
Perturbative loop corrections and nonlocal gravity

Michele Maggiore
Département de Physique Théorique and Center for Astroparticle Physics, Université de Genève,

24 quai Ansermet, CH–1211 Genève 4, Switzerland
(Received 4 March 2016; published 28 March 2016)

Nonlocal gravity has been shown to provide a phenomenologically viable infrared modification of
general relativity. A natural question is whether the required nonlocality can emerge from perturbative
quantum loop corrections due to light particles. We show that this is not the case. For the value of the mass
scale of the nonlocal models required by cosmology, the perturbative form factors obtained from the loop
corrections, in the present cosmological epoch, are in the regime where they are local. The mechanism
behind the generation of the required nonlocality must be more complex, possibly related to strong infrared
effects and nonperturbative mass generation for the conformal mode.
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I. INTRODUCTION

In the last few years, together with various collaborators,
we have proposed and developed a class of nonlocal
infrared (IR) modifications of general relativity, which
appear to have quite interesting cosmological conse-
quences. The first successful model of this type was
proposed in Ref. [1] (see also Refs. [2–6] for earlier related
ideas), and is defined by the nonlocal equation of motion

Gμν −
m2

3
ðgμν□−1RÞT ¼ 8πGTμν; ð1Þ

where the superscript T denotes the operation of taking the
transverse part of a tensor (which is itself a nonlocal
operation). The mass m is a free parameter of the model,
which replaces the cosmological constant in ΛCDM. A
closed form of the action of this model is not currently
known. A related model, defined at the level of the action,
was introduced in Ref. [7], and is defined by
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Pl
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□
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�
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where m2
Pl ¼ 1=ð8πGÞ. Both models, which we referred to

as the RT and RR model, respectively, have a viable
background evolution at the cosmological level displaying
self-acceleration, i.e. the nonlocal term behaves as an
effective dark energy density [1,7,8]. Their cosmological
perturbations are well behaved [9,10] and fit well cosmic
microwave background, supernovae, baryon acoustic oscil-
lation (BAO) and structure formation data [9,11,12]. The
cosmological perturbations have then been implemented in
a Boltzmann code in Refs. [13,14]. This allowed us to
perform Bayesian parameter estimation and a detailed
quantitative comparison with ΛCDM. The result is that
the RT model (1) fits the data at a level which is statistically
indistinguishable from ΛCDM. In contrast, using the

Planck 2015 data and an extended set of BAO observations,
we found in Ref. [14] that the RR model (2), even if it fits
the data at a fully acceptable level on its own, in a Bayesian
model comparison with ΛCDM or with the RT model is
disfavored. The RT model can be considered as a nonlinear
extension of the RR model, since the two models become
the same when linearized over Minkowski space, so we
expect that its action would contain further nonlinear terms
with respect to the simpler action of the RR model. Since
the observational data point toward the importance of these
nonlinear terms, in Ref. [15] we have explored some other
nonlinear extensions of the action (2), suggested by
conformal symmetry. In particular, we found that the
model defined by the action

ScRR ¼ m2
Pl

2

Z
d4x
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p �
R −
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6
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1

ð−□þ 1
6
RÞ2 R

�
ð3Þ

appears to work quite well [see also Ref. [16] for a study
with the more general operator ð−□þ ξRÞ−2]. Even if a
full analysis of its cosmological perturbations has not yet
been performed, from the equation of state of the effective
dark energy we expect that its predictions will deviate from
that of ΛCDM less than the predictions of the RT model
(which in turn is closer to ΛCDM than the RR model), and
therefore will be consistent with the data (and possibly
difficult to distinguish from ΛCDM).
Another interesting aspect of these models is that they

can be nicely connected with the Starobinski inflationary
model, providing a simple model that describes both
inflation in the early Universe and dark energy at late
times. A unified model of this type was first proposed in
Ref. [17] (see also Refs. [15,18,19]), where we suggested
unifying the model (2) with the Starobinsky model, through
an action of the form
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where MS ≃ 1013 GeV is the mass scale of the Starobinski
model and Λ4

