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We consider an effective field theory description of beyond-quasiparticle excitations aiming to associate
the transport properties of the system with the spectral density of states. Tuning various properties of the
many-particle correlations, we investigate how the robust microscopic features are translated into the
macroscopic observables like shear viscosity and entropy density. The liquid-gas crossover is analysed
using several examples. A thermal constraint on the fluidity measure η=s is discussed.
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I. INTRODUCTION

Thermodynamic and transport properties of physical
systems are of great interest to theoretical investigations,
since those are essential to explore the phase diagram of a
given material, and to characterize the properties of its
collective behavior. These measurable quantities also give a
basis for the comparison of the theoretical predictions to the
physical reality. Despite the diversity of models, concepts
like conductivity, viscosity, densities of energy and entropy
etc. allow us to phenomenologically access a wider range of
physical systems from cold atomic gases through fluids at
room temperature to the hot and dense matter created in
heavy-ion collisions. These macroscopic observables usu-
ally are in a very complicated relationship with the micro-
scopic quantities (i.e. the fundamental degrees of freedom)
of a given theory. There are numerous examples in the
literature illustrating this elaborate issue, see for example
Refs. [1–9] for the analysis concerning thermodynamical
quantities. Furthermore see Refs. [10–19] for transport
coefficients obtained from quantum field theory (QFT),
functional renormalization group (FRG) or lattice calcula-
tions, and see Refs. [20–24] for kinetic theory or quasipar-
ticle (QP) approaches.
Interestingly enough, the ratio of the shear viscosity η to

the entropy density s has qualitatively the same temperature
dependence in several systems, showing in general a fluid-
like behavior. Near to the critical endpoint of the liquid-gas
phase-transition the fluidity measure η=s achieves its
minimal value [25–27], indicating that these materials
are most fluent near to their critical state.
Our goal in this paper is to analyze the transport coefficient

η and the thermodynamic quantities in the framework of an
effective field theory. We quantify how the robust properties
of microscopically meaningful quantities relate to the quali-
tative behavior of macroscopic observables. We use the
spectral density of states or spectral function for this purpose,

as it is meaningful even on the level of the fundamental
theory. The spectral function ρx;y is the response of the theory
at the space-time point y to a small, local perturbation
occurred at x. In the momentum space, it characterizes the
density of the quantum states in the energy ω if all other
quantum numbers (including the momentum p) kept fixed.
Roughly speaking, ρω;pdω quantifies the probability of the
creation of an excitation with momentum p and energy
within the interval ½ω;ωþ dω�. A physically important
characterization of ρω;p is whether it has a narrow-peak
structure or not (seeFig. 1). If so, the behavior of the system is
dominated by (quasi)particles, with inverse lifetime propor-
tional to the half-width of the peak and with dispersion
relationωðpÞ determined by the position of the peak. Kinetic
description and perturbation theory work usually well in this
case. On the other hand for wide peak(s) or in the presence of
a relevant continuum contribution, the situation is more
intricate. The continuum contribution to ρω;p signals that
multiparticle states are significant. Such spectra are produced
by nonperturbative methods, for example the resummation
of the infrared (IR) contributions of the perturbation theory
[28–30] or FRG calculations. Typically, the phenomenology
of such systems cannot be described in terms of conventional
quasiparticles with long lifetime.
The structure of this paper is the following. We sum-

marize first the concept of quasiparticles and its limitations
in effective modelling in Sec. II. We introduce thermody-
namic notions through the energy-momentum tensor in
Sec. III. The issue of thermodynamic consistency is briefly
discussed. In Sec. IV the transport coefficients in linear
response are elaborated using Kubo’s formula. After a short
discussion on the lower bound of the ratio η=s in the
extended quasi-particle picture in Sec. V, we turn to analyze
physically motivated examples in Sec. VI.

II. EXTENDED QUASIPARTICLES

We concentrate on the transition between hydrodynam-
ical and kinetic regimes. For this purpose, generalization of*horvath.miklos@wigner.mta.hu
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the notions of the QP-description is needed. From a
phenomenological point of view, quasiparticles are objects
with infinite (or with very long) lifetime, usually well-
localized in space. Resonances and other short-living yet
particlelike entities are also often referred to as quasipar-
ticles, confusingly.
From the side of QFT, particles are the asymptotic states

of the theory in question. This definition, however, does not
cover finite lifetime particlelike intermediate states often
appearing in particle physics experiments. In effective
modeling, one possibility is to associate a new field
degree of freedom to every observed particlelike object.
But nonphysical symmetries could be generated via this
resonance–field correspondence, it is not obvious how to
avoid the double-counting of thermodynamic degrees of
freedom [31].
Finite lifetime bound-states and resonances are more

natural to appear via interaction among some elementary
fields. It is very unlikely though to guess those fundamental
structures when constructing an effective theory, due to the
lack of basic understanding, the reason we needed effective
description in the first place. When the width is large, we
must not rely on perturbative treatment any more: in this
case the effective field theory approach helps to redefine the
fundamental structures.
Let us consider a scalar (spin-0) operator φ bearing all

the physical degrees of freedom we are interested in. We
call φ an extended quasiparticle (EQP) if its equation
of motion is linear in φ. An equivalent statement is
that the action is a quadratic functional of φ: S½φ� ¼
1
2

R
x

R
y φxKx−yφy, and therefore the equation of motion

(EoM) reads as
R
y Kx−yφy ¼ 0. If so, all correlation

functions are determined by the single two-point function
ρx ¼ h½φx;φ0�i, the so-called spectral function, through
Wick’s theorem and causality.
In other words we use wave-packetlike modes instead of

plane waves. The idea of using suitable basis of quantiza-
tion, chosen to the actual problem, is widely used e.g. in
solid state physics, like Cooper-pairs in superconductivity
or atomic orbits andWannier-functions in the description of
crystals [32]. Choosing the appropriate degrees of freedom,

the theory of strongly interacting elementary objects
can become a weakly (or non-) interacting theory of
composite ones.
The action of the EQP-description is nonlocal in the

sense that the two field operators are inserted in different
space-time points. There are several known examples in the
literature for theories with nonlocal quadratic action,
including pure gauge theories, low-energy effective theo-
ries of particles etc. see for example Refs. [33–38].
We view the nonlocal EQP-action as the leading order

(or the relevant part) of an IR-resummed theory. Our goal is
to describe the physics near to a critical point where second
order phase transition occurs. We assume that the relevant
field operator remains unchanged, but, since the long-range
correlations may also play a major role, we allow the
appearance of derivative terms in arbitrary order. These are
the physical criteria cumulated in the nonlocal quadratic
action. The quasiparticle nature is reflected in the linearity
of the EoM, i.e. any linear combination of solutions also
satisfies the field equation.
We stress here the main advantage of the quadratic nature

of the description, the integrability, which allows us to
calculate thermodynamic observables using two-point
functions. Also in the case of transport coefficients where
higher correlators are needed, the knowledge of two-point
functions is sufficient for the linear response calculations
since hφφφφi ∼Phφφihφφi, where the summation runs
over all the possible pairings of the field operators φ.

