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Balitsky-Fadin-Kuraev-Lipatov (BFKL) approximation at any Nc. The result is applicable to other gauge
theories including QCD.
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I. INTRODUCTION

The problem of high-energy behavior of amplitudes
has a long story [1,2]. One of the most popular approaches
is to reduce the gauge theory at high energies to 2þ1
effective theory which can be solved exactly or by computer
simulations. Unfortunately, despite the multitude of
attempts, the Lagrangian for 2þ 1 QCD at high energies
is not written yet. In this context the idea to solve formally
the high-energy QCD or N ¼ 4 SYM by the calculation
of anomalous dimensions and structure constants in the
Balitsky-Fadin-Kuraev-Lipatov (BFKL) limit seems to be
very promising.
N ¼ 4 SYM is a superconformal theory, and its most

important physical properties are encoded into the operator
product expansion (OPE) characterized by the spectrum
of anomalous dimensions and by the structure constants.
While the former is now exactly and efficiently computable
at large Nc due to quantum integrability [3], the calculation
of the OPE structure constants is these days on a fast track,
especially after the ground-breaking all-loop proposal
of Ref. [4].
In this work we calculate the three-point correlator of

twist-2 operators OjðxÞ ¼ trFþiD
j−2
þ Fiþ þ fermionsþ

scalars in N ¼4 SYM in the BFKL limit [5] when ω ¼
j − 1 → 0, the ’t Hooft coupling g2 ≡ Ncg2YM

16π2
→ 0 and g2

ω

fixed, for arbitrary Nc. The symbol þ in the field-strength
tensor Fþi means contraction with light-ray vector nþ, and
the summation over index i goes over two-dimensional
space orthogonal to nþ and n−. Since the contribution of
fermionsþ scalars is subleading at this limit, including the
internal loops, the result is valid for the pure Yang-Mills
theory as well. The case of the two-point correlator was
elaborated in our previous paper [6] where we defined the
generalized operators with complex spin as special light-ray
operators [7] (regularized as a narrow rectangular Wilson
contour called a “frame”) and calculated their correlator
using OPE over Wilson lines [8] with a rapidity cutoff and
the BFKL evolution (see Fig. 1). Herewe use the same light-
ray operators: one along the nþ direction and two along n−.

In this casewe should usemore general Balitsky-Kovchegov
(BK) evolution [9,10], and the leading BFKL contribution
comes from the BK vertex.

II. LIGHT-RAY OPERATORS AND THEIR
RELATION TO LOCAL OPERATORS

The generalization of local operator Oj for the case of
complex spin j was constructed in Ref. [6]. It has a form of
light-ray operator S̆J stretched along the nþ direction and
realizing the principal series representation of slð2j4Þ with
conformal spin J ¼ 1

2
þ iν which is related to Lorentz spin

j as J ¼ jþ 1. The full regularized operator reads as
follows,

S̆jþ1ðx1⊥Þ ¼ S̆jþ1
gl ðx1⊥Þ þ

i
2
ðj − 1ÞS̆jþ1

f ðx1⊥Þ

−
1

2
ðjÞðj − 1ÞS̆jþ1

sc ðx1⊥Þ; ð1Þ

where, for example, the regularized gluon operator is

S̆jþ1
gl ðx1⊥Þ ¼ lim

jx31⊥j→0
jx13⊥j−γjSjþ1

gl ðx1⊥; x3⊥Þ;

FIG. 1. Scheme of computation of the two-point correlator. In
the lhs the long sides of regularizing rectangular Wilson frames
are stretched along the light ray and the short sides in the
orthogonal directions. In the rhs we use OPE of frames over color
dipoles and compute their correlator; see Ref. [6] for details.
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Sjþ1
gl ðx1⊥; x3⊥Þ ¼

R∞
−∞

R∞
x1−

dx1−dx3−
xj−1
31−

trFþiðx1Þ½1; 3�□Fþiðx3Þ
and x1 ¼ ðx1−; 0; x1⊥Þ, x3 ¼ ðx3−; 0; x3⊥Þ. The anomalous
dimension γj corresponds to operator S̆jþ1ðx1⊥Þ. Here we
introduced the notation ½1; 3�

□
for a rectangular Wilson

contour with coordinates x1, x3 of two diagonally opposite
corners, as in Fig. 1. In the case of even integer Lorentz spin
j, it can be rewritten as an integral of local operator OjðxÞ
with dimension ΔðjÞ along a light-ray direction nþ:

S̆jþ1ðx⊥Þjj∈Even ∼
Z

∞

−∞
dx−OjðxÞ: ð2Þ

In this case the correlator of two light-ray operators stretched
along nþ and n− vectors, normalized as hnþn−i ¼ 1, is just
the double integral of two-point correlator of local operators
with respect to light-ray directions n�:

hS̆j1þ1ðx⊥ÞS̆j2þ1ðy⊥Þi ¼
δðj1 − j2Þbj1

ðjx − yj2⊥ÞΔðj1Þ−1
: ð3Þ

In this work we calculate the correlator of three light-
ray operators, restricting ourselves to a particular simple
kinematics: one light-ray operator is stretched along the nþ
light-ray direction, and two others are stretched along n−.
The correlator of three light-ray operators can be obtained by
integrating the correlator of three local operators along these
light rays. The tensor structures of such local correlators are
known from general group-theoretical considerations [11],
up to a few structure constants depending on the coupling
and symmetry charges. The main problem which we are
addressing here is the calculation of these nontrivial con-
stants. Remarkably, if the coordinates of all three light-ray
operators in the transverse space are restricted to the same
line, all these structures collapse into a single one [12],with a
single overall structure constant which we are going to
compute. Note that after a conformal transformation the
three points in the transverse space take arbitrary positions.
However, the configuration with two collinear light-ray

operators is singular, so we first consider three different
light-ray directions n1, n2, n3 and then take the limit
n2 → n3. The result of integration along light rays is quite
simple and contains only one unknown overall constant,

hS̆j1þ1ðx⊥ÞS̆j2þ1ðy⊥ÞS̆j3þ1ðz⊥Þi
¼ CfnigðfΔig; fjigÞ

·
hn1n2i½j�1;2;3hn1n3i½j�1;3;2hn2n3i½j�2;3;1

ðjx − yj2⊥Þ½Δ�1;2;3ðjx − zj2⊥Þ½Δ�1;3;2ðjy − zj2⊥Þ½Δ�2;3;1
; ð4Þ

whereweuse a short-handnotation ½a�i;j;k≡1
2
ðaiþaj−ak−1Þ

and faig≡ fa1; a2; a3g. In what follows, we assume
the existence of a good analytic continuation for
CfnigðfΔðjiÞg; fjigÞ to noninteger fjig’s. We take the limit
n1 ¼ nþ, n2 ¼ n−, n3 → n2 with the normalization
hnþn−i¼1. In the BFKL regime ji¼1þωi→1 we obtain

hS̆2þω1ðx⊥ÞS̆2þω2ðy⊥ÞS̆2þω3ðz⊥Þi

¼ lim
n3→n2¼n−

hn2n3i
ω2þω3−ω1

2

ω2 þ ω3 − ω1

×
Cþ−−ðfΔig; f1þ ωigÞ

jx − yj2⊥Þ½Δ�1;2;3ðjx − zj2⊥Þ½Δ�1;3;2ðjy − zj2⊥Þ½Δ�2;3;1
; ð5Þ

where Δi ¼ Δð1þ ωi; g2Þ is given by the BFKL spectrum
(see below). We explicitly pulled out the denominator

1
ω2þω3−ω1

because it will emerge in our forthcoming
calculation using the BK evolution. We interpret

limhn2n3i→0
hn2n3i

ω2þω3−ω1
2

ω2þω3−ω1
as a delta function δðω2þω3−ω1Þ

reflecting the boost invariance. In addition we keep ωi
positive through the paper.
Finally the structure constant is normalized using the

corresponding two-point correlators:

Cω1;ω2;ω3
¼ Cþ−−ðfΔig; f1þ ωigÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b1þω1
b1þω2

b1þω3

p : ð6Þ

III. DECOMPOSITION OVER DIPOLES
AND BK EVOLUTION

When calculating the two-point correlator [6], we used a
point splitting regularization in the orthogonal direction,
replacing light-ray operators by infinitely narrow Wilson
frames with inserted fields in the corners (see Fig. 1). Now,
for the sake of simplicity, we carry out our calculation
for pure Wilson frames, related to our operators with zero
R-charge in the following way:

∂x1⊥ · ∂x3⊥

Z Z
dx1−dx3−

ðx3− − x1−Þ2þω1
½x1; x3�□ →

⟶
x13⊥→0;ω1→0

jx13⊥jγj1cðg2YM; Nc;ω1ÞS̆2þω1ðx1⊥Þ: ð7Þ

The coefficient cðg2YM; Nc;ωiÞ [denoted below as cðωiÞ�
depends on the local regularization procedure, and at weak

coupling it behaves as cðωiÞ ∼ g2YM
ωi
, but its explicit form is

irrelevant for us because we are going to calculate the
normalized structure constant where it cancels. In general,
there are a few types of leading twist-2 operators which
appear in this decomposition, but in the BFKL limit a single
one with the smallest anomalous dimension survives. In
addition, in the ωi → 0 limit, only the term built out of
gauge fields alone contributes [6].
Following the OPE method [8], the pure Wilson frames

can be replaced by regularized color dipoles,

½x1; x3�□ → Nð1 − Uσþðx1⊥; x3⊥ÞÞ ð8Þ

where
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Uσþðx1⊥; x3⊥Þ ¼ 1 −
1

N
trðUσþ

x1⊥U
σþ†
x3⊥ Þ; ð9Þ

Uσþ
x⊥ ¼ P exp

�
igYM

Z
∞

−∞
dxþAσþ− ðxÞ

�
; ð10Þ

Aσþ
μ ðxÞ ¼

Z
d4kθðσþ − jkþjÞeikxAμðkÞ ð11Þ

and σþ is a longitudinal cutoff in the nþ direction. Now we
can write

hS2þω1ðx1⊥; x3⊥ÞS2þω2ðy1⊥; y3⊥ÞS2þω3ðz1⊥; z3⊥Þi

¼ −D⊥
Z

∞

−∞
dx1−

Z
∞

x1−

dx3−x
−2−ω1

31−

Z
∞

−∞
dy1þ

×
Z

∞

y1þ
dy3þy

−2−ω2

31þ

Z
∞

−∞
dz1þ

Z
∞

z1þ
dz3þz

−2−ω3

31þ

× hUσ1−ðx1⊥; x3⊥ÞVσ2þðy1⊥; y3⊥ÞWσ3þðz1⊥; z3⊥Þi;
ð12Þ

where D⊥ ¼ N3ð∂x1⊥ ·∂x3⊥ Þð∂y1⊥ ·∂y3⊥ Þð∂z1⊥ ·∂z3⊥ Þ
cðω1Þcðω2Þcðω3Þ .

In our kinematics two dipoles V and W have zero nþ
projection, and in the BFKL approximation they form a
“pancake" field configuration in the reference frame related
to U. This means that the rapidity of U serves as the upper
limit for integrations with respect to rapidities of V and W
in our logarithmic approximation. Now we use the BK
evolution equation [9,10] to calculate the quantum average
in (12). It gives the evolution of the dipole UY with respect
to rapidity Y ¼ eσ, namely

σ
d
dσ

Uσðz1; z2Þ ¼ KBK � Uσðz1; z2Þ; ð13Þ

where KBK is an integral operator having the following
form in the leading-order (LO) approximation:

KLOBK � Uðz1; z2Þ ¼
2g2

π

Z
d2z3

z212
z213z

2
23

½Uðz1; z3Þ

þ Uðz3; z2Þ − Uðz1; z2Þ
− Uðz1; z3ÞUðz3; z2Þ�: ð14Þ

The evolution of UY1 goes from Y1 to an intermediate Y0

with respect to the linear part of (13), and then the BK
vertex acts at Y0 and generates two dipoles which can be
contracted with VY2 and WY3 . Schematically, it can be
written as

Z
dY0ðUY1 →UY0Þ⊗ ðBKvertex atY0Þ⊗

� hUY0VY2i
hUY0WY3i

�
:

The linear BFKL evolution of UY1 from Y1 to Y0 gives

UY1ðx1; x3Þ ¼
Z

dν
Z

d2x0
ν21
π2

Eν1ðx10; x30Þeℵðν1ÞY10

·
1

π2

Z
d2γd2β
jγ − βj4 E

�
ν1ðγ − x0; β − x0ÞUY0ðγ; βÞ;