S ¼ M2
Sm

2. The same can of course be done
also for the model (3), considering the action [15]

S ¼ m2
Pl

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
Rþ 1

6M2
S
R

�
1 −

Λ4
S

ð−□þ 1
6
RÞ2

�
R

�
;

ð5Þ
or for the RT model, combining the nonlocal contribution
in Eq. (1) with the contribution to the equations of motion
coming from the R2 term in the Starobinski model. As
discussed in Ref. [15], at early times the nonlocal term is
irrelevant and we recover the standard inflationary evolu-
tion, while at late times the local R2 term becomes
irrelevant and we recover the evolution of the nonlocal
models. This has also been recently confirmed in Ref. [19],
through the explicit numerical integration of the equations
of motion. Further work on these nonlocal models has been
presented in Refs. [20–27].

II. PERTURBATIVE LOOP CORRECTIONS

Given that these nonlocal models are phenomenologi-
cally successful, the next question is whether nonlocalities
of this form can emerge, at an effective level, from a
fundamental local quantum field theory. In general, loops
of massless or light particles induce nonlocal terms in the
quantum effective action, so it is natural to ask whether
such perturbative corrections can generate a nonlocal term
such as that in Eq. (2), or in its nonlinear generalizations (1)
or (3). In gravity the one-loop corrections induced by
matter fields indeed produce nonlocal form factors asso-
ciated to terms quadratic in the curvature, which have been
computed in several classic papers using diagrammatic or
heat-kernel techniques [28–33] (see also Refs. [34–36] for
textbooks or reviews). The resulting quantum effective
action has the general form

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
m2

Pl

2
R − RkRð□ÞR − CμνρσkWð□ÞCμνρσ

�
;

ð6Þ
where Cμνρσ is the Weyl tensor, and we used as a basis for
the quadratic term R2, CμνρσCμνρσ and the Gauss-Bonnet
term, which we have not written explicitly. For massless
particles, the form factors kRð□Þ and kWð□Þ only contain
logarithmic terms plus finite parts, i.e. kR;Wð□Þ ¼
cR;W logð□=μ2Þ, where □ is the generally covariant
d’Alembertian, μ is the renormalization point, and cR,
cW are coefficients that depend on the number of matter
species and on their spin. The form factors generated by
loops of a massive particle with mass M are more

complicated. In the UV limit, i.e. at energies or curvatures
such that M2=□ can be treated as small, the form factors
have an expansion of the general form

kR
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[and similarly for kWð−□=M2Þ], as discussed for instance
in Ref. [37] using a covariant generalization of the effective
field theory formalism of Ref. [38]. In Ref. [18] it was then
observed that the logarithmic term, as well as the term
ðM2=□Þ, have little effect on the cosmological evolution in
the present epoch. This might leave as a dominant con-
tribution the one due to ðM2=□Þ2 which, as we know from
Ref. [7], generates a phase of accelerated expansion in the
recent epoch. In Ref. [18] it was then concluded that a
nonlocal model such as Eq. (2) emerges naturally from the
perturbative loop corrections.
The purpose of this short paper is to point out that,

unfortunately, this is not the case, and the mechanism that
generates these nonlocal cosmological models must be
more complicated. The crucial point is that the expansion
(7) only holds in the UV limit, where the operator M2=□
can be treated as small. In a cosmological context, this
means that M2=H2 ≪ 1, where HðtÞ is the Hubble
parameter.1

To understand when this condition is satisfied, we
observe that we can rewrite Eq. (2) as

SRR ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
m2

PlR − R
M4

□
2
R

�
; ð8Þ

where

M4 ¼ 1

12
m2

Plm
2: ð9Þ

To obtain a viable cosmological evolution, with an accel-
erated expansion in the present epoch, we need
m ¼ OðH0Þ, where H0 is the present value of the
Hubble parameter. This result was obtained in
Refs. [1,7,8] from the explicit integration of the equations
of motion, but of course the order of magnitude follows
from simple dimensional considerations. The nonlocal term