III. EQUILIBRIUM THERMODYNAMICS

Thermodynamic quantities (if no conserved charges are
present) can originate from the energy density ε or from the
free energy density f. In both cases the averaging is
performed over spatially translational invariant field con-
figurations. Despite the lack of a well-defined canonical
formalism, in nonlocal theories, e−βT

00

serves as the usual
Boltzmann statistical operator. With the time-evolution
operator eitT

00

the Kubo-Martin-Schwinger-relation holds,
see Appendix A, B and Ref. [31] for further details.
Due to the quadratic form of the action, thermodynamic

quantities can be expressed using the spectral function
ρðω; jpjÞ and the Fourier-transformed kernel Kðω; jpjÞ, see
Ref. [31]:

f¼−
Z þ

p

Z
ω
d ~ω

∂Kð ~ω; jpjÞ
∂ ~ω ρð ~ω; jpjÞnðω=TÞ¼−P; ð1Þ

ε ¼
Z þ

p
ω
∂Kðω; jpjÞ

∂ω ρðω; jpjÞnðω=TÞ: ð2Þ

Here we used the notation
Rþ
p ≡ R d3p

ð2πÞ3
R∞
0

dω
2π for phase-

space integration with respect to the four-momentum
p ¼ ðω;pÞ, restricted to positive frequencies. Note, that

FIG. 1. Robust features of a generic spectral function. QP-
behavior: practically infinitely long lifetime (blue, a), Broad peak
with lifetime ∼1=γ (orange, b), Continuum of multiparticle states
with threshold M (green, c).
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ρ and K are not independent: ρ¼−ImGðωþ i0þ;pÞ and

Kðω;pÞ¼ReG−1ðωþi0þ;pÞ with Gðω;pÞ¼ R∞−∞d ~ωρð ~ω;pÞ
ω− ~ω .

A. Thermodynamic consistency

We wish to also include systems with temperature-
dependent parameters into our description. The consistency
of Eqs. (1) and (2) is fulfilled, however, only if ρ and K are
temperature-independent. It means that the relations s ¼ ∂P

∂T
and sT ¼ εþ P hold, therefore ε ¼ T2 ∂ðP=TÞ

∂T .
To overcome this issue and also keeping the simplicity of

the EQP-picture we let ϕ≔hφi be nonzero, homogeneous
and temperature-dependent. This is equivalent with a
nontrivial, temperature-dependent “bag constant,” see
Ref. [3]. The correlators are shifted, thus ε ¼ εϕ≡0 þ B,
P ¼ Pϕ≡0 − B, with the temperature-dependent quantity B
(referring to the “background”). This procedure leaves the
entropy formula s ¼ εþP

T unchanged (for further details see
Appendix D). That is, the thermodynamic consistency is
fulfilled using the same entropy formula, with temperature-
dependent spectral function ρðω;p; fmiðTÞgÞ. The back-
ground field is not arbitrary, its effect precisely cancels
the extra terms coming from the temperature-dependent

parameters mi: ∂B
∂T ¼Pi

∂mi∂T
∂Pϕ≡0ðT;fmiðTÞgÞ

∂mi
.

B. Microcausality

Microcausality (or also often referred as locality) means
that there is no correlation between two space-time points
separated by a spacelike interval. Since in our description
all measurable quantity can be expressed by the spectral
function, ρðx − yÞ≡ 0 is required for spatially separated
space-time points x and y.
In case of self-consistent approaches or perturbative

calculations, microcausality is guaranteed by construction,
as it is originated from the noninteracting theory and the
space-time-local interaction vertices. In effective theories,
this is not necessarily true. In order to guarantee micro-
causality, we choose the Fourier-transform of ρ as
ρðω;pÞ ¼ θðω2 − p2ÞsignðωÞρ̄ðω2 − p2Þ, which simplifies
Eqs. (1), (2):

P ¼
Z

∞

0

dp
∂K
∂p ρ̄ðpÞT4χPðp=TÞ; ð3Þ

ε ¼
Z

∞

0

dp
∂K
∂p ρ̄ðpÞT4χεðp=TÞ; ð4Þ

with the notation p2 ¼ ω2 − p2. The thermodynamic
weight-functions are

χPðxÞ ¼
x3

4π3

Z
∞

1

dyy
ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 1

q
· nðxyÞ ≈ x2

4π3
K2ðxÞ; ð5Þ

χεðxÞ ¼
x4

4π3

Z
∞

1

dyy2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 1

q
· nðxyÞ

≈
x3

4π3
K1ðxÞ þ

3x2

4π3
K2ðxÞ; ð6Þ

where n is the Bose–Einstein distribution, K1; K2;… are
modified Bessel functions appearing in the limit of the
Boltzmannian approximation, when nðxÞ ≈ e−x. T4χPðxÞ
and T4χεðxÞ are the densities of pressure and energy of an
ideal gas, respectively, with temperature T and particle
mass xT. It is apparent that the combinationK0ðpÞρ̄ðpÞ acts
as a mass-distribution (i.e. normalizable1), therefore our
quasiparticle description of the thermal observables can be
interpreted as a mass-distributed ideal gas [4,5].
Note here, that the temperature-dependence of ρ can

break the manifest Lorentz-covariance through the temper-
ature-dependent parameters, which are thought to be
measured in the frame assigned to the heat bath.

IV. SHEAR VISCOSITY IN LINEAR RESPONSE

Hydrodynamics describes the collective motion of fluids
with given material properties, based on the analysis of
the energy-momentum conservation during the motion.
The relaxation time of the system after a macroscopic
perturbation is measured by the hydrodynamic transport
coefficients. In case of a given transverse wave with wave
number k perpendicular to the local flow velocity v, its
relaxation to the equilibrium configuration is controlled
by η=s. Expressed with the energy-momentum tensor:
πμν⊥ ¼ πμν⊥;0 þ δπμν⊥ , the fluctuation part decays as

δπμν⊥ ðtÞ ¼ e−
η
s
k2t
T þiðk·r−ωtÞδπμν⊥ ð0Þ, where T is the local tem-

perature and ω ¼ csjkj with the sound velocity cs, see
Ref. [39] for further details.
Transport coefficients can also be interpreted from the

kinetic theory point of view. The shear viscosity η is the
diffusion coefficient of momentum transfer perpendicular
to the local velocity of the fluid. In case of a gas of particles
η ∼ vλρ with v being the root mean square particle velocity,
ρ is its mass density and λ is the mean free path of gas
particles. Typically speaking, η is large (compared to some
internal scale) in gases (or in fluids where kinetic descrip-
tion is acceptable) compared to ordinary liquids. From the
kinetic point of view, it means that the mean free path is
significantly smaller in liquids.
A possible way to connect these two regimes is to define

the transport coefficients in the linear response approxi-
mation. This allows us to go beyond the quasiparticle
picture used in the kinetic theory and discuss the transport
properties translated to those of a continuous medium
represented by its energy-momentum tensor. Let us take

