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We analyze the evolution of superhorizon-scale magnetic fields from the end of inflation till today.
Whatever is the mechanism responsible for their generation during inflation, we find that a given magnetic
mode with wave number k evolves, after inflation, according to the values of kηe, nk, and Ωk, where ηe is
the conformal time at the end of inflation, nk is the number density spectrum of inflation-produced photons,
and Ωk is the phase difference between the two Bogoliubov coefficients which characterize the state of
that mode at the end of inflation. For any realistic inflationary magnetogenesis scenario, we find that
n−1k ≪ jkηej ≪ 1, and three evolutionary scenarios are possible: (i) jΩk ∓ πj ¼ Oð1Þ, in which case the
evolution of the magnetic spectrum BkðηÞ is adiabatic, a2BkðηÞ ¼ const, with a being the expansion
parameter; (ii) jΩk ∓ πj ≪ jkηej, in which case the evolution is superadiabatic, a2BkðηÞ ∝ η;
(iii) jkηej ≪ jΩk ∓ πj ≪ 1 or jkηej ∼ jΩk ∓ πj ≪ 1, in which case an early phase of adiabatic evolution
is followed, after a time η⋆ ∼ jΩk ∓ πj=k, by a superadiabatic evolution. Once a given mode reenters the
horizon, it remains frozen into the plasma and then evolves adiabatically till today. As a corollary of our
results, we find that inflation-generated magnetic fields evolve adiabatically on all scales and for all times in
conformal-invariant free Maxwell theory, while they evolve superadiabatically after inflation on super-
horizon scales in the nonconformal-invariant Ratra model, where the inflaton is kinematically coupled to
the electromagnetic field. The latter result supports and, somehow, clarifies our recent claim that the Ratra
model can account for the presence of cosmic magnetic fields without suffering from both backreaction and
strong-coupling problems.
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I. INTRODUCTION

Recent astrophysical observations of gamma-rays spec-
tra of distant blazars [1–4] strongly indicate the presence of
large-scale magnetic fields in cosmic voids. Together with
the ubiquitous presence of large-scale, coherent magnetic
fields in clusters of galaxies and the magnetization of
galaxies at both low and high redshifts, this fact strongly
points toward (i) the existence of a “cosmic magnetic field”
that pervades the entire observable universe, (ii) that its
origin is primordial (namely, it took place before large-
scale structures formation), and (iii) that it is a relic of
inflation (for reviews on primordial magnetic fields, see
[5–10]).
However, because of the conformal invariance of

classical Maxwell electromagnetism in a Friedmann-
Robertson-Walker background, photons cannot be created
during inflation, as a consequence of the “Parker theorem”
[11,12]. Quantum effects, nevertheless, can break such a
conformal invariance allowing for a generation of strong
magnetic fields [13,14], or electromagnetic vacuum fluc-
tuations can either survive and be amplified in marginally
open universes [15–17] or be “boosted” by gravitational
waves [18].
Another possibility to create seed magnetic fields during

inflation is to consider nonstandard, nonconformal-

invariant electromagnetic theories. Starting from the semi-
nal papers by Turner and Widrow [19], who studied
nonconformal couplings between photons and gravity,
and by Ratra [20], who considered a conformal-breaking
coupling between the inflaton and the electromagnetic
field, there have been many attempts in this direction
(see, e.g., [21–57]).
After the work [58], all these attempts in constructing

models of inflationary magnetogenesis have been believed
to be untrustful because of the so-called “strong coupling
problem” and “backreaction problem,” and efforts have
been made in constructing successful scenarios in which
both problems are avoided [59–67].
Recently enough [68], however, we have stressed the fact

that there is a flaw in the arguments of [58] and in the
proposed nonstandard magnetogenesis mechanisms. There,
in fact, it is assumed that, after reheating, postinflationary
electric currents froze inflation-produced superhorizon
magnetic fields. But this implies a violation of causality
since, as first pointed out in [16], postinflationary currents
are generated by microphysical processes during reheating
and, then, are vanishing on superhorizon scales. Fixing the
“causality flaw” in the Ratra model by studying the creation
of photons out from the vacuumvia the “Parkermechanism”
[11,12], we have found that the Ratra model is a viable, and
indeed successful, scenario of inflationary magnetogenesis.
The implications for cosmic magnetogenesis of

having vanishing superhorizon electric currents have been*leonardo.campanelli@ba.infn.it
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investigated by Tsagas [69]. He analyzed the case of free
Maxwell theory in flat, marginally open and marginally
closed universes, and a particular case of nonstandard
electromagnetism, the one where magnetic fields during
inflation evolve as a power of the expansion parameter,
B ∝ a−m with 0 ≤ m < 2 (the latter case has been further
developed in [70]). The result is that, in general, super-
horizon magnetic fields do not evolve adiabatically after
reheating.
The aim of this paper is threefold. First, we will show

that quantum magnetic fluctuations in Maxwell theory
evolve adiabatically in a spatially flat universe once the
Bunch-Davies vacuum is chosen to be the physical vacuum
state. Second, we will generalize the results in [70] by
studying the postinflationary evolution of superhorizon
magnetic fields in a general nonconformal-invariant electro-
magnetic theory. Third, we will show that inflation-pro-
duced, superhorizon magnetic fields are superadiabatically
amplified after inflation in the Ratra model, thus supporting
our recent claim that the Ratra model evades both the
backreaction and the strong-coupling problems.

II. FREE MAXWELL THEORY

In this section, we analyze the evolution of magnetic
fields in free Maxwell theory. We use two equivalent
approaches, the “photon wave function” and the “magnetic
flux” approaches. These will also be used in the next
section when we study the case of nonconformal-invariant
theories. While the first approach is, in our opinion, more
direct, the second one is useful when comparing our results
with those of [69,70].

A. Photon wave function approach

Let us consider the free Maxwell theory described by the
Lagrangian Lem ¼ − 1

4
FμνFμν, where Fμν ¼ ∂μAν − ∂νAμ,

and Aμ is the photon field. We restrict our analysis to the
case of a spatially flat, Friedmann-Robertson-Walker uni-
verse, described by the line element

ds2 ¼ a2ðdη2 − dx2Þ; ð1Þ
where η is the conformal time and aðηÞ is the expansion
parameter, which we normalize to unity at the present time
η0. Working in the Coulomb gauge, A0 ¼ ∂iAi ¼ 0, we
quantize the electromagnetic field by expanding it, in the
Fock space, as

Aðη;xÞ ¼
X
α¼1;2

Z
d3k

ð2πÞ3 ffiffiffiffiffi
2k

p ak;αAk;αðηÞεk;αeikx þ H:c:;

ð2Þ
where Aμ ¼ ð0;AÞ, k is the comoving wave number,
k ¼ jkj, and εk;λ are the standard circular polarization
vectors. The annihilation and creation operators ak;α and

a†k;α satisfy the usual commutation relations ½ak;α; a†k0;α0 � ¼
ð2πÞ3δαα0δðk − k0Þ, all the other commutators being null.
In order to get the usual commutation relations for the
electromagnetic field and its canonical conjugate momen-
tum, one must impose the Wronskian condition

Ak;αA0�
k;α − A�

k;αA
0
k;α ¼ 2ik ð3Þ

on the wave functions of the two photon polarization states
Ak;α. (Hereafter, a prime indicates a differentiation with
respect to the conformal time.) Finally, the vacuum state j0i
is defined by ak;λj0i ¼ 0 for all k and α and normalized as
h0j0i ¼ 1. The photon wave functions satisfy the usual free
harmonic oscillator equation,

A00
k;α þ k2Ak;α ¼ 0; ð4Þ

whose solution is

Ak;αðηÞ ¼ c1;αðkÞe−ikη þ c2;αðkÞeikη: ð5Þ

Here, c1;αðkÞ and c2;αðkÞ are integration constants which
are fixed by the choice of the vacuum. The Wronskian
condition implies that

jc1;αðkÞj2 − jc2;αðkÞj2 ¼ 1: ð6Þ

The physical vacuum is the so-called Bunch-Davies
vacuum [11] defined by1

c1;αðkÞ ¼ 1; c2;αðkÞ ¼ 0: ð7Þ

Accordingly, the photon wave functions, in free Maxwell
theory, are the usual plane waves

Ak;αðηÞ ¼ e−ikη: ð8Þ

Let us now introduce the magnetic field as usual as
a2B ¼ ∇ ×A. The observable quantity is the vacuum
expectation value (VEV) of the squared magnetic field
operator. Using Eq. (2), we find

h0jB2ðη;xÞj0i ¼
Z

∞

0

dk
k
B2
kðηÞ; ð9Þ

where

1If the vacuum state were different from the Bunch-Davies
vacuum, the evolution of quantum electromagnetic fluctuations
could be very different from that analyzed here [71]. However,
there are many arguments showing that other kinds of allowed
vacua, such as the α-vacua [72], are unphysical states (see, e.g.,
[73,74]).

