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We present a new pseudospectral code, BAMPS, for numerical relativity written with the evolution of
collapsing gravitational waves in mind. We employ the first-order generalized harmonic gauge formulation.
The relevant theory is reviewed, and the numerical method is critically examined and specialized for the
task at hand. In particular, we investigate formulation parameters—gauge- and constraint-preserving
boundary conditions well suited to nonvanishing gauge source functions. Different types of axisymmetric
twist-free moment-of-time-symmetry gravitational wave initial data are discussed. A treatment of the
axisymmetric apparent horizon condition is presented with careful attention to regularity on axis. Our
apparent horizon finder is then evaluated in a number of test cases. Moving on to evolutions, we investigate
modifications to the generalized harmonic gauge constraint damping scheme to improve conservation in
the strong-field regime. We demonstrate strong-scaling of our pseudospectral penalty code. We employ the
Cartoon method to efficiently evolve axisymmetric data in our 3þ 1-dimensional code. We perform test
evolutions of the Schwarzschild spacetime perturbed by gravitational waves and by gauge pulses, both to
demonstrate the use of our black-hole excision scheme and for comparison with earlier results. Finally,
numerical evolutions of supercritical Brill waves are presented to demonstrate durability of the excision
scheme for the dynamical formation of a black hole.
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I. INTRODUCTION

This is the first in a series of papers about the numerical
treatment of collapsing gravitational waves using a new
pseudospectral code developed for the problem. In the early
1990s, critical phenomena were discovered in gravitational
collapse [1], in spherical symmetry, with general relativity
minimally coupled to a massless scalar field. One aspect of
the finding was that, amazingly, the critical solution
dividing the formation of a black hole from dissipation
of the field was unique in the sense that if one takes any one
parameter family of initial data, with the parameter con-
trolling somehow the strength of the data, and tunes this
parameter to the threshold of black-hole formation, one
finds that the same solution is always obtained, regardless
of the family. Shortly thereafter, a similar phenomenology
was reported in axisymmetric, vacuum general relativity [2]
or, in other words, in the collapse of gravitational waves.
Since then, multiple studies have been performed to
reproduce this finding, albeit with different initial data
and numerical approaches, but without success. Perhaps
most strikingly, in Ref. [3] numerical evidence of a different
critical solution was presented. Even if one completely
accepts the available evidence for criticality in vacuum
collapse, this obviously begs the question whether or not
the naive expectation of uniqueness of the critical solution
in axisymmetric, rather than spherical, collapse holds.
Roughly speaking, there are two types of code being

used in three-dimensional numerical relativity. The first
uses the moving puncture method [4,5], which consists, in
essence, of a clever choice of evolved variables and gauge

conditions, normally treated numerically by finite differ-
encing. Second is the pseudospectral method, most
prevalently used with a first-order generalized harmonic
formulation of general relativity by the SPEC code [6].
Recently, we presented a study of the collapse of gravi-
tational waves using the moving puncture method [7], in
part to establish how close to the critical regime one can
get with this standard approach. The conclusion: not very.
Major difficulties included the formation of coordinate
singularities and a lack of accuracy. Therefore one would
like to tackle the problem using the pseudospectral
approach to establish what can be achieved in that setting.
We have thus developed a new pseudospectral code along
the lines of SPEC, specializing the continuum and
numerical method as much as possible towards the
problem of vacuum gravitational collapse. The present
paper represents the first outcome of this maneuver.
Herein, we describe the formulation of GR employed,
our boundary conditions, the code, calibration of the
method, our initial data, our approach to axisymmetric
apparent horizons, plus a suite of validation tests for gauge
waves, gravitational waves, black holes and collapse
spacetimes. Throughout, we compare our results carefully
with those in the literature. We aim to give a body of
evidence for the correctness of the method that the reader
will find compelling. With this out of the way, in
subsequent papers we turn to the problem of critical
collapse. A summary follows before the main text.
In Sec. II, we look at a slightly modified version of

the first-order generalized harmonic formulation of [8].
We consider constraint-preserving, radiation-controlling
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boundary conditions, paying special attention to the con-
straint-preserving boundaries. By considering the reflection
of outgoing waves in the linear approximation, we ultimately
suggest modified conditions that should reduce spurious
reflections caused by the use of constraint damping. We also
suggest alternative gauge boundary conditions.
Next, in Sec. III, we outline the BAMPS code, including

our carefully constructed cubed-sphere grids, which avoid
clustering of grid points in unfortunate positions of the
domain. For the discretization, we employ a pure
Chebyschev approach. We also discuss our “octant”
symmetry implementation, the crucial patching-penalty
approach for communicating data between neighboring
coordinate patches, and finally the boundary implementa-
tion. In the follow-up, Sec. IV, we complete the presen-
tation of the penalty method by computing the penalty
parameters appropriate for the semidiscrete system.
Given the difficulties in the literature in reproducing the

results of [2], it seems necessary to solve the problem in
axisymmetry before moving to examine the collapse of
fully three-dimensional waves without symmetry. In our
moving puncture gauge study [7], a major disadvantage in
using the BAM code was that three-dimensional grids were
employed to evolve axisymmetric data. In Sec. V, we
present our approach to evolving axisymmetric spacetimes
with the BAMPS code, for which we employ the Cartoon
method [9] to reduce from the standard BAMPS three-
dimensional domains to a plane, by using the Killing vector
to evaluate any angular derivatives. We discuss various
flavors of axisymmetric moment-of-time-symmetry initial
data and their numerical construction. These initial data sets
are evolved in a forthcoming study. We also give a detailed
description of our formulation of the apparent horizon
conditions in axisymmetry. To the best of our knowledge,
this is the first time that the regularity conditions on the
symmetry axis have been carefully taken care of. This is
important in later work as the search for apparent horizons
will be our key diagnostic tool.
The next three sections (VI–VIII) contain a write-up of

our development and validation tests. The tests include
evolutions with the proposed gauge boundary conditions,
which we find are helpful when using large gauge source
parameters, as desired. They also include runs comparing
the fully three-dimensional, octant symmetry and Cartoon
evolutions, demonstrating that the various symmetry setups
are well behaved. In the evolution of single black holes, we
test different gauges and boundary conditions and, follow-
ing [8], look at evolutions in which the black hole is
perturbed by a gravitational wave injected through the outer
boundary. Our results are in good agreement with the
earlier studies. We then examine the evolution of super-
critical Brill waves, where, after the formation of an
apparent horizon the run is continued after interpolation
onto an excision grid, as used to evolve a single black hole,
which is needed to evolve data with a horizon for long
times. Finally, we conclude in Sec. IX.

II. THE GENERALIZED HARMONIC
FORMULATION AND BOUNDARY CONDITIONS

A. GHG, constraints, boundary conditions

1. The evolution system

We use the first-order reduction of the generalized
harmonic formulation with several free parameters. The
full reduction from the second-order Einstein equations is
presented in detail elsewhere [8] so here we give only a
brief overview to establish our notation. Throughout the
paper, in continuum equations, we use the latin a; b; c… for
four-dimensional indices, but i; j; k… for spatial indices,
with the exception of n and s, whose meaning when used as
indices will be described shortly. Greek indices are used to
refer to the position in a state vector, grid indices, or where
otherwise needed. We start from the vacuum generalized
harmonic formulation in second-order form,

Rab ¼ ∇ðaCbÞ þ γ4Γc
abCc −

1

2
γ5gabgcdΓe

cdCe

− γ0½nðaCbÞ − gabncCc�; ð1Þ

for the unknown spacetime metric gab with Christoffels
Γc

ab. The constraints of the system are Ca ¼ gbcΓabc þ
Ha ¼ 0, plus the standard Hamiltonian and momentum
constraints of GR. The gauge source functions Ha are
freely specifiable, provided that they do not include
derivatives of the metric, which would affect the principal
part of the PDE. The terms involving γ0 are included so as
to damp away high-frequency constraint violations [10].
The parameters γ4 and γ5 control whether or not the
constraint addition made in the construction of the formu-
lation is done either with the covariant or the partial
derivative, or some combination. The latter choice has
the effect of simplifying the constraint subsystem. In the
code, we use a first-order reduction by introducing the
variables Φiab and Πab. The equations of motion are

∂tgab ¼ βi∂igab − αΠab þ γ1β
iCiab;

∂tΦiab ¼ βj∂jΦiab − α∂iΠab þ γ2αCiab þ
1

2
αncndΦicdΠab

þ αγjkncΦijcΦkab;

∂tΠab ¼ βi∂iΠab − αγij∂iΦjab þ γ1γ2β
iCiab

þ 2αgcdðγijΦicaΦjdb − ΠcaΠdb − gefΓaceΓbdfÞ

− 2α

�
∇ðaHbÞ þ γ4Γc

abCc −
1

2
γ5gabΓcCc

�

−
1

2
αncndΠcdΠab − αncγijΠciΦjab

þ αγ0½2δcðanbÞ − gabnc�Cc; ð2Þ

with shorthands to be defined momentarily. The formu-
lation here agrees with that of [8] except for the inclusion of
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the γ4 and γ5 parameters. We will either take the new
parameters to vanish, or choose γ4 ¼ γ5 ¼ 1=2. The lapse
and shift are denoted α and βi, respectively. The unit normal
to the spatial slices of constant coordinate time t is written
na. When the normal is contracted with a tensor, we
sometimes use the abbreviation San ¼ Sabnb, and likewise
for the arbitrary unit spatial vector sa. The induced metric
on the slice is written γij. In matrix notation, this system can
be written as

∂tuμ ¼ Akμ
ν∂kuν þ Sμ; ð3Þ

with uμ ¼ ðgab;Πab;ΦiabÞT , and principal matrix,

Apμ
ν ¼

0
B@

ð1þ γ1Þβk 0 0

γ1γ2β
k βk −αγik

γ2αδ
k
i −αδki βk

1
CA; ð4Þ

and Sμ containing all source terms. We use the shorthand
for the Christoffel symbols under the first-order reduction,

Γabc ¼ γiðbjΦijcÞa −
1

2
γiaΦibc þ nðbΠcÞa −

1

2
naΠbc; ð5Þ

and will frequently use the abbreviation Γa ¼ gbcΓa
bc. The

system is symmetric hyperbolic, having the same principal
part as a particular first-order reduction of the wave
equation. The characteristic variables are given by

u0̂ab ¼ gab;

u�̂ab ¼ Πab∓siΦiab − γ2gab;

uβ̂Aab ¼ qiAΦiab; ð6Þ

with the projection operator qji ¼ δji − sjsi, and speeds,

v0̂ ¼ ð1þ γ1Þβs; v�̂ ¼ βs � α; vβ̂ ¼ βs; ð7Þ

respectively. For future reference, let us also note that a
convenient way to transform to the characteristic variables
is to write uα̂ ¼ T−1α

βuβ, where here the indices represent
the position in the state vector uα̂ and where the similarity
matrix is

T−1α̂
μ ¼

0
BBB@

1 0 0

−γ2 1 −si

−γ2 1 si

0 0 qij

1
CCCA; ð8Þ

which has left inverse Tμ
α̂. But note, however, that

T−1α̂
μTμ

β̂ ≠ δα̂β̂. The strength of this representation in
practical terms is in avoiding special cases in the numerical

implementation, like for example sx ¼ 0, in the character-
istic decomposition.

2. Gauge source functions

For the gauge source functions Ha, we choose

Ha ¼ ηL log

�
γp=2

α

�
na −

ηS
α2

γaiβ
i: ð9Þ

Our convention differs from that of both [11] and [3] in a
trivial normalization of the spatial part with respect to the
lapse function. Writing the resulting gauge conditions in
terms of the lapse and shift we get

∂tα ¼ −α2K þ ηLα
2 log

�
γp=2

α

�
þ βi∂iα;

∂tβ
i ¼ α2ð3ÞΓi − α∂iα − ηSβ

i þ βj∂jβ
i; ð10Þ

with K the trace of the extrinsic curvature and ð3ÞΓi the
contracted Christoffel symbol of the spatial metric. Before
black-hole formation for the scalar functions ηL, ηS we
choose

ηL ¼ η̄Lα
q; ηS ¼ η̄Sα

r; ð11Þ

with η̄L, η̄S, q, r some constants. By default, we choose
p ¼ 1 and q ¼ r ¼ 0, which naturally maintains the shift
damping term even if the lapse function is close to zero, in
contrast to the standard condition employed in SPEC [11],
which takes r ¼ 1. Since we wish to study near-singular
gravitational effects in the computational domain and avoid
run-away growth of the shift vector this seems reasonable.
We will report in later work on adjustments to these choices
when evolving near-critical data. When evolving black
holes by excision, we follow [11], taking instead r ¼ 1,
although so far we have not found it necessary to use the
log2 form of ηL.

3. The constraint subsystem

The first-order reduced harmonic constraints are

Ca ¼ Ha þ γijΦija −
1

2
γa

igcdΦicd þ nbΠab −
1

2
nagbcΠbc:

ð12Þ

The terms without Ha are simply Γa. In these variables, the
vacuum ADMHamiltonian and momentum constraints can
be expressed as
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2Gnn ¼ γijγklð∂kΦijl − ∂kΦlij þ Γa
jkΓail − Γa

ijΓaklÞ;

−γaiGna ¼ γjk
�
∂ ½jΠi�k þ

1

2
djΦkin −

1

2
diΦjkn

−
1

2
Πj½iΦk�nn þ γlmΦmk½jΦi�ln þ 2Γan½iΓa

k�j

�
:

ð13Þ

As stated above, we use a subscript n to denote contraction
with the normal vector na, but with the convention that di
stands for the partial derivative, but with any such con-
traction outside of the derivative. We can put the
Hamiltonian and momentum constraints together as a
four-vector of constraints:

Ma ¼ Gan: ð14Þ

Working with the first-order system creates the reduction
and closely related ordering constraints:

Ciab ¼ ∂igab − Φiab ¼ 0;

Cijab ¼ ∂iΦjab − ∂jΦiab ¼ 2∂ ½jCi�ab ¼ 0: ð15Þ

The constraints Ca and Ciab evolve according to

∂tCa ¼ ð1þ γ1Þβi∂iCa − γ1β
i∂̄iCa þ αGa

þ ðγ4 − γ5ÞαnaΓbCb − αð2γ4 − 1ÞΓb
anCb

þ 2γ0αnbnðaCbÞ þ αγijγklΦiknCljnna

− αγiaCijn

�
1

2
gbcΦj

bc þ Φj
nn

�

− γ1γ2β
i

�
1

2
gcdCicdna − Cina

�
;

∂tCiab ¼ βjð∂jCiab þ γ1∂iCjabÞ þ α

�
ð1þ γ1ÞdigjnCj

ab

− γ2Ciab þ Φj
abCijn þ

1

2
CinnΠab

�
; ð16Þ

where we have introduced the constraint

Ga ¼ 2Ma þ ðnaγib − γianbÞð∂̄iCb − Γc
ibCcÞ

þ γ2

�
δcaγ

ib −
1

2
gbcγia

�
Cibc; ð17Þ

and where the notation ∂̄i means take the partial derivative
and afterwards replace all first derivatives of the metric with
the reduction variable Φiab. Up to lower derivatives in the
constraints, we find

∂tGa ≈ βi∂iGa þ αγij∂i∂jCa − αγjkγli∂lCijka

þ 1

2
αγjaγ

ilgcd∂lCijcd; ð18Þ

where ≈ denotes equality up to nonprincipal terms, the
remainder having been suppressed for brevity. The equa-
tion of motion for Cijab is readily derived by taking
derivatives of that of Ciab. Notice that the parameter γ2
serves to damp the reduction constraint. In the description
of [8], the equivalent reduction variable is called Fa, with,
including γ4 and γ5 in the natural way,

Fa ¼ Ga − ð1 − γ4ÞðnaΓb − 2Γb
anÞCb − γ5naΓbCb; ð19Þ

in our variables. The difference is not substantial, only that
Ga appears slightly more naturally in the second-order form
of the equations. Note that in (19), the final term contains a
piece which is simply the harmonic constraint in the pure
harmonic case but will act as a nonzero coefficient
otherwise.