ð15Þ
where we denoted Yij ≡ Yi − Yj and we introduced the

function Eνðz10; z20Þ ¼ ð jz12j2
jz10j2jz20j2Þ

1=2þiν which projects

dipoles on the eigenstates of the BFKL operator with the
eigenvalues ℵðνÞ¼4g2ð2ψð1Þ−ψð1=2þiνÞ−ψð1=2−iνÞÞ.
We take here only the sector n ¼ 0, where n is the discrete
quantum number of SLð2; CÞ because it gives the leading
contribution.
The nonlinear part of the BK evolution (13) is described

by the following renormalization group equation:

∂
∂Y UYðγ; βÞj

Y¼Y0

¼ −
2g2

π

Z
d2α

jγ − βj2
jγ − αj2jβ − αj2

× UY0ðγ; αÞUY0ðα; βÞ: ð16Þ
Finally we contract the two emerging dipoles UY0ðγ; αÞ and
UY0ðα; βÞ with Vσ2þðy1⊥; y3⊥Þ and Wσ3þðz1⊥; z3⊥Þ. Thus
for the planar contribution, we get

hUY1ðx1⊥;x3⊥ÞVY2ðy1⊥;y3⊥ÞWY3ðz1⊥;z3⊥Þipl
¼−

2g2

π

Z
dY0

Z
dν1

Z
d2x0

ν21
π2

Eν1ðx10;x30Þeℵðν1ÞY10

×
1

π2

Z
d2αd2βd2γ

jγ−βj2jγ−αj2jβ−αj2E
�
ν1ðγ−x0;β−x0Þ

· ðhUY0ðγ;αÞVY2ðy1⊥;y3⊥ÞihUY0ðα;βÞWY3ðz1⊥;z3⊥Þi
þhUY0ðγ;αÞWY3ðz1⊥;z3⊥ÞihUY0ðα;βÞVY2ðy1⊥;y3⊥ÞiÞ:

ð17Þ

The last two terms in (17) give the same contribution, so it
is enough to know the correlators of two dipoles [6],

hUY0ðγ; αÞVY2ðy1⊥; y3⊥Þi

¼ 8g4ð1 − N2
cÞ

N4
c

Z
d2y0 ·

Z
dν2ν22e

Y02ℵðν2Þ

ð1
4
þ ν22Þ2

× Eν2ðγ − y0; α − y0ÞE�
ν2ðy10; y30Þ; ð18Þ

and similarly for hUY0ðα; βÞWY3ðz1⊥; z5⊥Þi. It was argued
in Ref. [6] that we can make the identification for rapidities
in dipole correlators, Y02 ¼ ln L0y31þ

Λ2 , Y03 ¼ ln L0z31þ
Λ2 , where

Λ a cutoff of which the precise value is irrelevant in LO. On
the other hand, the difference of rapidities of the first dipole
and of the BK vertex Y10 ¼ ln x31−

L0
corresponds to BFKL

evolution. The integral over Y0 ¼ ln L0

Λ goes from Y1 to
maxðY2; Y3Þ. If we plug (17) and (18) into (12) and do the
integrals over light-ray directions, i.e. over rapidities, we
obtain the following planar contribution:
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hS2þω1ðx1⊥; x3⊥ÞS2þω2ðy1⊥; y3⊥ÞS2þω3ðz1⊥; z3⊥Þipl
¼ 28g10ðN2

c − 1Þ2
π3N8

c
δðω1 − ω2 − ω3ÞD⊥

Z
dν1

ν21
π2

1

ω2 þ ω3 − ℵðν1Þ
Z

dν2ν22
ð1
4
þ ν22Þ2

1

ω2 − ℵðν2Þ

·
Z

dν3ν23
ð1
4
þ ν23Þ2

1

ω3 − ℵðν3Þ
Z

d2x0d2y0d2z0E�
ν1ðx10; x30Þ · E�

ν2ðy10; y30ÞE�
ν3ðz10; z30Þϒplðν1; ν2; ν3; x0; y0; z0Þ: ð19Þ

The usual delta-function δðω1 − ω2 − ω3Þ (see e.g. Ref. [14]) is a consequence of boost invariance as in the formula (5).Υpl

represents the planar contribution of the BK vertex,

ϒplðν1; ν2; ν3; x0; y0; z0Þ ¼
Z

d2αd2βd2γ
jγ − βj2jγ − αj2jβ − αj2 Eν1ðβ − x0; γ − x0Þ · Eν2ðα − y0; γ − y0ÞEν3ðα − z0; β − z0Þ

¼ Ωðh1; h2; h3Þ
jx0 − y0j4½h�1;2;3þ2jx0 − z0j4½h�1;3;2þ2jy0 − z0j4½h�2;3;1þ2

; ð20Þ

where h1 ¼ 1
2
þ iν1, h2 ¼ 1

2
þ iν2, h3 ¼ 1

2
þ iν3 and the function Ωðh1; h2; h3Þ was presented in Ref. [15].

