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In dense stellar environments, nuclei may become unstable against electron captures and/or neutron
emissions. These processes are of particular importance for determining the internal constitution of
white-dwarf cores and neutron-star crusts. In this paper, the role of electron exchange and polarization
effects is studied. In particular, the instability condition for the onset of electron captures and neutron
emissions is extended so as to account for electron exchange and polarization. Moreover, general
analytical expressions for the corresponding density and pressure are derived. The corrections to the
electron-capture threshold in white-dwarf cores are found to be very small. Likewise, the neutron-
drip density and pressure in the crusts of accreting and nonaccreting neutron stars are only slightly
shifted. Depending on the nuclear mass model employed, electron polarization may change the
composition of the crust of nonaccreting neutron stars. On the other hand, the current uncertainties
in the masses of neutron-rich Kr and Sr isotopes are found to be more important than electron exchange
and polarization effects.
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I. INTRODUCTION

Electron captures and neutron emissions by atomic
nuclei are among the most important processes governing
the late evolution of stars (see, e.g., Ref. [1] for a recent
review). In the dense core of white dwarfs, the onset of
electron captures leads to a softening of the equation of
state: as electrons combine with nuclei, further compres-
sion of matter does not increase the pressure. For this
reason, electron captures limit the maximum possible
mass of white dwarfs (depending on the core composition,
the maximum mass may be further limited by general
relativity, see e.g. Ref. [2]). Electron captures are also
responsible for the production of very neutron-rich nuclei
in the outer crust of a neutron star (see, e.g., Refs. [3–7]).
Deeper in the crust, electron captures accompanied by
neutron emissions lead to the appearance of a neutron
liquid (see, e.g., Ref. [8]).
We have recently examined the role of electron-ion

interactions on the stability of nuclei against electron
captures and neutron emissions, both in the context of
white dwarfs [9] and neutron stars [10,11], allowing for
binary ionic mixtures and the presence of a strong
magnetic field. In this paper, we pursue our investiga-
tion by taking into account the previously neglected
effects of electron exchange and polarization. After
discussing the stability condition in Sec. II, applications
to white dwarfs and neutron stars are presented in
Sec. III.

II. ONSET OF ELECTRON CAPTURE AND
NEUTRON EMISSION BY NUCLEI

IN DENSE PLASMAS

As in our previous works [9–11], we consider matter at
densities high enough that atoms are fully ionized. We
further assume that the temperature T is lower than the
crystallization temperature Tm and that atomic nuclei are
arranged in a regular crystal lattice. For simplicity, we
consider crystalline structures made of only one type of
ions A

ZX with proton number Z and mass number A. To a
very good approximation, electrons can be treated as an
ideal Fermi gas. The main correction arises from the
electron-ion interactions. This model can be further refined
by taking into account electron exchange and polarization
effects. For ultrarelativistic electrons, the exchange con-
tributions to the electron energy density and pressure are
simply given by [12]

Eex
e

Ee
¼ Pex

e

Pe
¼ α

2π
; ð1Þ

where α ¼ e2=ðℏcÞ is the fine structure constant (e being
the proton electric charge, ℏ Planck-Dirac constant and c
the speed of light), Ee and Pe are the energy density and the
pressure of an ideal relativistic Fermi gas (see, e.g., Chap. 2
of Ref. [13]). For the electron polarization correction to the
energy density, we shall use the interpolating formula (42)
of Ref. [14]. We shall consider temperatures T much lower
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than the plasma temperature Tp ¼ ℏωp=kB (kB denoting
Boltzmann’s constant), where the ion-plasma frequency is
given by ωp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πZ2e2ni=M0p

, ni is the ion number
density, and M0 denotes the ion mass (which coincides
with the nuclear mass since atoms are fully ionized). The
nuclear mass M0ðA; ZÞ can be obtained from the corre-
sponding tabulated atomic mass MðA; ZÞ after subtracting
out the binding energy of the atomic electrons [see Eq. (A4)
of Ref. [15]]. Taking the limit Z → þ∞, the electron
polarization correction reduces to the familiar Thomas-
Fermi expression [12]

ETF
e ¼ 36

35

�
4

9π

�
1=3

αZ2=3EL; ð2Þ

written in terms of the lattice energy density EL, given by
(see e.g. Chap. 2 of Ref. [13])