LEONARDO CAMPANELLI PHYSICAL REVIEW D 93, 063501 (2016)

063501-2



B2
kðηÞ ¼

k4

4π2a4
X
α¼1;2

jAk;αðηÞj2 ð10Þ

is the so-called magnetic power spectrum, and BkðηÞ is the
magnetic field on the scale 1=k. Inserting Eq. (5) in
Eq. (10), and taking into account Eq. (7), we find

a2BkðηÞ ¼
k2ffiffiffi
2

p
π
; ð11Þ

which shows that, in free Maxwell theory, magnetic
fields evolve adiabatically (i.e., proportionally to a−2) for
all times.
The introduction of the conductivity does not change this

result. In fact, its only effect, due to this huge value in the
early universe, is to force subhorizon magnetic fields to
evolve adiabatically after reheating.2 Accordingly, mag-
netic fields that evolve adiabatically before reheating will
keep evolving adiabatically till today.

B. Magnetic flux approach

The magnetic flux is defined by Bðη;xÞ ¼ a2Bðη;xÞ. In
Fock space, we have

Bðη;xÞ ¼
X
α¼1;2

Z
d3k

ð2πÞ3 ffiffiffiffiffi
2k

p ak;αBk;αðηÞeikx þ H:c:;

ð12Þ

where we have defined

Bk;α ¼ kð−1Þαþ1Ak;αðηÞεk;α: ð13Þ

Summing up the two photon polarization states,P
α¼1;2Bk;α, we get the Fourier transform of the magnetic

flux. However, it is more useful to introduce the quantity3

a2Bk ¼ Bk ¼ k
2π

X
α¼1;2

Bk;α ð14Þ

(which we will still call Fourier transform of the magnetic
flux for the sake of convenience), for two reasons. First, it
has the dimension of a magnetic field and, second, because

jBkðηÞj ¼ BkðηÞ; ð15Þ

namely, the modulus of the Fourier-transformed magnetic
field is equal to the magnetic field on the scale 1=k.
The Fourier transform of the magnetic flux satisfies, in

the hypothesis of null conductivity, the field equation

B00
k þ k2Bk ¼ 0; ð16Þ

whose solution is

Bk ¼ a2Bk ¼ C1 cosðkηÞ þ C2 sinðkηÞ; ð17Þ

where C1ðkÞ and C2ðkÞ are complex constant vectors of
integration. Inserting Eq. (5) in Eq. (13), and comparing the
resulting expression with Eq. (17), we get

C1 ¼
k2

2π

X
α

ð−1Þαþ1½c1;αðkÞ þ c2;αðkÞ�εk;α; ð18Þ

C2 ¼ −i
k2

2π

X
α

ð−1Þαþ1½c1;αðkÞ − c2;αðkÞ�εk;α: ð19Þ

The Wronskian condition (3) on the photon wave function
implies that

C1 · C�
2 − C�

1 · C2 ¼
ik4

π
: ð20Þ

Equations (18) and (19) show that the integration constants
C1 and C2 are fixed by the choice of the vacuum. The
(physical) Bunch-Davies vacuum is defined by Eq. (7), and
then it corresponds to take

C1 ¼
k2

2π
ðεk;1 − εk;2Þ; C2 ¼ −iC1: ð21Þ

Inserting the above relations in Eq. (17), we get

a2BkðηÞ ¼ C1e−ikη; ð22Þ

from which it follows that ja2BkðηÞj ¼ k2=
ffiffiffi
2

p
π, in agree-

ment with Eq. (11).
To compare our results with those in [69], let us rewrite

Eq. (17) in the long wavelength limit (namely, for super-
horizon modes, jkηj ≪ 1),

a2Bk ≃ C1 þ C2kη: ð23Þ

From the above equation, it follows that the constant C1 and
C2 can be expressed as a function of Bk and its first
derivative calculated at a reference time η�,

C1 ≃ −½ð2ηH − 1ÞBk þ ηB0
k�a2jη¼η� ; ð24Þ

2Hereafter, we neglect possible effects of magnetohydrody-
namic turbulence that could be triggered by the electroweak and/
or quark-hadron cosmological phase transitions, and that could
affect the evolution properties of inflation-produced magnetic
fields on subhorizon scales [75–82]. For the cosmological
relevant case of scaling-invariant fields (see Secs. IV B and
VI B), however, turbulence effects are suppressed in such a way
that magnetic fields stay almost unchanged on scales of
cosmological interest [83,84].

3Apart from inessential numerical factors, the components of
Bk and Bk coincide, respectively, with the quantities BðnÞ and
BðnÞ defined in [69,70] for the case of a spatially flat universe.
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C2 ≃ ½2ηHBk þ ηB0
k�
a2

kη

����
η¼η�

; ð25Þ

whereH ¼ a0=a. Now the author of [69] argues that, since
C2 is inversely proportional to kη�, then jC2j ≫ jC1j, unless
the quantity 2ηHBk þ ηB0

k is null. Consequently, the
dominant term in Eq. (23) would be the nonadiabatic
one (namely that proportional to C2), and this would open
the possibility to have a superadiabatic evolution of
magnetic fields in the free Maxwell theory. However, this
does not happen in a theory based on the Bunch-Davies
vacuum since the quantity 2ηHBk þ ηB0

k is, in this case,
null at the lowest order in jkηj ≪ 1. In fact, from Eq. (22), it
follows that

2ηHBk þ ηB0
k ¼ −ikηBk: ð26Þ

When inserted in Eqs. (24) and (25), the above equation
gives C1 ≃ iC2 ≃ a2Bkjη¼η� , which shows that jC1j and
jC2j are constants of the same magnitude and, in turn, that
the magnetic field evolves adiabatically on superhorizon
scales. Finally, for the sake of completeness, we observe
that the exact result is

C1 ¼ iC2 ¼ eikηa2Bkjη¼η� : ð27Þ

III. NONCONFORMAL-INVARIANT THEORIES

Let us now consider the case where electromagnetic
fields during inflation are described by a (nonstandard)
nonconformal-invariant electromagnetic Lagrangian. After
inflation, instead, we assume that such a Lagrangian
smoothly reduces to the Maxwell Lagrangian in order to
recover standard electromagnetism and not to spoil, thus,
the predictions of the standard cosmological model.

A. Photon wave function approach

Since photons after inflation are described by the
standard free electromagnetism, they evolve according to
Eq. (5), with c1;αðkÞ and c2;αðkÞ being complex functions of
k that are fixed by the properties of the electromagnetic
field at the end of inflation. Let us assume, for the sake of
simplicity, that the dynamics of the electromagnetic field
during inflation is parity conserving, so that c1;αðkÞ and
c2;αðkÞ do not depend on the photon helicity index α,

c1;αðkÞ ¼ αk; c2;αðkÞ ¼ βk: ð28Þ

(The parity-violating case, which is associated with the
production of magnetic helicity, goes along the same lines
as below.) The coefficients αk and βk are known as the
Bogoliubov coefficient, and the Wronskian condition
implies the Bogoliubov relation

jαkj2 − jβkj2 ¼ 1: ð29Þ

The square modulus of the coefficient βk gives the number
(density) of the produced photons during inflation [68],

nk ¼ jβkj2; ð30Þ
and it is zero for the case of conformal-invariant theories
[11], such as the free Maxwell theory in a Friedmann-
Robertson-Walker spacetime. Inserting Eq. (5) in Eq. (10),
and taking into account Eqs. (28), (29), and (30), we find

a2BkðηÞ¼
k2ffiffiffi
2

p
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2nkþ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nkðnkþ1Þ

p
cosðΩk−2kηÞ

q
;