1R∞
0 dpK0ðpÞρ̄ðpÞ has to be finite because of the existence

of the high-temperature Stefan-Boltzmann-limit of the
thermodynamics.
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a small perturbation in the action: δS ¼ Rx hxAx, where A is
a measurable quantity (a Hermitian operator) and h is a
scalar function. The change in the expectation value
of B can be expressed up to first-order in h as δhBxi ¼R
y iG

ra
BAðx − yÞhy. Kubo’s formula characterizes the

response function, supposing the system relaxes to thermal
equilibrium in which it was before the perturbation
occurred: iGra

BAðx−yÞ¼θx0−y0h½Bx;Ay�i¼θx0−y0ρBAðx−yÞ,
where h:i refers to averaging over configurations in thermal
equilibrium.
We intend to get the transport coefficients using a field

theory framework. In case of the shear viscosity we are
interested in the linear response to a small perturbation
in the energy-momentum tensor Tμν. For the response
function we need the spectral function ρTT , which we give
in Appendix C in details. In the limit of long-wavelength
(i.e. hydrodynamical) perturbations one gets the shear
viscosity η:

η ¼ lim
ω→0

ρðT†Þ12T12ðω;k ¼ 0Þ
ω

¼ ð7Þ

¼
Z þ

p

�
p1p2

ω

∂Kðω; jpjÞ
∂ω ρðω; jpjÞ

�
2
�
−
∂nðω=TÞ

∂ω
�
: ð8Þ

This particularly simple expression is a result of the
quadratic nature of the EQP-description. There are, how-
ever, several examples for calculations done in interacting
theories resulting formulas with similar structure [10–16].
Contrary to Eqs. (1) and (2), this result cannot be

interpreted simply as the sum of viscosities in a mass-
distributed gas-mixture. We will see later, that Eq. (8) can
cover phenomenology beyond the relaxation time approxi-
mation. Furthermore, due to the integrable nature of the
EQP-action, it is symmetry-preserving, and there is no need
of further operator-improvement (e.g. by the resummation
of vertex corrections as it would be necessary in the 2PI
approximation, see for example Ref. [10]).
As a matter of thermodynamic consistency, it turns

out, that for a homogeneous and temperature-dependent
background the expression Eq. (8) is unchanged. For the
details of the calculations with nonzero background see
Appendix D.

V. NONUNIVERSAL LOWER BOUND TO η=s

In the previous sections we have derived quite simple
expressions for the entropy density and the shear viscosity
in Eqs. (1), (2) and (8). Using dimensionless quantities, the
entropy density over T3 reads as

σ≔
s
T3

¼
Z

∞

0

dpgðp; TÞχsðp=TÞ; ð9Þ

where gðp; TÞ ¼ ∂K
∂p ρ̄, while the thermodynamic weight is

χsðxÞ ¼ χεðxÞ þ χPðxÞ ≈
x3

4π3
K3ðxÞ: ð10Þ

The expression for the shear viscosity contains the very
same function g:

η ¼
Z

∞

0

dpg2ðp; TÞT4ληðp=TÞ; ð11Þ

with the weight function

ληðxÞ ¼
1

4π3
x5

15

Z
∞

1

dyð−n0ðxyÞÞðy2 − 1Þ5=2 ≈ x2

4π3
K3ðxÞ:

ð12Þ

Now we focus on the fluidity measure η=s, the relaxation
coefficient of a transversal hydrodynamical perturbations,
as it was mentioned earlier. There is a great interest in
theoretical physics whether a universal lower bound to η=s
exists. It has been theorized in Ref. [40] that this lower
bound is 1

4π in certain conformal field theories with holo-
graphic dual. Further investigation showed the possibility
of violating this universal value of the lower bound even in
the framework of the AdS/CFT duality [41,42] and also
in effective theories [43–46]. Although we do not expect
any universal result in the framework of EQP, the question
is still valid. In fact, we are able to give an answer in the
EQP-framework. The following variational problem is to
be solved:

δ

δg
ðη½g� − αs½g�Þ ¼ 0; ð13Þ

with the (p-independent) Lagrange’s multiplier α, fixing
the value of s. Since s is a linear functional of g whilst η is
quadratic, the solution for the minimizing function is

g�ðp; TÞ ¼ α

2T
χsðp=TÞ
ληðp=TÞ

: ð14Þ

Keeping the value of s fixed, we are able to compute η�, the
lowest possible value of the shear viscosity in the EQP
description depending on the thermodynamic quantities:

η� ¼ α2

4T2

Z
∞

0

dp
χ2sðp=TÞ
λ2ηðp=TÞ

T4ληðp=TÞ ¼
1R

∞
0 dy χ2sðyÞ

ληðyÞ

s2

T3
:

ð15Þ

Therefore the lower bound to η=s with EQP is

η

s
≥
η�

s
¼ 1R

∞
0 dy χ2sðyÞ

ληðyÞ
σ ≕

σ

I
≈

1

48
σ: ð16Þ
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A speciality of this minimal-η=s system is that all the
thermodynamic and transport quantities are controlled by
η=s ¼ σ

I. The two types of averages we considered in this
article are proportional to σ or σ2, despite a constant
tensorial factor:

hTμνi
T4

∼ σ; and
η

T3
;
ζ

T3
;
κ

T3
∼ σ2;

ζ and κ being the bulk viscosity and the heat conductivity,
respectively.

VI. EXAMPLES

Now we turn to analyze counterexamples. The main
objective here is to demonstrate the changes in η=s while
the spectral function interpolates between quasiparticle-like
behavior with narrow peaks and cases with significant
continuum contribution.

A. Lorentzian quasiparticle peak

First we consider a Lorentzian ansatz. It is consistent
with the effect of the Dyson resummation in the special
case when the self-energy equals to γ2 − 2γωi:

ρLðω;pÞ ¼
4γω

ðω2 − p2 − γ2Þ2 þ 4γ2ω2
ð17Þ

The sum-rule 1
2π

R∞
−∞ dωωρLðω;pÞ ¼ 1 is fulfilled, more-

over, ρLðω;pÞ !γ→0
2πδðω2 − p2Þ. Interestingly, this ansatz is

microcausal without any restriction.2 Using Eqs. (1) and (2)
we get:

sL ¼ 1

4π3

Z
∞

0

dω2πω3

�
−
1

ω
lnð1 − e−

ω
TÞ þ 1

T
1

e
ω
T − 1

�

¼ 2π2

45
T3; ð18Þ

where 2πω3 before the parenthesis equals
R
d3pω ∂KL∂ω ρL. It

coincides, apparently, with the entropy of the ideal Bose
gas. For the shear viscosity we evaluate Eq. (8):

ηL ¼ 1

60π2
1

T

Z
∞

0

dω

�
5γω2 þ ω4

γ

�
1

ch ω
T − 1

¼ 1

18
γT2 þ 2π2

225

T4

γ
: ð19Þ

Besides the expected ∼γ−1 term, a linear one appears. The
fluidity measure η=s reads as:

ηL
sL

¼ 5

4π2
γ

T
þ 1

5

T
γ
: ð20Þ

Regardless of the temperature-dependence of γ, it has the
minimal value ηL

sL
j
T� ¼ 1

π (Fig. 2). The position of the

minimum satisfies the equation γðT�Þ ¼ 2π
5
T�, for constant

γ this is T� ¼ 5γ
2π.

