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Analysis of the radiative decays Xy — Agy and Ej, — Eyy
in light cone sum rules
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The light cone sum rules method is used in studying the radiative decays X, — Agy and B, — Epy.
First, the sum rules for the form factor F,(Q* = 0) responsible for these transitions is constructed. Using
this result, the decay widths of the above-mentioned decays are calculated and analyzed. A comparison of
our predictions on the decay widths of considered transitions with the predictions of the other approaches is

presented.
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I. INTRODUCTION

In the past decade, revolutionary progress has been made
in hadron spectroscopy. Many baryons with single heavy
quarks have been observed experimentally [1]. At the same
time, many new charmoniumlike and bottomoniumlike
states have also been discovered [2]. These states have
more complicated structures compared to the ones pre-
dicted by the quark model.

These experimental achievements have carried the stud-
ies to a new level, namely, the study of the decays of these
baryons. In this work, we concentrate our attention on the
heavy baryons with single heavy quarks and investigate
their electromagnetic decays.

According to SU(3) classification, the heavy baryon
ground states with spin 1/2 belong to the sextet represen-
tation, spin 3/2 to the sextet representation, and spin 1/2 to
the antitriplet representation. It is customary to denote these
representations as 6, 6%, and 3.

The radiative decays among the baryons belonging to
these representations have already been studied in the
framework of the nonrelativistic potential model [3] and
light cone QCD sum rules incorporating the heavy quark
effective theory [4], and incorporating both with heavy and
chiral symmetry [5], (2 + 1) flavor lattice QCD [6], heavy
hadron chiral perturbation theory [7,8], chiral perturbation
theory [9], the relativistic three-quark model [10], heavy
quark symmetry [11], the static quark model [12], and the
bag model [13], which lead to quite different results.
Therefore, further independent calculations on these decay
widths are necessary.

The present work is devoted to the study of the £, —
Agy and B, — Eyy decays in the framework of the light
cone QCD sum rules. Note that the decay widths between
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the 6* — 6 and 6* — 3 transitions have been studied earlier
in the framework of the light cone QCD sum rules method
in [14,15].

The paper is organized as follows. In Sec. II, the light
cone QCD sum rules for the electromagnetic form factor
F,(g*> = 0) responsible for these decays are derived.
Section III is devoted to the numerical analysis. In this
section, we also present a comparison of our predictions
with the results of other approaches.

II. LIGHT CONE QCD SUM RULES FOR THE
FORM FACTORS

In this section, we derive the light cone QCD sum
rules for the radiative £, — Ayy and E’Q — Egyy decay
form factors. For this purpose, we start with the definition
of the transition matrix element between heavy baryon
states in the presence of the electromagnetic field, i.e.,
(Bo,(p.s")]j¢'|Bo, (p + g.5)). This matrix element is para-
metrized in terms of the Dirac F,(Q?) and Pauli F,(Q?)
form factors as follows:

(Bo, (p.5)\J!1Bo,(p + 4.5))
») [(y - ?) F1(0Y)

1
_—— i, ¢"F)(0? +q). (1
. i6,,4"F,(Q )}u(p q). (1)

<

For the real photons, obviously, we need to know the values
of these form factors only at the point Q? = —¢> = 0. This
process, i.e., transition of one of the heavy baryons in the
sextet representation to another heavy baryon in the
antitriplet representation in the presence of the electromag-
netic field, is described by the following correlation
function:
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H,u(p’ Q) - _/d4)€/d4yei(1’x+‘b’)
< (017, 0)j, 0V, (10}, (2)

where j, = e,qr,q + ep Q;/MQ is the electromagnetic cur-
rent with the electric charges e, and e for the light and
heavy quarks, respectively, and 7y and 7 are the
interpolating currents in the sextet and antitriplet repre-
sentations, respectively.

The general form of the interpolating currents of the
spin-1/2 heavy baryons in the sextet and antitriplet
representations are given as (see for example [16])

1

my = =5 (417 CQ"rsds — (Q Cahyrsas
+ (a1 CrsQ)a5 — PO Crsa3)as}

1 3

o = %6%6{2(61‘?@’5)75@ + (4§"CQ")rsqs

+(QCq3)rsqs + 28(q4" Crsqh) Q°
+ (¢{"Crs0")q5 + (Q“" Crsq3) 4} (3)

where £ is the arbitrary auxiliary parameter, and the light
quark contents of the heavy baryons in sextet and antitriplet
representations are summarized in Table 1.