ð31Þ
where

Ωk ¼ Argðαkβ�kÞ ∈� − π; π� ð32Þ

is the phase difference between the two Bogoliubov
coefficients. Equation (31) is in agreement with the result
of [68].
If nk ¼ 0 (conformal-invariant theories), then

a2BkðηÞ ¼ k2=
ffiffiffi
2

p
π, in agreement with the result of

Sec. II [see Eq. (11)].
In general, in order to explain the large-scale magnetic

fields we observe today in galaxies and clusters of galaxies,
we must have nk ≫ 1 on scales λ ¼ 1=jkj of astrophysical
interest for cosmic magnetic fields (see Sec. V). Since we
are interested in the evolution of superhorizon modes, let us
expand Eq. (31) in the limit nk ≫ 1 and jkηj ≪ 1.
Independently on the order of the expansion, and to the
lowest order, we find

a2BkðηÞ≃ k2

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ cosΩkÞnk

p
: ð33Þ

Therefore, a necessary condition for having a nonadiabatic
evolution of superhorizon magnetic fields after inflation is
that Ωk → �π for nk ≫ 1. Let us define, for later conven-
ience, the two cases

case A1∶ jΩk ∓ πj ¼Oð1Þ and n−1k ≪ jkηj≪ 1;

case A2∶ jΩk ∓ πj ¼Oð1Þ and jkηj≪ n−1k ≪ 1: ð34Þ

When cases A1 and A2 are realized, the evolution is then
adiabatic.
Let us now consider superhorizon modes such thatΩk →

�π for nk ≫ 1. We have six cases: n−1k ≪ jΩk ∓ πj ≪ jkηj
and cyclic permutations. After expanding Eq. (31), we
have, to the lowest order,

a2BkðηÞ≃ k2ffiffiffi
2

p
π
×

8>><
>>:

2
ffiffiffiffiffi
nk

p jkηj; B1;B2;

jΩk ∓ πj ffiffiffiffiffi
nk

p
; C1;C2;

1
2

ffiffiffiffiffiffiffiffiffiffi
1=nk

p
; D1;D2;

ð35Þ
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where the six cases, B1, B2, C1, C2, D1, and D2,
correspond to

case B1∶ n−1k ≪ jΩk ∓ πj ≪ jkηj ≪ 1;

case B2∶ jΩk ∓ πj ≪ n−1k ≪ jkηj ≪ 1;

case C1∶ n−1k ≪ jkηj ≪ jΩk ∓ πj ≪ 1;

case C2∶ jkηj ≪ n−1k ≪ jΩk ∓ πj ≪ 1;

case D1∶ jΩk ∓ πj ≪ jkηj ≪ n−1k ≪ 1;

case D2∶ jkηj ≪ jΩk ∓ πj ≪ n−1k ≪ 1; ð36Þ

respectively. Looking at Eq. (35), we conclude that the
evolution of superhorizon magnetic fields is superadiabatic,
a2BkðηÞ ∝ η, only in the cases B1 and B2, while it is
adiabatic in the remaining cases.
Let us now follow the evolution of superhorizon mag-

netic fields from the end of inflation, at η ¼ ηe < 0, until
today. Let us observe that, although the function a2BkðηÞ in
Eq. (31) in not an even function of the conformal time, its
asymptotic expansions in Eqs. (33) and (35) are. This
allows us to simplify the problem and to consider such an
evolution from the positive time jηej till the present time η0.
If a given magnetic mode with wave number k starts his

evolution in the case A1, namely if jΩk ∓ πj ¼ Oð1Þ and
n−1k ≪ jkηej ≪ 1, then as the time passes and η grows, it
will remain in the case A1 until it reenters the horizon at the
time η↓ defined by kη↓ ≃ 1. After that, its evolution is still
adiabatic because of the high conductivity which freezes
any subhorizon magnetic field into the primeval plasma.
The evolution, then, is adiabatic for all times.
If the magnetic mode starts in the case A2, its evolution

will always be adiabatic, although after a time of order
ηA2→A1 ∼ 1=knk, it will move from the case A2 to the
case A1.
If the magnetic mode starts in either the case B1 or B2,

its evolution will be superadiabatic up to the time η↓ of its
reentering the horizon, and from that time on it will evolve
adiabatically.
If the magnetic mode starts in the case C1, it will evolve

adiabatically up to the time of order ηC1→B1 ≃ jΩk ∓ πj=2k,
after which it will move in the case B1, and then will
evolve superadiabatically up to its reentering the horizon.
If a mode starts in the case C2, it will first evolve

adiabatically, then it will move from the case C2 to the case
C1 at the time ηC2→C1 ∼ 1=knk, then will continue its
adiabatic evolution up to the time ηC1→B1, after which it will
evolve superadiabatically according to the case B1 until it is
reentering the horizon.
If the magnetic mode starts in the case D1, it will evolve

adiabatically up to the time of order ηD1→B2 ≃ 1=4knk,
after which it will move in the case B2, and then will evolve
superadiabatically up to its reentering the horizon.
If a mode starts in the case D2, it will first evolve

adiabatically, then it will move from the case D2 to the case

D1 at the time ηD2→D1 ∼ jΩk ∓ πj=k, then it will continue
its adiabatic evolution up to the time ηD1→B2, after which it
will evolve superadiabatically according to the case B2
until it reenters the horizon.
Schematically, the evolution of a given magnetic mode is

as follows:

A1 → HR

A2 → A1 → HR

B1 → HR

B2 → HR

C1 → B1 → HR

C2 → C1 → B1 → HR

D1 → B2 → HR

D2 → D1 → B2 → HR

where HR stands for horizon reentering.4

It is interesting to observe that the actual magnetic field,
Bkðη0Þ, which coincides with the magnetic flux at the time
of horizon reentering, a2BkðηÞjη¼η↓

, is independent of the
details of its evolution when outside the horizon. Indeed,
from Eq. (31), we find, in the limit nk ≫ 1,

Bkðη0Þ≃ ζkk2
ffiffiffiffiffi
nk

p
; ð37Þ

where ζk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cosðΩk − 2kη↓Þ

p
=π. Since kη↓ ≃ 1 by

definition, we see that, excluding a region very near to
Ωk ≃ 2 − π (where ζk is vanishing), ζk is an order-one
function Ωk. Therefore, the actual magnetic field spectrum
is essentially determined by the number of photons with
wave number k that have been created during inflation.
In Fig. 1, we show the magnetic flux spectrum a2BkðηÞ

normalized to its expression in the case of pure Maxwell
theory, k2=

ffiffiffi
2

p
π [see Eq. (11)], as a function of kη (with

η > 0) for different initial conditions at the end of inflation

4The full evolution of the inflation-produced magnetic field
from the end of inflation at ηe < 0 up to its reentering the horizon
at η↓ > 0 can be schematically described as follows:

A1 → A2 → A1 → HR

A2 → A1 → HR

B1 → C1 → C2 → C1 → B1 → HR

B2 → D1 → D2 → D1 → B2 → HR

C1 → C2 → C1 → B1 → HR

C2 → C1 → B1 → HR

D1 → D2 → D1 → B2 → HR

D2 → D1 → B2 → HR

where the cases A1, A2, B1, B2, C1, C2, D1, D2 are the same as
in Eqs. (34) and (36).
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at η ¼ jηej. Continuous lines refer to the exact expression of
the magnetic flux given in Eq. (31), while dashed lines refer
to its asymptotic expansions given in Eqs. (33) and (35). In
both panels, we have taken kjηej ¼ 10−22. In the left panel,
nk ¼ ð2=5Þ2jkηej−2=3 and, from top to bottom, Ωk ¼ π=2
(A2 → A1), Ωk ¼ π− jkηej1=5 (C2→C1→B1), Ωk ¼ π −
2jkηej2=3 (D2→D1→B2), and Ωk ¼ π− jkηej4 (D1→B2).
In the right panel, nk ¼ ð1=4Þjkηej−4 and from top to
bottom, Ωk ¼ 0 (A1), Ωk ¼ π − jkηej1=2 (C1 → B1), Ωk
given in Eq. (73) (scaling-invariant case in the Ratra model
discussed in Sec. IV B), Ωk ¼ π − jkηej3 (B1), and Ωk ¼
π − jkηej5 (B2).