EL ¼ Ce2n4=3e Z2=3; ð3Þ

where ne is the electron number density, and the crystal
structure constant C is very well approximated by the
Wigner-Seitz estimate [12]

C ¼ −
9

10

�
4π

3

�
1=3

: ð4Þ

For finite values of Z, and assuming Γp ≫ 1, where

Γp ¼ Z2e2

aikBTp
; ð5Þ

and ai ¼ Z1=3ð3=ð4πneÞÞ1=3 is the ion sphere radius, the
electron polarization correction for a body-centered cubic
lattice can be approximately expressed as

Epol
e ≈ b1ðZÞETF

e ; ð6Þ

where the function b1ðZÞ is given by [14]

b1ðZÞ ¼ 1 − 1.1866Z−0.267 þ 0.27Z−1: ð7Þ

Using Eqs. (2), (3) and (6), the electron polarization
contribution to the pressure is readily obtained

Ppol
e ≈ b1ðZÞ

ETF
e

3
: ð8Þ

Since 0 < b1 ≤ 1, Eq. (6) shows that the Thomas-Fermi
approximation overestimates the electron polarization cor-
rection. In the crust of a neutron star, with proton numbers
in the range Z ∼ 30 − 50, we obtain b1 ∼ 0.5 − 0.6.
Because white dwarfs contain lighter elements, the devia-
tions are significantly larger: b1 ∼ 0.3 − 0.4 for carbon and
oxygen. As illustrated in Fig. 1, Eq. (6) provides a rather

accurate approximation of the full expression from
Potekhin and Chabrier [14] for the heavy elements
expected to be found in neutron-star crusts. For the light
elements contained in white dwarfs, the errors are sub-
stantially larger, as can be seen in Figs. 2 and 3. In all cases,
we have plotted the electron polarization energy at densities
below the onset of electron captures by nuclei, as explained
below. In the following, we shall use the rescaled expres-
sions (6) and (8) for the electron polarization contribution
to the energy density and pressure respectively.
In the ultrarelativistic regime, the electron Fermi

energy μe and the total pressure P ¼ Pe þ PL þ Pex
e þ

Ppol
e (PL ¼ EL=3 denotes the lattice contribution) can be

approximately expressed as

μe ≈ ℏcð3π2neÞ1=3 ≫ mec2; ð9Þ
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FIG. 2. Same as Fig. 1 for a Coulomb plasma of 16O.
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FIG. 1. Relative deviation (in %) between the electron polari-
zation energy density obtained from Eq. (42) of Potekhin and
Chabrier [14] and two different approximations: the Thomas-
Fermi (TF) approximation (2) and the rescaled Thomas-Fermi
expression (6). The deviation is shown as a function of the
electron number density for a cold dense Coulomb plasma
of 56Fe.
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P ≈
μ4e

12π2ðℏcÞ3
�
1þ α

2π
þ 4CαZ2=3σðZÞ

ð81π2Þ1=3
�
; ð10Þ

whereme is the electron mass. The term α=ð2πÞ arises from
electron exchange, while electron polarization effects are
included in the dimensionless function

σðZÞ≡ 1þ α
124=3

35π1=3
b1ðZÞZ2=3: ð11Þ

With increasing compression, some fraction of nuclei AZX
become unstable against electron captures accompanied by
neutron emissions, and thus transform into nuclei A−ΔN

Z−ΔZY
with the emission of ΔN free neutrons n and ΔZ electron
neutrinos νe:

A
ZX þ ΔZe− → A−ΔN

Z−ΔZY þ ΔNnþ ΔZνe: ð12Þ

Following closely the analysis of Ref. [10] but accounting
for electron exchange and polarization, we find that the
stability condition is now given by

μe

�
1þ α

2π

�
ΔZ þ Ce2n1=3e

×

�
Z5=3σðZÞ − ðZ − ΔZÞ5=3σðZ − ΔZÞ

þ 1

3
Z2=3σðZÞΔZ

�
< μβne ; ð13Þ

μβne ðA; ZÞ≡M0ðA − ΔN;Z − ΔZÞc2 −M0ðA; ZÞc2
þmnc2ΔN þmec2ΔZ; ð14Þ

where mn denotes the neutron mass.
In order to assess the range of validity of our zero-

temperature treatment, let us estimate some characteristic
temperatures. Approximating the electron Fermi energy by
μe ≈ μβne =ΔZ, the electron Fermi temperature is simply
given by