4. First-order reduction of the constraint subsystem

Following [8], a first-order reduction of the constraint
subsystem is formally introduced by defining the new
variable Cia with

Cia¼ γjk∂jΦika−
1

2
γjagcd∂jΦicdþdiΠan−

1

2
nagcd∂iΠcd

þ∂iHaþ
1

2
γjaΦj

cdΦicdþ
1

2
γjkΦjc

cΦiknna

− γjkγlmΦjlaΦikmþ1

2
ΦicdΠbena

�
gcbgdeþ1

2
gbencnd

�

−ΦicnΠba

�
gbcþ1

2
nbnc

�
þ1

2
γ2ðnagcd−2δcandÞCicd:

ð20Þ

The principal part of this formal reduction is given by

∂tCa ≈ 0;

∂tGa ≈ βi∂iGa þ αγij∂iCja;

∂tCia ≈ βj∂jCia þ α∂iGa;

∂tCiab ≈ ð1þ γ1Þβj∂jCiab;

∂tCijab ≈ βk∂kCijab: ð21Þ

The characteristic variables of the constraint subsystem are
then found to be
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c�̂a ¼ Fa∓Csa; c0̂a ¼ Ca;

cβ̂Aa ¼ qiACia; cγ̂1iab ¼ Ciab;

cβ̂ijab ¼ Cijab; ð22Þ

with speeds βs∓α, 0, βs, ð1þ γ1Þβs and βs respectively,
where we use upper case latin indices to denote those
projected by qab. A suitable norm of the constraint
violation is given by the constraint monitor which is
defined as

Cmon ¼
Z

d3x
ffiffiffi
γ

p ðδabFaFbþδabCaCbþ γijδabCiaCjb

þ γijδacδbdCiabCjcdþ γijγklδacδbdCikabCjlcdÞ: ð23Þ

5. The gravitational wave degrees of freedom

In vacuum, the Weyl scalars Ψ0, Ψ4 can be expressed as

Ψ0 ¼ mAmB½⊥ðPÞbd
ABlalcRabcd�;

Ψ4 ¼ mAmB½⊥ðPÞbd
ABkakcRabcd�; ð24Þ

respectively. Here we have introduced the null tetrad

la ¼ 1ffiffiffi
2

p ðna þ saÞ; ka ¼ 1ffiffiffi
2

p ðna − saÞ;

ma ¼ 1ffiffiffi
2

p ðva þ iwaÞ; m̄a ¼ 1ffiffiffi
2

p ðva − iwaÞ; ð25Þ

with sa, va and wa mutually orthogonal unit spatial vectors,
and the projection operator,

⊥ðPÞcd
ab ¼ qcðaqdbÞ −

1

2
qcdqab

¼ mðambÞm̄ðcm̄dÞ þ m̄ðam̄bÞmðcmdÞ: ð26Þ

In terms of the first-order GHG variables, we can express
the principal part of the Riemann tensor as

Rabcd ≈ γja∂iΦjb½cγd�i − γjb∂iΦja½cγd�i þ na∂iΠb½cγd�i

− nb∂iΠa½cγd�i þ γia∂iΠb½cnd� − γib∂iΠa½cnd�
− naγij∂iϕjb½cnd� þ nbγij∂iϕja½cnd�

− γ1γ2nank∂kgb½cnd� þ γ1γ2nbnk∂kga½cnd�
− γ2γ

i
a∂igb½cnd� þ γ2γ

i
b∂iga½cnd�: ð27Þ

Of course this expression is unique only up to constraint
additions. Note that upon contraction with ⊥ðPÞ and l to
form the Weyl scalar Ψ0, and after a single addition of
Cijab, we naturally form a projection of the incoming

characteristic variable dsu
þ̂
ab. This is used in the

construction of the boundary condition. The spatial vector
si is taken to be the unit spatial normal to the boundary.

6. Boundary conditions

At the outer boundary, we need to control incoming
constraint violation, gauge perturbations and physical
radiation. By default, we initially impose

Fa þ Csa þ
1

r
Ca¼̂ 0; ð28Þ

on the constraint subsystem assuming that the characteristic
variable c−̂a is always incoming. These conditions are
essentially those of [8], with just the additional 1=r term.
Other conditions for this variable will be motivated and
tested in what follows. The remaining constraint subsystem
characteristic variables may or may not be incoming, and
are dealt with on this basis as described in Sec. III D, but
always according to the same prescription. For the gravi-
tational wave degrees of freedom, we choose

Ψ0¼̂ q0; ð29Þ

the lowest-order member of a cascade of conditions on
incoming radiation [12,13], with given data q0. Examining
(24) it is obvious that this is equivalent to setting

⊥ðPÞbd
ABðlalcRabcdÞ ¼ ⊥ðPÞbd

ABq
ðPÞ
bd ; ð30Þ

which is in practice how the conditions are implemented.
For the remaining gauge degrees of freedom, we choose
either the improved gauge boundary conditions of [14],

⊥ðGÞcd
ab dt½uþ̂cd þ ðγ2 − r−1Þgcd�¼̂ 0; ð31Þ

or the alternative,

⊥ðGÞcd
ab ½dsuþ̂cd − 2d̄s½nðcHdÞ� þ γ2Φscd

þ r−1ðuþ̂cd − 2nðcHdÞ þ γ2gcdÞ�¼̂ 0; ð32Þ

with given data qðGÞcd , which we will often take to vanish,
and where the overbar derivative notation has the same
meaning as in Eq. (17). These conditions are similar to the
‘freezing’ gauge boundary conditions employed in [8], but
taking into consideration the discussion of gauge reflec-
tions given in [14], and constructed so that the conditions
are naturally applied to metric components (in ADM form)
and their derivatives, but excluding contributions from the
gauge sources. We will typically try to choose the given
data to be fixed in time, such that initially the time
derivatives vanish for these quantities. Here we have
introduced the gauge projection operator,
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⊥ðGÞcd
ab ¼ lðakbÞlðckdÞ þ kakblcld − 2kðaqbÞðcldÞ: ð33Þ

The above boundary conditions are implemented in
BAMPS using the Bjørhus method [15] as in SPEC.
Details of the method are explained in Sec. III D. For
completeness, here the constraint projection operator
⊥ðCÞ ¼ I −⊥ðPÞ −⊥ðGÞ is

⊥ðCÞcd
ab ¼ 1

2
qabqcd − 2lðaqbÞðckdÞ þ lalbkckd; ð34Þ

and also plays an important role in the implementation of
the boundary conditions, as they are again naturally written

in the form ⊥ðCÞcd
ab dsu

þ̂
cd ¼ transverse derivatives.

B. Constraint-preserving boundary
conditions and damping

1. Generalized harmonic constraint subsystem

We already saw the constraint subsystem of the first-
order reduction of the GHG system. But to get a better idea
of the effect of the different constraint-preserving boundary
conditions, let us consider now the subsystem without the
reduction. We have

∇bYba ¼ −RabCb;

Yba ¼ ∇bCa þ 2γ4Γc
abCc − ðγ4 − γ5ÞgabΓcCc

− 2γ0nðaCbÞ: ð35Þ

The shorthand Yab and the variable Ga that follows will be
related to quantities present in the first-order reduction of
the GHG formulation shortly. We can equivalently express
this as

nb∂bCa ¼ Ga − ð2γ4 − 1ÞΓc
abnbCc − ðγ4 − γ5ÞnaΓcCc

þ 2γ0nbnðaCbÞ;

nb∂bGa ¼ γbc∇b½∇cCa þ 2γ4Γd
acCd − ðγ4 − γ5ÞgacΓdCd

− 2γ0nðaCcÞ� þ ðnb∇bncÞ½∇cCa þ 2γ4Γd
acCd

− ðγ4 − γ5ÞgacΓdCd − 2γ0nðaCcÞ� þ Γc
abnbCc

þ RabCb; ð36Þ

where the variable,

Ga ¼ nbYba ¼ 2Ma þ ðnaγib − γianbÞ∇iCb; ð37Þ

is used to allow for the most convenient form of these
expressions, and the final term of (36) is in fact of second
polynomial order in the constraints because of the vacuum
field equations (1). Different choices of the constraint
addition parameters γ4, γ5 result in different behavior in
terms of growth of the constraint fields. It is also obvious

that different choices of these parameters can simplify the
constraint subsystem, the natural choice apparently
being γ4 ¼ γ5 ¼ 1=2.

2. Linearization

Let us linearize and consider the behavior of a set of
fields that satisfies these equations on a fixed constraint
satisfying background. We start with Eq. (35) and use the
tetrad consisting of the null vectors la, ka, ma, m̄a defined
in (25) to decompose the first index of Yba. From this
we obtain

∇bðkblcYca þ lbkcYca −mbm̄cYca − m̄bmcYcaÞ ¼ 0; ð38Þ

for the linearization, where we are free to use the notation
Ca for the linearized violation because the constraints are
satisfied in the background.

3. Boundary conditions

Taking the standard setup at the outer boundary so that
sa, used in the construction of the tetrad, denotes the
outward pointing spatial unit vector normal to the boun-
dary. Restricting our attention to boundary conditions that
contain, at most, one derivative of the constraints, geomet-
rically the most natural choice seems to be lbYba¼̂ 0. In the
first-order GHG language, these conditions are

Ga þ∇sCa þ 2γ4Γc
asCc

þ ðγ4 − γ5ÞsaΓbCb − γ0naCs¼̂ 0: ð39Þ

Whereas, discarding the first-order reduction, those of (28)
are instead

Ga þ∇sCa þ Γc
asCc − ð2γ4 − 1ÞΓc

anCc

− ðγ4 − γ5ÞnaΓbCb þ
1

r
Ca¼̂ 0: ð40Þ

With either condition, one might guess that the choice γ4 ¼
γ5 ¼ 1=2 reduces reflections from the boundary, especially
when using a nonharmonic Γa ¼ −Ha ≠ 0 gauge.
Incidentally, this choice also makes the two conditions
almost coincident. Suppose all derivatives of Ca, Ga
tangent to the boundary vanish, and that the background
is flat. Then we can analyze the solutions in a plane-wave
approximation.

4. Mode solutions on flat space

When linearized around flat space, this system takes the
form

□Ca − 2γ0∂bðnðaCbÞÞ ¼ 0: ð41Þ

The right-traveling mode solutions are
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Cn ¼ ρ1es
þ
1
tþiωx þ ρs2e

sþ
2
tþiωx;

Ci ¼ ρi2e
sþ
2
tþiωx; ð42Þ

with eigenfrequencies,

sþ1 ¼ −
1

2
γ0 −

i
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ω2 − γ20

q
;

sþ2 ¼ −γ0 − i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − γ20

q
: ð43Þ

A very desirable property for our boundary conditions
would be that they absorb outward going waves perfectly,
that is, without reflection. With this motivation, high-order
derivative boundary conditions on the gravitational wave
degrees of freedom have been studied [12,13] and imple-
mented in the SPEC code [16] in order to absorb higher
spherical harmonics of the Weyl scalar Ψ4. In the current
context, absorption means that outgoing mode solutions,
those associated with an sþ, lie in the kernel of the
boundary conditions. This is only the case if we switch
off the damping γ0 ¼ 0. Since the low-order spherical
harmonics might be expected to dominate in the gauge and
constraint subsystems, optimizing against this phenomena
may be more important than using high-order conditions
for the gauge and constraint subsystems whilst neglecting
the damping terms.

5. Remainder of mode solutions

Substituting these mode solutions into the boundary
conditions (40), or the natural geometric conditions (39),
each after appropriate linearization, and expansion at large
frequency ω gives remainders of order Oðγ0CaÞ, indicating
that neither is the optimal that can be obtained by adding
source terms to the constraint boundary conditions. Taking
instead

ð∂t þ ∂s þ γ0ÞCn þ
1

2
γ0Cx¼̂ 0;�

∂t þ ∂s þ
1

2
γ0

�
Ci¼̂ 0; ð44Þ

the remainder is rather of orderOðγ0Caω
−1Þ. There is some

freedom in expressing these conditions in the first-order
GHG language, but we choose

Ga þ ∇̄sCa þ 2γ4Γc
asCc þ ðγ4 − γ5ÞsaΓbCb

þ 1

2
γ0γa

bCb − γ0na

�
Cn þ

1

2
Cs

�
þ 1

r
Ca¼̂ 0: ð45Þ

The conditions (39) can be similarly rewritten. A similar
analysis can be performed using the pure gauge subsystem
presented in [17], but we currently find that existing gauge
boundary conditions are sufficient for our needs, so we do

not present these calculations here. Tests with the various
boundaries are presented in Sec. VI.

III. THE BAMPS CODE

Having discussed the continuum system in the previous
section, we now discuss details of our numerical imple-
mentation of the GHG system. For this, we present the
BAMPS code, which uses a pseudospectral method on
cubed-sphere grids. The basic idea of the code is based
on SPEC [6], but in many details, such as the actual grid
implementation and the outer boundary treatment,
differences are present.

A. Grid setup

1. Grid types

The numerical domain on which we solve the evolution
equations in BAMPS is either a cubed-ball or a cubed-shell
grid. Each type is built up of multiple deformed cubes.
Each patch is described by two fundamental overlapping
charts. In local coordinates x̄, ȳ, and z̄, it is a rectangular
box ½x̄0; x̄1� × ½−1; 1� × ½−1; 1�. In global Cartesian coor-
dinates x, y and z, the cubes are transformed and rotated in
such a way that when added together they build the desired
domain. We give a detailed description in the following.
The cubed-ball grid includes the origin and has a spherical
outer boundary. It consists of 13 coordinate patches:
The central cube is centered around the origin and ranges
from −rcu to rcu in the global Cartesian coordinate
directions.
The transition shell transfers the grid from the inner cube
grid to a spherical shell with radius rcs. It contains six
patches.
The outer shell consists of six patches which extends the
grid with additional cubed shells up to the outer grid
boundary at rss.
The cubed-shell grid is an excision grid, meaning that it
does not include the origin. It is a special case of the cubed-
ball grid, consisting only of the six outer shell coordinate
patches.

2. Cubed-sphere coordinate transformation

The coordinate transformation used in BAMPS to con-
struct the grids introduced above relies on the so called
“cubed sphere” construction. It was introduced in [18] and
first applied in the context of numerical relativity in
[19,20]. Since then this idea was implemented in multi-
patch approaches [21–24]. In contrast to many of the earlier
examples, the numerical method of BAMPS does not require
overlapping grids, which simplifies the discussion. In [18],
the coordinates are constructed by considering great arcs
parametrized by equidistant angles. Such angle coordinates
are used in [19–21], while [22,24] use an intermediate set
of coordinates also given in [18] that does not have the
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equidistant angle property. In BAMPS, the latter type of
coordinates is employed. The concrete coordinate trans-
formation is the following. First, the local coordinates of
each patch are transformed to temporary global coordinates

xt ¼
x̄
s̄
; yt ¼

x̄
s̄
ȳ; zt ¼

x̄
s̄
z̄: ð46Þ

This patch, which is orientated in positive x direction, will
later be referred to as the master patch. From here, cyclic
permutation is used to rotate the patches to their location in
the sphere. The denominator s̄ depends on where the
coordinate transformation happens. For the patches of
the outer shell, it is

s̄≡ ð1þ ȳ2 þ z̄2Þ1=2; ð47Þ

In the transition shell, its definition includes a transition
function λ:

s̄ðλÞ ¼
�

1þ 2λ

1þ λðȳ2 þ z̄2Þ
�

1=2
; λ ¼ x̄2 − x̄20

x̄21 − x̄20
: ð48Þ

This coordinate transformation is constructed to transition
from the inner cube to the outer shells. Note that this
transformation is uniform along the three-dimensional
diagonals, where the distance between inner and outer
shell boundary is smallest. This significantly improves the
time-stepping restriction in the transition shell.

3. Subpatches

Each coordinate patch can be further divided into
subpatches. Subpatches are helpful for increasing resolu-
tion, and form the backbone of the parallelism of BAMPS.
Each master patch can be split into N x ×N y ×N z
subpatches with coordinates

x̄i ∈ ½x̄i0 þ kiΔx̄i; x̄i0 þ ðki þ 1ÞΔx̄i�; ð49Þ

with Δx̄i ¼ ðx̄1−x̄0N x
; 2
N y

; 2
N z
Þ and ki ¼ 0;…;N i − 1. In prac-

tice, we ensure subdivisions are made in such a way that
subgrids of two neighboring patches match, and that
neighboring patches and subpatches share grid-point posi-
tions on their respective boundaries. This is necessary
because our current penalty-communication method does
not deal with interpolating penalties. Concretely we split
the inner cube into N cu ×N cu ×N cu subpatches. The
transition and outer shell are divided in N cs or N ss
subpatches in the radial direction. For the angular direction,
we choose the number of subpatches to be N cu ×N cu. In
Fig. 1, we show a two-dimensional sketch of the BAMPS

cubed-ball grid subdivided into subpatches.
It is straightforward to specify a mapping between a

rectangular master patch and a cubed sphere, although
some book keeping for the different patches and different

types of shell transitions is involved. It may be useful to
examine different such mappings in terms of a numerical
quality criterion, say the size of the Jacobian, and to
minimize the distortions associated with the coordinate
transformation.

B. Numerical method

1. Spatial discretization

BAMPS uses the method of lines with a standard ODE
integrator to integrate in time. The right-hand sides are
approximated using a pseudospectral method. We use a
linear transformation to map the local coordinates of each
subpatch x̄i into a unit cube ~xi ¼ ð~x; ~y; ~zÞT ∈ ½−1; 1�3. We
discretize the subpatch by choosing Gauss-Lobatto collo-
cation points in each dimension, for example,

~xα ¼ − cos

�
π

Nx − 1
α

�
; ð50Þ

with α ¼ 0;…; Nx − 1, and similarly in the other direc-
tions. The number of grid points N depends on the patch
location in the grid. The central cube is discretized with
Ncu × Ncu × Ncu points. The radial directions of the tran-
sition and outer shell are filled with Ncs and Nss points
respectively. The number of angular points we chose to be
the same as in the central cube to assure that we have
matching grids. In Fig. 1, we show on the right the Gauss-
Lobatto discretization of a subpatch.

