose the value of λ that minimizes the
sum over the squared residuals for these points,

Xn
i¼1

½yi − f̂ð−iÞλ ðxiÞ�2 ¼
Xn
i¼1

�
yi − f̂λðxiÞ
1 − ½Sλ�ii

�
2

; ðA7Þ

where the superscript ð−iÞ indicates the fit leaving the ith
observation ðxi; yiÞ out and the subscript λ makes the λ
dependence explicit. The equality in Eq. (A7) [50] allows
this procedure to be performed without explicitly obtaining

f̂ð−iÞλ for each point.
In this paper, we utilize this penalized spline method to

smooth discrete data sets, including halo catalogs in
fiducial simulations and the shift of the threshold mass
when matching the abundance between paired separate
universe simulations. This procedure avoids problems with
binning halos in mass as well as taking derivatives of
noisy data.
To verify the robustness, we test our smoothing estimator

on mock data, drawn from a known distribution. For this
purpose, we use the fitting formula for the halo mass
function in Ref. [48] to generate 1000 mock catalogs. The
minimum mass in the catalogs is 1.4 × 1012M⊙, corre-
sponding to the smallest halos that our halo finder keeps
(100 particles). We also introduce a maximum mass
1016M⊙ since there is a negligible probability of obtaining
even one such halo in the ΛCDM cosmology. We populate
catalogs with total number N̂halo drawn from a Poisson
distribution, with the mean as the mean number of halos in

a volume of 4 Gpc3=h3, the same as that of all fiducial
simulations combined. For each halo in the catalog, we use
the inverse cumulative distribution function algorithm to
draw its mass and form a realization of the cumulative
number density niðlnMiÞ.
We employ the smoothing algorithm described above to

provide an estimate of the underlying smooth function
n̂ðlnMÞ from the discrete data. The smoothing function
needs to handle both the polynomial and exponential regions
of the mass function. To achieve this, we take the natural
logarithm of both the cumulative number density ni and the
mass Mi, i ¼ 1;…; N̂halo, before applying the smoothing
operation in Eq. (A5) with 2 knots per dex in mass

ln n̂ðlnMÞ ¼ SflnnðlnMÞg; ðA8Þ

where n̂ðlnMÞ is the function estimate. Thus, we can
estimate the mass function by taking the derivative of the
smooth cumulative mass function estimator

n̂lnMðlnMÞ ¼ − dn̂ðlnMÞ
d lnM

: ðA9Þ

Note that we include halos with 100–400 particles for
smoothing, to avoid the enhanced error near the edge, but
only trust and present results for halos with ≥ 400 particles.
We set up the robustness test to exactly parallel to our

estimation of halo mass functions. Figure 6 shows that the
bias of the smoothing estimator, if any, is at the subpercent
level, much smaller than the statistical error per catalog.

2. Abundance matching robustness
and performance

In Sec. II C, we demonstrate the abundance matching
technique for the response bias calibration from separate
universe simulations and show the results in Sec. III C.
Abundance matching efficiently makes use of the mass
information of almost all the halos, whereas in a direct
measurement of abundance changes within a set of fixed
mass bins, only halos near bin edges are shifted into
neighboring bins and counted. Here, we compare the bias
measured with both methods, from the same set of
simulations, both as a test of robustness of abundance
matching and as a demonstration of its statistical power.
Let us denote the number counts of halos with mass in

½M1;M2� in all separate universe realizations of the same δb
and Vc by ΔNðþδb; VcÞ and ΔNð−δb; VcÞ. Following
Eq. (1), the average bias in this mass bin is

ˆ̄b1ðM1;M2Þ ¼
lnðΔNðþδb; VcÞ=ΔNð−δb; VcÞÞ

2δb
: ðA10Þ

We show the response bias by both methods in Fig. 7,
where the statistical consistency verifies the robustness of
the abundance matching technique. Its advantage over the
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direct calibration is obvious with the greatly reduced errors
by a factor of 3–5.

3. Clustering bias robustness

The calibration of the clustering bias depends on the kmax
cut on the large-scale modes as well as the resolution and
volume of the simulations. Repeating the bias estimation in
Eq. (28) with different kmax, we present the scale depend-
ence in Fig. 8 for Vc ¼ ð500 Mpc=hÞ3 and Vc ¼
ð1 Gpc=hÞ3 separately. As kmax approaches the nonlinear
scale, the bias increases with kmax for the most massive
halos and slightly decreases for ≲1013M⊙ halos, similar to
the trend demonstrated in Fig. 2 of Ref. [51]. These trends
are also stable between the two volumes which have
different mass resolutions.
In the main text, we compromise between losing modes,

increasing the statistical errors, and using more modes
but increasing the systematic bias by choosing kmax;fid ¼
0.021 Mpc−1. Taking the measurement with this choice as
the fiducial values, we can quantify the possible systematic
bias of using a different kmax by the deviation averaged over
mass bins,

1

Nbin

XNbin

i

½b1ðMi; kmaxÞ − b1ðMi; kmax;fidÞ�2
σb1ðMi; kmax;fidÞ2

: ðA11Þ

FIG. 7. Abundance matching robustness and efficiency. Blue þ
points show the response bias with bootstrap errors centered on
average masses [Eq. (19)] by abundance matching, and grey •
points show the same by the direct measurement of abundance
changes within fixed mass bins. The two methods give consistent
results, while the former has much reduced errors by a factor of
3–5. The dotted line shows the fitting formula of the clustering
bias from T10 [22].