TFe ¼
μe −mec2

kB
≈

μβne
kBΔZ

≈ 5.93 × 109
μβne

mec2ΔZ
K:

ð15Þ
Using Eq. (9), the crystallization temperature (see, e.g.,
Ref. [13]) can be expressed as

Tm ¼ e2Z2

aikBΓm
≈

αμβne
kBΓmΔZ

�
4

9π

�
1=3

Z5=3

≈ 1.29 × 105
μβne

mec2ΔZ
Z5=3 K; ð16Þ

where we have adopted the value Γm ≈ 175 for the
Coulomb coupling parameter at melting [13]. Likewise,
the plasma temperature is given by

Tp ¼ mec2

kB

ffiffiffiffiffiffiffiffiffi
4

3

me

M0

r ffiffiffiffiffiffi
αZ

p �
μβne

mec2ΔZ

�3=2

≈ 1.37 × 107

ffiffiffiffi
Z
A

r �
μβne

mec2ΔZ

�3=2

K: ð17Þ

We will provide numerical estimates of these temperatures
for white dwarfs and neutron stars in the following section.

III. MATTER NEUTRONIZATION
IN COMPACT STARS

A. White dwarfs

White dwarfs owe their existence to the presence of a
highly degenerate electron gas in their interior, which
provides the necessary pressure to resist the gravitational
collapse. The global stability of such stars can thus be
limited by the onset of electron captures (12) with ΔZ ¼ 1
and ΔN ¼ 0 (see, e.g. Ref. [9]). Solving Eq. (13) in the
limit of ultrarelativistic electrons, the average baryon
density and pressure for the onset of electron capture are
approximately given by

nβðA; ZÞ ≈
A
Z
μβeðA; ZÞ3
3π2ðℏcÞ3

×

�
1þ α

2π
þ Cα

ð3π2Þ1=3
�
Z5=3σðZÞ

− ðZ − 1Þ5=3σðZ − 1Þ þ Z2=3σðZÞ
3

��
−3
; ð18Þ

PβðA; ZÞ ≈
μβeðA; ZÞ4
12π2ðℏcÞ3

�
1þ α

2π
þ 4CαZ2=3σðZÞ

ð81π2Þ1=3
�

×

�
1þ α

2π
þ Cα

ð3π2Þ1=3
�
Z5=3σðZÞ

− ðZ − 1Þ5=3σðZ − 1Þ þ Z2=3σðZÞ
3

��
−4
: ð19Þ
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FIG. 3. Same as Fig. 1 for a Coulomb plasma of 12C.
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μβeðA;ZÞ¼M0ðA;Z−1Þc2−M0ðA;ZÞc2þmec2: ð20Þ

Equations (18) and (19) generally represent the highest
density and pressure that can be found in white dwarfs
(the actual values of the central density and pressure may be
lower due to general relativity, see e.g. Ref. [2]). As an
example, we consider a stellar core made of 16O. Using the
masses from the 2012 Atomic Mass Evaluation [16], we
find μβe ¼ 10.931 MeV. Substituting in Eqs. (18) and (19)
considering a body-centered cubic lattice with C ¼
−1.444231 [17], we obtain nβ ¼ 1.240 × 10−5 fm−3

(nβ¼1.244×10−5 fm−3) and Pβ¼1.709×10−5MeVfm−3

(Pβ ¼ 1.714 × 10−5 MeV fm−3) with (without) electron
exchange and polarization corrections. The corresponding
characteristic temperatures given by Eqs. (15), (16),
and (17) are respectively TFe ¼ 1.6 × 1010 K, Tm ¼
1.1 × 107 K, and Tp ¼ 4.2 × 107 K. The assumption of
crystallized white-dwarf cores therefore yields the most
stringent condition on the highest temperature up to which
the present treatment is valid. Finally, the plasma parameter
Γp, which in the ultrarelativistic regime μe ≫ mec2 can be
approximately expressed as

Γp ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffi
αM0c2

μe

s �
π

12

�
1=6

Z7=6 ð21Þ

with μe ≈ μβe=ΔZ, is given by Γp ¼ 29 for 16O. The
condition Γp ≫ 1 underlying Eqs. (6) and (8) is thus well
satisfied.