1More precisely □−1 is a nonlocal operator, which depends on
the whole past history. However, from the time evolution of the
auxiliary fields U ¼ −□−1R and V ¼ H2

0□
−2R shown for

instance in Fig. 1 of Ref. [9] we see that, up to the present
epoch, the estimate □−1 ∼ 1=H2ðtÞ is correct, up to a factor of at
most Oð10Þ, which will be irrelevant for the considerations
below.
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in Eq. (2) is suppressed, with respect to the Einstein-Hilbert
term, by a factor of order ðm2=□2ÞR. In Friedmann-
Robertson-Walker, after radiation dominance, R ∼H2

and 1=□ ∼ 1=H2, so ðm2=□2ÞR ∼m2=H2. If we want
the nonlocal term to become comparable to the Einstein-
Hilbert term near the present epoch, we therefore need
m ∼H0. Setting m ∼H0, Eq. (9) gives (apart from numeri-
cal factors of order one)

M ≃ ðmPlH0Þ1=2; ð10Þ

which is huge compared to H0. Indeed, numerically
Eq. (10) gives M¼Oð10−3Þ eV, while H0¼Oð10−33Þ eV.
This means that, for such a value of M, the UV expansion
(7) is not valid near the present epoch, where we are rather
in the opposite regime, M2 ≫ −□. The UV expansion is
only valid for M2=H2ðtÞ ≪ 1 which, for the value of M
given by Eq. (10), in terms of redshift means z ≫ 1015. The
expansion (7) is therefore meaningful only in the very early
Universe.
In the opposite (IR) limitM2 ≫ −□, a particle with mass

M is actually heavy compared to the relevant curvature
scale and it decouples, leaving only a local contribution. As
an explicit example, for a massive scalar field with action

Ss ¼
1

2

Z
d4xg1=2ðgμν∂μϕ∂νϕþM2ϕ2 þ ξRϕ2Þ ð11Þ

the form factors kRð−□=M2Þ and kWð−□=M2Þ in Eq. (6)
were computed in Refs. [32,33] in closed form, for −□=M2

generic. The result is

kWð□Þ ¼ 8A
15a4

þ 2

45a2
þ 1
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; ð12Þ
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where ξ̄ ¼ ξ − ð1=6Þ and

A ¼ 1 −
1

a
log

�
2þ a
2 − a

�
; a2 ¼ 4□

□ − 4M2
: ð14Þ

In the UV limit one recovers the expansion (7). However, in
the opposite limit −□=M2 ≪ 1 one finds

kWð□Þ; kRð□Þ ¼ Oð□=M2Þ: ð15Þ

Therefore in this limit the form factor is local, and small,
corresponding to the decoupling of particles with a mass
that is large compared to the momentum scale, which is
explicit in the mass-dependent subtraction scheme used in

Refs. [32,33] (see also the discussion in Sec. 2.3.1
of Ref. [17]).
In conclusion, a particle with a massM ∼ 10−3 eV (such

as a neutrino), naively seems to give a contribution to the
term ðM2=□Þ2 in Eq. (7), of the right order of magnitude
for reproducing the model (2) with m ∼H0, as required by
cosmology. However, for such a particle the expansion (7)
is invalid near the present epoch. A neutrino is actually an
extremely heavy particle compared to the scale H0, and
today it gives a local contribution of the form (15),
suppressed by a factor Oð□=M2Þ ≪ 1. A nonlocal con-
tribution proportional toM4=□2 at the present epoch could
only be obtained from hypothetical massive particles with a
mass M ≲H0 ∼Oð10−33Þ eV. However, according to
Eq. (9), this would produce a nonlocal term in Eq. (2)
with a totally negligible value m ∼H2