Remarkably we can also take into account the nonplanar contribution [15,16], thus providing the finite Nc answer for the
BFKL structure constant. It appears as a single extra term ϒnpl,

ϒnplðν1; ν2; ν3; x0; y0; z0Þ ¼
Z

d2βd2γ
jγ − βj4 Eν1ðβ − x0; γ − x0ÞEν2ðβ − y0; γ − y0ÞEν3ðβ − z0; γ − z0Þ

¼ Λðh1; h2; h3Þ
jx0 − y0j4½h�1;2;3þ2jx0 − z0j4½h�1;3;2þ2jy0 − z0j4½h�2;3;1þ2

; ð21Þ

where Λðh1; h2; h3Þwas also presented in Ref. [15], and the full answer can be obtained from (19) by replacing ϒpl with ϒ
(see in Fig. 2):

ϒ ¼ ϒpl −
2π

N2
ϒnplRe

�
ψð1Þ þ ψ

�
1

2
þ iν1

�
− ψ

�
1

2
þ iν2

�
− ψ

�
1

2
þ iν3

��
: ð22Þ

The integrals over x0, y0, z0 are easily computable, e.g.

Z
d2x0Eν1ðβ − x0; γ − x0ÞE�

ν1ðx10; x30Þ ¼ ðτ2Þ12þiν1
2F1

�
1

2
þ iν;

1

2
þ iν; 1þ 2iν; τ

�
2F1

�
1

2
þ iν;

1

2
þ iν; 1þ 2iν; τ̄

�

×
ð1
4
þ ν2Þ2
ν2

GðνÞ þ ðν↔ − νÞ; ð23Þ

GðνÞ ¼ ν2

ð1
4
þ ν2Þ2

πΓ2ð1
2
þ iνÞΓð−2iνÞ

Γ2ð1
2
− iνÞΓð1þ 2iνÞ ; ð24Þ

where τ ¼ jx1−x3jjβ−γj
jx1−βjjx3−γj. In the limit x1; x3 → x, we can replace jx1−x3jjβ−γj

jx1−βjjx3−γj →
jx1−x3jjβ−γj
jx−βjjx−γj → 0. For small τ we close the ν1 contour

in the lower (upper) half-plane for first (second) term, respectively, both of them giving the same contribution. Integrals over
α, β, γ in (19) can be reduced toϒpl represented in Ref. [15] in terms of hypergeometric and Meijer G functions andϒnpl in
terms of Γ functions. Integrals over νi can be done by picking up the BFKL poles ωi ¼ ℵðν�i Þ.
Combining (19), (22) and (23), we come to the final expression for the three-point correlation function,

hS2þω1ðx1⊥; x3⊥ÞS2þω2ðy1⊥; y3⊥ÞS2þω3ðz1⊥; z3⊥Þi

¼ −ig10
δðω1 − ω2 − ω3Þ
cðω1Þcðω2Þcðω3Þ

H ·
Ψðν�1; ν�2; ν�3Þjx13jγ1 jy13jγ2 jz13jγ3

jx − yj2þγ1þγ2−γ3 jx − zj2þγ1þγ3−γ2 jy − zj2þγ2þγ3−γ1
ð25Þ
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where H ¼ 210ðN2
c − 1Þ2

π2N5
c

γ21ð2þ γ1Þ4ð2þ γ2Þ2

× ð2þ γ3Þ2
Gðν�1Þ
ℵ0ðν�1Þ

Gðν�2Þ
ℵ0ðν�2Þ

Gðν�3Þ
ℵ0ðν�3Þ

; ð26Þ

γi ¼ γð1þ ωiÞ are anomalous dimensions and the coef-
ficient Ψðν�1; ν�2; ν�3Þ has the form