B. Magnetic flux approach

Let us now investigate the evolution of superhorizon
magnetic modes using the magnetic flux approach. Taking
into account Eq. (28), the coefficients C1 and C2 in
Eqs. (18) and (19) are

C1 ¼
k2

2π
ðαk þ βkÞðεk;1 − εk;2Þ; ð38Þ

C2 ¼ −i
k2

2π
ðαk − βkÞðεk;1 − εk;2Þ: ð39Þ

Inserting these expression in Eq. (17), we find

a2BkðηÞ ¼ C1

�
αk

αk þ βk
e−ikη þ βk

αk þ βk
eikη

�
; ð40Þ

from which it follows that

2ηHBk þ ηB0
k ¼ −ikηBkgðnk;Ωk; kηÞ; ð41Þ

where we have introduced the function

gðnk;Ωk; kηÞ ¼
eiðΩk−2kηÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nk þ 1
p

− ffiffiffiffiffi
nk

p
eiðΩk−2kηÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nk þ 1
p þ ffiffiffiffiffi

nk
p : ð42Þ

Inserting Eq. (41) in Eqs. (24) and (25), we find

C1 ≃ ð1þ ikηgÞa2Bkjη¼η� ; ð43Þ

C2 ≃ −iga2Bkjη¼η� : ð44Þ

For the eight cases discussed above, we find, to the lowest
order,

gðnk;Ωk; kηÞ≃

8>>><
>>>:

i tanðΩk=2Þ; A1;A2;

i=kη; B1;B2;

−2i=ðΩk ∓ πÞ; C1;C2;

4nk; D1;D2:

ð45Þ
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FIG. 1. The magnetic flux spectrum, a2BkðηÞ, in a nonconformal-invariant theory normalized to its expression in the case of free
Maxwell theory, k2=

ffiffiffi
2

p
π, as a function of kη for different initial conditions at the end of inflation (η ¼ jηej). For a given magnetic mode

k, such conditions are determined by the values of kjηej, nk, and Ωk, where nk is the number density of photons created during inflation
and Ωk is the phase difference between the two Bogoliubov coefficients which define the state of the magnetic field at the end of
inflation. Continuous lines refer to the exact expression of the magnetic flux [see Eq. (31)], while dashed lines refer to its asymptotic
expansions [see Eqs. (33) and (35)]. The cases A1, A2, B1, B2, C1, C2, D1, D2 are defined in Eqs. (34) and (36), and “HR” stands for
“horizon reentering.” Left panel: kjηej ¼ 10−22 and nk ¼ ð2=5Þ2jkηej−2=3. From top to bottom, Ωk ¼ π=2 (A2 → A1), Ωk ¼ π −
jkηej1=5 (C2 → C1 → B1), Ωk ¼ π − 2jkηej2=3 (D2 → D1 → B2), and Ωk ¼ π − jkηej4 (D1 → B2). Right panel: kjηej ¼ 10−22 and
nk ¼ ð1=4Þjkηej−4. From top to bottom, Ωk ¼ 0 (A1),Ωk ¼ π − jkηej1=2 (C1 → B1),Ωk given in Eq. (73) (the Ratra model is discussed
in Sec. IV B), Ωk ¼ π − jkηej3 (B1), and Ωk ¼ π − jkηej5 (B2).
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Inserting Eq. (45) in Eqs. (43) and (44), we find5

C1 ≃ cotðΩk=2ÞC2 ≃ a2Bkjη¼η� ; A1;A2; ð46Þ

C1 ≃ 0; C2 ≃ ðkη�Þ−1a2Bkjη¼η� ; B1;B2; ð47Þ

C1 ≃ −½ðΩk ∓ πÞ=2�C2 ≃ a2Bkjη¼η� ; C1;C2; ð48Þ

C1 ≃ ði=4nkÞC2 ≃ a2Bkjη¼η� ; D1;D2: ð49Þ

The exact expressions for C1 and C2 come from the
expression of a2Bk in Eq. (40) evaluated at η ¼ η� and
from Eq. (40). They are

C1 ¼
a2Bkjη¼η�

cosðkη�Þ − igðnk;Ωk; 0Þ sinðkη�Þ
; ð50Þ

C2 ¼ −igðnk;Ωk; 0ÞC1: ð51Þ

These expressions reduce, in the limit nk ¼ 0, to those
previously found for the free Maxwell theory [see Eq. (27)].
Inserting Eqs. (46)–(49) in Eq. (23), we find

a2BkðηÞ≃
( a2Bkjη¼η� ; A1;A2;C1;C2;D1;D2;

a2Bkjη¼η�

�
η
η�

�
; B1;B2:

ð52Þ

Finally, observing that ja2BkðηÞj≃ jC1j for the cases A1,
A2, C1, C2, D1, and D2, and ja2BkðηÞj≃ jC2∥kηj for the
cases B1, B2, we obtain, at the time η ¼ η�,

ja2Bkjη¼η� ≃
k2ffiffiffi
2

p
π
×

8>>>><
>>>>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ cosΩkÞnk

p
; A1;A2;

2
ffiffiffiffiffi
nk

p jkη�j; B1;B2;

jΩk ∓ πj ffiffiffiffiffi
nk

p
; C1;C2;

1
2

ffiffiffiffiffiffiffiffiffiffi
1=nk

p
; D1;D2;

ð53Þ

where we used the following asymptotic expansions of C1

and C2 in Eqs. (38) and (39): jC1j2 ≃ k4ð1þ cosΩkÞnk=π2
for the cases A1, A2; jC2j2 ≃ 2k4nk=π2 for the cases B1,
B2; jC1j2 ≃ k4ðΩk ∓ πÞ2nk=2π2 for the cases C1, C2; and
jC1j2 ≃ k4=8π2nk for the cases D1, D2.

Taking the modulus of a2BkðηÞ in Eq. (52), and taking
into account Eq. (53), we arrive at the same results
previously obtained using the photon wave function
approach [see Eqs. (33) and (35)].

IV. SPECIFIC MODELS

We analyze now two specific models of inflationary
magnetogenesis. The first one is general enough and just
assumes that superhorizon magnetic fields evolve as a
power of the conformal time during inflation, while the
second one is the well-known Ratra model.

A. Power-law magnetic fields during inflation

Following [69,70], we rewrite Eqs. (23), (24), and (25) as

BkðηÞ ¼ −½ð2ηH − 1ÞBk þ ηB0
k�η¼ηe

�
ae
a

�
2

þ ½2ηHBk þ ηB0
k�η¼ηe

�
ae
a

�
2
�
η

ηe

�
; ð54Þ

where ae ¼ aðηeÞ. Let us specialize Eq. (54) to the case
where inflation is described by a pure de Sitter phase, or by
a slow-roll phase characterized by a slow-roll parameter ϵ1,
or by a power-law expansion aðtÞ ∝ tq with q > 1 [85],
where t is the cosmic time. In all these cases, the conformal
time is related to the expansion parameter through

aηHðηÞ ¼ −ð1þ ϵÞ; ð55Þ
where H ¼ H=a is the Hubble parameter, and ϵ ¼ 0 for de
Sitter inflation, ϵ ¼ ϵ1 for slow-roll inflation, and ϵ ¼ 1=q
for power-law inflation with q ≫ 1. Defining the complex
function

mk ¼ ηe
B�

kðηeÞ ·B0
kðηeÞ

jBkðηeÞj2
; ð56Þ

then Eq. (54) becomes

BkðηÞ ¼ −½mk − 2ð1þ ϵÞ − 1�BkðηeÞ
�
ae
a

�
2

þ ½mk − 2ð1þ ϵÞ�BkðηeÞ
�
ae
a

�
2
�
η

ηe

�
: ð57Þ

Let us observe that if the magnetic field evolves as a simple
power of the conformal time during inflation, or more
generally at the end of it, then the quantitymk is simply the
exponent of that power,

BkðηÞ ∝ ηmk: ð58Þ
Accordingly, looking at Eq. (57), we see that if the magnetic
field during inflation evolves adiabatically, mk ¼ 2ð1þ ϵÞ,
the evolution after inflation is still adiabatic, andwe reobtain