2. Basis expansion

On the collocation points, we expand all evolution fields
u in each dimension in a spectral basis using Chebyshev
polynomials TnðxÞ,

uαβδ ¼ uð~xα; ~yβ; ~zδÞ ¼
XNx−1

n¼0

cxnð~yβ; ~zδÞTnð~xαÞ; ð51Þ

and analogously in the remaining two directions. We use
the pseudospectral approach and store not the expansion
coefficients cx, cy, cz but the function values uαβδ at the
collocation points ~xiαβδ.

3. Derivatives

The spatial derivatives of the evolution fields are
computed by a matrix multiplication. For example, in
the ~x direction, we have

ð∂ x̂uÞαβδ ¼
XNx−1

n¼0

Dαnunβδ ð52Þ

with the Gauss-Lobatto derivative matrix,
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Dαβ ¼

8>>>>>><
>>>>>>:

− 2ðNx−1Þ2þ1

6
α ¼ β ¼ 0

qα
qβ

ð−1Þαþβ

~xα−~xβ
α ≠ β

−~xβ
2ð1−~x2βÞ

α ¼ β ¼ 1;…; Nx − 2

2ðNx−1Þ2þ1

6
α ¼ β ¼ Nx − 1;

ð53Þ

where qα ¼ 2 at the boundary points and qα ¼ 1 elsewhere.
In practice, we do not compute diagonal terms of the
derivative matrix by the analytic formulas stated above but
use the identity

Dαα ¼ −
XNx−1

n¼0;n≠α
Dαn: ð54Þ

This negative-sum trick maps a constant function explicitly
to zero and is known to give the derivative matrix better
stability as regards rounding errors [25]. In preliminary
experiments, we found that this gives slightly more
accurate derivatives but have not studied the influence
on the accuracy of the simulations presented later in
the paper.

4. Filtering

We find that a crucial ingredient for numerical stability is
the use of a filter against high-frequency growth. For this,
we follow [11] exactly. After every full time step, we apply
the filter in each dimension. The filter is easily imple-
mented as a matrix multiplication. For example, in the ~x
direction, we filter the function values by

ðFuÞαβγ ¼
XNx−1

n

F nαunβγ; ð55Þ

with the filter matrix

F αβ ¼
X
n

Sαne−36ðn=nmaxÞ64Anβ; ð56Þ

where nmax ¼ Nx − 1 and Sαβ and Aαβ are the Chebyshev
synthesis and analysis matrices, respectively.

5. Time integration

We integrate the fields forward in time using a fourth-
order Runge-Kutta scheme. Unless otherwise stated, we fix
the time step, Δt ¼ 1

4
Δxmin, with Δxmin being the minimal

Cartesian spatial grid spacing of the whole domain.
Empirically, we find that this choice for the time step
always leads to stable numerical evolutions, in the sense
that increasing resolution results in smaller errors. We have
not not carried out a stability analysis of the fully discrete
system.

6. BAMPS octant grid

When evolving octant symmetric data in BAMPS, it is
possible to only evolve one eighth of the cubed ball grid.
This saves computational and memory costs. In the BAMPS

octant mode, we choose an odd number of subpatchesN cu
and a odd number of grid points Ncu and reduce the
numerical domain to x ≥ 0, y ≥ 0 and z ≥ 0. This means
that all subpatches containing one of the Cartesian axes
are cut in half along them. In these patches, we use the

FIG. 1. The left part of the diagram gives a two dimensional sketch of the BAMPS cubed-ball grid layout. The ball is built up of several
transformed cubes. These patches can further be divided in subpatches. In the example shown, we haveN cu ¼ 3,N cs ¼ 2 andN ss ¼ 1.
On the right is shown that each subpatch is covered by Gauss-Lobatto grids ranging from −1 to 1 in local coordinates.
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symmetry conditions to construct special matrices which
compute the derivatives and filters.

C. Patching boundary conditions

To glue all subpatches together, we have to impose
appropriate conditions at the connecting boundaries of the
subpatches. For this, we apply the penalty method as is
described in [26–28]. The main idea of this method is to
add penalty terms for each incoming characteristic variable
at the boundary to the right-hand side of the evolution
equations. We use the characteristic variables of the
evolution system to formulate boundary conditions. On
the boundary surface, we define the outward pointing
spatial normal vector si. The characteristic variables of
the evolution system are given in Eq. (6) with speeds (7). In
vector notation, we write

uμ ¼

0
B@

gab
Πab

Φiab

1
CA; uα̂ ¼

0
BB@

u0̂ab

u�̂ab

uβ̂Aab

1
CCA: ð57Þ

Incoming characteristic variables to the subpatch boundary
have positive speeds. On these, we want to impose the
condition that they are equal to the outgoing characteristic
variables of the neighboring patch. Table I summarizes all
incoming and outgoing characteristic depending on the
lapse function α and the shift in si direction, βs. As an
example, let us now consider the boundary between two
patches, patch L and patch R, and the case −α < βs < 0.
With respect to the spatial normal vector si at the boundary
pointing outwards of subpatch L and inwards in subpatch
R, the incoming characteristic variables of L are the
outgoing ones of R. In the chosen case, u−̂ab are incoming
to L and outgoing of R. We want to impose the condition

u−̂Lab ¼̂ u−̂Rab : ð58Þ

Multiplying the first-order GHG evolution equations from
the left with the matrix of eigenvectors T−1α̂

β, we obtain
evolution equations for the characteristic variables:

dtuα̂L ¼ T−1α̂
μAkμ

ν∂kuνL þ T−1α̂
μSμ: ð59Þ

Here the d again denotes that the similarity matrix T−1α̂
μ

stands outside the partial time derivative. At the boundary,
we now add a penalty to the right-hand side of the evolution
equation of the incoming characteristic. This is often called
“weakly imposing” the boundary condition,

dtu−̂Lab ¼̂ T−1−̂
μAkμ

ν∂kuνLab þ T−1−̂
μSμ

þ pðu−̂Rab − u−̂Lab Þ: ð60Þ

Afterwards we use the inverse transformation to get back to
the evolution equations enhanced with the necessary
penalty terms at the boundary. These are also the equations
we implement in the code. We treat all six boundaries of the
subpatches independently from each other. This means that
on the edges we have to consider penalty contributions
from two and on the corner from three directions. The size
of the penalty parameter p can be derived from an energy
estimate of the semidiscrete evolution system. This we
present in Sec. IV.

D. Outer boundary implementation

At the spherical outer boundary of the domain, we use
the Bjørhus method [8,15] to impose the constraint,
physical and gauge conditions given in Sec. II. As for
the patching boundaries, we impose conditions on the
incoming characteristic to the boundary surface. However,
this time instead of adding penalty terms, we modify the
right-hand side of the evolution equations at the boundary
in such a way that the boundary conditions are satisfied. We
define the outward pointing spatial normal unit vector si

and use the projection operator qji ¼ δji − sjsi, as defined
earlier, to split the principal part of the evolution equation in
a part normal and tangential to the boundary surface:

∂tuμ ≈ Akμ
νðsksj þ qjkÞ∂juν

¼ Asμ
ν∂suν þ AAμ

νqBA∂Buν: ð61Þ

Expressed in characteristic variables the normal part is

dtuα̂ ∼ T−1α̂
μAsμ

νTν
β̂T

−1β̂
ξ∂suξ ¼ Λsα̂

β̂dsu
β̂: ð62Þ

The matrix Λsα̂
β̂ is a diagonal matrix containing the

characteristic speeds. At the outer boundary, we assume

TABLE I. Incoming and outgoing characteristic variables to a subpatch boundary with spatial normal vector si

depending on the gauge variables.

βs > α > 0 α > βs > 0 βs ¼ 0 −α < βs < 0 βs < −α < 0

u0̂ab 0 Zero Zero Zero Zero Zero

uþ̂ab βs − α Incoming Outgoing Outgoing Outgoing Outgoing

u−̂ab βs þ α Incoming Incoming Incoming Incoming Outgoing

uβ̂Aab
βs Incoming Incoming Zero Outgoing Outgoing

HILDITCH, WEYHAUSEN, and BRÜGMANN PHYSICAL REVIEW D 93, 063006 (2016)

063006-10



that the absolute value of the shift βs is always smaller than
the size of the lapse α. This leads to two cases to be
considered.

1. Case −α < βs < 0

In this case, the incoming characteristic at the outer
boundary condition is u−̂. According to Sec. II, we impose
the following boundary conditions, which we give here
only schematically:
(1) One of the constraint-preserving boundary condi-

tions (28), (39) or (45),

BðCÞ ¼ ⊥ðCÞdsu−̂ þ PðCÞ þ NPðCÞ¼̂ 0: ð63Þ

(2) One of the gauge boundary conditions (31) or (32),
which become one of either

BðGÞ ¼ ⊥ðGÞdtu−̂ þ PðGÞ þ NPðGÞ¼̂ 0;

BðGÞ ¼ ⊥ðGÞdsu−̂ þ PðGÞ þ NPðGÞ¼̂ qðGÞ: ð64Þ

(3) The physical boundary condition (29),

BðPÞ ¼ ⊥ðPÞdsu−̂ þ PðPÞ þ NPðPÞ¼̂ qðPÞ: ð65Þ

Here we labeled principal terms with derivatives tangent
to the boundary PðxÞ and nonprincipal terms with NPðxÞ. At
the boundary surface, we project the evolution equation of
the incoming characteristic u−̂ into the constraint, the
physical and gauge part.

dtu−̂ab ≈ v−̂ð⊥ðCÞ
ab

cd þ⊥ðGÞ
ab

cd þ⊥ðPÞ
ab

cdÞdsu−̂cd: ð66Þ

All three parts have to be replaced using the boundary
conditions. We do this by subtracting the conditions from
the bulk right-hand side Dt,

dtu−̂ab¼̂ Dtu−̂ab − v−̂ðBðCÞ þ BðGÞ þ BðPÞÞab; ð67Þ

with the special case (31) treated in the obvious way.
Transforming back this modified right-hand side leads to
modified evolution equations at the boundary.

2. Case 0 < βs < α:

In this case as well, the characteristic uβ̂Aab is incoming.
As described in [8], we impose the additional constraint-
preserving boundary condition

BAab ¼ dsu
β̂
Aab − qBAdBΦsbc¼̂ 0; ð68Þ

by subtracting it from the evolution equation of uβ̂Aab,

dtu
β̂
Aab ¼ Dtu

β̂
Aab − vβ̂BAab: ð69Þ

After we have modified the right-hand sides at the
boundary, we transform back to the evolution equations
for the primitive fields.

E. Code implementation details

1. Code structure

The BAMPS code is written in the C programming
language in a modular fashion. The code is designed in
such a way that the technical layer is separated from
projects for solving physics problems. Inside physics
projects we use a Mathematica script, MathToC, which
translates equations written in tensor notation into C code.
As a stand-alone program, we have developed an axi-
symmmetric apparent horizon finder, AHLOC, which is
typically used to search apparent horizons in BAMPS

generated data at the postprocessing step. It is also possible
to run the finder in a demonlike mode in which it searches
horizons in data of a running instance of BAMPS. We
describe the apparent horizon in Sec. V E.

2. Parallelization

BAMPS is programmed to run in parallel on several
computing nodes using the message passing interface
(MPI). The Nsub subpatches of a BAMPS grid are distributed
onM MPI processes as evenly as possible. This means that
each process has to handle at least n ¼ ⌊ Nsub

M ⌋ subpatches.
Since, in general, the total number of grids is not divisible
by the number of MPI processes without remainder, Nsub
mod M processes have to take care of one additional grid.
In practice, we choose the number of MPI processes in such
a way that the number of processes which have to compute
one grid less is minimized.

IV. ENERGY ESTIMATE FOR PENALTY FACTOR

In this section, we derive an estimate for the right choice
of penalty factor at the patching boundaries of the BAMPS

domains. The actual technical implementation of the
patching condition was already described in Sec. III C.
The following calculation is based on the one presented in
[28]. However, we present it for a general hyperbolic
system in curvilinear coordinates, albeit under rather
restrictive assumptions.

A. The continuum case

We view the GHG system as a general symmetric
hyperbolic system of partial differential equations, but
suppress all nonprincipal terms, and work in the linear,
constant coefficient approximation, so we have

∂tuμ ¼ Apμ
ν∂puν; p ∈ x; y; z; ð70Þ
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where, in matrix notation,

uμ ¼

0
B@

gab
Πab

Φiab

1
CA; Apμ

ν ¼

0
B@

ð1þ γ1Þβk 0 0

γ1γ2β
k βk −αγik

γ2αδ
k
i −αδki βk

1
CA:

ð71Þ

For clarity, we suppress the state vector indices μ, ν. For this
system, there is a symmetrizer H such that HApsp is
Hermitian for every unit spatial vector sp. The energy of the
system is

E2 ¼
Z
V
dVðu†HuÞ ð72Þ

with the volume form dV ¼ dxdydz
ffiffiffi
γ

p
. As discussed in

Sec. III A, each subpatch of BAMPS has a set of global
Cartesian coordinates xi ¼ ðx; y; zÞ and a set of local
coordinates ~xi ¼ ð~x; ~y; ~zÞ. The Jacobian Ji~i ¼ ∂xi

∂ ~xi transforms
between the two charts. To formulate boundary conditions
at the patching boundaries which control the energy in the
patch, we study the time derivative of the energy, using the
evolution equations we replace the time derivatives by
spatial derivatives:

∂tE2 ¼
Z

dV∂p½u†HApu�: ð73Þ

In the constant coefficient approximation, we can commute
the determinant of the three metric in the volume form with
the partial derivative and end up with a divergence in flat
Cartesian coordinates

∂tE2 ¼
Z

dxdydz∂p½u†HApu
ffiffiffi
γ

p �: ð74Þ

In the next step, we change to the patch local coordinates
~x, ~y and ~z,

∂tE2 ¼
Z

d ~V
1

detðJj~jÞ
∂ ~p½u†HA ~pu

ffiffiffi
γ

p
detðJi~iÞ�

¼
Z

d~xd~yd~z∂ ~pΦ ~p: ð75Þ

Here we have defined
ffiffiffi
~γ

p
≔ ffiffiffi

γ
p

detðJi~iÞ and the flux

Φ ~p ¼ u†HA ~pu
ffiffiffi
~γ

p
. Now we integrate over all boundary

surfaces of the patch,

∂tE2 ¼
Z

1

−1

Z
1

−1
d~yd~zΦ~xj1~x¼−1 þ

Z
1

−1

Z
1

−1
d~xd~zΦ~yj1~y¼−1

þ
Z

1

−1

Z
1

−1
d~xd~yΦ~zj1~z¼−1: ð76Þ

At a boundary surface, for example ~x ¼ const, we can write
the unit normal vector as

s~i ¼ ðγ ~j ~k∂ ~j ~x∂ ~k ~xÞ−
1
2|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

≡l

γ~i ~l∂~l ~x ¼ l∂~i ~x; ð77Þ

and 2þ 1 split the spatial metric γ~i ~j,

γ~i ~j ¼
�
l2 þ γ ~x ~Aγ

~A
~x γ ~x ~A

γ ~x ~B q ~A ~B

�
: ð78Þ

The relationship between the determinant of γ~i ~j and the

metric in the boundary surface q ~A ~B is,
ffiffiffi
~γ

p ¼ l
ffiffiffi
~q

p
. We

rewrite

Φ~x ¼ Φ ~p∂ ~p ~x ¼ u†HA ~pul
ffiffiffi
~q

p ∂ ~p ~x ¼
ffiffiffi
~q

p
u†HAsu|fflfflfflffl{zfflfflfflffl}

Φs

; ð79Þ

and express the time derivative of the energy as the sum of
boundary surfaces integrals over the fluxes Φs,

∂tE2 ¼
Z

1

−1

Z
1

−1
dA~y ~zΦsj1~x¼−1 þ

Z
1

−1

Z
1

−1
dA~x ~zΦsj1~y¼−1

þ
Z

1

−1

Z
1

−1
dA~x ~yΦsj1~z¼−1: ð80Þ

The area element is dA~y ~z ¼
ffiffiffi
~q

p
d~yd~z. The fluxes can be

rewritten in terms of incoming and outgoing characteristic
variables at the boundary surface. The system is symmetric
hyperbolic. Therefore, the principal symbol has a full set of
eigenvectors which we write as columns of the similarity
matrix Ts. With the inverse of this matrix, T−1

s , we
transform the vector of evolution variables to the character-
istic variables of the system v ¼ T−1

s u. The flux expressed
in the language of characteristic variables is

~Φs ¼ u†ðT−1
s Þ†|fflfflfflfflffl{zfflfflfflfflffl}

v†

T†
sHTs|fflfflffl{zfflfflffl}
~H

ðTsÞ−1AsTs|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Λs

T−1
s u|ffl{zffl}
v

¼ v† ~HΛsv: ð81Þ

The diagonal matrix Λs contains all the speeds of the
characteristic variables

Λs ¼
�
ΛI 0

0 −ΛII

�
: ð82Þ

Where we have ordered the characteristic variables in such
a way that we group all incoming with positive speeds ΛI
and outgoing with negative speeds −ΛII. In this partition, it
follows that

v ¼
�

vI
vII

�
; ~H ¼

�
~HI 0

0 ~HII

�
; ð83Þ
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and with this

~Φs ¼ v†I ~HIΛIvI − v†II ~HIIΛIIvII: ð84Þ

If all integrands in (80) are negative semidefinite, the
energy of the system does not grow over time. For the
boundary conditions, we use the ansatz vI ¼ κvII þ g,
which means that at the boundary surface we set the
incoming characteristic variables equal to a linear combi-
nation of the outgoing characteristic variables plus some
given data g. Choosing the matrix κ†κ small, we obtain

~Φs ¼ ðg† þ v†IIκ
†Þ ~HIΛIðκvII þ gÞ − v†II ~HIIΛIIvII

≲ g†HIΛIgþ v†II½κ† ~HIΛIκ − ~HIIΛII�vII: ð85Þ

The first term only depends on the given data. As we are
free to choose it, we have full control over this term. The
second we can make negative again by choosing κ†κ
sufficiently small.