0=mPl, rather than
m ∼H0.
It should also be observed that, at the level of terms

quadratic in the curvature, logarithmic corrections involv-
ing graviton loops are not even well defined, since they
depend on the gauge used, and one can even find gauges in
which the corresponding divergences are absent, so that the
theory is one-loop finite even off shell [39]. A related issue
is that the particle creation due to these terms is a pure
quantum noise, and the real effect of particle production
only starts from terms of third order in the curvature [40].2

III. STRONG-COUPLING EFFECTS IN THE IR?

The above considerations stimulated us in Ref. [17] to
look for less obvious mechanisms for the generation of the
required nonlocalities. A possibility which is rather in-
triguing is that the scale M that appears in Eq. (8), rather
than being identified with the mass of a particle running in
quantum loops (which, as we have seen, is not a viable
possibility) is actually generated dynamically by strong-
coupling effects, much as ΛQCD in QCD. To stress this
different interpretation, in Ref. [17] we have indeed
denoted the mass scale M as ΛRR. The idea of strong-
coupling effects in gravity in the far infrared might seem
difficult to implement. However, as discussed in Ref. [17],
one can imagine mechanisms that leads to strong IR effects
in general relativity (GR). One possibility is related to the
running of the coupling constant associated to the R2 term.
If the running is such that the coupling is asymptotically
free in the UV and grows in the IR, a strong-coupling
regime could be reached at cosmological distances.

2For this reason, it is interesting to study also the cosmological
effects induced by nonlocal terms cubic in the curvature. The
effect of adding to the Einstein-Hilbert action a term R2

□
−2R, or

a term Rð□−1RÞ2 was studied in [41]. In both cases, however, no
viable cosmological model emerges already at the background
level. This is due to the fact that, in both radiation and matter
dominance, the Friedman equation is dominated by a term H4, so
we do not recover standard cosmology, see Eq. 4.1.6 of [41].
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Another interesting possibility, again discussed in
Ref. [17], is that the dynamics of the conformal mode
could become strongly coupled at large distances. Indeed,
restricting to the dynamics of the conformal mode σ, i.e.
writing the metric as

gμνðxÞ ¼ e2σðxÞημν; ð16Þ

the quantum-loop corrections embodied in the anomaly-
induced effective action generate a nontrivial kinetic term
for the conformal mode [42,43],

Sanom ¼ −
Q2

16π2

Z
d4xð□σÞ2; ð17Þ

where Q depends on the number and type of conformal
massless fields. Thus the conformal mode, which in
classical GR is a constrained field, acquires a propagator
∝ 1=k4 because of quantum effects. The corresponding
propagator in coordinate space grows logarithmically,

Gðx; x0Þ ¼ −ð2Q2Þ−1 log½μ2ðx − x0Þ2�: ð18Þ
This growth of the two-point correlation at large distances
could in principle generate strong IR effects. The situation
is quite similar to what happens in two dimensions, where a
momentum-space propagator ∝ 1=k2 again generates a
logarithmically growing propagator in coordinate space,
often resulting in a rich infrared physics. A classic example

is the Berezinsky-Kosterlitz-Thouless phase transition
where, changing the value of the parameter Q2 in front
of the propagator, a system can make a phase transition
from an ordered phase to a disordered phase, with the
generation of a mass gap. As discussed in Ref. [17], a
nonlocal term of the form R□−2R (or its nonlinear
generalizations) indeed describes a mass for the conformal
mode. Indeed, in the metric (16) we have

R ¼ −6□σ þOðσ2Þ; ð19Þ

and therefore, upon integration by parts,

m2R
1

□
2
R ¼ 36m2σ2 þOðσ3Þ: ð20Þ

The nonlocal term m2R□−2R therefore provides a diffeo-
morphism-invariant way of giving a mass to the conformal
mode. A mechanism of dynamical mass generation for the
conformal mode would therefore naturally produce a term
m2R□−2R, or one of its nonlinear generalizations such as
those in Eqs. (1) or (3).
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