5In order to find the infinitesimal term that corresponds to “0”
in the first equation of Eq. (47), we need to go to the next order in
the expansion of the function g in Eq. (45). In this case, we find
C1 ≃ −ðjΩk ∓ πj=2kη�Þa2Bkjη¼η� for the case B1, and C1 ≃
ði=4nkkη�Þa2Bkjη¼η� for the case B2. We arrive at the same
results for C1 and C2 in Eqs. (46)–(49) if we first consider their
exact expressions (see below), and then we expand them in terms
of nk, Ωk, and kη�.
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the results in Sec. II. If during inflation, instead, themagnetic
field evolves as a power of the conformal timewith exponent

mk ¼ 2ð1þ ϵÞ þ δmk; ð59Þ
then the evolution after inflation is adiabatic for times jηj ≲
jη⋆j and superadiabatic for times jη⋆j ≲ jηj≲ jη↓j, where

jη⋆j ¼
1

jδmkj
jηej: ð60Þ

Accordingly, if the evolution of magnetic fields during
inflation is such that jδmkj is a nonzero order-one function,
then the evolution of superhorizon magnetic fields is super-
adiabatic up to their reentering the horizon. If, instead, jδmkj
is a small quantity of the same order of magnitude of jkηej or
smaller, then superhorizon magnetic fields evolve adiabati-
cally after inflation.
In particular, if one assumes that during inflation and on

superhorizon scales

BkðηÞ ∝ ηm; ð61Þ

with m being a real constant such that 0 ≤ m < 2, then the
postinflationary evolution is superadiabatic (unless m is
very near to 2), in agreement with the result of [70].
Finally, let us observe that, taking into account Eq. (41),

it easy to see that δmk is related to the quantity
gðnk;Ωk; kηÞ defined in Eq. (42) through the relation

δmk ¼ −ikηegðnk;Ωk; kηeÞ: ð62Þ
Taking into account Eqs. (57), (59), and (62), one easily
recovers all the results obtained in Sec. III B.

B. The Ratra model

The Ratra model [20] is described by a nonconformal-
invariant electromagnetic Lagrangian of the form

Lem ¼ −
1

4
fðϕÞFμνFμν; ð63Þ

where the function fðϕÞ kinematically couples the inflaton
ϕ, the scalar field responsible for inflation, to the photon. In
this model, the coupling function is a power-law function of
the conformal time,

fðηÞ ¼
� ðηe=ηÞ2p; η ≤ ηe;

1; η > ηe;
ð64Þ

where p ≤ 0 in order to avoid the strong-coupling prob-
lem.6 In the case of pure de Sitter inflation, the Bogoliubov

coefficients in Eq. (28) are easily found in the Ratra model
[68]. From these, it follows that the number of created
photons nk is vanishing for p ¼ 0 and p ¼ −1=2, and it is
approximatively given by

nk ≃ npð−kηeÞ−2νp−1 ð65Þ

at the lowest order in −kηe ≪ 1. Here, νp ¼ jpþ 1=2j,

np ¼
(
½2νpð1 − 2νpÞΓðνpÞ�2=32π; νp ≠ 0;

fπ2 þ 4½2þ γ þ lnð−kηe=2Þ�2g=32π; νp ¼ 0;

ð66Þ

γ is the Euler-Mascheroni constant, and ΓðxÞ is the gamma
function. Moreover, using the results of [68], the Ωk angle
(the phase difference between the two Bogoliubov coef-
ficients) is easily found to be

Ωk ≃�π −Ωpkηe ð67Þ

at the lowest order in −kηe, where � corresponds to
νp≷1=2, respectively, and

Ωp ¼ 2
1þ 2νp
1 − 2νp

: ð68Þ

From Eqs. (65) and (67) it follows that nk ≫ 1 and n−1k ≪
jkηej for all νp ≠ 1=2.7 Inserting Eqs. (67) in Eq. (31), and
expanding in terms of nk and (afterwards) in terms of −kηe,
we find, at the lowest order

a2BkðηÞ≃
ffiffiffi
2

p
k2

π

ffiffiffiffiffi
nk

p j 1
2
Ωpkηe þ kηj: ð69Þ

The above asymptotic expansion can also be obtained by
inserting the exact expressions of the Bogoliubov coef-
ficients derived in [68] in Eq. (31) and expanding in terms
of −kηe.
Since Ωp is an order-one factor (excluding a very narrow

region around νp ¼ 1=2, where Ωp diverges), Eq. (69)
implies that, after inflation, superhorizon magnetic fields in
the Ratra model rapidly approach a state B1 [compare
Eq. (69) with the first equation in Eq. (35)]. (The state of
such fields is an example of what we call a state CB1,
which will be formally introduced and discussed in Sec. V.)
We conclude that, in the Ratra model, large-scale post-
inflationary magnetic fields evolve superadiabatically up to
their reentering the horizon.

6The case p > 0 can be worked out in a similar manner
provided that a slightly different form of fðηÞ is considered in
order to avoid the strong-coupling problem [68]. However, in
order to avoid inessential complications, we will analyze this case
elsewhere [86].

7For νp ≠ 0 this comes straightforwardly. In the case νp ¼ 0,
we have 6 × 10−3 ≲ n−1k =jkηej ≲ 6 × 10−1 if we use the result in
Sec. V that 1 × 10−27 ≲ jkηej≲ 5 × 10−2 for any realistic mag-
netogenesis scenario.
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The fact that superhorizon, inflation-produced magnetic
fields in the Ratra model evolve superadiabatically can be
derived also in the following way. Taking into account
Eq. (62) and using the results of [68], we find

δmk ¼
1

2
− νp þ εk; ð70Þ

where εk is a function of −kηe such that εk → 0 for
−kηe → 0. At the lowest order in −kηe, we find

εk ≃

8>>>>>><
>>>>>>:

1
2ðνp−1Þ ð−kηeÞ2; νp > 1;

½iπ=2 − γ − lnð−kηe=2Þ�ð−kηeÞ2; νp ¼ 1;
2π½i−cotðπνpÞ�
½2νpΓðνpÞ�2 ð−kηeÞ2νp ; 0 < νp < 1;

½−iπ=2þ γ þ lnð−kηe=2Þ�−1; νp ¼ 0.

ð71Þ

Since δmk is an order one constant in the limit −kηe → 0
(excluding the case νp ¼ 1=2, which, however, corre-
sponds to the case where there is no production of photons)
it follows, according to the discussion in Sec. IVA, that the
magnetic field evolves superadiabatically.8

Particularly interesting is the case νp ¼ 3=2, which
corresponds to p ¼ −2. In this case, in fact, the particle
number is proportional to nk ∝ ð−kηeÞ−4, so that the actual
magnetic field is scaling invariant [see Eqs. (37)].
Moreover, in this case, nk, Ωk, and δmk have the simple
expressions

nk ¼ 1

4
ð−kηeÞ−4; ð72Þ

Ωk ¼ π þ 2kηe þ arctan

	
2kηe

1 − 2ðkηeÞ2


; ð73Þ

δmk ¼ −ikηe − ð1þ ikηeÞ−1; ð74Þ

respectively, valid for all wave numbers k.
In the right panel of Fig. 1, the curve referred to as

“Ratra” shows the magnetic flux spectrum a2BkðηÞ nor-
malized to its expression in the case of pure Maxwell

theory, k2=
ffiffiffi
2

p
π, as a function of kη in the scaling-invariant

case, where nk and Ωk are given by Eqs. (72) and (73),
respectively. As is clear from the figure, and as we have
discussed above, superhorizon (kη ≪ 1) magnetic fields in
the Ratra model evolve superadiabatically as a2BkðηÞ ∝ η
up to their reentering the horizon.