B. The semidiscrete case

In this subsection, we carry out the energy estimate for a
semidiscrete system. In our case, this means that we
discretize the evolution variables in space using Gauss-
Lobatto collocation points according to Eq. (50). The
semidiscrete evolution equations are

∂tuαβδ ¼ Ap½∂pu�αβδ ¼ Ap½J ~p
p�αβδ½∂ ~pu�αβδ: ð86Þ

The energy of this system is defined using Gauss-Lobatto
quadrature with the appropriate integration weights ωα, ωβ,
ωδ,

E2 ¼
X
αβδ

ωαωβωδ½
ffiffiffi
~γ

p
�αβδu†αβδHαβδuαβδ: ð87Þ

Again, we compute the time energy of the system, with
~ωαβδ ¼ ωαωβωδ½

ffiffiffi
~γ

p �αβδ, using the inverse product rule to
write

∂tE2 ¼
X
αβδ

~ωαβδ∂p½u†αβδHαβδApuαβδ�; ð88Þ

and transform to local coordinates. For this, we assume that
∂ ~p½

ffiffiffi
~γ

p �αβδ ¼ 0 and obtain

∂tE2 ¼
X
αβδ

ωαωβωδ∂ ~p½u†αβδHαβδA ~puαβδ½
ffiffiffi
~γ

p
�αβδ�: ð89Þ

As in the continuum case, we introduce the normal outward
pointing si vector at the boundary. With an expansion in
Legendre polynomials we can use the summation by parts
property to write

∂tE2 ¼
X
βδ

~ωβδu
†
αβδHαβδA ~p½s~x~p�αβδuαβδjNx−1

α¼0

þ
X
αδ

~ωαδu
†
αβδHαβδA ~p½s~y~p�αβδuαβδjNy−1

β¼0

þ
X
αβ

~ωαβu
†
αβδHαβδA ~p½s~z~p�αβδuαβδjNz−1

δ¼0
ð90Þ

with ~ωβδ ≡ ½ ffiffiffi
~q

p �βδωβωδ. We define the flux,

~Φs
αβδ ¼ u†αβδHαβδAp½sp�αβδuαβδ; ð91Þ

and transform it to characteristic variables in the obvious
way. This gives us for the semidiscrete case the analogue
expression for the time derivative of the energy at the
boundary (80). In the case of patching the boundaries
between two subpatches, we apply the penalty method to
impose boundary conditions. For simplicity, we consider
the α ¼ 0 boundary. For each incoming characteristic
variable, we add a penalty term to the right-hand side of
the evolution equations,

∂tuαβδ ¼ Ap½J ~p
p�αβδ½∂ ~pu�αβδ þ δα;0½Ts�βδPβδδvαβδ; ð92Þ

with the penalty matrix,

Pβδ ¼
�
pβδ

0

�
; ð93Þ

and δvαβδ ¼ ½vBC�αβδ − ½vRI �αβδ, with vBC the desired boun-
dary data. The time derivative of the energy splits into two
parts:

∂tE2 ¼ ∂tE2
bulk þ ∂tE2

pen: ð94Þ

The first part is the contribution from the bulk,

∂tE2
bulk ¼

X
βδ

~ωβδ½v†I �0βδ½ ~HI�0βδ½Λs
I �0βδ½vI�0βδ

−
X
βδ

~ωβδ½v†II�0βδ½ ~HII�0βδ½Λs
II�0βδ½vII�0βδ: ð95Þ

The second part changes the time derivative of the energy
because of the additional penalty terms in the evolution
equation at the boundary:

∂tE2
pen ¼

X
βδ

~ω0βδðu†0βδH0βδ½Ts�0βδPβδδv0βδ

þ ½δv0βδ�†P†
βδ½T†

s �0βδH0βδu0βδÞ: ð96Þ

By inserting the identity TsT−1
s ¼ I into the appropriate

places, we transform the state vector u to the vector of
characteristic variables. Then multiplying out the penalty
matrix and rearranging leads to
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∂tE2
pen ¼

X
βδ

pβδ ~ω0βδð½vBC�†0βδ½ ~HI�0βδ½vBC�0βδ

− ½vI�†0βδ½ ~HI�0βδ½vI�0βδ − ½δv�†0βδ½ ~HI�0βδ½δv�0βδÞ:
ð97Þ

In total, the change of energy at the boundary surface is

∂tE2 ¼
X
βδ

½vI�†0βδð ~ωβδΛs
I − pβδ ~ω0βδÞ½ ~HI�0βδ½vI�0βδ

−
X
βδ

~ωβδ½v†II�0βδ½ ~HII�0βδ½Λs
II�0βδ½vII�0βδ

þ
X
βδ

pβδ ~ω0βδ½vBC�†0βδ½ ~HI�0βδ½vBC�0βδ

−
X
βδ

pβδ ~ω0βδ½δv�†0βδ½ ~HI�0βδ½δv�0βδ: ð98Þ

We now consider two neighboring subpatches which we
label L (for left) and R (for right). Let us assume they have a
common boundary at α ¼ N − 1 for the left patch and
α ¼ 0 for the right patch. For each subpatch, we can write
down the change of energy as in Eq. (98). As boundary
conditions, we set the incoming characteristic variables of
one patch to be the outgoing one of the neighboring grid,

vRBC ¼ vLII; vLBC ¼ vRII; ð99Þ

and demand that the change of energy of the sub patches in
time due to the patching boundary is not growing.
Sufficient conditions for this are given by

pR
βδ ¼

~ωβδΛs
I

~ω0βδ
; pL

βδ ¼
~ωβδΛs

I

~ωðN−1Þβδ
: ð100Þ

In BAMPS, we use these penalty parameters, but our
discretization is made with Chebyschev rather than
Legendre polynomials, the equations we solve are not
linear with constant coefficients and nor are the Jacobians
mapping from the master coordinates to our global
Cartesian coordinates constant. Therefore it is to be
determined empirically that the implemented method is
in an appropriate sense stable. These facts may contribute
to the necessity of employing the filter (56).

V. AXISYMMETRIC CONSIDERATIONS

Although BAMPS is a fully three-dimensional code, we
are often interested in evolving axially symmetric data,
which requires special attention for efficient treatment. In
this section, we collect together the relevant developments
undertaken for axisymmetric initial data, apparent horizons
and time evolution with the BAMPS code.

A. Brill wave initial data

Brill wave initial data are described in detail in many
other sources. For completeness, we give a bare-bones
summary to highlight the particular choices that we make.

1. Metric ansatz

Following [29,30], we start from a spatial metric of the
form

dl2 ¼ γijdxidxj ¼ Ψ4½e2qðdρ2 þ dz2Þ þ ρ2dϕ2�; ð101Þ

in cylindrical polar coordinates, and take the extrinsic
curvature to vanish. Note that the assumption of conformal
flatness in the ρ-z sector of the metric can be made in
axisymmetrywithout loss of generality.Under these assump-
tions themomentum constraints are trivially satisfied and the
remaining Hamiltonian constraint takes the form

D2Ψ ¼ −
Ψ
4

�∂2q
∂ρ2 þ

∂2q
∂z2

�
: ð102Þ

We then make the parametrized ansatz,

qðρ; zÞ ¼ Aρ2e−½ðρ−ρ0Þ2þðz−z0Þ2�: ð103Þ

for the seed function qðρ; zÞ and solve for Ψ with boundary
conditions Ψ¼̂ 1 for asymptotic flatness at spatial infinity.
This ansatz is the same as that studied in a number of other
studies [3,7,31,32]. We call data with A > 0 geometrically
prolate, and that with A < 0 geometrically oblate. In the
initial data, an apparent horizon can first be found at
A ¼ 11.82 with horizon massMH ¼ 4.8. For geometrically
oblate data, an apparent horizon can first be found at
A ¼ −5.30withmassMH ¼ 4.4. The pseudospectral method
we use to solve the constraints is discussed a little more in
Sec. VD. Our apparent horizon search is explained in V E.

B. Pure plus polarization wave data

1. Metric ansatz

Observers distant from a compact object see gravita-
tional waves in the form,

dl2 ¼ dr2 þ r2ð1þ hþÞdθ2 þ r2sin2θð1 − hþÞdϕ2

þ 2r2 sin θh×dθdϕ; ð104Þ

with the wave polarizations hþ and h× small perturbations
of the Minkowski metric. This suggests modifying the
ansatz (101) to

d~l2 ¼ dr2 þ r2ðe2qdθ2 þ e−2qsin2θdϕ2Þ; ð105Þ

so that if we choose the seed function small and centered far
from the origin, we will have initial data that represent a
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pure plus polarization gravitational wave. One could
similarly make an ansatz for pure cross polarization waves,
or indeed make other choices completely like [33] which
we have also implemented and tested.

2. The constraints

Again we start with moment-of-time-symmetry initial
data, so the remaining constraint takes the form,

~ΔΨ ¼ 1

8
Ψ ~R: ð106Þ

The conformal Ricci scalar is

~R ¼ 2

r2
½e−2q − 1 − ðr∂rqÞ2� −

1

r2sin3θ
∂θðsin3θ∂θe−2qÞ;

ð107Þ

and the Laplacian of the conformal metric is

~ΔΨ ¼ 1

r2
∂rðr2∂rΨÞ þ e2q

sin2θ
∂θðe−2qsin2θ∂θΨÞ: ð108Þ

Once more we impose the obvious boundary conditions for
asymptotic flatness at spatial infinity, and choose the seed
function,

qðr; θÞ ¼ Ar4sin2θe−½r2−2rρ0 sin θþρ2
0
�; ð109Þ

which makes the conformal metric regular on axis.

3. Apparent horizons

Taking centered data with A < 0, we first find an
apparent horizon at around A ¼ −2.28, with mass
MH ¼ 5.47. Looking for apparent horizons in centered
data when A > 0, we find the curious result that there is a
region [2.381, 2.568] in which apparent horizons are first
found. Curiously, in the range [2.569, 3.006], the data again
seemed to be horizonless. Continue at A ¼ 3.007 we find
horizons again up to A ¼ 3.750 where we stopped our
search. We searched for horizons using the resolution
ΔA ¼ 0.001. A closer look at the data at the boundaries
of the “horizonless” region shows that the shape of the
horizon is very nearly not a ray-body, and we expect that
our method simply can not find the horizons in this range of
amplitudes (see Sec. V E). We expect that this could be
remedied by implementing an offset in ρ in the para-
metrization of the surface similar to that in z which we
already have, but we leave this improvement for the future.
The first apparent horizon for this data, found at A ¼ 2.381,
is plotted in Fig. 2. It has a mass of MH ¼ 4.8.

C. Teukolsky wave initial data

1. Initial data for numerical relativity

Teukolsky waves [34,35] are an exact solution to GR
linearized around flat-space, and were used as a seed
function in [2], the first numerical study of the critical
collapse of gravitational waves, in the construction of full
solutions to the constraints. In particular, the waves were
taken to be centered at some r0 ≠ 0, with a radial width
much less than r0, with an l ¼ 2,m ¼ 0 spherical harmonic
dependence, and mostly incoming. Since we are restricting
to moment-of-time-symmetry data, we cannot satisfy the
last of these conditions, but we expect that if the waves are
placed at some sufficiently large r0 then they will initially
be weakly self-interacting, and roughly one half of the wave
will simply propagate outwards. One could use the ansatz
made in the Teukolsky wave initial data to construct
incoming boundary data, but we leave this for future work.
The construction of these data is well described in [36] and
employed in [7]. See also [37]. The following discussion is
included only for completeness.

2. Regularity of the conformal metric

Let us consider the “polar” Teukolsky data. A similar
discussion holds for axial data. The conformal metric for
the solution of the Hamiltonian constraint is, in spherical
polar coordinates,

~γrr ¼ 1þ afrr; ~γrθ ¼ bfrθr;

~γθθ ¼ ð1þ cfθθ − aÞr2;
~γϕϕ ¼ ð1 − cfθθ þ afϕϕÞr2sin2θ; ð110Þ

with the remaining components vanishing. Here we have
already restricted the ansatz by removing terms that vanish
for l ¼ 2 and m ¼ 0 spherical harmonics. The angular
functions frr, fθθ, frθ and fϕϕ are

FIG. 2. The apparent horizons for centered Brill data with A ¼
11.82 and A ¼ −5.3 and for pure plus polarization data with A ¼
2.381 and A ¼ −2.28.
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frr ¼ 2 − 3sin2θ; frθ ¼ −3 sin θ cos θ;

fθθ ¼ 3sin2θ; fϕϕ ¼ 3sin2θ − 1; ð111Þ

while the remaining radial functions a, b, c are constructed
according to the recipe of [36], so that

a ¼ 3

�
Fð2Þ

r3
þ 3Fð1Þ

r4
þ 3F

r5

�
;

b ¼ −
�
Fð3Þ

r2
þ 3Fð2Þ

r3
þ 6Fð1Þ

r4
þ 6F

r5

�
;

c ¼ 1

4

�
Fð4Þ

r
þ 2Fð3Þ

r2
þ 9Fð2Þ

r3
þ 21Fð1Þ

r4
þ 21F

r5

�
: ð112Þ

In this expression, we have used the shorthand,

FðnÞ ¼
�
dnFðxÞ
dxn

�
x¼−r

− ð−1Þn
�
dnFðxÞ
dxn

�
x¼r

; ð113Þ

and finally the seed function is FðxÞ. In [7], the seed
function was taken to be

FðxÞ ¼ A
2

xp

σ
ðe−½ðxþr0Þ=σ�2 þ e−½ðx−r0Þ=σ�2Þ; ð114Þ

with p ¼ 1. For local flatness, it is necessary [31] that the
combinations,

cos2θ~γrr þ r−2sin2θ~γθθ − r−1 sin 2θ~γrθ;

r−1 cos θ~γrr − r−3 cos θ~γθθ þ r−2sin−1θ cos 2θ~γrθ;

sin2θ~γrr þ r−2cos2θ~γθθ þ r−2sin−2θ~γϕϕ þ r−1 sin 2θ~γrθ;

r−2 ~γrr þ r−4tan−2θ~γθθ − r−4sin−4θ~γϕϕ þ 2r−3tan−1θ~γrθ;

of the metric components are regular functions of z ¼
r cos θ and ρ2 ¼ r2 sin2 θ. Therefore one may worry about
the high powers of r−1 present in the recipe, but the choice
p ¼ 1 is sufficient for local flatness.

D. Solving the constraints

1. Compactified coordinates

To solve for moment-of-time-symmetry initial data, we
write the spatial metric in spherical polar coordinates
ðr; θ;ϕÞ, and compactify the radial coordinate, leaving
us with coordinates ðA; θ;ϕÞ. The compactification is
defined either by

r ¼ mA
2ð1 − AÞ ; ð115Þ

as suggested in [38], and used in [7] in the same elliptic
solver employed presently, or

r ¼ mA
2ð1 − A2Þ ; ð116Þ

similar to that employed for example in [39]. The parameter
m partially controls the rate of compactification, but in
either case spatial infinity corresponds to A ¼ 1.