It is worthwhile to mention, that Eq. (20) is clearly
beyond the relaxation time approximation as it has a
contribution proportional to the inverse of the quasiparticle
lifetime ∼γ.

1. The long lifetime limit m ≫ γ

In the quasiparticle limit with finite mass m ≫ γ the
Eqs. (4), (3) and (11) with the Dirac-delta-approximating
spectral function ρ̄ðpÞ ¼ 2πδγðp2 −m2Þ result in the fol-
lowing simple expressions:

sQP ¼ m3

2π2
K3ðm=TÞ; ð21Þ

ηQP ¼ 1

2π2
m2T2

γ
K3ðm=TÞ: ð22Þ

Here the width of the peak is apparent in η only, due
to the regularization of the square of the Dirac-delta:

δ2γðp2 −m2Þ ≈
m≫γ

2π
γ δðp2 −m2Þ. The η over s ratio reads as

ηQP

sQP
¼ T2

γm
: ð23Þ

Let us assume that, for some reason, the particle-lifetime
changes significantly around T ¼ T�, but γ ≪ m still holds
(Fig. 3).We parametrize thewidth as γðTÞ ¼ γ∞θϵðT − T�Þ,

FIG. 2. η=s versus temperature T provided by the m ¼ γ
Lorentzian ansatz Eq. (17). The minimum value is universally
1=π. The plotted lines belong to various choices of γ: ∼
ðT2 þ T2

0Þ−1 (blue, a), constant (red, b), ∼T3 (green, c), ∼T−2

(light blue, d), ∼T2þ1
ϵðT1

ϵ
0 þ T

1
ϵÞ−1 with ϵ ¼ 0.5 (yellow, e).

2Its Fourier-transform is not Lorentz-invariant, but closely
related to the free-particle limit γ ¼ 0: ρðxÞ ¼ e−γtργ¼0ðxÞ.
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where γ∞ is its valuewhenT ≫ T� and ϵ (~ϵ) is the size of the
transition region in energy dimensions (or in dimensionless
units) and mε; ~ε ≪ T� hold. We further assume that m does
not change significantly. In case of a sharp change in γ, η=s
has a well-defined minimum at T� þOðϵÞ. Depending on
how the transition region is localized, the low-
temperature limit of η=s could be different. (i) When γ goes
to 0 in an exponentialmanner, η=s reaches zero as∼T2. (ii) If
the transition in γ is power-law-like: ∼ð1þ ðT�=TÞ1~ϵÞ−1, the
ratio is either divergent in T ¼ 0 or zero:

η

s
∼
�
T2; when T ≫ T�;

T2−1
~ϵ; when T ≪ T�:

ð24Þ

The minimal value is η
s jT� ≈ 2ðT�Þ2

mγ∞
.

A physically realistic situation is when γ ∼ T and
m ≈ const. for T > m. In this case the fluidity measure
is proportional to T on high temperature.

B. Quasiparticle and its continuum tail

We move toward more general situations and para-
metrize the retarded propagator with momentum dependent
self-energy: m2ðpÞ − pγðpÞi and wave-function renormal-
ization ZðpÞ:

GraðpÞ ¼ ZðpÞ
p2 −m2ðpÞ þ ipγðpÞ : ð25Þ

First we assume γðpÞ and ZðpÞ to be analytic functions and
keepm constant. The kernel function then reads as follows:

gðpÞ ¼ ∂K
∂p ρ̄ðpÞ ¼

ð2p − ðp2 −m2Þ Z0ðpÞ
ZðpÞÞpγðpÞ

ðp2 −m2Þ2 þ p2γ2ðpÞ

≕ gpeakðpÞ −
pγðpÞðp2 −m2Þ Z0ðpÞ

ZðpÞ
ðp2 −m2Þ2 þ p2γ2ðpÞ

¼ gpeakðpÞ þ gcontðpÞ; ð26Þ

where we separated the Lorentzian peak contribution. The
remaining continuum part bears the same pole structure as
gpeak but with p2 −m2 in the nominator also, and therefore
disappears in the γ → 0 limit. Using ZðpÞ to cut out the
p < M part of the continuum gcont with m < M, we are left
with an OðγÞ contribution for constant γ.
Keeping in mind that we interested in going beyond the

QP-spectrum in a parametrically controlled way, we link Z
and γ together. For Z ¼ 1 and γ ¼ 0 we expect the particle
excitation to be restored with mass m and with infinite
lifetime. We force Z < 1 and γ > 0 to happen simulta-

neously by setting γ¼! Γð1 − ZðpÞÞ ≕ ΓζðpÞ with a con-
stant Γ with dimension of energy. To ensure that Z < 1 is
restricted to p > M > m, we put ζðpÞ ¼ ζ∞θϵðp −MÞ,
where 0 < ζ∞ < 1 and ϵ encodes how sudden the change
from 0 to ζ∞ is. IfM ≫ ϵ, the integrals in Eqs. (9) and (11)
pick the p ≈M contributions only, resulting in

s≈ sQPðm;TÞþ
ζ∞

1−ζ∞
ΓMðM2−m2Þ

ðM2−m2Þ2þζ2∞Γ2M2
sQPðM;TÞ; ð27Þ

η ≈ ηQPðm; T; γpÞ þ
ζ2∞

1−ζ∞
Γ2M2ðM2 −m2Þð4ϵM þ M2−m2

1−ζ∞
Þ

½ðM2 −m2Þ2 þ ζ2∞Γ2M2�2
× ηQPðM;T; ϵÞ; ð28Þ

with sQP, ηQP defined by Eqs. (21) and (22), respectively.
γp ¼ ΓζðmÞ ≪ Γ and ϵ are present to regularize the δ2-like
parts in the viscosity integral. Writing out η over s
explicitly:

η

s
≈
ηQPðm;T;γpÞ
sQPðm;TÞ

1þA2ðm;M;Γ;ζ∞ÞηQPðM;T;ϵÞ
ηQPðm;T;γÞ

1þAðm;M;Γ;ζ∞ÞsQPðM;TÞ
sQPðm;TÞ

¼ T2

mγp

1þA2ðm;M;Γ;ζ∞ÞM2

m2

γp
ϵ
K3ðM=TÞ
K3ðm=TÞ

1þAðm;M;Γ;ζ∞ÞM3

m3

K3ðM=TÞ
K3ðm=TÞ

; with

Aðm;M;Γ;ζ∞Þ¼
ζ∞

1−ζ∞
ΓMðM2−m2Þ

ðM2−m2Þ2þζ2∞Γ2M2
: ð29Þ

The above expression results in a reduced value of η=s
compared to ηQPðm; T; γpÞ=sQPðm; TÞ whenever ζ∞ <

ð1þ 1
2
m
M

Γ
ϵ θϵðm −MÞÞ−1 holds. The ratio r ¼ η=s

ηQP=sQP
has

a minimal value 2 m
M

γp
ϵ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ M

m
ϵ
γp

q
− 1Þ for T ≫ M.