FIG. 6. Robustness of the smoothing procedure verified by
comparing smoothed abundance estimates from 1000 mocks
drawn from the fitting mass function T08 [48] to the function
itself (solid). We generate each mock catalog for halos between
1.4 × 1012M⊙ and 1016M⊙, in a volume of 4 Gpc3=h3, the same
as that of all fiducial ð500 Mpc=hÞ3 simulations combined.
Lines and shaded regions show the mean and scatter of the
estimated cumulative (thick green) and differential (thin blue)
mass functions.

FIG. 8. Dependence of clustering bias calibration on kmax, in
the Vc ¼ ð500 Mpc=hÞ3 simulations (solid, shaded) and Vc ¼
ð1 Gpc=hÞ3 (dashed, hatched) at z ¼ 0. Shown are the mean
and bootstrap errors for the 0.2 dex mass bins centered from
7.9 × 1012M⊙ to 1.2 × 1015M⊙. Larger kmax gives more modes
and thus smaller variance but also introduces bias due to scale
dependence approaching the nonlinear scale. We choose to use
modes below the dashed line (see the text for discussion of
robustness).
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For Vc ¼ ð500 Mpc=hÞ3, the k range where this average
variance is below 1 is from 0.013 Mpc−1 to 0.03 Mpc−1;
for Vc ¼ ð1 Gpc=hÞ3, there is a very similar range from
0.015 Mpc−1 to 0.035 Mpc−1. Given the substantial range
in the linear regime over which results are stable, we
conclude that the systematic error due to kmax is at most
comparable to our statistical error.
With the fiducial kmax;fid ¼ 0.021 Mpc−1, we show in

Fig. 9 the results for b1ðMÞ of the two volume types
separately. In the main text, we combined the volumes
(cf. Fig. 5). For most of the mass bins, the clustering bias
measured from the large ð1 Gpc=hÞ3 volume simulations
agrees well with that from the small ð500 Mpc=hÞ3 ones,
confirming that 400 particles are enough to resolve halos
for estimating the clustering bias. The small volume
estimates fluctuate substantially at the high mass end
due to having very few high mass halos in such volumes.
In fact, the high point at ∼8 × 1014M⊙ can be traced back
to Fig. 8 as a statistical fluctuation of the kmax;fid ¼
0.021 Mpc−1 modes that is not present at higher kmax.

APPENDIX B: Universal mass function

As explained in Sec. II A, the response bias is often
approximated by assuming a universal mass function
(UMF) rather than the more exact separate universe
approach introduced in the main text. In addition to the
universality assumption, the mass function is typically fit to
a specific functional form motivated by spherical collapse
and the excursion set approach (e.g. Refs. [22,27]).

To separate the roles of these assumptions, we calibrate
the universal form nonparametrically and compare the
results to the clustering bias, both measured from the same
halo catalog.

1. UMF response bias

The universality assumption restricts the halo mass
function in the following form,

nlnMðMÞ ¼ ρ̄m
M

νfðνÞ ∂ ln ν
∂ lnM ; ðB1Þ

where the multiplicity function νfðνÞ captures the mass
fraction (per ln ν) contained in halos of peak height
ν≡ δc=σðMÞ. Here, δc is the linear threshold of spherical
collapse and is usually taken as the Einstein-de Sitter value
δc ¼ 1.686 due to its weak cosmology dependence. The
rms of the linear density fluctuation is computed as usual,

σ2ðMÞ ¼
Z

d3k
ð2πÞ3 PlinðkÞjWðkRÞj2; ðB2Þ

where M ¼ 4πρ̄mR3=3 is the enclosed mass, PlinðkÞ is the
linear power spectrum, and the top-hat window function is

WðxÞ ¼ 3

x3
ðsin x − x cos xÞ: ðB3Þ

In the UMF response bias approach, the shift in the
background density is viewed as an effective change in the
collapse threshold δc → δc − δb or in the peak height