2. Numerical solution

To discretize we employ a Chebyschev discretization in
the radial A direction, and a Fourier grid in the angular
directions. Since the Hamiltonian constraint in this context
is linear, solving the constraints amounts to a matrix
inversion. With our particular method we find that the
choice (115) leads to slightly worse constraint violations at
a fixed resolution. One possible cause of this is that the
coordinates (115) are irregular at the origin. Perhaps it is
possible to use the alternative compactification in the
construction of trumpet or puncture black-hole initial data,
but we leave this for future consideration.

E. Axisymmetric apparent horizons

1. Formulation of the AH conditions

An apparent horizon is a closed two surface in the spatial
slice, with unit outward pointing normal si, with expansion,

H ¼ Disi − K þ sisjKij ¼ 0; ð117Þ

where si is the unit normal to the surface. Our approach to
the apparent horizon search is based on that of [40] as also
presented in [41,42]. First given the spatial metric and
extrinsic curvature γij, Kij in Cartesian coordinates, we
transform to work in spherical polar coordinates defined by

r2 ¼ x2þy2þðz− z0Þ2; θ¼ arccos

�
z− z0
r

�
: ð118Þ

with θ ∈ ½0; π� and where we take the z axis to be the
symmetry axis. In axisymmetry without twist, the spatial
metric and extrinsic curvature then take the form

Sij ¼

0
B@

Srr r sin θSrT 0

r sin θSrT r2SθT 0

0 0 r2sin2θSϕT

1
CA; ð119Þ

in the ϕ ¼ 0 plane. Local flatness on the axis implies that
the components Srr, SrT , SθT , and SϕT are even functions of
θ around the symmetry axis, with SθT − SϕT ∼ θ2 around
θ ¼ 0, and similar dependence around θ ¼ π. Working in
the ρ-z plane we may parametrize an apparent horizon by
the level set s ¼ 0 of

s ¼ r − FðθÞ; ð120Þ
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in terms of which the apparent horizon condition (117) can
be rewritten as a first-order ODE system,

F0 ¼G;

G0 ¼ ðsin2θγ2rT − γrrγθTÞF2L2qijðΓk
ijDksþLKijÞ; ð121Þ

for FðθÞ and GðθÞ, where the unit spatial vector si and
magnitude L are given by

si ¼ γijLDjs; L−2 ¼ γijðDisÞðDjsÞ; ð122Þ

and qij ¼ γij − sisj is the induced metric in the level set.
These expressions are evaluated in spherical polar coor-
dinates. As noted elsewhere, this parametrization is not
completely general, being sufficient only if the apparent
horizon is a ray body containing the point z0. Regularity of
an apparent horizon means that Gð0Þ ¼ GðπÞ ¼ 0.

2. Search strategy

Given the metric and extrinsic curvature we go about
searching for an apparent horizon in the following way.
First we choose z0, r0 and integrate the ODE (121) from
θ ¼ 0 to θ ¼ π=2, with initial conditions Fð0Þ ¼ r0 and
Gð0Þ ¼ 0. We simultaneously integrate backwards from
θ ¼ π to θ ¼ π=2 taking as initial conditions FðπÞ ¼ r0
and GðπÞ ¼ 0. If we have an apparent horizon the forwards
ðFþ; GþÞ and backwards ðF−; G−Þ solutions will satisfy

ΔF ¼ Fþðπ=2Þ − F−ðπ=2Þ ¼ 0;

ΔG ¼ Gþðπ=2Þ −G−ðπ=2Þ ¼ 0: ð123Þ

This gives a nonlinear root finding task on the function
S∶ R2 → R2 defined by

Sðz0; r0Þ ¼ ðΔF;ΔGÞ: ð124Þ

One complication is that the ODE system (121) needs to be
regularized on the axis to impose our initial conditions.
This is straightforwardly done by using the regularity
conditions above, resulting in,

G0 ¼
�
γθT
2γrr

−
γrT
2γrr

�
F þ

�∂rγθT
4γrr

−
KθT

2
ffiffiffiffiffiffi
γrr

p
�
F2: ð125Þ

at θ ¼ 0 and similarly at θ ¼ π. To arrive at this expression
we have explicitly used the regularity condition
SθT − SϕT ∼ θ2. In our numerical implementation, we
transform from Cartesian components, so this condition
is automatically satisfied and we can instead use the
condition in a slightly more complicated form involving
γϕT and KϕT . To the best of our knowledge this regulari-
zation of the coefficients has not been used before. The
second step of our search is to iterate on ðz0; r0Þ until we
find a solution, or until the method fails. As an alternative

strategy, it is normally proposed to integrate the ODE from
θ ¼ 0 to θ ¼ π then perform a bisection search on GðπÞ.
We were unable to obtain satisfactory results this way
because every surface except the apparent horizon itself
diverges near θ ¼ π, making the bisection hopeless.
Reasonable first guesses for z0 would seem to be the
position of the maximum of the Kretschmann scalar, or, if
an apparent horizon was already found in a previous time-
slice, the coordinate center of the previous horizon.

3. Horizon mass

In twist-free axisymmetry, the apparent horizon mass
MH is related to the area of the apparent horizon AH as

M2
H ¼ AH

16π
: ð126Þ

We can compute the area of the apparent horizon as a
simple integral,

AH ¼ 2π

Z
π

0

L−1 ffiffiffi
γ

p
r2 sin θdθ: ð127Þ

where we have used the fact that apparent horizon is a
surface of revolution. Here γ is the determinant of the
spatial metric in Cartesian coordinates.

4. Simplifying assumptions

We are often interested in finding apparent horizons
centered at the origin in spacetimes that are additionally
reflection symmetric about the z ¼ 0 plane. In this case, we
can trade our root-finding search above for a bisection
search by simply fixing z0 ¼ 0 and integrating the ODE
(121) from θ ¼ 0 to θ ¼ π=2. Here we start the integration
from different initial radii r0 until we find points about
which which Gðπ=2Þ changes sign. We then bisect in r0 to
find the apparent horizon, where Gðπ=2Þ ¼ 0. We typically
choose the criterion Gðπ=2Þ < 10−8 to end the search. As
in the more general case, if we find many such surfaces we
take the outermost as the apparent horizon.

5. Numerical implementation

In practice, we search for an apparent horizon as follows.
During a BAMPS evolution we output the necessary com-
ponents of the spatial metric and extrinsic curvature in the
y ¼ 0 plane at different coordinate times. For the integra-
tion of the ODE, we use various ODE integrators in the
GSL [43]. To determine the apparent horizon accurately as
fast as possible we use the explicit embedded Runge-Kutta
Prince-Dormand (8, 9) method, a high-order adaptive step
integrator. When convergence testing, we use a simple
fourth-order Runge-Kutta integrator. To evaluate the metric
and extrinsic curvature at each point ðr ¼ F; θÞ along the
level set we use barycentric Lagrange interpolation inside
each BAMPS subgrid. For the root-finding, we again use the
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GSL, now choosing one of the ‘hybrid’ algorithms that do
not need the Jacobian of the system of equations being
solved. In Fig. 3, we present the apparent horizon found
using our method for a centered ρ ¼ 0, amplitude A ¼ 12,
Brill wave initial data set, comparing it with that which we
find using a stand-alone apparent horizon finder imple-
mented in the MATLAB initial data code employed in [44].

F. The analytic Cartoon method

Here we discuss the implementation of the so-called
Cartoon method [9] for axisymmetry in a pseudospectral
method for the Einstein equations. We assume that we are
given the three-dimensional system in a Cartesian coor-
dinate system xi in which all variables are smooth, T ∈ C∞.
The basic idea of the Cartoon method is to apply wherever
possible the same coordinates and discretization that lead to
stable evolutions in three dimensions. Hence, we compute
the axisymmetrically reduced system in Cartesian coordi-
nates and with Cartesian tensor components, without
adapting coordinates and thereby avoiding the coordinate
singularity at the axis.
Concretely, the computational domain is chosen to be the

x-z plane defined by y ¼ 0. Partial derivatives ∂x and ∂z are
computed as for the three-dimensional system. What is
missing are the points and the numerical data in the y
direction for the computation of ∂y. However, we can
obtain the y derivative by invoking axisymmetry, since the
fields in the y ¼ 0, x-z plane determine the fields for y ≠ 0
by the rotation symmetry. Similarly, it suffices to consider
only the half-plane x ≥ 0 and y ¼ 0 while still using the
same stencils for ∂x and ∂z as in three dimensions.
The Cartoon method was first introduced for a Cartesian

BSSNOK [46–48] code using finite differencing [9]. The

∂y derivative was computed by adding ghost points in the y
direction, so that identical three-dimensional stencils could
be used for three-dimensional and axisymmetric two-
dimensional calculations. For a spectral collocation
method, we could do the same and populate a three-
dimensional spectral element by rotation. There would
still be significant gains in efficiency since only a two-
dimensional subset of a three-dimensional spectral grid
consisting of many patches needs to be populated.
However, it is also possible to derive analytical formulas
for ∂y in terms of quantities in the y ¼ 0 plane only, so this
is clearly the preferred way to proceed. To our knowledge
this was first implemented in [49], in that case for finite
differences and the second-order GHG system. For an
arbitrary smooth tensor T, axisymmetry is given by the
vanishing of its Lie derivative along the rotational vector,
LϕT ¼ 0.

1. Off-axis, x ≠ 0

Let us consider various tensor types of interest, sup-
pressing their t and z dependence. For a scalar,

∂yuðx; 0Þ ¼ 0: ð128Þ

The second derivative does not vanish in general. For
vectors and covectors (x ≠ 0),

∂yvxðx; 0Þ ¼ −
1

x
vyðx; 0Þ; ∂yvyðx; 0Þ ¼

1

x
vxðx; 0Þ;

∂ywxðx; 0Þ ¼ −
1

x
wyðx; 0Þ; ∂ywyðx; 0Þ ¼

1

x
wxðx; 0Þ;

ð129Þ

FIG. 3. In the left-hand panel, the apparent horizon for a centered A ¼ 12 Brill wave, as found by our apparent horizon finder and a
bespoke Brill-wave apparent horizon finder, are plotted. These data have been used as a standard test case elsewhere in the literature
[40,45]. We compute the ADMmass asMADM ¼ 4.67, which compares perfectly withMADM ¼ 4.67� 0.01 given in [40]. The horizon
mass isMH ¼ 4.66, again in agreement with the literature. In the right panel, we show pointwise self-convergence labelled by N ¼ 25,
100, 400 and 800, withN þ 1 the lowest number of points in the series, and where we evolved with 2N þ 1 and 4N þ 1 to make the plot.
Note that very few points are needed to show clean convergence because the surface varies slowly in θ. This also means that one can not
reliably convergence test at high resolutions because the difference between the computed surfaces are essentially at the level of
round-off.

HILDITCH, WEYHAUSEN, and BRÜGMANN PHYSICAL REVIEW D 93, 063006 (2016)

063006-18



the derivative is equal to the components of the vector
divided by radius, with x and y components interchanged.
For a symmetric (0,2) tensor (say, the four-metric gab), at
y ¼ 0, x ≠ 0,

∂ygtt ¼ 0; ∂ygtz ¼ 0; ∂ygzz ¼ 0;

∂ygtx ¼ −
1

x
gty; ∂ygty ¼

1

x
gtx;

∂ygxz ¼ −
1

x
gyz; ∂ygyz ¼

1

x
gxz;

∂ygxx ¼ −
2

x
gxy; ∂ygyy ¼

2

x
gxy;

∂ygxy ¼
1

x
ðgxx − gyyÞ: ð130Þ

Some components behave like scalars, some like covectors,
and some show the two terms occurring in the Lie
derivative, which may result in a factor of 2 due to
symmetry.

2. On-axis, x ¼ 0.

Axisymmetry by itself does not imply differentiability on
the axis. Consider, for example, uðx; yÞ ¼ ρ. We combine
axisymmetry with the condition that in Cartesian coordi-
nates T ∈ C∞ in two ways. First, consider parity under
ðx; yÞ → ð−x;−yÞ, which corresponds to a rotation by π
around the z axis. Because of axisymmetry, we have
Tðρ; 0Þ ¼ �Tð−ρ; 0Þ and ∂yTðρ;0Þ¼∓∂yTð−ρ;0Þ. Since
∂yT is continuous, the limit ρ → 0 exists. Hence for tensors
that are even under this type of parity, the derivative
vanishes, ∂yTevenð0; 0Þ ¼ 0. For tensors that are odd, the
tensor vanishes, Toddð0; 0Þ ¼ 0, and ∂yToddð0; 0Þ is a
regular, finite value. We therefore impose that ∂y vanishes
on the axis for even quantities and ask how we can compute
the value for the odd quantities.
From vanishing of the Lie derivative, we obtain relations

for the tensor components themselves, not for their deriva-
tive. For a scalar, there is no extra condition. Examples for
relations obtained from (129)–(130) are

við0; 0Þ ¼ 0; wið0; 0Þ ¼ 0

gtxð0; 0Þ ¼ gtyð0; 0Þ ¼ gxzð0; 0Þ ¼ gyzð0; 0Þ ¼ 0;

gxyð0; 0Þ ¼ 0; gxxð0; 0Þ ¼ gyyð0; 0Þ: ð131Þ

Although we obtain some of the same information that we
already discussed for ðx; yÞ → ð−x;−yÞ parity, for even
parity quantities with two or more indices there are
additional relations. For the metric components, these
are related to covariance under rotation by π=2, or
ðx; yÞ → ð−y; xÞ.
To find the derivative ∂y at (0,0), we invoke l’Hopital’s

rule. Basically, in (129)–(130) the 1
x factors become a partial

derivative in x because the other terms vanish. For example,

∂yvxð0; 0Þ ¼ −∂xvyð0; 0Þ; ∂yvyð0; 0Þ ¼ ∂xvxð0; 0Þ:
ð132Þ

Notice that starting with two index components, this is not
entirely trivial since there is more than just one term on the
right-hand side.

3. Axisymmetry for partial derivatives of tensors

There also are objects like Φiab ¼ ∂igab, which are not
tensors, but partial derivatives of tensors. The Lie derivative
Lϕ∂igab is in general not defined for nontensors, and
a priori it is not clear whether Lϕ∂igab ¼ 0 implies
axisymmetry. However, we can obtain the required for-
mulas by computing

∂iLϕgab ¼ L̂ϕ∂igab þ gcb∂a∂iϕ
c þ gac∂b∂iϕ

c; ð133Þ

where L̂ϕ is introduced to collect those terms that corre-
spond to the Lie derivative of a tensor, and the remaining
terms are the deviation from the tensor formula. Note how
the last term in ∂iðϕc∂cgabÞ ¼ ϕc∂c∂igab þ ∂cgab∂iϕ

c

provides precisely the term that would otherwise be
missing in the sum over index locations in L̂ϕ∂igab.
The key observation is that in the case of a rigid rotation

in adapted coordinates generated by ϕa ¼ ð0;−y; x; 0ÞT,
the second derivatives of ϕa vanish,

∂a∂bϕ
c ¼ 0: ð134Þ

Therefore, in this special case, we obtain the correct result
using the tensor formula,

∂iLϕgab ¼ L̂ϕ∂igab; ð135Þ

as was also noted in [9]. This generalizes immediately to
partial derivatives of arbitrary tensors, and also includes the
case of the Christoffel symbol required for the BSSNOK or
Z4c system, compare [9]. Equation (134) furthermore
simplifies the computation of second derivatives.

VI. CODE VALIDATION

In this section, we present a set of numerical experiments
performed to try and obtain an optimal setup for the first-
order generalized harmonic system for our gravitational
wave collapse evolutions that follow in later work.

A. Gauge boundary

1. Gauge wave initial data

We evolve the Minkowski line-element with a perturba-
tion initially placed in the lapse, so that

αðt ¼ 0Þ ¼ 1þ Ae−½x2þy2þz2�=σ: ð136Þ
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In the following set of experiments, we always take
A ¼ 0.01 and σ ¼ 10, and fix the grid setup. We take
the standard formulation used in the SPEC code, namely
γ0 ¼ −γ1 ¼ γ2 ¼ 1, and γ4 ¼ γ5 ¼ 0. We impose outer
boundary conditions at a coordinate radius of r ¼ 16 and
evolve in three dimensions with octant symmetry imposed.

2. Harmonic gauge

Starting with the pure harmonic gauge Ha ¼ 0, we find
that the outgoing gauge wave is harmlessly absorbed using
either the gauge boundary condition (31) or (32). At the
particular resolution and grid setup that we chose for this
test, the harmonic constraint violation at the end of the
evolution, t ¼ 100, is around 10−14 and shows no sign of
increasing with either choice of gauge boundary condition.
The difference between the results with the two gauge
boundary conditions is rather small, the maximum differ-
ence in the shift being around 10−7 at the end of the run. But
here the initial pulse is very weak, and this is of no concern.
In the left panel of Fig. 4, we plot jα − 1j in the outer
boundary, to demonstrate how the coordinates settle down.