V. INITIAL MAGNETIC STATE

The discussion in Sec. III on the evolution of postinfla-
tionary superhorizon magnetic fields has been as general
as possible. We have seen that the evolution after inflation
of a given magnetic mode with wave number k, crucially
depends on three parameters, namely kηe, nk, and Ωk. It
turns out that Ωk cannot be constrained by present
cosmological observations, while kηe and nk are directly
connected to cosmological observables, such as the scale of
inflationM and the reheat temperature TRH < M on the one
hand, and the actual magnetic field intensity on the scale
λ ¼ 1=k on the other hand.
To see this, let us first observe that the expansion

parameter at the end of inflation is given by

a3e ¼
π2

30
g�S;0

g�;RH
g�S;RH

T3
0TRH

M4
; ð75Þ

where T0 ≃ 2.35 × 10−4 eV [87] is the actual temperature,
g�S;0 ¼ g�SðT0Þ, g�S;RH ¼ g�SðTRHÞ, and g�;RH ¼ g�ðTRHÞ.
Here, g�ðTÞ and g�SðTÞ are the effective number of degrees
and entropy degrees of freedom at the temperature T,
respectively [88]. For temperatures above T ∼ 0.1 MeV,
the quantities g�ðTÞ and g�SðTÞ can be considered equal,
while below T ∼ 0.1 MeV these quantities equal the corre-
sponding quantities evaluated at the present time, g�;0 ¼
2þ ð21=11Þð4=11Þ1=3 and g�S;0 ¼ 43=11 [88]. In obtaining
Eq. (75), we used the following facts. First, the energy scale
of inflation is defined by ρðηeÞ ¼ M4, where ρ is the energy
density of the Universe. Second, during reheating ρ scales
approximatively as ρ ∝ a−3. Third, the reheat temperature
is defined by ρðηRHÞ ¼ ðπ2=30Þg�;RHT4

RH, where ηRH is the
time at the end of reheating. Finally, from the end of
reheating until today, the expansion parameter is related
to the temperature T through aðTÞ ∝ g−1=3�S T−1 [88].
Using Eqs. (55) and (75), and taking into account the

fact that the Hubble parameter H is related to the energy
density of the Universe through the Friedmann equation
H2 ¼ 8πρ=3m2

Pl, with mPl being the Planck mass, we get

−kηe ≃ 1 × 10−23M−2=3
16 T−1=3

16 λ−1Mpc; ð76Þ

whereM16¼M=1016GeV, T16¼TRH=1016GeV, and λMpc¼
λ=Mpc. In order to be consistent with cosmic microwave
background observations, the scale of inflationM, which is
directly related to the amplitude of the primordial tensor

8In the Ratra model discussed in [68], the magnetic field Bk
and its first derivative are not in general continuous functions of
the conformal time at η ¼ ηe. The relevant quantities are,
however, the rescaled magnetic field Φk ¼ ffiffiffi

f
p

Bk and its first
derivative which, instead, are continuous functions. As it is easy
to check by using the results of [68], the rescaled magnetic field
evolves as in Eq. (58) on superhorizon scales, ΦkðηÞ ∝ ηmk , with
mk ¼ 2þ δmk and δmk given by Eq. (70). After inflation, the
quantity Φk coincides with Bk since fðηÞ ¼ 1 for η ≥ ηe.
Consequently, the magnetic field in the Ratra model evolves
after inflation according to Eq. (57) with ϵ ¼ 0, mk ¼ 2þ δmk,
and δmk given by Eq. (70).
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perturbations, has to be, roughly speaking, below
1016 GeV [88]. The minimum value for the reheat temper-
ature is around 4.7 MeV [89]. This constraint, which comes
from the analysis of cosmic microwave background radi-
ation data, assumes a scale of inflation greater than
about 43 MeV.
The actual scale of astrophysics interest for cosmic

magnetic fields ranges from the minimum scale for having
a successful galactic dynamo [90],9

λdyn;min ∼ 100 pc; ð77Þ

to the present horizon, η0 ≃ 14185 Mpc.10 Accordingly,
and as we have supposed in the previous sections, the
quantity jkηej in Eq. (76) is much smaller than one. In fact,
its minimum and maximum values are, respectively,
jkηejmin ≃ 1 × 10−27, corresponding to take an instantane-
ous reheating11 with M ¼ 1016 GeV, and λ ¼ η0, and
jkηejmax≃5×10−2, corresponding to take M ¼ 43 MeV,
TRH ¼ 4.7 MeV, and λ ¼ 100 pc.
Let us now show that the particle number nk is a quantity

much greater than one, as we assumed in the previous
sections. To this end, let us rewrite Eq. (37) as

Bkðη0Þ≃ 2 × 10−13ζk

�
nk
1089

�
1=2

λ−2Mpc G: ð78Þ

In order to explain directly (i.e., without invoking any
galactic dynamo) the presence of large-scale magnetic
fields in galaxies and clusters of galaxies it suffices to
have a seed magnetic field with correlation length and
strength in the ranges [14,65]

few ×Mpc≲ λ≲ η0; ð79Þ

10−13 G≲ Bkðη0Þ≲ few × 10−12 G: ð80Þ
From Eq. (78), then, we see that a particle number in the
range 1089 ≲ nk ≲ 1099 is needed to directly explain
cosmic magnetic fields. In general, allowing a very efficient
galactic dynamo and then a very weak seed magnetic field
results in a needed particle number much less than the
above, but still much greater than unity. To see this, let us
rewrite Eq. (78) as

nk ≃ 3 × 1038ζ−2k λ4100 pcB
2
30; ð81Þ

where λ100 pc ¼ λ=100 pc and B30 ¼ Bkðη0Þ=10−30 G. The
minimum photon number is nk;min ≃ 1 × 1039, correspond-
ing to take λ ¼ 100 pc, ζk ¼ ζk;max ¼

ffiffiffi
2

p
=π, and the very

“optimistic” lower bound on a seed magnetic field that
a galactic dynamo can amplify up to the observed
values [90],

Bdyn;minðη0Þ ∼ 10−30 G: ð82Þ

It is worth noticing, however, that the results in [90] have
been strongly criticized in the literature and the minimum
value of 10−30 G for a seed magnetic field seems to be
unrealistically small (see, e.g., [5]). In any case, the exact
value of Bdyn;minðη0Þ is not important for our discussion.12

We can now show that, in any realistic model of
inflationary magnetogenesis, the quantity jkηej is always
much greater than n−1k . In fact, taking into account the
results (76) and (81), we have

jkηej
n−1k

≃ 3 × 1014ζ−2k M−2=3
16 T−1=3

16 λ3100 pcB
2
30; ð83Þ

from which it follows that the minimum value of
ðjkηej=n−1k Þ, corresponding to take an instantaneous reheat-
ing with M ¼ 1016 GeV, λ ¼ 100 pc, ζk ¼ ζk;max, and
Bkðη0Þ ¼ 10−30 G, is ðjkηej=n−1k Þmin ≃ 2 × 1015.
Focusing our discussion on superhorizon magnetic fields

that may eventually explain cosmic magnetization, we
conclude that, whatever is the mechanism responsible
for their generation, they start their evolution after inflation
in a state characterized by

9Large-scale galactic dynamo could, in principle, explain the
presence of the galactic magnetic field if a sufficiently strong seed
field were present prior to galaxy formation. However, galactic
dynamos leave substantially unanswered the question of the
presence of strong magnetic fields in clusters of galaxies and
cosmic voids.

10The present horizon is η0 ¼ H−1
0

R
∞
0 dzE−1ðzÞ, where

H0 is the Hubble constant, z is the redshift, and
EðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωrð1þ zÞ4 þΩmð1þ zÞ3 þ ΩΛ

p
. Here, Ωr, Ωm, and

ΩΛ are the radiation, matter, and cosmological constant density
parameters, respectively, which in a spatially flat Universe satisfy
the relation Ωr þ Ωm þΩΛ ¼ 1. Using the fact that Ωrh2 ¼
4.31 × 10−5 [88], where h is the normalized Hubble constant
H0 ¼ 100h kms−1 Mpc−1, and the Planck results [91] Ωm ¼
0.308 and h ¼ 0.678, we find the value of η0 given in the text.

11Instantaneous reheating refers to the ideal case where after
inflation the Universe enters directly in the radiation-dominated
era. In this case, equating the energy density of radiation at
the beginning of the radiation era, which is the same as the
energy density at the end of reheating, to the energy density at
the end of inflation, we get TRH ¼ ½30=ðπ2g�;RHÞ�1=4M. Taking
g�;RH ¼ 427=4, referring to the massless degrees of freedom of
the standard model of particle physics above the electroweak
scale, we find TRH ≃ 0.4M.