ν ¼ δc − δb
σ

: ðB4Þ

Thus, the linear bias becomes

nlnMbL1 ¼ ρ̄m
M

∂
∂δb

�
νfðνÞ ∂ ln ν

∂ lnM
�

¼ −
ρ̄m
M

1

δc

dνfðνÞ
d ln ν

∂ ln ν
∂ lnM

¼ −
∂μnlnM
∂ lnM − μnlnM; ðB5Þ

where we have introduced a shorthand,

μ ¼ 1

δc

� ∂ ln ν
∂ lnM

�−1
; ðB6Þ

and the average UMF bias above Mth becomes

FIG. 9. Clustering bias robustness to simulation volume Vc ¼
ð500 Mpc=hÞ3 (small) and ð1 Gpc=hÞ3 (large). Overlapping
points show the level of robustness to the 400 particle criteria
for the minimum halo mass in the large volume and fluctuations
due to the lack of high mass halos in the small volume.
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b̄L1 ðMthÞ≡ 1

nðMthÞ
Z

∞

Mth

dM
M

bL1nlnM

¼ μðMthÞnlnMðMthÞ
nðMthÞ

− μ̄ðMthÞ;

μ̄ðMthÞ≡ 1

nðMthÞ
Z

∞

Mth

dM
M

μnlnM: ðB7Þ

Given b̄L1 ðMthÞ, we can difference to get the average bias in
a finite mass bin,

b̄L1 ðM1;M2Þ≡
RM2

M1
d lnMbL1nlnMRM2

M1
d lnMnlnM

¼ b̄L1 ðM1ÞnðM1Þ − b̄L1ðM2ÞnðM2Þ
nðM1Þ − nðM2Þ

: ðB8Þ

We should emphasize that Eqs. (B7) and (B8) describe a
nonparametric procedure to calibrate the UMF response
bias quantities. In deriving them, we do not assume any
functional form for the multiplicity function νfðνÞ
(cf. Refs. [22,27]), as such assumptions can introduce a
systematic bias into the measurement. On the other hand,
by doing so, we can no longer make the connection to
excursion set methods based on either a fixed or moving
barrier [19].
Similar to the SU response bias calibration, here we

also need the cumulative and differential mass functions.

FIG. 10. Robustness of the UMF response bias estimator
verified using 1000 mock catalogs of the Sheth-Tormen (ST)
mass function compared with the analytic ST bias. The dotted-
dashed line shows the mean of the estimated b̄1 matches the
analytic result (dashed) to ≲1%, well within the scatter of the
estimated b̄1 (shaded region).

FIG. 11. Average bias for halos with mass > M. the dotted-
dashed green line and shaded area show the UMF response bias
with bootstrap errors, whereas the dashed red line and shaded
area show the same for the clustering bias. The dotted line shows
the clustering bias of T10 [22] integrated over the mass function
of T08 [48] for comparison.

FIG. 12. Average bias for halos in mass bins. Green dots show
the UMF response bias with bootstrap errors centered on average
masses (19), and red × points show the same for the clustering
bias. The dotted line shows the fitting formula of clustering bias
from T10 [22].
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In addition, we need to estimate the number density
weighted μ̄ above threshold mass Mth to quantify the
UMF response bias.

2. Bias comparisons

In Sec. III C, we have explained how to make continuous
estimates of nlnM and n from the discrete halo catalog
measured from simulations. Following the same reasoning,
we can construct the estimator for μ̄ðMthÞ. Similar to
Eq. (22), we start from a halo catalog and arrange the
cumulative sum in descending order in mass,

lnM ¼ ½lnM1;… lnMNtot
�T;

μ̄ ¼
�
μðM1Þ=2

1=2
;…;

PNtot−1
i¼1 μðMiÞ þ μðMNtot

Þ=2
Ntot − 1=2

�
T
:

ðB9Þ

Recall that the factor of 1=2 arises from partitioning
discrete points. From these data vectors, we can obtain a
smooth estimate of ln μ̄ using a penalized spline (see
Appendix A 1) with 2 spline knots per dex in mass,

ln ˆ̄μðlnMÞ ¼ Sfln μ̄ðlnMÞg; ðB10Þ
where Sfg is the smoothing operator.

From these estimates of the mass functions and μ̄, we
construct the UMF response biases from Eqs. (B7) and
(B8). To verify our estimator for the UMF response bias,
we test it on 1000 mocks from the Sheth-Tormen mass
function [19], drawn in the same way as explained in
Appendix A 1, and compare the result to that analytically
derived assuming universality. We show this comparison in
Fig. 10 and find that our estimator is accurate to the
subpercent level, well below the statistical scatter of each
catalog.
Using simulations from the same set of Vc ¼

ð500 Mpc=hÞ3, we compare the UMF response biases to
the clustering bias (Sec. III D) in Figs. 11 and 12. The UMF
response bias is systematically lower than the clustering b̄1
by 5%–10% for 1≲ b̄1 ≲ 7 or lower by ≳6% than the
clustering b1 for most of the measured mass range.
The fitting functions for the clustering bias from T08 and

T10 are also added as references. For both b̄1 and b1, the
UMF response biases are systematically lower than the
fitting functions by ∼8%.
We conclude that the UMF response bias is statistically

inconsistent with the clustering bias, at least for halos
identified at Δ ¼ 200. Given the excellent agreement
between the clustering bias and the SU response bias,
the UMF response bias is also inconsistent as an approxi-
mation of the latter.
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