FIG. 3. η=s in QP-approximation for various γðTÞ with
sudden change at T�. Different low-temperature behaviors
of η=s are depicted for different γ-characteristics in the
transition region. Exponential relaxation with local minimum
and maximum: power-law relaxation with diverging
result when T → 0: ∼T2−1

~ϵððT�Þ1~ϵþT
1
~ϵÞ, ~ϵ¼0.2 (blue, a),

∼T2ð1þtanhððT−T�Þ=ϵÞÞ−1, ϵ ¼ 0.5m (green, b), power-law
relaxation with inflexion in T�: ∼T2ð1þ2=π ·arctanððT−T�Þ=
ϵÞÞ−1 ϵ ¼ 0.9m (yellow, c). The value of the minimum is
η=sjmin ¼ ðT�Þ2ðmγ∞Þ−1 þOðϵÞ, γ∞ ¼ 0.01m.
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Naively, one would think that the continuum contribu-
tions are suppressed for large M. Nevertheless ZðpÞ and
γðpÞ are momentum-dependent, and the sum rule
1
π

R
∞
0 dppρ̄ðpÞ ¼ 1 imposes a constraint on the parameters.

Γ happens to be proportional to M
ζ∞
, therefore r is not the

trivial r ¼ 1 in the large-M limit. Near ζ∞ ≈ 1 its value
drops considerably, see Fig. 4 for examples. Consequently,
the fluidity measure is modified by the “continuum”
parameters M and ϵ and reaches its minimal value when
ζ∞ ≈ 1:

η

s

����
min

≈
M
T≪1 2T2

Mϵ

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mϵ

mγp
þ 1

s
− 1

!
¼

¼ϵ¼γp T2

γpm
2m
M

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
M
m

þ 1

r
− 1

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≤1

≈
m
M≪1 2T2

γp
ffiffiffiffiffiffiffiffiffi
mM

p ð30Þ

C. Beyond the QP-pole

As we have seen, if Gra has only pole singularities, those
control the overall behavior of the theory inevitably.
Mimicking the features of the multiparticle contribution
using the QP-tail is inadequate in the sense that its effect is
suppressed by the imaginary part of the pole position: the
width of the QP-peak. In more realistic situations, i.e. in
interacting QFTs, the propagator has branch cuts beside its
poles. Branch cuts are generated even in one-loop order in
perturbation theory, corresponding to the opening of multi-
particle scattering channels. For example, in a theory with
the lowest mass excitation m, the continuum contribution
of the spectrum starts at M ¼ 2m (at zero temperature, if

1-to-2 decay or 2-to-2 scattering is allowed at tree-level). To
take into account these cut contributions we parametrize the
inverse retarded propagator and the spectral function as
follows:

ðGraÞ−1 ¼ p2 −m2 − Σs; ð31Þ

ρ̄ ¼ ImΣs

ðp2 −m2 − ReΣsÞ2 þ ðImΣsÞ2
: ð32Þ

At zero temperature, we assume Σs to have a branch cut
along the real line, starting at p ¼ M. At finite temperature
we expect the near-M behavior of ImΣs smoothes. We use
an ansatz that shows this kind of behavior. It is motivated
by the self-energy correction of a cubic scalar model (see
for example Sec. 24.1.1 of Ref. [47]) and by the IR-safe
resummation discussed in Ref. [48]:

ImΣsðpÞ ¼ ζπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − M2

p2 Þ2 þ 4 γ4

M4

q
þ 1 − M2

p2

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 γ4

M4

q
þ 1

r

!γ→0
ζπθðp −MÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

M2

p2

s
; ð33Þ

ReΣsðpÞ ¼
1

π
P
Z

∞

0

dq
2qImΣsðqÞ
p2 − q2

ð34Þ

!γ→0

8>><
>>:
2ζ

ffiffiffiffiffiffiffiffiffiffiffiffi
M2

p2 −1
q

· arcsin
�
p
M

	
p<M;

−2ζ
ffiffiffiffiffiffiffiffiffiffiffiffi
1−M2

p2

q
· ln

�
p
M−

ffiffiffiffiffiffiffiffiffiffiffiffi
p2

M2−1

q �
; M<p:

ð35Þ

The Kramers-Kronig relation is used to evaluate ReΣs for
any values of γ numerically. We plotted the self-energy Σs
and the spectral density ρ̄ on Figs. 5 and 6 for illustration.
The limit γ ¼ 0 is also given analytically in Eq. (35).
Formulas in Eqs. (9) and (11) are used to evaluate the
fluidity measure η=s. The numerical results are depicted on
Fig. 7 for various values of γ with fixed ζ. The main
conclusion here is that the increase of the weight of the
continuum in ρ̄ by increasing the value of ζ, the ratio η=s
decreases. As for the γ-dependence of the fluidity measure,
we find a power-law-like decay ending in a minimum. This
decrease of η=s seems to be connected to the “melting” of
the QP-peak and the multiparticle continuum in ρ̄. Leaving
this region of the parameter space, i.e. further enhancing γ,
the ratio saturates, than starts to slowly increase, see Fig. 7.
This is mainly the result of the shifting of the QP-peak
toward higher momenta, cf. Fig. 6. For comparison, we also
show solely the contribution of the QP-peak on Fig. 7
(indicated by the thin curves), which is calculated by using
the formula:

FIG. 4. The ratio r ¼ η=s
ηQP=sQP

versus ζ∞. Fixing γp
m ¼ 0.05,

M ¼ 50.0m, ϵ ¼ 0.015m and T ¼ 100m, graphs with various
values of m (0.5, 1.0, 2.0, 5.0) are plotted, so that m;M ≫ ϵ
holds. For given m, M and γp the sum rule provides: Γ ≈
π
4
ð1
2
− 1

π arctan
m
γ Þ M

ζ∞
for m ≪ M. The dashed line indicates the

limiting case M → ∞. An illustration of the corresponding
spectral functions are inset on a double-logarithmic plot, at
ζ ¼ 0.9.
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η

s

����
QP-pole

¼ T2

2M�

2M� −
∂ReΣsðM�Þ∂p

ImΣsðM�Þ
; ð36Þ

where the pole-mass M� satisfies the equation:
M2� −m2 − ReΣsðM�Þ ¼ 0. This approximation of η and
s becomes worse and worse with increasing the value of ζ,
as it is expected.