12It is worth noticing that another possible amplification
mechanism of seed magnetic fields is the so-called small-scale
dynamowhich, in contrast to the large-scale one, can work both in
galaxies and in the intracluster medium (for a review on large- and
small-scale dynamos, see [92]). Therefore, a small-scale dynamo
could, at least in principle, explain the presence of cosmicmagnetic
fields in galaxies and galaxy clusters if a seed field were present
before large-scale structure formation. However, as in the case of
large-scale dynamo, a small-scale dynamo cannot account for the
presence of large-scale magnetic fields in cosmic voids.
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n−1k ≪ jkηej ≪ 1: ð84Þ

Looking at Eqs. (34) and (36), then, the possible initial
magnetic states are: A1, B1, B2, C1 (which correspond to
cases shown in the right panel of Fig. 1). For the sake of
completeness, let us observe that just another possible
initial state exists. It is defined by

case CB1∶ n−1k ≪ jkηej ∼ jΩk ∓ πj ≪ 1: ð85Þ

This case, however, does not differ qualitatively and,
roughly speaking, quantitatively by the case where the
initial state is described by either the case C1 or the case
B1. In fact, let us write

Ωk ∓ π ¼ −ωkkηe; ð86Þ
where ωk is an order-one function of k. Inserting Eq. (85) in
Eq. (31), and expanding in terms of nk and (afterwards) in
terms of −kηe, we get

a2BkðηÞ≃
ffiffiffi
2

p
k2

π

ffiffiffiffiffi
nk

p ���� 12ωkkηe þ kη

����; CB1: ð87Þ

For η ¼ jηej, the above expression becomes

a2BkðjηejÞ
k2=

ffiffiffi
2

p
π

≃ j1 − 2=ωk∥Ωk ∓ πj ffiffiffiffiffi
nk

p

≃ 2j1 − ωk=2j
ffiffiffiffiffi
nk

p jkηej: ð88Þ

Comparing these expressions with the first two equations
of Eq. (35) and neglecting order-one factors, we see that
the magnetic field in an initial state CB1 can be viewed
as being in an initial state C1 or, equivalently, B1, as
anticipated. At later times, instead, the case CB1 converges
to the case B1. In fact, Eq. (87) reduces to the first
equation of Eq. (35) in the limit η ≫ jηej. The time
when this convergence happens can be estimated as
η⋆ ≃ j1 − 2=ωkjηC1→B1 ¼ j1 − ωk=2∥ηej, which agrees
with the fact that a magnetic field in the initial state
CB1 can be viewed, approximatively, as being in an initial
state either C1 or B1.
Summarizing, we have found that superhorizon mag-

netic fields start their evolution after inflation in one of the
following states:

(i) A1, in which case the evolution is adiabatic;
(ii) B1 or B2, in which cases the evolution is

superadiabatic;
(iii) C1 or CB1, in which case there is an adiabatic

evolution followed by a superadiabatic evolution.

VI. DISCUSSION

Taking into account the results of Sec. III and those of
the previous section, we can relate the magnetic field at the
end of inflation to its present value through

BkðηeÞ ¼
�
a0
ae

�
2

Bkðη0Þjkη⋆j; ð89Þ

where jηej≲ jη⋆j≲ jη↓j is the time when superadiabatic
evolution starts, and

jkη⋆j≃

8>>><
>>>:

1; A1;

jkηej; B1;B2;

j1 − ωk=2∥kηej; CB1;
1
2
jΩk ∓ πj; C1:

ð90Þ

Equations (89) show that an amplification of a factor
1=jkη⋆j of the actual magnetic field spectrum occurs with
respect to the case where causality is not imposed on the
evolution of superhorizon magnetic fields after inflation, to
wit, with respect to the case where postinflationary mag-
netic fields are assumed to evolve adiabatically on super-
horizon scales.

A. Comparison with Tsagas results

Let us now compare our results with those obtained
by Tsagas. As we have shown in Sec. IVA, the case
analyzed in [70] corresponds to our cases B1 and B2,
where the magnetic evolution on superhorizon scales is
superadiabatic.
Taking into account Eqs. (90) and (75), we can rewrite

Eq. (89) (cases B1 and B2) as

BkðηeÞ ¼ c0
mPlM2k
TRHT3

0

Bkðη0Þ; ð91Þ

where c0 ¼ 15ð3=2π5Þ1=2ð1þ ϵÞg−1�S;0 ≃ 0.3 and we
assumed, as in [70], a de Sitter inflation.
In a radiation-dominated era, the temperature when a

given mode k crosses inside the horizon is given by13

T↓ ¼ κr
mPlk
T0

; ð92Þ

where κr ¼ ð45=4π3g�;↓Þ1=2ðg�S;↓=g�S;0Þ1=3, with g�;↓ ¼
g�ðT↓Þ and g�S;↓ ¼ g�SðT↓Þ. In a matter-dominated era,
instead, we have14

13The conditionkη↓ ¼ 1 that amodek crosses inside the horizon
can be rewritten as 2t↓k=a↓ ¼ 1, where t↓ and a↓ are the cosmic
time and the expansion parameter at the time of crossing. Here, we
used the fact that in a radiation-dominated era η ¼ 2t=a. Since
a¼ðg�S;0=g�SÞ1=3T0=T, and since t¼ð45=16π3g�Þ1=2mPl=T2 [88]
in a radiation-dominated era, we recover Eq. (92).

14The condition that a mode k crosses inside the horizon
in a matter-dominated era can be rewritten as 3t↓k=a↓ ¼ 1,
where we used the fact that η¼3t=a in this era. Since t¼
ð5=π3g�;0Þ1=2ðg�S;0=g�SÞ1=3mPl=T

1=2
eq T3=2 [88] in a matter-

dominated era, we recover Eq. (93).
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T1=2
↓ T1=2

eq ¼ κm
mPlk
T0

; ð93Þ

whereTeq¼ðΩm=ΩrÞT0≃0.8 eV [88,91] is the temperature
at the radiation-matter transition, and κm ¼ ð45=π3g�0Þ1=2.
In a radiation-dominated era, then, Eq. (91) can be

rewritten as

BkðηeÞ ¼ cr
M2T↓

TRHT2
0

Bkðη0Þ; ð94Þ

where cr ¼ c0=κr ≃ 0.7g−1=3�S;↓ g
1=2
�;↓ is a slowly increasing

function of T↓ of order one such that 0.8≲ cr ≲ 1.5.
Assuming λ¼1=k≳100pc, we have T↓ðλÞ≲T↓ð100 pcÞ≃
0.9MeV, which implies 0.8≲ cr ≲ 1.0 (here, we used
the fact that g�ðTÞ ¼ 43=4 for me ≲ T ≲mμ, with me ≃
0.5 MeV and mμ ≃ 106 MeV being the mass of the
electron and muon, respectively).
In a matter-dominated era, instead, Eq. (91) reads

BkðηeÞ ¼ cm
M2T1=2

↓ T1=2
eq

TRHT2
0

Bkðη0Þ; ð95Þ

where cm ¼ c0=κm ≃ 0.4.
Equations (94) and (95) coincide, apart from numerical

factors of order one, with the results of [70].