3. Generalized harmonic gauge

Switching now to use the generalized harmonic gauge
condition (10) with ηL ¼ 0.4, p ¼ 1 and ηS ¼ 6. Using
then the gauge boundary condition (31) we find that the
shift starts to grow at the boundary, and the numerics fail at
t ∼ 42. This behavior is perhaps not surprising given the
large damping coefficents and the understanding obtained
for the constraint-preserving subsystem with damping in
Sec. II B. The gauge source functions have the same effect
on the gauge as the damping terms on the constraints,
namely they cause reflections from the boundary. We
expect that it will be suppressed as the outer boundary
is placed further out so that the gauge sources are smaller
where the boundary condition is applied. Using instead the
gauge boundary conditions (32) this growth is completely

absent, which is why we do not implement conditions
derived explicitly to reduce gauge reflections in the present
work. This behavior is demonstrated in the right panel of
Fig. 4 where one sees the magnitude of the shift vector in
the outer boundary in each case. With the gauge boundaries
(32), at the end of the run the harmonic constraint violation
Cx is around 10−14 and appears not to be growing. Looking
at the shift however, it does seem that some further
improvement may be possible in the future, as its peak
lies at the outer boundary, with a value around 10−11.

B. Constraint experiments

1. Simplified subsystem

We now repeat some of the experiments of the previous
section with the choice γ4 ¼ γ5 ¼ 1=2, and with different
choices of γ0, using always the gauge boundary condition
(32). With the pure harmonic gauge Ha ¼ 0, we find that

FIG. 4. In the left panel, we plot the jα − 1j in the outer boundary as a function of time, obtained in the evolution of a gauge pulse on
flat space, initially centered at the origin. The coordinates eventually seem to settle on, or very close to Minkowski slices. On the right we
plot the magnitude of the shift in the outer boundary using the harmonic damped wave gauge to evolve the same gauge pulse with either
the gauge boundary condition (31) or (32). In the former case, the shift rapidly grows, causing the code to crash.

FIG. 5. We show the Cx component of the harmonic constraint
along the x axis at time t ¼ 100 for two different sets of constraint
damping parameters with formulation parameters γ4 ¼ γ5 ¼ 1=2.
in the evolution of a gauge pulse on flat-space as in Fig. 4, with
the generalized harmonic gauge. On this basis we take these
formulation parameters with γ0 ¼ 1 as our standard choice.
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the constraint violation at t ¼ 100 is again around 10−14 if
we take γ0 ¼ 1, and slightly larger, but still less than 10−13

if we choose γ0 ¼ 0.02, the value suggested by the experi-
ments in [50] for a related formulation. Moving to the
generalized harmonic choice (10) once more, we find that
again that the violation at the end of the experiment is of the
same order as when using the pure harmonic gauge. The
result is plotted in Fig. 5. These results may not be
representative when evolving different initial data, but
we cautiously take γ4 ¼ γ5 ¼ 1=2 and γ0 ¼ 1 as our default
setting, periodically testing different choices, most often
playing with γ0 in such experiments.

2. Constraint-preserving conditions

We performed the same experiments, with the general-
ized harmonic gauge and the new default formulation
parameters, changing to the alternative constraint bounda-
ries (39) or (45) and found first that the violation through-
out is very similar to the initial choice (28). Although
initially the violation with the reflection reducing condition
is slightly smaller than with the “geometric” condition, later
on there is practically nothing to choose between them.
Considering that the violations are in the round-off regime
10−14 it is hard to judge from this experiment which of the
conditions behaves most favorably.

C. Lapse power in constraint damping

1. Initial data

We now evolve centered A ¼ 2.5 Brill wave initial data,
which are subcritical, with an ADMmass ofMADM ¼ 0.19.
We evolve on the same grids used in the previous section,
but with a slightly higher resolution (193 rather than 153

points per cube). We evolve using γ0 ¼ 0.2αl with l ¼ 0,
the standard choice elsewhere, or l ¼ −1, a modification
which we hope will reduce constraint growth in the
strongest field region. As above, we use the generalized
harmonic gauge (10). We use only the gauge boundary
condition (32).

2. Basic dynamics

The Kretschmann scalar initially has a peak at the origin,
evaluated around 2300 on the BAMPS grid, slightly less than
in the previous study [7]. This peak oscillates at the origin,
peaking after an initial bounce with value around 500. The
feature then rapidly propagates away and by a coordinate
time t ¼ 10, the peak value on the grid is less around 10−2.
The lapse initially decreases at the origin, this feature then
propagating out to the outer boundary, behind which the
lapse drifts back towards its initial value, unity.

3. Constraint violation

Examining the Cx constraint for the A ¼ 2.5 data along
the x axis, we see only very small differences in the

constraint violation between the l ¼ 0 and l ¼ −1 evolu-
tions. The small differences are not surprising because the
lowest value the lapse function takes is around 0.78 having
started from 1. The peaks of the Cx constraint in the l ¼ −1
evolution are about 2%–5% smaller than in the l ¼ 0 run.
Increasing the amplitude of the initial data to A ¼ 4, one
might expect the improvement to be more significant as the
lowest value of lapse decreases to 0.37, but the difference
still amounts to between 2% and 5% at the peaks of the
violation.

D. BAM vs BAMPS comparison

Another validation strategy for BAMPS is to compare the
numerical results with those of an independent code. For
this, we used BAM [51], evolving identical initial data with
the same gauge conditions. This comparison we performed
by evolving a centered z0 ¼ 0 Brill wave with A ¼ 1. We
chose this weak amplitude because evolving the Brill data
accurately with BAM rapidly becomes expensive as A
increases in magnitude. We used pure harmonic slicing
ηL ¼ 0 with either harmonic shift ηS ¼ 0 or the damped
harmonic shift ηS ¼ 1. In the BAM code, we evolve with
the BSSNOK formulation, for completeness, this gauge
condition is given by

∂tβ
i ¼ α2χ½ ~Γi þ 1

2
~γij∂j ln χ − ~γij∂j ln α�

− ηSβ
i þ βj∂jβ

i: ð137Þ

in terms of the conformally decomposed BSSNOK vari-
ables. For this test, we did not employ the spherical shells
or constraint-preserving boundary conditions of [52]. Since
the outer boundaries were placed at x ¼ y ¼ z ¼ 12, the
solutions to the continuum PDEs being solved are not
identical. Therefore we should not hope for perfect agree-
ment for long. In Fig. 6, we plot the spatial metric

FIG. 6. Comparison of the results of a Brill wave A ¼ 1
evolution with BAM and BAMPS. We show snapshots of the
metric component γxx along the x axis at t ¼ 1.625. In the upper
panel, we show the pure harmonic gauge, and underneath the
damped wave gauge with ηL ¼ 0 and ηS ¼ 1.0. The results of the
codes are in good agreement in either case.
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component γxx at t ¼ 1.625, when the agreement is still
very good for either choice of the shift, being practically
indistinguishable by eye. In practice, the main source of
disagreement at the resolution of these runs comes from
mesh-refinement boundaries in the BAM grid setup.

E. Octant and cartoon

1. Initial data and grids

To test our implementation of symmetry-reduced expres-
sions, either octant, Cartoon, or their combination, we
evolve weak A ¼ 1 centered pure plus polarization initial
data as described in Sec. V B, using once again the
generalized harmonic gauge (10) and the gauge boundary
condition (32). We started with a base cubed sphere three-
dimensional grid with N ¼ 15 points per direction, and the
number of subpatches derived fromN cu ¼ 5,N cs ¼ 4 and
N cs ¼ 3. The outer boundary was placed at r ¼ 12 in the
units of the code. For ease of comparison, the breakdown of
the grids was

N total
cu N total

cs N total
ss N total Ntotal

3d 125 600 450 1175 4 × 106

Octant 27 (12,6,1) 48 (48,12) 81 (36,9) 216 5 × 105

Cartoon 25 80 60 165 4 × 104

Cart. oct. 9 (4,1) 24 (8) 18 (6) 51 104

where the numbers in parentheses denote the number of
those grids that were cut in half (at the axis) once, twice, or
three times, respectively, for the three-dimensional grids,
and once or twice for the Cartoon grids. Note that our
current nonoctant Cartoon implementation is not optimal
because we evolve the whole x-z plane, wasting effectively
a factor of 2. Currently we use the code most often in
Cartoon octant mode, so fixing this does not have a high
priority. Looking at the table, the main observation is that
the expected reduction factor of 8 (4) in the total number of
grid points is present between the three-dimensional
(Cartoon) and octant grids, but that this number is not
so closely reflected in the grid breakdown, where we get
only a factor of 6 (3) in the total number of grids. This is
obviously because there are many grids with fewer points.
Since our parallelization does not take this fact into
account, it is possible that one MPI process is given all
noncut grids, and so we can expect that the speedup rate is
determined to a large extent by ratio in the number of grids.
As we make the domain larger, the relative number of cut
grids decreases, so we might expect that asymptotically the
full speedup factors of 8 or 4 can are attained.

2. Basic dynamics

Although irrelevant for the octant Cartoon comparison,
since these data have not been used before, we give a brief
description of their evolution. Initially, the peak of the

Kretschmann scalar occurs at ρ ¼ �0.65 with a value 1.18.
This profile then oscillates about three times at the origin,
attaining a peak value of 7.25 before rapidly dispersing.
Looking at the lapse we see the familiar behavior that at the
origin it oscillates slightly before presenting a longer
decrease, although at the minimum is only 0.995, having
started from αðt ¼ 0Þ ¼ 1 everywhere. Afterwards this
pulse propagates out, roughly following the disturbance
in the Kretschmann. Looking at the shift component βx

along the x axis, we find that early on there is a growth
which peaks at x ¼ 1.06, with value 0.0027. The develop-
ment of the shift looks more like a slowly oscillating
standing wave than a localized propagating feature.

3. Three-dimensional, octant, Cartoon
and octant-Cartoon comparison

Taking first the three-dimensional and octant evolutions,
we see near-perfect agreement throughout the evolution.
There are small differences however, starting from the
beginning of the simulation at the level of round-off;
differences of 10−15 in metric components, which slowly
drift as the evolution goes on. This behavior is expected
because the derivative approximation differ at this level.
Similar differences were found between the other setups.
These differences are never larger than the constraint
violation, in for example Cx, and we have looked at
convergence (see Sec. VI F for more discussion) with each
setup, although not for this data, and find no indication of a
problem. For the speed comparison, we ran the code with
each setup on 24 cores (with hyperthreading) of our local
cluster Core12 with Intel Xeon X5650 processors. The
octant run was a little more than 6 times faster than the
three-dimensional run, as expected given the foregoing
discussion. The octant Cartoon run was about 2.4 times
faster than the pure Cartoon test, which is a little disap-
pointing. Going from N ss ¼ 3 to N ss ¼ 6 radial subdivi-
sions in the outer shells, this value increases to 2.9,
demonstrating the expected dependence. Comparing the
full three-dimensiona and octant Cartoon runs, there was a
gratifying speed-up by nearly a factor of 400.

F. Convergence

The BAMPS numerical method gives us two options for
increasing resolution. The first is to add grid points in every
domain, the second is to subdivide grids further, keeping
the number of points inside each subpatch fixed. Given
fixed finite computational resources it is not obvious what
is the optimum strategy to achieve the smallest possible
error, because although we would expect that adding points
brings spectral convergence, it also comes with a N−2

dependence in the allowed time step, whereas on the other
hand, as we will see, adding more subpatches allows the
code to scale up to a large number of processors. Probably
the optimal strategy relies on a balance between each. To
examine the effect of each strategy in the simplest possible
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way, we evolved gauge wave initial data on the
Minkowski spacetime, which was setup by choosing
α ¼ 1þ A exp½−ðr=σÞ2�, βi ¼ 0, with r¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þ z2

p
as usual, and otherwise the flat spatial Cartesian metric and
vanishing extrinsic curvature. The results are plotted in the
four panels of Fig. 7 and confirm our expectations.

G. Filtering

To demonstrate the necessity of the filter (56) we evolved
a centered A ¼ 1 Brill wave. The results are plotted in
Fig. 8. In the left panel, we see that without filtering the
constraint violation starts to grow exponentially in time,
whereas with filter the growth is completely absent and the
norm of constraints remains steady at a very low value. In
the right panel, we plot the magnitude of the fourth highest
spectral coefficient of gxx in the transition shell as a
function of time. This coefficient is the first that is directly
unaffected by the filter. We see that the growth in the
constraints seems to be associated with an explosion in the
higher spectral coefficients. Interestingly, we tried the same
experiment with gauge wave initial data and did not see the
effect, at least in the same time frame. We expect that the

same behavior would manifest if we were to evolve long
enough. The obvious conclusion we draw from this is that it
is important to test these methods with several data types to
get a reliable picture of their properties.

H. Performance

1. Strong-scaling

The current BAMPS parallelization strategy is to obtain
perfect scaling using many subpatches, and splitting these
subpatches across many processors. The key is that, in
contrast to buffer zones required in the decomposition of a
finite differencing grid, only two-dimensional surfaces of
points need be passed by network communication, making
the relative time spent there negligible. In a finite differ-
encing approach, the relative size of the buffer zones
decreases with resolution, but in practice can still be
significant in production runs. In Fig. 9, we present strong
scaling plots performed on the SuperMUC cluster located
in LRZ Garching, with Intel Xeon E5-26808C processors.
We ran the code in 3three dimensions. We took a grid with
4459 total subpatches and increased the number of cores
used until we were computing one patch per core. We find

FIG. 7. Evolution of a gauge wave with A ¼ 0.01 and σ ¼ 1.0. In the upper panels, we used a spatial resolution of N ¼ 21 on a grid
with N ¼ 1 subpatches. The upper left panel gives a snapshot of gtt along the x axis at t ¼ 3.55. The upper right shows the Chebyshev
expansion coefficients at the same time with the same color coding. The lower panels show convergence of the constraints for the same
initial data; on the left we increase the number of points N in each grid, on the right we increase the number of subpatches N .
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perfect scaling. On the other hand, BAMPS is currently not
parallelized whatsoever at the subpatch level, which means
that the maximum number of points per subpatch is in
principle determined by the amount of memory available to
one core. At least when running the code in Cartoon mode,
however, we do not find, in practical terms, that this is
problematic. Instead the N−2 restriction in the time step
makes increasing the number of points infeasible long
before we are close to filling the available memory. In three
dimensions, this may no longer be the case. We leave such
considerations for future work.

VII. SINGLE BLACK HOLES

The main thrust of our development has been towards
treating collapsing axisymmetric gravitational waves accu-
rately. For supercritical data, the cubed-ball grid is unsuit-
able after the formation of an apparent horizon. Therefore

the strategy for long-term evolution is to take the data and
interpolate onto a cubed-shell grid, with the excision
surface suitably positioned, changing the lapse and shift
to be sure that the excision surface is a true outflow
boundary. A necessary requirement is to treat a single
black hole, which is what we discuss here.

A. Initial data

1. Kerr-Schild coordinates

We evolve the Schwarzschild solution in Kerr-Schild
coordinates as was done with an earlier version [53] of the
present code. Although the current numerical method is not
particularly close to that used previously, some components
of the older code were inherited. Importantly, evolving this
data allows a simple comparison with the previous method
and results. In spherical polar coordinates, the metric and
extrinsic curvature take the form

gabdxadxb ¼ −
�
1 −

2M
r

�
dt2 þ 4M

r
dtdr

þ
�
1þ 2M

r

�
dr2 þ r2dΩ2; ð138Þ

with dΩ2 the flat metric on the two-sphere, and

Kijdxidxj ¼ −
2Mffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2M

r

q
�
1

r2

�
1þM

r

�
dr2 − dΩ2

�
; ð139Þ

respectively. Inside the code, the line element is written in
Cartesian coordinates in the standard way. More discussion
of Kerr-Schild coordinates can be found in [54,55].

FIG. 8. Influence of the filter at example of a A ¼ 1 Brill wave evolution. On the left we show the time evolution of the constraint
monitor Cmon. In the simulation using a filter, the constraint violation settles down to 10−10. Without using a filter the constraint violation
grows and lead to a failure of the simulation at t ≈ 150. On the right we show the evolution of the fourth highest Chebyshev expansion
coefficient. It is the highest mode which is not affected by the filter. Without the filter the high frequencies grow over time and cause the
simulation to fail. The filter sets the highest frequency to zero which avoids the growth of the high frequency modes.