B. Nonaccreting neutron stars

As discussed in Ref. [10], the onset of neutron drip can
be determined from Eqs. (13) and (14) with ΔZ ¼ Z and
ΔN ¼ A. Solving Eq. (13) in the limit of ultrarelativistic
electrons, the average baryon density and pressure for the
onset of neutron drip are approximately given by

ndripðA; ZÞ ≈
A
Z
μdripe ðA; ZÞ3
3π2ðℏcÞ3

×
�
1þ α

2π
þ 4Cα

ð81π2Þ1=3 Z
2=3σðZÞ

�
−3
; ð22Þ

PdripðA; ZÞ ≈
μdripe ðA; ZÞ4
12π2ðℏcÞ3

�
1þ α

2π
þ 4CαZ2=3σðZÞ

ð81π2Þ1=3
�
−3
;

ð23Þ

μdripe ðA; ZÞ≡ −M0ðA; ZÞc2 þ Amnc2

Z
þmec2: ð24Þ

In this case, the effect of electron polarization is to replace
the proton number Z in the lattice term by an effective
atomic number, defined by

Zeff ≡ ZσðZÞ3=2 ¼ Z
�
1þ α

124=3

35π1=3
b1ðZÞZ2=3

�
3=2

> Z:

ð25Þ

Although electron exchange and polarization corrections
are small, they may change the composition. The equilib-
rium nucleus at pressure P is determined by minimizing the
Gibbs free energy per nucleon defined by

g ¼ E þ P
n

; ð26Þ

where E denotes the mean energy density of matter, and n is
the mean baryon number density. Ignoring electron
exchange and polarization effects, Eq. (26) can be equiv-
alently expressed as [3]

g¼M0ðA;ZÞc2
A

þZ
A

�
μe−mec2þ

4

3
Ce2n1=3e Z2=3

�
: ð27Þ

Using the general definition (26) as well as Eqs. (1), (2),
(6), and (8), it can be easily seen that including electron
exchange and polarization corrections yields

g ¼ M0ðA; ZÞc2
A

þ Z
A

�
μe

�
1þ α

2π

�
−mec2 þ

4

3
Ce2n1=3e Z2=3

eff

�
: ð28Þ

The nuclearmasses of relevance for the crust regionof interest
here have not yet been measured (see, e.g. Refs. [4–7]).
For this reason, we have made use of the latest microscopic
mass tables taken from the BRUSLIB database [18]. These
masses were computed by the Brussels-Montreal group and
arebasedoneither generalized [19]or standardSkyrme forces
[20]. These models fit the 2353 measured masses of nuclei
with N and Z ≥ 8 from the 2012 Atomic Mass Evaluation
[16], with a root-mean-square deviation of about 0.6 and
0.5 MeV, respectively. For comparison, we have also
employed the microscopic mass table based on the Gogny
forceD1M[21], aswell as themore phenomenologicalmodel
of Duflo and Zucker [22]. We have assumed that nuclei are
arranged on a body-centered cubic lattice. Results are
summarized in Table I. Characteristic temperatures for the
validity of our crustmodel aregiven inTable II. Thevalidity of
our treatment of electron polarization at finite temperatures is
thus limited by the plasma temperature Tp ∼ 107 K. This
corresponds to an effective surface temperature (as seen by an
observer at infinity) between 105.4 and 105.6 K [23].
Depending on the cooling scenario, our model is applicable
to neutron stars whose estimated age ranges from a few
hundred years up to several million years [23,24]. The plasma
parameter Γp, which is approximately given by Eq. (21) with
μe ≈ μdripe =Z, is of the order of Γp ∼ 2 × 103. Therefore the
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electron polarization formulas of Potekhin and Chabrier [14]
can be very well approximated by Eqs. (6) and (8). As for the
analytical expressions (22) and (23), the errors amount to
about 0.2% at most. The role of electron exchange and
polarizationeffects to theneutron-drip transition is found tobe
negligible (∼0.1%) for allmodels butHFB-22 [19].Although
the neutron-drip density and pressure predicted by this
particular model are only slightly shifted (by less than
0.3%), the equilibrium nucleus changes from 122Kr to
128Sr. This latter result stems from the fact that the
HFB-22 nuclear mass model predicts very similar values
for the threshold electron Fermi energy μdripe for nuclei 128Sr
and 122Kr: 24.967 and 25.004 MeV respectively. As a
consequence, even small corrections to the Gibbs free energy
per nucleon g can change the minimum. In order to better
illustrate this point, we have shown in Fig. 4 the Gibbs free
energy per nucleon (with the neutron mass energy subtracted
out) around the neutron-drip pressure, as obtained using the
HFB-22 (upper panels) and HFB-24 (lower panels) mass
models. The values of g −mnc2 are shown for three different
nuclei (see Table I). The equilibrium nucleus at the neutron-
drip transition is the one minimizing g, and such that
g −mnc2 ¼ 0. In the right (left) panels, we show the results
obtained with (without) including electron exchange and
polarization corrections. For the model HFB-22 (upper
panels), the differences in the Gibbs free energies for the
three nuclei are so small that including or not electron
exchange and polarization corrections leads to different
equilibrium nuclei. For the model HFB-24 (lower panels),
the Gibbs free energy per nucleon for 124Sr is much lower
than for any other nuclei so that electron exchange and
polarization corrections do not change the composition.