B. Implications for the Ratra model

Any model of inflationary magnetogenesis can be trust-
ful if the inflation-produced (electro)magnetic field does
not appreciably backreact on the dynamics of the Universe.
After reheating, electric fields inside the horizon are
washed out by the high conductivity of the primeval
plasma, while subhorizon magnetic fields evolve adiabati-
cally (neglecting any effect of magnetohydrodynamic
turbulence). It is a well-known result that, if such magnetic
fields have to explain the observed cosmic magnetic fields,
then their energy after inflation is always negligible with
respect to that of the Universe.
In order to avoid the backreaction problem during

inflation, the VEV of the electromagnetic energy must
be subdominant with respect to the energy density of
inflation,

h0jρemðη;xÞj0i ≪ ρinfðηÞ: ð96Þ

Assuming, as in Sec. IV B and for the sake of simplicity, a
de Sitter inflation, we have ρinfðηÞ ¼ M4 ¼ 3m2

PlH
2
dS=8,

where HdS ≪ M is the Hubble parameter during de Sitter
inflation. The electromagnetic energy density is, instead,

ρemðη;xÞ ¼ ρEðη;xÞ þ ρBðη;xÞ; ð97Þ

where

ρE ¼ 1

2
fðηÞE2; ρB ¼ 1

2
fðηÞB2 ð98Þ

are the electric and magnetic energy densities, respectively,
and a2E ¼ − _A is the electric field. Using Eq. (2), we find

h0jρemj0i ¼
Z

∞

0

dk
k
ρem;kðηÞ; ð99Þ

where ρem;kðηÞ ¼ ρE;kðηÞ þ ρB;kðηÞ is the electromagnetic
energy spectrum and

ρE;kðηÞ ¼ fðηÞ k2

2π2a4
X
α¼1;2

j _Ak;αðηÞj2; ð100Þ

ρB;kðηÞ ¼ fðηÞ k4

2π2a4
X
α¼1;2

jAk;αðηÞj2 ð101Þ

are the electric and magnetic energy spectra, respectively.
For large wave numbers (subhorizon modes), −kη ≫ 1,

ρem;kðηÞ reduces to the electromagnetic energy spectrum in
the free Maxwell theory (the case p ¼ 0), ρem;kðηÞ ¼
ð−kηÞ4H4

dS=2π
2, which is ultraviolet divergent. Such a

kind of divergence, however, can be cured by renormaliza-
tion [11,12]. Indeed, it can be shown that, after renorm-
alization, the electromagnetic energy on subhorizon scales
does not appreciably backreact on inflation [68].
For p ≠ 0 and −kη ≪ 1 (superhorizon scales), instead,

the electromagnetic spectrum is dominated by the electric
component [68,86],

ρem;kðηÞ ∼ ρE;kðηÞ ∼ ð−kηÞ2ðpþ2ÞH4
dS; ð102Þ

where, hereafter, we neglect the numerical factor of order
unity. From the above equation, we find that backreaction
on (de Sitter) inflation is negligible if −2 ≤ p < 0 or,
equivalently, 0 ≤ νp ≤ 3=2.
The magnetic energy spectrum on superhorizon scales is

ρB;kðηÞ ∼ ð−kηÞ5−2νpH4
dS: ð103Þ

Since fðηeÞ ¼ 1, at the end of inflation we have
BkðηeÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρB;kðηeÞ

p
, so that

BkðηeÞ ∼ ð−kηeÞ52−νpH2
dS: ð104Þ

According to the “standard” reasoning in the literature, the
inflation-produced magnetic field scales adiabatically
after reheating, since the highly conductive primeval
plasma freezes it on all scales. According to the Barrow-
Tsagas causality arguments, instead, only subhorizon
magnetic modes are frozen into the plasma after reheating.
Superhorizon modes, instead, are superadiabatically ampli-
fied by a factor ð−kηeÞ−1 with respect to the previous case
[see Eqs. (89) and (90), case CB1]. Accordingly, we have
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Bkðη0Þ ∼
(
ðae=a0Þ2ð−kηeÞ52−νpH2

dS; without causality;

ðae=a0Þ2ð−kηeÞ32−νpH2
dS; with causality;

ð105Þ

where we have assumed an instantaneous reheating for the
case of simplicity. A scaling-invariant magnetic field is not
possible today according to the standard approach, since it
would correspond to the case νp ¼ 5=2, which is excluded
by the above backreaction arguments. The maximum value
for Bkðη0Þ is obtained for the maximum allowed value of
νp, to wit, νp ¼ 3=2. In this case, instead, the actual
magnetic field is scaling invariant if one correctly takes
into account the causality arguments. Thus, we have

Bk;maxðη0Þ ∼
� ð−kηeÞ=η2e; without causality;

1=η2e; with causality;
ð106Þ

where we used the fact that η ¼ −1=aHdS in de Sitter
inflation. Using Eq. (76) specialized to the case of
instantaneous reheating, we finally get

Bk;maxðη0Þ ∼
�
10−31M16λ

−1
100 pc G; without causality;

10−12M2
16 G; with causality;

ð107Þ

Taking into account Eqs. (77) and (82), and Eqs. (79) and
(80), it follows, on the one hand, the standard result quoted
in the literature that the Ratra model cannot explain cosmic
magnetism and, on the other hand, the claim in [68] that
instead it can.

VII. CONCLUSIONS

The large-scale magnetic fields we observe today in
galaxies, clusters of galaxies, and cosmic voids are prob-
ably relics from inflation, and a possible explanation for
them is the creation of photons out from the vacuum
through the Parker mechanism in a putative (nonstandard),
nonconformal-invariant theory of electrodynamics.
For a long time since the first model of inflationary

magnetogenesis by Turner and Widrow [19], it has been
assumed that inflation-produced magnetic fields remain
frozen after reheating on superhorizon scales (which are the
scales of astrophysical interest for cosmic magnetic fields)
due to the high conductivity of the primeval plasma, so that
they evolve adiabatically. This assumption is, however,
physically incorrect since it violates causality. As first
pointed out by Barrow and Tsagas [16], postinflationary
electric currents are generated by microphysical processes
during reheating and, then, are vanishing on superhorizon
scales. This, in turns, implies a vanishing conductivity at
scales larger than the Hubble radius after reheating.

The implications of this fact for cosmic magnetogenesis
have been recently investigated by Tsagas [69,70]. His
results suggest that, in a spatially flat Friedmann-
Robertson-Walker universe, inflation-produced magnetic
fields may be superadiabatically amplified after inflation on
superhorizon scales. Such an amplification may exist both
in the conformal-invariant free Maxwell theory and in a
nonconformal-invariant electromagnetic theory where
magnetic fields evolve during inflation as a power law
of the conformal time.
Our results, if, on the one hand, show that magnetic

fields in Maxwell theory starting in the Bunch-Davies
vacuum evolve adiabatically, on the other hand, indicate
that a superadiabatic evolution is, in principle, possible in
the context of nonconformal-invariant theories of
electrodynamics.
In particular, we have found that, irrespective of the

particular underlaying electromagnetic theory, the evolu-
tion of the magnetic field spectrum BkðηÞ after inflation is
ruled by the values of three quantities: kηe, nk, and Ωk.
Here, k is the magnetic wave number, ηe is the conformal
time at the end of inflation, nk is the number density
spectrum of photons produced out of the vacuum by
inflation via the Parker mechanism, and, finally, Ωk is
the phase difference between the two Bogoliubov coef-
ficients which define the state of the electromagnetic mode
k at the end of inflation.
For generic models of inflation, we have found that the

relation n−1k ≪ jkηej ≪ 1 holds in any model of infla-
tionary magnetogenesis which may eventually explain the
presence of cosmic magnetic fields. This, in turn, leaves
open only three possibilities for the evolution of super-
horizon magnetic fields after inflation: (i) jΩk ∓ πj ¼
Oð1Þ, in which case the evolution is adiabatic, namely
the magnetic flux spectrum a2BkðηÞ is constant in time;
(ii) jΩk ∓ πj ≪ jkηej, in which case the evolution is
superadiabatic, in the sense that the magnetic flux increases
in time, in particular as a2BkðηÞ ∝ η; (iii) jkηej ≪ jΩk ∓
πj ≪ 1 or jkηej ∼ jΩk ∓ πj ≪ 1, in which case the evolu-
tion is adiabatic up the time η⋆ ∼ jΩk ∓ πj=k and then
superadiabatic afterwards, with a2BkðηÞ ∝ η. In all cases,
once a given magnetic mode reenters the horizon, it evolves
adiabatically till today since it remains frozen into the high-
conductive primeval plasma.
We have applied our general results to two specific

magnetogenesis scenarios. First, we have found that the
case studied by Tsagas, where BkðηÞ ∝ jηjm (0 ≤ m < 2)
during inflation, belongs to the possibility (ii). Second, we
have found that postinflationary superhorizon magnetic
fields evolve superadiabatically in the Ratra model [20].
The consequences of the latter result reinforce our recent
claim [68] that the Ratra model can account for the
presence of cosmic magnetic fields by evading both the
backreaction and strong-coupling problems.
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