FIG. 9. Strong scaling of BAMPS of a grid with N ¼ 5 on the
SuperMUC cluster. Here a grid with N ¼ 5 sub patches was
used. In total, this grid consists of 4459 patches.
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2. Harmonic Killing coordinates

We additionally evolve starting from the harmonic
Killing slicing described in [56], which serves as a
convenient starting point when transitioning from one
generalized harmonic gauge to another. For this initial
data, in spherical polar coordinates, the metric and extrinsic
curvature are

gabdxadxb ¼ −
�
1 −

2M
r

�
dt2 þ 8M2

r2
dtdr

þ
�
1þ 4M2

r2

��
1þ 2M

r

�
dr2 þ r2dΩ2;

ð140Þ

and

Krr ¼ −
4M2

r6
4M3 þ 4M2rþ 3Mr2 þ 2r3ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2M
r

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4M2

r2

q ;

Kθθ ¼
4M2r2ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2M
r

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4M2

r2

q ; ð141Þ

with the remaining components vanishing. For this data,
spatially harmonic coordinates are obtained by building
Cartesians according to,

x ¼ ðr −MÞ sin θ cosϕ; y ¼ ðr −MÞ sin θ sinϕ;
z ¼ ðr −MÞ cos θ; ð142Þ

The resulting metric has a coordinate singularity at r ¼ M,
with r implicitly defined in the obvious way from the new
coordinates. The coordinate singularity is not a principle
problem as we could just put the excision surface outside
this radius. But BAMPS relies on standard Cartesian coor-
dinates in several places. So, in the code, we could
transform in the standard way but then choose the gauge
source function,

Ha ¼ 2ð~J∂ ~JÞðabÞb: ð143Þ

with Jaa0 the Jacobian between the standard a-index
Cartesians and harmonic Cartesian a0 index coordinates
(142), the compound object ð~J∂ ~JÞ is defined by

ð ~J∂ ~JÞabc ¼ ð ~J−1Þa0b ∂c
~Jaa0 : ð144Þ

with ~Jaa0 ¼
ffiffiffiffiffiffijJjp

Jaa0 and where indices are manipulated in
the obvious way with gab to obtain (143). Instead, we just
choose the gauge source function to be fixed at its initial
value, as will momentarily be discussed. In this section, we
use the code exclusively in Cartoon mode, on a cubed
sphere grid. We start with the excision surface at r ¼ 1.8M,

and the outer boundary at r ¼ 31.8M. In our base setup, we
take N ¼ 3 radial subpatches each with N ¼ 25 points per
direction. The runs were performed on a desktop machine
with an eight-core intel i7 CPU, which was able to compute
at about 250M=hour, the base run requiring about 14 MB
of RAM.

B. Freezing gauge source functions

1. Killing gauge sources

Given initial data which admit a timelike Killing vector,
we can ensure that the evolution of the system is trivial, at
the continuum level, neglecting the effect of outer boundary
conditions, by choosing the Killing lapse and shift,
and taking the gauge source functions Ha so that
∂tα ¼ ∂tβ

i ¼ 0 initially. In particular, we must choose

Ha ¼ −Γaðt ¼ 0Þ; ∂tHa ¼ 0: ð145Þ

2. Kerr-Schild evolutions with SPEC GHG

We began by evolving the Kerr-Schild initial data with
the standard formulation parameters of [8], namely γ4 ¼
γ5 ¼ 0 and γ0 ¼ 1 on our base grid as just described, using
the gauge boundary conditions (31). Immediately we see
that the innermost subpatch has the largest constraint
violation, peaked at around 10−6 in the Cx component of
the harmonic constraint. This is not surprising because the
innermost subpatch contains the part of the solution with
the largest derivatives. The evolution successfully contin-
ues until the final time t ¼ 1000M. But after the initial
expansion to 10−6, a slow expansion in Cx is visible, and
this growth becomes more rapid as the simulation con-
tinues. By the end, the maximum value of Cx is around
10−3, with peaks appearing at the inner and outer boundary
of roughly the same size. We then increased resolution from
the base grid to N ¼ 27, 29 and N ¼ 31. The N ¼ 27 point
grid runs at about 178M=hour, and the initial peak in the Cx
constraint violation is reduced by a factor of about 2, with
this ratio of improvement slowly declining until the end of
the evolution. The N ¼ 29 grid runs at 129M=hour, with
both the initial magnitude of the violation and the ‘slow
expansion’ of the Cx constraint quashed, the peak being a
factor 2.8 smaller than in the base run at the end of the
simulation. The highest resolution N ¼ 31 point grid ran at
96M=hour, with the final improvement in Cx against the
base run being a factor of 5.3. Since the largest constraint
violation occurs in the excision subpatch an obvious
question is whether or not the excision and outer bounda-
ries would interact badly if they were on the same grid.
Although the issue is of little practical concern for
production runs, for development it deserves a little
attention, and therefore we evolved our base grid from
before, but cutting the outer two subpatches so that the
outer boundary lies at 11.8M. This test is not completely
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fair because the outer boundary conditions are expected to
perform better as they are applied further out. We find that
the initial peak in the violation of the Cx constraint is about
five times greater than in the base run at t ¼ 200M. At the
end of the evolution, again at t ¼ 1000M by coincidence,
the constraint violation in the restricted domain is smaller,
but this is just because the slow oscillations in each
simulation are out of phase.

3. Kerr-Schild incoming wave evolutions with SPEC GHG

Next we evolved the same initial data and gauge, but this
time with the same domain as in Fig. 3 of [8]. To do this we
took N ¼ 2 radial subpatches, with the same base reso-
lution as before, so that the outer boundary is placed at
r ¼ 21.8M. We similarly specify exactly the same given
data for an incoming gravitational wave as in that study,
taking, in particular,

∂thab ¼ _fðtÞðx̂ax̂b þ ŷaŷb − 2ẑaẑbÞ; ð146Þ

with the vectors here the coordinate vectors defined in the
obvious way. We take

fðtÞ ¼ A exp½−ðt − tpÞ2=ω2�; ð147Þ

with A ¼ 10−3, tp ¼ 60M and ω ¼ 10M. In Fig. 10, we
show the results from these experiments, obtained with a

sequence of different resolutions. We plot the Weyl scalar
Ψ4 (24), averaged over the outer boundary,

4πhRΨ4i2 ¼
Z

jΨ4j2dA: ð148Þ

The surface area of the outer boundary is 4πR2. Fitting the
highest-resolution data between t ¼ 100 and t ¼ 200, we
find a ring-down frequency of ℜ½ωM� ∼ 0.372 as expected
[57]. In this evolution, we found that the apparent horizon
oscillates slightly as the gravitational wave is absorbed,
increasing the horizon mass (126) by about 6 × 10−7 M,
withM the ADMmass of the analytic initial data. Note that
the gauge boundary condition being employed here is not
identical to that used in [8], so the agreement is remarkable.
The effect of much larger pulses of gravitational radiation
falling onto a black hole using similar gauge conditions was
studied in [58].

4. Discussion of and comparison with [53]

The prior BAMPS study focussed on obtaining numerical
stability in the evolution of a Schwarzschild black hole with
the Kerr-Schild slicing. The numerical method used a
Chebyschev-Fourier-Fourier spatial discretization on a
single shell with a spin weighted spherical harmonic filter
to prevent high frequency growth of the error. In that study,
the outer boundary condition employed simply fixed the
incoming characteristic variables (6) to some given data,
namely their initial values. This approach is possible only
when the analytic solution is known, otherwise incoming
constraint violations are generated. Placing the inner
boundary at r ¼ 1.8M and the outer boundary at
r ¼ 11.8M, very long evolutions, say until at least
t ¼ 200000M, could be performed with little resolution,
in accordance with [8]. On the other hand, using this
method, the naive boundary conditions rapidly deteriorated
as the outer boundary was pushed out, and, crucially
resolution did not help but rather made the problem worse.
A possible explanation for the latter effect is that no filter
was being applied in the radial (Chebyschev discretized)
direction, which have already seen is a crucial ingredient
for stability with the current method. The likely cause of the
boundary problem is that, as explained in [14], boundary
conditions that just freeze the incoming GHG characteristic
variables are orders of magnitude more reflecting than the
Sommerfeld-like choice contained in (31). Evidence for
this is obtained in the current code by changing from the
gauge boundary condition (31) to use instead

⊥ðGÞcd
ab ½∂tu−̂cd�¼̂ 0; ð149Þ

evolving once more the Kerr-Schild initial data on the base
grid. Placing the outer boundary further out then results in
greater reflections. However, rather than trying to improve
a condition only suitable for evolving known data, we

FIG. 10. The right panel shows the average over the Weyl scalar
Ψ4 in the outer boundary in the evolution of the Schwarzschild
spacetime perturbed by a small gravitational wave injected
through the boundary. In the left panel, we see convergence of
the constraints as resolution is increased. At lower resolutions, a
drift is present in the ring-down. There is good agreement with
Fig. 3 of [8], and the ring-down frequency agrees well with the
analytical computation [57]. At the end of the test, there is some
disagreement with [8], but since square-roots of very small
quantities are being taken we expect this is caused by round-
off error. It seems that on the cubed-sphere grid more resolution is
needed to obtain clean results than with the spherical harmonic
discretization used in [8]. This is perhaps not surprising, since the
latter discretization is well suited to the given data.
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immediately moved to the constraint-preserving, radiation-
controlling conditions, with which this issue is completely
absent. The first attempted implementation of a regular
center in the BAMPS code was to use the Chebyschev-
Fourier-Fourier discretization with a double covering in the
radial direction, similar to that employed in [59]. The
approach was not successful, as we always eventually
found irregularities in the numerical solution at the origin.
An exponential filter was applied to the Chebyschev
coefficients in the radial direction, but to little effect.
Eventually we settled on the cubed sphere approach, in
part because of the expectation that they will later be more
convenient for mesh-refinement. Other possible solutions
to the problems we faced would be to use one-sided Jacobi
polynomials as in SPEC [60] or to employ a filter that
projects the solution in another basis onto these
polynomials.

5. Kerr-Schild evolutions with simplified
constraint subsystem

Using our standard choice for the formulation parame-
ters γ4 ¼ γ5 ¼ 1=2, and taking γ0 ¼ 0.2, returning to our
base resolution from the tests with the SPEC version of
GHG, we find that by t ¼ 200 the Cx constraint is about 5
times larger than that we obtained before, and by the end of
the simulation the new run has accrued a Cx constraint
violation with a sharp peak at the outer boundary of order
10−1. This result seems to be in contradiction to those of
Sec. VI B, until we remember that there the gauge boun-
dary condition (32) was employed. Increasing the con-
straint damping to γ0 ¼ 1, the initial violation is
comparable to the SPEC GHG evolution previously
described throughout the evolution, and the spike at the
outer boundary is suppressed by roughly an order of
magnitude. At the end of this run, the maximum of the
Cx constraint occurs at the excision boundary with a value
around 10−3. This experiment thus highlights that the
choice of the damping parameters and boundary conditions
can be rather subtle.

6. Kerr-Schild evolutions with alternative
boundary conditions

Next we returned to the base grid, and switched to the
alternative gauge boundary conditions (32), with γ4 ¼ γ5 ¼
1=2 and γ0 ¼ 1. We find that the aforementioned growth in
the constraints is completely eradicated, and the drift in the
lapse and shift is also suppressed. Evolving the same data
with the same formulation and gauge boundary condition,
but using the modified constraint-preserving boundary
condition (39), gives almost identical results. Using instead
the reflection reducing conditions (45) we see a small
improvement in the violation throughout the simulation.
Repeating the experiment with the incoming gravitational
wave injected through the boundary with the standard

constraint-preserving condition (28) and the gauge boun-
dary conditions (32), the growth visible in Fig. 10 is
also completely absent, even on the base resolution
N ¼ 25 grid. These results are presented in Fig. 11.

7. Harmonic Killing slice evolutions

We now returned to our base grid and resolution, taking
the formulation parameters γ4 ¼ γ5 ¼ 1=2, and γ0 ¼ 1,
evolving the harmonic Killing slice with the gauge boun-
dary condition (31). The test successfully runs to
t ¼ 1000M. Comparing with the equivalent evolution of
Kerr-Schild data, we see that initially near the excision
boundary the Cx constraint violation is significantly greater
in the harmonic Killing test. By t ¼ 200M, this difference
has accrued to around 2 orders of magnitude. Later
however, as the violation in the Kerr-Schild Killing
evolution starts to grow, it overtakes that of the harmonic
Killing evolution. At t ¼ 1000M, the peak of the constraint
violation in the harmonic Killing run is about an order of
magnitude smaller than in the earlier test. As remarked
before, in the Kerr-Schild test the inner and outer bounda-
ries have roughly the same magnitude in the Cx constraint
violation. Interestingly, the twin peaks are not present in the
harmonic Killing data because the outer boundary is hugely
improved. This finding is consistent with the gauge wave
tests presented in Sec. VI A, although this test is somewhat
easier for the gauge boundary conditions because of the
complete lack of dynamics present in the gauge wave test.
In the harmonic Killing evolution, we are evolving with
pure harmonic slicing, and some nonzero spatial gauge
source functions, which suggests perhaps that the growth at
the outer boundary is predominantly caused by the use of a
nontrivial gauge source function for the lapse function, as it
interacts with the boundary. Indeed, looking once more at
the lapse function towards the end of the Kerr-Schild
evolution we see that it is drifting from its initial value,
but that this effect converges away with resolution. In any
case, the peak in the constraint violation at the outer
boundary in the Killing Kerr-Schild data is suppressed
as the outer boundary is placed further out.

8. Harmonic Killing slice with gauge perturbation

A desirable property for a set of dynamical coordinates is
that in the presence of a, perhaps approximate, timelike
Killing vector they quickly asymptote to a time-independent
state. For an arbitrary physical or gauge perturbation, there is
no hope that this will occur, and nor can any finite set of
numerical experiments prove that that there is a basin of
attraction to a stationary state.We can however look for some
indication of this behavior. To do so we start by taking the
initial data for the Killing harmonic coordinates, and then
perturb the initial lapse function by Gaussian as in the
previous gauge wave evolutions. In terms of the first-order
GHG variables, this is a slightly fiddly procedure, as
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comparedwith the use of the lapse, shift and spatialmetric, so
we give a quick summary:

(i) Set spatial metric and extrinsic curvature from the
exact solution.

(ii) Take the Killing lapse and shift. Use the conditions
∂tα ¼ 0 and ∂tβ

i ¼ 0 to set the gauge source
functions Ha.

(iii) Add the desired perturbation to the lapse (or shift)
and then transform to the first-order GHG variables.

We perturbed the lapse by a Gaussian,

Δα ¼ A exp½−2ðr − r0Þ2�; ð150Þ

with A ¼ 0.3M and r0 ¼ 4M. A similar experiment was
made in [61], but starting from a maximal slice of the
Schwarzschild spacetime to test the gauge driver system.We
find that the perturbation in the lapse propagates away,
rapidly leaving behind the solutionwith the harmonicKilling
data with unperturbed spatial coordinates, or at least negli-
gibly perturbed. The greatest danger to the evolution is
probably that the excision boundary fails to be outflow, but at
least with this perturbation that does not occur.

9. Harmonic evolutions with incoming gravitational wave

Giving the same gravitational wave data (146) as
previously, evolving with the standard boundary conditions
(28) and (31) but using the harmonic Killing gauge source
functions. It is not obvious how, if at all, the spacetime
computed is related to that considered before, but in any
case we find a very similar decay in Ψ4. Remarkably, the
growth present in Fig. 10 is absent even in this low
resolution N ¼ 25 test.

C. Phasing-in the damped wave gauge

1. The transition function

As elsewhere, we follow [11] to transform from one
generalized harmonic gauge H1

a to another H2
a. The

composite source function is simply

HaðtÞ ¼ TðtÞH1
a þ ½1 − TðtÞ�H2

a: ð151Þ

The transition function is

TðtÞ ¼
�
0; t < td;

expð−ðt − tdÞ2=σ2dÞ; t ≥ td:
ð152Þ

In the following experiments, we choose td ¼ 0 and
σd ¼ 10M. Note that care must be taken to construct
the time and space derivatives of Ha with the transition
function. This choice results in gauge source functions that
are only C1 at t ¼ td, which could be avoided with a
different transition function. It is not clear if this finite
differentiability will have a large effect on extracted
physical quantities from a simulation.