Ψðν�1; ν�2; ν�3Þ ¼ Ωðh�1; h�2; h�3Þ −
2π

N2
c
Λðh�1; h�2; h�3Þ · Reðψð1Þ

− ψðh�1Þ − ψðh�2Þ − ψðh�3ÞÞ;

h�i ¼
1

2
þ iν�i ¼ 1þ γi

2
. ð27Þ

The functions Ωðh1; h2; h3Þ and Λðh1; h2; h3Þ (defined in
(20) and (21)) and calculated in [15].
Our final result for the normalized structure constant is

Cω1;ω2;ω3
¼ −i1=2g4

2

π5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

c − 1
p

N2
c

γ21ð2þ γ1Þ2

·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gðν�1Þ
ℵ0ðν�1Þ

Gðν�2Þ
ℵ0ðν�2Þ

Gðν�3Þ
ℵ0ðν�3Þ

s
Ψðν�1; ν�2; ν�3Þ: ð28Þ

Specifying the dependence on parameters fg2ωi
g, g2 and Nc,

we can write Cω1;ω2;ω3
¼ g

ffiffiffiffiffiffiffiffi
N2

c−1
p

N2
c

fðg2ω1
; g

2

ω2
; g

2

ω3
Þ, where f is a

function which depends only on the ratios fg2ωi
g. In the limit

g2

ωi
→ 0, we get the asymptotics:

Ωðh�1; h�2; h�3Þ → −
16π3

γ21γ
2
2γ

2
3

· ½γ21ðγ2 þ γ3Þ þ γ22ðγ1 þ γ3Þ

þ þγ23ðγ1 þ γ2Þ þ γ1γ2γ3Þð1þOðg2=ωiÞÞ
× Λðh�1; h�2; h�3Þ

→
8π2ðγ1 þ γ2 þ γ3Þ

γ1γ2γ3
ð1þOðg2=ωiÞÞ: ð29Þ

In this limit γi ¼ − 8g2

ωi
þ oðg2ωi

Þ, and the main contribution
to the three-point correlator (28) comes from the planar
Oðg2Þ term

Cω1;ω2;ω3
¼ −ig2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

c − 1
p

ffiffiffiffiffiffi
2π

p
N2

c

1

ω
5
2

1ω
1
2

2ω
1
2

3

ðω2
1ðω2 þ ω3Þ

þ ω2
2ðω1 þ ω3Þ þ ω2

3ðω1 þ ω2Þ
þ ω1ω2ω3Þð1þOðg2ÞÞ; ð30Þ

whereas the nonplanar one is Oðg6Þ. It might seem
strange that the planar contribution does not start from
Oðg4Þ terms given by the leading Feynman graphs, e.g.
with four gluon vertices. However, in the BFKL approxi-

mation, we should keep g2

ω ≫ ω. In addition when making
the point-splitting regularization, we have to keep
g2

ω j lnðx31⊥=ðx − yÞÞ2j ≫ 1. The limit jx13⊥j has to be taken
first, which makes the value g2 ¼ 0 exceptional. This order
of limits leads to the Oðg2Þ behavior of (30).

IV. DISCUSSION

Our result, Eq. (28), based on the BFKL approxima-
tion is a rare example of computation of a structure
constant of three unprotected operators receiving contri-
butions from all orders in a coupling constant, including
infinitely many “wrapping” corrections. Moreover, our
result is valid at any Nc. Since in the LO BFKL the
contributions of all fields but gluons in N ¼ 4
Supersymmetric Yang-Mills (SYM) disappear from both
the definition of operators and internal loops, the result is
applicable to pure Yang-Mills theory at any Nc, including
Nc ¼ 3. It would be interesting to apply our structure
constants to the OPE at hard scattering in real QCD and
to work out the full “dictionary,” relating them to the
OPE in the two-dimensional SLð2; CÞ conformal field
theory—the basis of our BFKL computation. It is also
not hopeless, though challenging, to compute these
structure constants in the next-to-leading-order approxi-
mation in N ¼ 4 SYM. Our present result may serve as
an important, all-wrappings test for the future computa-
tions of similar quantities in the integrability approaches
to planar AdS5=CFT4, such as Ref. [4] and the BFKL
limit of the quantum spectral curve [17].
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