At the temperatures T < Tp ∼ 107 K considered here, ther-
mal effects are not expected to play a role, since thermal
corrections are exponentially suppressed by shell and pairing
effects.As shown inRef. [25], the compositionofneutron-star
crusts at the neutron-drip transition remains unchanged up to
temperatures of the order of 109 K.
The peculiar prediction of model HFB-22 could be

purely accidental. As a matter of fact, in the recent series
of Brussels-Montreal mass models [19], HFB-22 (HFB-24)
was found to be in worst (best) agreement with various
constraints coming from both nuclear physics and astro-
physics [26,27]. More importantly, corrections due to
electron exchange and polarization are found to be much
smaller than the uncertainties related to nuclear masses, as
can be seen in Table I.

C. Accreting neutron stars

As discussed in Ref. [10], the onset of neutron drip can
be determined from Eqs. (13) and (14) with ΔZ ¼ 1 and
ΔN > 0. Solving Eq. (13) in the limit of ultrarelativistic
electrons, the average baryon density and pressure for the
onset of neutron drip are approximately given by

ndrip-accðA; ZÞ ≈
A
Z
μdrip-acce ðA; ZÞ3

3π2ðℏcÞ3

×

�
1þ α

2π
þ Cα

ð3π2Þ1=3
�
Z5=3σðZÞ

− ðZ − 1Þ5=3σðZ − 1Þ þ Z2=3σðZÞ
3

��
−3
;

ð29Þ

TABLE I. Neutron-drip transition in the crust of nonaccreting neutron stars, as predicted by different nuclear mass models: mass and
atomic numbers of the dripping nucleus, baryon number density and corresponding pressure, electron Fermi energy. Values in
parentheses are calculated without including electron exchange and polarization. See text for details.

A Z ndripð10−4 fm−3Þ Pdripð10−4 MeV fm−3Þ μdripe (MeV)

HFB-22 128 (122) 38 (36) 2.701 (2.707) 5.004 (4.989) 24.97 (25.00)
HFB-24 124 38 2.565 (2.564) 4.871 (4.871) 24.81
HFB-27 124 38 2.547 (2.547) 4.828 (4.828) 24.76
D1M 120 38 2.454 (2.454) 4.799 (4.799) 24.72
DZ 118 36 2.578 (2.578) 4.886 (4.886) 24.87

TABLE II. Characteristic temperatures at the neutron-drip transition in the crust of nonaccreting neutron stars, as
predicted by different nuclear mass models: electron Fermi temperature TFe, crystallization temperature Tm,
and plasma temperature Tp. See text for details.

TFe (K) Tm (K) Tp (K)

HFB-22 8.1 × 109ð7.6 × 109Þ 6.9 × 107ð7.1 × 107Þ 1.2 × 107ð1.1 × 107Þ
HFB-24 7.6 × 109 7.1 × 107 1.1 × 107

HFB-27 7.6 × 109 7.1 × 107 1.1 × 107

D1M 7.5 × 109 7.1 × 107 1.1 × 107

DZ 8.0 × 109 6.8 × 107 1.2 × 107
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Pdrip-accðA; ZÞ ≈
μdrip-acce ðA; ZÞ4
12π2ðℏcÞ3

�
1þ α

2π
þ 4CαZ2=3σðZÞ

ð81π2Þ1=3
�

×

�
1þ α

2π
þ Cα

ð3π2Þ1=3
�
Z5=3σðZÞ

− ðZ − 1Þ5=3σðZ − 1Þ þ Z2=3σðZÞ
3

��
−4
:

ð30Þ

μdrip-acce ðA; ZÞ ¼ M0ðA − ΔN; Z − 1Þc2 −M0ðA; ZÞc2
þ ΔNmnc2 þmec2: ð31Þ

The changes of the neutron-drip density and pressure due to
electron exchange and polarization are found to be negli-
gibly small for all models: deviations are of the order
of ∼0.1%.
As explained in Ref. [10], the dripping nucleus A

ZX
is such that the capture of an electron with the emission of
free neutrons (ΔZ ¼ 1, ΔN > 0) has a lower threshold
energy than the capture alone (ΔZ ¼ 1, ΔN ¼ 0), i.e.
μβne ðA; ZÞ < μβeðA; ZÞ. The proton number Z of the dripping
nucleus is thus the highest proton number lower than that of
the initial ashes and for which the ΔN-neutron separation
energy defined as

SΔNnðA; Z − 1Þ≡MðA − ΔN; Z − 1Þc2 −MðA; Z − 1Þc2
þ ΔNmnc2 ð32Þ

is negative. This condition depends only on nuclear masses.
As a consequence, electron exchange and polarization do
not change the dripping nucleus in accreting neutron-star

crusts. The composition found in Ref. [10] thus remains
unchanged.

IV. CONCLUSIONS

The electron polarization expressions proposed by
Potekhin and Chabrier are found to deviate substantially
from the Thomas-Fermi approximation that has been
widely employed in studies of dense Coulomb plasmas
in compact stars. On the other hand, for most astrophysical
purposes these deviations can be fairly accurately taken
into account by merely rescaling the Thomas-Fermi
expression for the correction to the density and pressure,
Eqs. (6) and (8) respectively. In particular, the Thomas-
Fermi results have to be reduced by about a factor ∼2 − 3
for the elements likely to be present in white-dwarf cores
and neutron-star crusts. Using this rescaled Thomas-Fermi
expression, we have studied the importance of electron
polarization effects on the onset of electron captures and
neutron emissions by nuclei in white-dwarf cores and
neutron-star crusts. We have also taken into account
electron exchange since the corresponding corrections to
the energy density and pressure are generally of the same
order of magnitude as those due to electron polarization.
We have extended the instability condition for the onset of
electron captures and neutron emissions by nuclei so as to
include electron exchange and polarization. The new
condition is embedded in Eq. (13). We have derived
analytical expressions for the threshold density and pres-
sure at the onset of electron captures in white-dwarf cores,
namely Eqs. (18) and (19). The corrections due to electron
exchange and polarization effects are very small, about
0.3% for cores made of 16O. Moreover, we have obtained
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FIG. 4. Gibbs free energy per nucleon (with the neutron mass energy subtracted out) versus pressure for the HFB-22 (panels a and b)
and HFB-24 (panels c and d) mass models, for nonaccreting neutron stars, for three different nuclei. See text for details.
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analytical expressions for the neutron-drip density and
pressure in accreting and nonaccreting neutron-star crusts,
see Eqs. (22), (23), (29), and (30). We have determined the
composition of nonaccreting neutron-star crusts by mini-
mizing numerically the Gibbs free energy per nucleon. For
the nuclear masses that have not yet been measured, we
have used the predictions from different models: the latest
Skyrme-Hartree-Fock-Bogoliubov mass tables computed
by the Brussels-Montreal group [19,20] available on the
BRUSLIB database [18], the Hartree-Fock-Bogoliubov
mass table based on the Gogny force D1M [21], and the
more phenomenological model of Duflo and Zucker [22].
In this way, we have also calculated numerically the
neutron-drip density and pressure. The precision of the
analytical formulas corresponds to an error of about 0.2% at
most. The neutron-drip density and pressure are hardly
changed by electron exchange and polarization effects.
The deviations lie below 0.3%. For the model HFB-22,
the equilibrium nucleus changes from 122Kr to 128Sr thus

leading to a slightly larger shift of the neutron-drip density
and pressure than for the other models. This change of
composition stems from the fact that HFB-22 predicts very
similar values for the threshold electron Fermi energy μdripe

for nuclei 128Sr and 122Kr: 24.967 and 25.004 MeV
respectively. In turn, μdripe depends solely on the mass of
the neutron-drip nucleus. The current uncertainties in
nuclear masses are found to be more important than
electron exchange and polarization effects. The composi-
tion of the outer crust of neutron stars towards the neutron-
drip point thus requires a more accurate determination of
the masses of Kr and Sr neutron-rich isotopes.
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