2. Kerr-Schild initial slice

For our first phase-in test, we started with the Kerr-Schild
slicing of the Schwarzschild spacetime and evolved with
γ4 ¼ γ5 ¼ 1=2 and γ0 ¼ 1, on our base resolution grid.
We took the gauge boundary condition (31) and the
constraint-preserving condition (39) (including a 1=r term).
We used the wave gauge parameters p ¼ r ¼ 1 and
ηL ¼ ηS ¼ 0.1M. The value of ηS here is much smaller
than in our wave collapse evolutions. The reason for this is
that when evolving a black hole, it is crucial that the
excision boundary is pure outflow in the PDEs sense. In
other words, the characteristic speeds must all have the
same outward pointing sign. Since the speeds in the si

direction are like −βs � α this means that the shift can not
become too small or else the excision boundary will fail,
which in turn means that ηS can not be chosen too large. We
therefore place the excision boundary deeper into the black
hole so that rmin ¼ M and carefully monitor the coordinate
lightspeeds at the inner boundary. Note that this require-
ment is likely to cause difficulties when computing extreme
gravitational waves, because on the one hand large shifts
can result in poor resolution of important features, but on
the other they may be required in some other region so that
we may successfully excise the black-hole region. In the
evolution, we immediately see significant dynamics and
that for example the peak of the Cx constraint violation
along the x axis is 2 orders of magnitude greater than in our
initial Kerr-Schild base run with Killing gauge sources. The
reason for this is presumably the presence nontrivial
dynamics, plus the fact that we are excising nearer the
physical singularity similar to the effect we saw with the
harmonic Killing slice. Regardless, by t ¼ 100M the data
seem very close to stationary. The simulation then evolves
to the target time t ¼ 1000M, and remarkably at the end of
simulation the constraint violation in Cx along the x axis
has a maximum value which is an order of magnitude
smaller than in the base run. At no point does the excision
boundary fail to be outflow. As a check of the axisymmetric
apparent horizon finder, we compare the results obtained
with the simpler algebraic condition,

H ¼ 1ffiffiffiffiffiffi
grr

p ∂r logðγθθÞ − 2Kθ
θ ¼ 0: ð153Þ

which characterizes the position of the apparent horizon in
spherical symmetry. We find near perfect agreement
throughout. The apparent horizon moves from its initial
radius rH ¼ 2.00 inwards until it reaches rH ¼ 1.44 around
t ¼ 25. From there the horizon starts to grow again and
seems to settle down to rH ¼ 1.48. However in our lowest
resolution run, a small drift of the horizon outwards is
visible. At late time of the simulation, around t ¼ 800, this
drift accelerates and we observe that the horizon becomes
aspherical. Higher resolution runs show that this effect
converges away.
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3. Harmonic initial slice

Since the stationary fully harmonic coordinates are
singular at r ¼ M, one might guess that the stationary
spatial generalized harmonic coordinates with gauge source
functions (10) are also singular at some radius on the
Killing slice, at least for some range of the parameters ηL,
ηS. Given the broad experience in using these coordinates in
binary black-hole simulations, the naive expectation would
be that, if present, this coordinate singularity is pushed
further towards the physical singularity rather than out
towards the event horizon for standard choices of the gauge
source functions. But this behavior is not clear. To truly
resolve the issue one could simply solve for such coor-
dinates along the lines of [62], but this we defer for the
future. Instead, we performed simulations varying the
initial excision surface from the base grid excision radius
rmin ¼ 1.8M down to rmin ¼ 1.0M in steps of 0.2M.
Unsurprisingly we find that initially the constraint viola-
tion, is greater in the excision subpatch as the inner

boundary is placed closer to the singularity, amounting
to about an order of magnitude in the Cx constraint between
the rmin ¼ M and rmin ¼ 1.2M boundary runs by t ¼ 50.
Besides this there is little to distinguish between the five
runs, and at least down to this excision radius no sign of a
coordinate singularity forming. By eye, the lapse function
in the shared part of the domain agrees very well through-
out the evolution. Although a slight drift between them is
present towards the end of the test, this is acceptable since
the outer boundary conditions are being imposed at differ-
ent radii, the solutions need not agree everywhere. There is
however a time around t ¼ 20 above which the runs with
inner boundary r ≥ 1.4M fail to be outflow at the excision
surface. Assuming that this is not caused by numerical error
this means that boundary conditions are required at the
surface. It furthermore means that convergence of the
numerical scheme as resolution is increased is impossible.
The fact that this does not correspond to a catastrophic
failure of the code is inconvenient, because it indicates that
great care must be taken in monitoring the excision surface.
On the other hand, since placing the excision boundary
very far in has a large cost in accuracy, a careful balance
must be struck. In the SPEC code, this is taken care
dynamically of by a control mechanism [63,64] which
BAMPS does not yet have. In Fig. 12, the relationship
between the character of the excision boundary and the
apparent horizon is examined. Comparing the initially
harmonic and Kerr-Schild slice evolutions with excision
radius rmin ¼ M we find that although the lapse functions
initially disagree, by about t ¼ 125M they have exactly the
same profile and lie almost on top of one another. After this
time the agreement is maintained.

FIG. 11. Comparison of the evolution of a Schwarzschild
blackhole with Killing Kerr-Schild gauge sources with either
the gauge boundary condition (31) or the alternative (32) at the
end of the simulation t ¼ 1000M. In the upper panel, we plot
the logarithm of the constraint violation Cx. In the latter case, the
violation is greatly reduced. In the lower two panels, we show the
lapse and shift; the drift present when using (31) is practically
absent with (32).

FIG. 12. The radius of the apparent horizon rH, and the radius
at which the outward lightspeed vanishes rcþ¼0, computed on our
base grid with inner boundary at r ¼ 1.2M. To successfully
excise, the speed must be negative at the inner boundary. Observe
that excision exactly on the apparent horizon is not possible
throughout all of the run.
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VIII. EVOLUTION OF SUPERCRITICAL WAVES

In this section, we present the numerical evolution of a
centered Brill wave (see Sec. VA), with A ¼ 8. These
highly supercritical initial data are used as a test case for our
excision algorithm for a dynamically forming black hole.

A. Dynamical excision strategies

Our dynamical excision method currently consists of the
following steps:
(1) Evolve to collapse: Evolve on cubed ball grid,

running the apparent horizon finder in ‘daemon’
mode. The finder then triggers a BAMPS checkpoint
once a horizon is found.

(2) Go-to excision grid: Next interpolate the checkpoint
data onto a cubed-sphere grid. In this step, we want
to place excision boundary just inside the apparent
horizon, but as we have already seen in the single
black-hole evolutions this may not always be pos-
sible, as some wiggle room is needed to allow for
dynamical behavior of the horizon. This can require
some experimentation, although fine-tuning does
not seem necessary.

(3) Regauge: Adjust the lapse and shift to ensure that
the excision boundary is pure outflow. As a par-
ticular choice, we take the lapse and shift from the
Kerr-Schild slicing of the Schwarzschild spacetime,

α ¼
�
1þ 2m

r

�
−1=2

; βr ¼ 2m
r

�
1þ 2m

r

�
−1
;

ð154Þ

and translate to Cartesian components in the obvious
way. It is desirable that the radial coordinate light-
speeds are close to zero, preferably positive, at the
apparent horizon, since this determines the direction
of motion of the horizon. Therefore we choose them
parameter to satisfy this condition reasonably well,
although again without particular fine tuning.

(4) Safety-net evolution: We then use single black-hole
gauge source parameters like ηL ¼ 0.1 and ηS ¼ 0.2.
During the evolution we use a safety net. If any
coordinate light-speed on the excision boundary
reaches a given threshold, typically c� ¼ −0.05
we again regauge to guarantee the outflow character
is maintained. We monitor the apparent horizon, and
if it falls off of the numerical domain we return to an
earlier checkpoint, regauging with a smaller m to
avoid this behaviour. As the horizon expands, we
monitor the position and periodically return to the
Go-to step above, excising further out and regauging
with a greater m.

As currently implemented, this procedure requires that
some steps be performed by hand. The numerical results in
the following subsection serve to demonstrate “proof of

principle” of this algorithm. On the other hand, it seems at
least clear how those steps should be automated. At the
regauge step, the use of the first-order GHG variables is
again a little fiddly. Much more convenient would be if the
lapse and shift were readily available as variables. But the
procedure is similar to that described in the gauge pertur-
bation tests in Sec. VII B, so we do not give full details.
Also at the regauge step, it might be good to choose lapse
and shift by abandoning the spherical ansatz and imposing
that the coordinate light-speeds at the apparent horizon
vanish. The SPEC approach to controlling the excision
surface is much more sophisticated, employing a control
mechanism [63], we hope to avoid that investment in the
near future. Because we are interested in the collapse of
waves to form, presumably, a single black hole, it seems
reasonable to use a simple approach if at all possible. One
aspect of the method that is not very aesthetically appeal-
ing, is that by changing the lapse and shift in discrete steps
we are computing a spacetime, or patch of spacetime in
coordinates that are not globally smooth. Another issue
associated with this is that of geometric uniqueness, which
for the IBVP is an open question. Nevertheless, one expects
that the differences to the computed spacetime with one
choice of regauging parameters or another will be rather
small in practice, so this does not represent an immediate
practical concern.

B. Supercritical Brill wave evolution

1. Initial data and grid setup

We evolved a centered Brill wave as described in
Sec. VA, with seed function (103). We chose a centered
ρ0 ¼ 0wave with A ¼ 8. The ADMmass of this initial data
isMADM ¼ 1.77. The maximum of the Kretschmann scalar
in the initial data occurs at the origin, taking the value
1.7 × 104. Following the algorithm just outlined, we began
on a cubed-ball grid with N cu ¼ 11, N cs ¼ 13, N ss ¼ 20,
and 553 points per cube, with internal boundaries rcu ¼ 1.5,
rcs ¼ 6.5 and the outer boundary placed at r ¼ 30≃ 17M.
We ran the code in Cartoon mode on our local cluster
Quadler with 240 cores. We evolved with the generalized
harmonic gauge, as in Sec. VI in the evolution of a much
weaker A ¼ 2.5 Brill wave, now with the gauge parameters
ηL ¼ 0 and ηS ¼ 6. At coordinate time t ¼ 1.95, we first
found an apparent horizon with mass MH ¼ 1.59≃ 0.9M.

2. Continuation to code crash

If we continue this evolution without going to an
excision grid after the apparent horizon forms, we find
that the constraints inside the apparent horizon rapidly
grow along with the Kretschmann scalar. The run then
crashes at roughly t ¼ 3.9. This gives the clear signal that if
we are to examine the final masses of black holes formed
during collapse, using the GHG formulation, a robust
excision algorithm will be essential. In fact, at t ¼ 3.85,
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the horizon has a mass of MH ¼ 1.64 on the cubed-ball
grid, but at the end of our excision simulation, to be
described momentarily, we find that 40M after apparent
horizon formation it has mass MH ¼ 1.70. In the first
critical gravitational wave collapse paper [2], the black-
hole masses were evaluated roughly t ¼ 17M after appar-
ent horizon formation, according to a prescription based on
the quasinormal modes of the Schwarzschild blackhole.
Comparing those values with ours is difficult because we
use different time coordinates, but the basic expectation is
that the maximal slicing condition is more “singularity
avoiding” than one of our generalized harmonic gauges,
and therefore we might expect to obtain comparable results
if we can evolve for a similar coordinate time after the
appearance of a horizon. This is, however, not clear and
deserves further investigation. In any case, without excising
the black-hole region, the meager ∼2M after collapse is
clearly insufficient. We have seen in [7] that with the
moving-puncture method, this type of data also did not
result in successful evolutions beyond apparent horizon
formation. But here at least a concrete improvement has
been made, in that we find an apparent horizon before the
method fails.

3. Evolution on excision grid

Checkpointing the solution at t ¼ 3.6 we then interpo-
lating, again with barycentric Lagrange interpolation as
used in the apparent horizon finder, onto a cubed-sphere
grid with excision radius at r ¼ 0.73M with the outer
boundary position fixed, and withN ss ¼ 27 with 9 angular
patches, now with 353 points per cube, naturally again
evolving in Cartoon mode. In the regauge step, we choose
here m ¼ 0.4. This step immediately removes most of the
constraint violation from the computational domain, and
the largest spatial derivatives, so that the constraint monitor
is ∼10−8 as compared to ∼103 on the original cubed-ball.
This difference seems very troublesome until we take into
account that, for example the peak of the Kretschmann
scalar on the cubed ball grid is ∼103, whereas on the cubed
sphere it is ∼1. So the reduction in the constraints
obviously occurs because we are removing the most
extreme part of the domain. Note also that our definition
of the constraint monitor does not include a normalization
by the size of the solution, as in for example [8] and
subsequent papers. In view of this, our reduction in
resolution is justified. The evolution then proceeded,
now on 120 cores using ηL ¼ ηS ¼ 0.1. The regauge safety
net was triggered three times up to t ¼ 5.9M, having fixed
c� ¼ −0.05, but the apparent horizon remains on the
computational domain throughout the calculation. At
t ¼ 5.9M, we perform the “Go-to” step of our algorithm
again, this time excising at r ¼ 1.0M choosing m ¼ 0.8.
After this, the regauge safety net was not called before
t ¼ 17M, when we changed the cubed-sphere grid once
more, keeping the same grid parameters but excising at

r ¼ 1.12M, and regauging with m ¼ 1. The evolution
continued t ¼ 24.7M, at which time we changed grid for
the final time, before which the safety net was again not
called. In the last grid, we took the excision radius to be
r ¼ 1.24M and regauged with m ¼ 1.2. After this, the
regauge safety net was not called, and the evolution was
terminated at t ¼ 50M after apparent horizon formation.
Note that in this evolution the “Go-to” step also employed
the phase-in for the generalized harmonic gauge, as
described in our single black-hole evolutions in
Sec. VII C, taking the same parameters employed in those
earlier tests, but now with the initial source functions
chosen so that the lapse and shift were frozen as the
evolution starts on the new grid. Other experiments show
that this procedure is not strictly necessary. It may be that
some refinement is required to this method to allow the
evolution of supercritical data indefinitely after the col-
lapse, but examining the mass of the apparent horizon, we
interpret the solution as having mostly settled down, which
should be good enough to diagnose a final mass of the
black hole.

4. Dynamics of the apparent horizon

In the computation described above, as can be seen in in
the left panel of Fig. 13, the apparent horizon is always
present on the computational domain. The horizon mass
initially rapidly grows to a value aroundMH ¼ 1.7 where it
remains roughly constant. Throughout, we see that when

FIG. 13. The dynamics of the apparent horizon with our
dynamical excision strategy for an A ¼ 8 centered Brill wave.
The green planes indicate the times at which the “Go-to” step was
applied, and what parameterm was chosen in that procedure. The
left plot shows a successful choice, and on the right what happens
if this parameter is chosen less carefully. In the upper part of the
right-hand plot, one sees that the horizon contracts, and also
the “regauge” step is frequently applied, resulting in kinks in the
horizon.
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the regauge safety net is triggered, a slight oscillation in the
horizon mass follows. On the other hand, when we change
grid, we see that the horizon mass exhibits a more
prominent kink. In the right-hand panel of Fig. 13, we
plot the apparent horizons obtained when, less wisely, the
parameter m ¼ 1.4 is chosen in the last “Go-to” at
t ¼ 24.7M. With this choice, the apparent horizon rapidly
contracts, although the code fails before it leaves the
domain. The safety net is called ever more frequently as
the method insists on forcing the inner boundary to remain
pure outflow until eventually the code crashes at
t ¼ 31.6M. The physical interpretation of this is that the
excision boundary is falling off of the domain, which starts
to drift outside the black-hole region, and that the safety net
then forces the worldline of the excision boundary to be
spacelike. This interpretation would be clearer if we had an
event horizon finder, but is given credence by performing
evolutions of a Schwarzschild black hole with the m gauge
parameter similarly poorly chosen. In such tests, we see
that the areal radius of the excision boundary can indeed
fall outside of the event horizon at r ¼ 2M.

IX. CONCLUSIONS

We have developed a pseudospectral numerical relativity
code, BAMPS, and in so doing have made a series of
improvements and investigations into the approach
employed in the SPEC code. We presented a set of
experiments carefully performed so that direct comparison
with either published work, or independent computations
of the BAM finite differencing code could be made. These
included evolutions of gauge waves, convergence tests, the
use of different constraint damping and GHG formulation
parameters, scaling tests, perturbed black-hole evolutions
and the treatment of supercritical gravitational waves.
Ultimately we conclude that the BAMPS code is working
efficiently, scales as desired up to large numbers of
processors, and works on sufficiently general grid setups
to evolve initial data of interest. Particularly surprising to us
was the sensitivity of the method to our modifications of the
GHG boundary conditions, even within the class of
constraint-preserving conditions. This was the case even
in our simple evolutions of the Schwarzschild spacetime, so
it would be very interesting to see the extent to which such

results carry over to compact binary evolutions, be it in
SPEC, or in the more distant future in BAMPS. From the
physics point of view, however, our focus is presently on
the collapse of axisymmetric gravitational waves. Much of
the development reflects this fact. Most notably, the
implementation of octant symmetry with the Cartoon
method gives orders of magnitude speedups over evolving
the same data in full three dimensions. For a recent
complementary approach, see [65]. We have additionally
written a bespoke axisymmetric apparent horizon finder,
which already proved a valuable diagnostic tool, crucial in
the evolution of supercritical data, where the existence of an
apparent horizon was used as the criterion for moving to an
excision grid.
Naturally, further developments to the code may be

desirable. For physical interpretation, an event horizon
finder would complement our apparent horizon finder. A
control system like that of SPEC [63] would be useful in
controlling the positions of the apparent horizons. But the
highest priority will likely be in generalizing available grid
setups to enable dynamical mesh refinement.
We have also considered various different types of

axisymmetric moment-of-time-symmetry gravitational
wave initial data. In forthcoming work, we use BAMPS to
evolve this initial data, close to the critical amplitude
separating dispersion and collapse to a black hole.
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