D. On phase transition

Hitherto we investigated systems whose thermodynam-
ical quantities were continuous functions of the temper-
ature. We argued that our framework may tackle the
phenomenology in the crossover-region, near a possible
critical end point (CEP), where the long-range correlations
play an important role. Let us now make here a few remarks
on the issue of phase transition.
As we mentioned earlier, it was observed in a wide range

of materials with a CEP in their phase diagrams, that η=s
shows a considerable reduction near the critical temperature
Tc. We note here two jointly present effects, both which can
contribute to the behavior of η=s as a function of the
temperature near to Tc. The dimensionless entropy density
s=T3 changes more and more sharply approaching the
critical temperature. It saturates to the Stefan–Boltzmann-
limit for high T and vanishes by lowering the temperature.
Therefore, depending on the details of the transition, T3=s

could show significantly different behavior below and
above Tc—even possibly diverge for T → 0. That in itself
is enough to develop a minimum for η=s, even if η=T3 is
monotonous. Crossing a a 1st order type phase boundary,
the value of T3=s jumps, whilst for a 2nd order transition its
slope is refracted.
Besides, η=T3 may also tend differently as a function of

temperature above and below a characteristic value of T�.
We refer to Eq. (20) as a simple example. Although it
depends smoothly on temperature for constant γ, a jump or
refraction of the slope is conceivable whenever the temper-
ature dependence of γ changes passing the critical

FIG. 5. Imaginary and real parts of the self-energy Σs on the
real line, with parameters M ¼ 3.0 (in the dimension of mass)
and ζ ¼ 1.0 (in the dimension of mass square).

FIG. 6. Spectral density ρ̄ðpÞ for various values of
γ ¼ 0.1–10.0, with fixed parameters m ¼ 1.0, M ¼ 3.0 (in the
dimension of mass) and ζ ¼ 0.1, 1.0, 8.5 (in the dimension of
mass square). After the pole-part and the continuum “melted”
into each other (γ ≈ 1.0), the further increase of γ shifts the QP-
peak toward higher momenta.
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temperature. The value of T� characterizing this transition
point is expected to be close to the critical temperature of
the system, Tc=T� ≈Oð1Þ. In case of the Lorentzian for
constant γ this temperature value is in the order of γ,
namely T� ¼ 5γ

2π.
In fluids, it is observed that η acts like a susceptibility

and diverges weakly as the correlation length ξ goes to
infinity. The critical exponent of the shear viscosity is
reported to be very small compared to those of the
correlation length [49–51]. We can use Eq. (20) again,
with the tentative identification γ ∼ ξ−1, where ξ is the
correlation length (since γ is also the mass parameter in the
example of Sec. VI A). This would result in a critical
behaviour η=s ∼ jT − Tcj−ν, i.e. the critical exponents of ξ
and η=s would be the same. This value of the critical
exponent is way too high compared to the experimental
findings. It is worthwhile to emphasize though, that our
approach is based on the Gaussian approximation of the
generating functional. Therefore it is not expected to
describe the phenomenology in the CEP, where the
fluctuations of the order parameter are huge.

VII. CONCLUSIONS AND OUTLOOK

In this paper, we investigated how the robust properties
of the spectral density of states ρ of a QFT define the value
of the fluidity measure η=s in the framework of extended
quasiparticles. Without other conserved charges, this ratio
characterizes the relaxation to thermal equilibrium after a
small shear stress is applied. We worked out formulas both
for thermal quantities and transport coefficients in the linear
response regime regarding an approximation scheme para-
metrized solely by ρ. This scheme is able to incorporate

finite lifetime effects and multiparticle correlations caused
by interaction.
Parametrizing ρðpÞ by microscopically meaningful

quantities like the inverse lifetime and mass of quasiparticle
excitations [position of the pole singularity of ρðpÞ],
multiparticle threshold [position of the branch point of
ρðpÞ] we analyzed the fluidity measure η=s. Our main
finding is that the more nonquasiparticle-like ρ is, the more
fluent the medium it describes. More precisely, we tuned
the parameters of the spectral function ρ in such a way that
the strength or residuum of the quasiparticle peak became
less and less pronounced, and we observed the reduction of
η=s. All-in-all, the particularly simple formula of Eq. (20)
has proven to be very insightful, especially in the light of
the more complicated examples, since it seems to be
showing all the key features we have explored during
the analysis done in Sec. VI B and VI C.
Our result supports the observations of other authors.

The weakening of η is also observed in resummed
perturbation theory of the quartic interacting scalar model
[10], and also supported by numerical evidences in case
of hadronic matter when one takes into account a
continuum of Hagedorn-states besides the hadronic res-
onances [52].
We pointed out, that in our framework there is a lower

bound to η=s, which is proportional to the entropy density
over T3. As long as one can constrain the thermodynamic
quantities, our approach provides a restriction to the
transport. Moreover, the approximation of the transport
coefficients is feasible based on the detailed knowledge
about the thermal observables. Supposing that one knows
all the independent thermodynamic quantities as a function
of some control parameter (e.g. temperature), there is room
for a model with as many parameters as the number
of the independent thermal observables. Fitting the for-
mulas to the known data set, the parameters αiðTÞ in
gðp; fαiðTÞgÞ ¼ ∂K

∂p ρ̄ can be fixed. Therefore the viscosity

in the framework of EQP is determined, using g2ðpÞ and
the formula (11). There is available data from lattice
Monte-Carlo simulations describing observables in thermal
equilibrium in QCD, and also from condensed matter
systems and other field theories. However, it is still
challenging to extract the transport coefficients. The
estimation based on thermal observables can be a good
guideline here.
Since more independent thermodynamical quantities

mean more conserved charges (besides the energy-
momentum density), the formulas given here need to be
generalized. The first straightforward step into this direc-
tion is to consider the cases of the charged scalar field and
the Dirac-field. It would be also interesting to see how the
lower bound on η=s changes when the chemical potential
corresponding to the charge density comes into play. These
subjects, however, are left to be discussed in future
publications.

FIG. 7. The fluidity measure η=s computed with a realistic
ansatz for the self energy Σs. The ratio η=s reduces as the
continuum contribution is more and more pronounced by the
increase of ζ. The γ-dependence shows a minimal value of η=s,
far from the region where the QP-peak and the continuum part are
well distinguishable. The QP-pole approximation of Eq. (36) is
indicated by the thin curves. The values of other fixed parameters
are m ¼ 1.0, M ¼ 3.0 and T ¼ 10.0.
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APPENDIX A: PROPAGATORS

Throughout this appendices, the lower index for a space-
time or momentum-space dependent quantity means its
argument, i.e. a four-vector:

φx ≡ φðxÞ≡ φðx0;xÞ:
Also an integral sign with lower indexed variable of
integration is prescribed on the whole domain of the
variable (space or momentum-space):Z
p
ð…Þ¼ 1

ð2πÞ4
Z

∞

−∞
dp0

Z
d3pð…Þ; in momentum space;Z

x
ð…Þ¼

Z
∞

−∞
dx0
Z

d3xð…Þ; in space:

We briefly summarize here the relations between propa-
gators and expectation values that will be useful later on.
The numerical upper indices are Keldysh-indices of the
real-time formalism. The Keldysh-propagators are defined

as iGab
x;y ¼ hT Cðφ†

xÞðaÞφðbÞ
y i≡ hðφ†

xÞðaÞφðbÞ
y i. From now on

we omit T C which represents the time-ordering on the
Keldysh-contour C [53]. We also suppress the adjoint sign
since in the case of real scalar fields it is equivalent with the
identification φ†

p ¼ φ−p. In general, the following identities
hold between the propagators:

iG11
x;y ¼ θðx0 − y0ÞiG21

x;y þ θðy0 − x0ÞiG12
x;y; ðA1Þ

iG22
x;y ¼ θðx0 − y0ÞiG12

x;y þ θðy0 − x0ÞiG21
x;y; ðA2Þ

0 ¼ G12
x;y þ G21

x;y − G11
x;y − G22

x;y; ðA3Þ

ρx;y ¼ iG21
x;y − iG12

x;y: ðA4Þ

In thermal equilibrium, the propagators are translational
invariant, thus for the Fourier-transformed ones iGab

p;q ≡
δp−qiGab

p . We denote the Fourier-transform of a space-time
dependent quantity calligraphic G with an italic G.
Furthermore,

iG12
p ¼ npρp; iG21

p ¼ðnpþ1Þρp; np ¼ 1
eω=T−1 :

The following parity-relations hold:

iG12
−p ¼ iG21

p ; iG11
−p ¼ iG11

p ; iG22
−p ¼ iG22

p ;

ρ−p ¼ −ρp:

In the special case of quadratic action, Wick’s theorem
holds with the Keldysh-indices signed properly. We need
the four-point function for the viscosity calculation:

hφðaÞ
p φðbÞ

q φðcÞ
r φðdÞ

s i
¼ hφðaÞ

p φðbÞ
q ihφðcÞ

r φðdÞ
s i þ hφðaÞ

p φðcÞ
r ihφðbÞ

q φðdÞ
s i

þ hφðaÞ
p φðdÞ

s ihφðbÞ
q φðcÞ

r i: ðA5Þ

APPENDIX B: ENERGY-MOMENTUM TENSOR

We discuss the detailed derivation of the energy-
momentum tensor in case of a nonlocal quadratic action.
First we translate φ by a space-time dependent field α.
The variation of the action respect to α provides us the
gradient of the energy-momentum tensor (when α → 0):Z

x

δS½eα∂φ�
δαμx

αx

����
α≡0

¼ −
Z
x
αxð∂x · TxÞμ

¼ d
dε



1

2

Z
x
φxμþεαμx

Z
z
Kzez·∂xφxμþεαμx

�
ε¼0

ðB1Þ

¼ 1

2

Z
x
αx∂μ

xφx

Z
z
Kzez·∂xφx þ

1

2

Z
x
φx

Z
z
Kzez·∂xαx∂μ

xφx:

ðB2Þ
After Fourier-transform φ, φ†, Tμν and α one getsZ
k
αkð−ikνTμν

−kÞ ¼
1

2

Z
k
αk

Z
p

Z
q
φ†
pφq

×
Z
x

Z
z
½−eik·zipμe−ip·xKzez·∂xeiq·x

þ e−ip·xKzez·∂xeik·xiqμei·x�; ðB3Þ
where the difference between the field variable
and its conjugate is indicated. Using the identity
δkþp−q ¼ δkþp−q

k·ðpþqÞ
q2−p2 and collecting the terms result in

ikνT
μν
k ¼ 1

2

Z
p

Z
q
φ†
pφqδkþp−qðipμKq − iqμKpÞ

¼ 1

2

Z
p

Z
q
φ†
pφqδkþp−q

�
ipμ k · ðpþ qÞ

q2 − p2
ðKq − KpÞ

− ikμKp

�
ðB4Þ
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¼ 1

2

Z
p

Z
q
φ†
pφqδkþp−qipμ k · ðpþ qÞ

q2 − p2
ðKq − KpÞ

≕ ikν
1

2

Z
p

Z
q
φ†
pφqδkþp−qD

μν
p;q: ðB5Þ

Here in Eq. (B5) we left the last term in the parenthesis of Eq. (B4). This can be done because of the EoM Kpφp ¼ 0.
Averaging the non-k-orthogonal part of Tμν

k over the equilibrium ensemble, we arrive the energy-momentum density εμν

(in what follows, we subtract the divergent terms proportional to the volume of the system):

εμν ¼
Z
k
hTμν

k i ¼ 1

2

Z
k

Z
p

Z
q
hðφ†

pÞð1Þφð2Þ
q iδkþp−qD

μν
p;q ¼ 1

2

Z
k

Z
p

Z
q
iG12

p δp−qδkþp−qD
μν
p;q ¼ 1

2

Z
p
Dμν

p;pρpnp; ðB6Þ

Dμν
p;p ¼ lim

q→p

pμðpþ qÞν
q2 − p2

ðKq − KpÞ ¼q¼pþζn pμpν

n · p
lim
ζ→0

Kpþζn − Kp

ζ
¼Kp≡Kjpj pμpν

jpj
∂Kjpj
∂jpj ¼ pμpν

ω

∂Kjpj
∂ω : ðB7Þ

APPENDIX C: SHEAR VISCOSITY

Using the definition of the spectral function of an operator, we derive ρT†T . With the renormalized energy-momentum
tensor in Eq. (B5) and using the relation in Eq. (A5) the computation is straightforward:

ρðT†ÞijTij;k ¼ iG21
ðT†ÞijTij;k − iG12

ðT†ÞijTij;k ðC1Þ

¼ 1

4

Z
k0

Z
p

Z
q

Z
r

Z
s
δkþp−qδk0þr−sD

ij
p;qD

ij
r;sðhφð2Þ

p φð2Þ
−qφ

ð1Þ
−rφ

ð1Þ
s i − hφð1Þ

p φð1Þ
−qφ

ð2Þ
−rφ

ð2Þ
s iÞ ðC2Þ

¼ 1

4

Z
k0;p;q;r;s

δkþp−qδk0þr−sD
ij
p;qD

ij
r;s½δp−qδr−sðiG22

p iG11
r − iG11

p iG22
r Þ þ ðδp−rδq−s þ δpþsδqþrÞðiG12

p iG21
q − iG21

p iG12
q Þ�

ðC3Þ

¼ 1

4

Z
p
ððDij

p;pþkÞ2 þDij
p;pþkD

ij
pþk;pÞρpρpþkðnp − npþkÞ: ðC4Þ

Now we take k ¼ 0 and expand the first factor of the integral kernel in Eq. (C4):

ðDij
p;pþkÞ2jk¼0

¼ Dij
p;pþkD

ij
pþk;pjk¼0

¼



2pipj

ω2 − 2ω ~ω
ðK ~ωþω;p − K ~ω;pÞ

�
2

ω→0≈

�
pipj

~ω

∂K ~ω;p
∂ ~ω

�
2

þOðωÞ: ðC5Þ

The linear term of ρT†T in ω in the long-wavelength limit is the shear viscosity η. Using Eq. (C5) and also expanding the
spectral function ρ and the thermal factor np − npþk up to first-order in ω we get:

η¼ lim
ω→0

ρðT†Þ12T12ðω;k¼ 0Þ
ω

¼ lim
ω→0

1

2ω

Z
p


�
p1p2

~ω

∂K ~ω;p

∂ ~ω
�

2

þOðωÞ
�


ρ2~ω;pþωρ ~ω;p
∂ρ ~ω;p

∂ ~ω þOðω2Þ
��

−ω
∂n ~ω

∂ ~ω
þOðω2Þ

�
ðC6Þ

¼ 1

2

Z
p

�
p1p2

~ω

∂Kp

∂ ~ω
ρp

�
2

ð−n0~ωÞ: ðC7Þ

APPENDIX D: SCALAR SOURCE TERM

To explore the effect of nonzero vacuum-expectation value of φ, we make the identification φ ¼ ξþ ϕ in the formulas of
appendices A, B, C and handle ϕ as a classical field, i.e. without Keldysh-indices. We wish to prescribe the condition
hφi ¼ ϕ. Substituting φ ¼ ξþ ϕ into the action with source field J we get
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S½φ� ¼ 1

2

Z
x

Z
y
φ†
xKx−yφy þ

1

2

Z
x
ðφ†

xJx þ φxJ
†
xÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≕SJ ½φ�

¼ 1

2

Z
p
φ−pφpKp þ

1

2

Z
p
ðφ−pJp þ φpJ−pÞ ðD1Þ

¼φ¼ξþϕ 1

2

Z
p
ξ−pξpKp þ

1

2

Z
p
ðϕ−pJp þ ϕpJ−pÞ þ

1

2

Z
p
ðξ−pϕpKp þ ϕ−pξpKp þ ξ−pJp þ ξpJ−pÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼! 0

: ðD2Þ

The elimination of the ξ-linear terms imposes the constraint Kpϕp ¼ −Jp. The energy-momentum tensor has an additional
term coming from SJ½φ�. Collecting the terms according to the field-combinations ξξ, ϕϕ and ξϕ we arrive at

Tμν
k ¼ 1

2

Z
p

Z
q
δkþp−qD

μν
p;qðξ−p þ ϕ−pÞðξq þ ϕqÞ −

Z
p

Z
q
δkþp−q

pμðpþ qÞν
q2 − p2

Jqðξ−p þ ϕ−pÞ ðD3Þ

¼
Z
p

Z
q
δkþp−qðDμν

p;qξ−pξq þ Eμν
p;qϕ−pϕq þ F μν

p;qξ−pϕqÞ; ðD4Þ

where the corresponding kernel functions read as

Dμν
p;q ¼ 1

2
Dμν

p;q; ðD5Þ

Eμν
p;q ¼ 1

2
Dμν

p;q þ pμðpþ qÞν
q2 − p2

Kq; ðD6Þ

F μν
p;q ¼ Dμν

p;q þDμν
−q;−p

2
þ pμðpþ qÞν

q2 − p2
Kq: ðD7Þ

Only the terms proportional to ξξ and ϕϕ contribute to the average hTμνi, resulting in an extra term compared to the case of
ϕ≡ 0. Now we choose a spatially homogeneous and temperature dependent background as follows:

ϕp ¼ δp

ffiffiffiffiffiffiffiffiffiffiffi
BðTÞ
Kp¼0

s
: ðD8Þ

After this, we are left with Z
k
hTμν

k i ¼ hTμν
0;ki þ B; ðD9Þ

which leads to exactly the results we mentioned in Sec. III A:

ε ¼ εϕ≡0 þ B; P ¼ Pϕ≡0 − B: ðD10Þ

For calculating the spectral function ρT†T , first we reobserve Eq. (D4). The expectation value of those terms containing odd
number of ξ or ϕ fields vanishes. Terms with only ϕ fields cancel each other in the anticommutator, since those do not carry
Keldysh-indices. Writing out the remaining ones explicitly:

iG21
T†T ¼

Z
p

Z
q

Z
r

Z
s
δkþp−qδk0þr−sðDμν

p;qD
μν
r;shξ2pξ2−qξ1−rξ1si þ F μν

p;qF
μν
r;shξ2pξ1−riϕ−qϕs ðD11Þ

þDμν
p;qE

μν
r;shξ2pξ2−qiϕ−rϕs þDμν

r;sE
μν
p;qϕpϕ−qhξ1−rξ1siÞ; ðD12Þ

iG12
T†T ¼

Z
p

Z
q

Z
r

Z
s
δkþp−qδk0þr−sðDμν

p;qD
μν
r;shξ1pξ1−qξ2−rξ2si þ F μν

p;qF
μν
r;shξ1pξ2−riϕ−qϕs ðD13Þ

þDμν
p;qE

μν
r;shξ1pξ1−qiϕ−rϕs þDμν

r;sE
μν
p;qϕpϕ−qhξ2−rξ2siÞ: ðD14Þ
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The spectral function of the composite operator ðT†ÞμνTμν is the difference of the two above-written formulas:

ρT†T ¼ iG21
T†T − iG12

T†T ¼ ρT†T;0 ðD15Þ

þ
Z
p

Z
q

Z
r

Z
s
δkþp−qδk0þr−sF

μν
p;qF

μν
r;sϕ−qϕsδp−rρp ðD16Þ

þ
Z
p

Z
q

Z
r

Z
s
δkþp−qδk0þr−sðDμν

r;sE
μν
p;qϕpϕ−qδr−sðiG11

r − iG22
r Þ þDμν

p;qE
μν
r;sϕ−rϕsδp−qðiG22

p − iG11
p ÞÞ: ðD17Þ

The first additional term compared to the case of ϕ≡ 0 is
Eq. (D16). In case of homogeneous background (ϕp ∼ δp)
it simplifies to

∼ðF μν
k;0Þ2ρk !k¼0

0; ðD18Þ

since for space-space indices all the three kernel functions
vanish in the long-wavelength limit p ¼ 0, if either of their
arguments vanishes:

Dij
p;q¼0jp¼0

¼ 0; Eij
p;q¼0jp¼0

¼ 0; F ij
p;q¼0jp¼0

¼ 0:

Equation (D17) is the second additional term to ρT†T;0. For
homogeneous, nonzero background it reads as

∼ δkE
μν
0;0

Z
r
Dμν

r;rðiG11
r − iG22

r Þ

þ δkE
μν
0;0

Z
p
Dμν

p;pðiG22
p − iG11

p Þ ¼ 0; ðD19Þ

which vanishes for any μ and ν pairs. Whereas neither
Eq. (D16) nor Eq. (D17) contribute to the spectral function
ρT†T , the expression of the shear viscosity does not modify
in the case of a homogeneous, temperature dependent
background.
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