Introducing a plane wave electromagnetic background
field F,, = i(e,q, — €,q,)e'", it is possible to rewrite the
correlator (2) as follows:

M,(p. q)e" = i / e (O[T {ng, (0)iig,()}[0),.  (4)

where the subscript F means that all vacuum expectation
values should be evaluated in the background field F,.
The correlation function given in Eq. (2) can be obtained
from Eq. (3) by expanding it in powers of the background
field and considering only the linear term in F,,, which
corresponds to the single photon emission. More about the
details of the application of the background field method
can be found in [17] and [18].

In order to obtain the sum rules for the electromagnetic
form factors describing the X, — Ayy and Ej, — Epy
transitions, the correlation function is calculated in terms of
hadrons from one side and in terms of the quark-gluon
degrees of freedom by using the operator product

TABLE I. Light quark contents of the heavy baryons in the
symmetric sextet and antisymmetric antitriplet representations.
T+ 0+ =(0) Z=(0) Z0H) A0+ =Z=(0)  ZO0(+)
2"b(c) 2"b(c) 2"b ¢)  Tblc) Tb(c) Ab(c) =b(c) “b(c)
q; u u d d u u d u
q» u d d s s d s
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expansion (OPE) and introducing the photon distribution
amplitudes (DAs) from the other side. The photon DAs
are the main nonperturbative ingredient of the light cone
sum rules. In this version of the light cone QCD sum rules,
OPE is performed by a twist of the nonlocal operator rather
than dimensions of the operators in the traditional sum
rules. The sum rules are obtained by matching these two
representations.

We start our analysis by constructing the correlation
function from the hadronic side. It can be obtained by
inserting all intermediate hadronic sum rules, having the
same quantum numbers as the corresponding interpolating
currents 7. After isolating the ground state’s contribution,
we get

(Olng, |Bg,(P2))

,(p.q) = s p— (Bo,(P2)lis(a)|Bo, (P1))
2~ My,
(Bo, (p1)liip,10)
xS (5)
p1—mp,

where the contributions coming from the higher states and
continuum are denoted by dots, and p; = p, + ¢.

The expression for the correlator function can be
obtained from the hadronic side by substituting the matrix
elements appearing in Eq. (2). These matrix elements are
defined in the standard way as follows:

(Ol1a,, 1By (2)) = i, (1),
(Bo,(P1)lng,, 0) = Ayitg, (p1),

(Bo, (p)lig!(@)|Bo, (p1)) = g, (p2) [(y - ”’;’)F

i0,,q9"
-, ().
Mpy, T Mpy,
(6)

where 4; are the residues of the hadrons, B, are the
baryons and mp, are their respective masses, and F; and

F, are the Dirac and Pauli form factors, respectively.
Using the equation of motion, the matrix element
(Bo,(p2)|j¢(q)|Bgo, (p1)) can be written as follows:

(Bo,(p2)1ic!(9)|Bo, (P1))

_ 44
=t () [Py + F2) =2 P
(p1+ p2), }
- Fylug. (p)). 7
e 91) ™

Inserting Eqs. (6) and (7) into Eq. (5) and performing
summation over spins of the Dirac spinors, we get
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ABo, A8y,

(p* = mj, )(p* —m3, )

gﬂnﬂ (pv ‘I) =

x (7 + mBQ2>{5(F1 + F3)

2(pe)
1 + mBQz

20t m,)®

where we set p, = p, p; = p + ¢, and ge = 0. It is easily
seen from Eq. (8) that the correlation function possesses
many structures, and any of them can be used for
constructing the sum rules for the form factors F; + F,
and F,. The experience in working with the sum rules
shows that the structures containing the maximum number
of momenta exhibit rather good convergence. For this
reason, in the calculation of the form factors F; 4+ F, and
F,, we chose the structures p#g and p( pe), respectively. In
this work, we calculate only the form factor F, since the
transitions under consideration are described only by the
form factor F,. Note that the form factor F; + F, has
already been calculated for the transitions under consid-
eration in [19] and [20]. The expression of the correlator
function given in Eq. (3) can be obtained in the deep
Euclidean region in terms of photon DAs with increasing
twist, where p < 0 and (p + ¢)* < 0.

Calculation of the correlation function can be carried out
straightforwardly using the Wick’s theorem. In performing
this calculation, the expressions of the light and heavy
quark propagators in the presence of the external field are
needed. The light quark propagator in the background field
is calculated in [21], and it is found that the contributions
of the nonlocal operators §Gg, §G*g, and gqgq are quite
small. Neglecting these contributions the expression of the
light quark propagator can be written as

272xt 4nixt 12 4
2

_ 20 _iMa

Sq(x)

where yp is the Euler constant, and A is the cutoff
energy separating the perturbative and nonperturbative
regions, whose value is calculated in [22] to be
A=(05+0.1) GeV.

The expression of the heavy quark propagator in the
background field in the x representation is given as

PHYSICAL REVIEW D 93, 056007 (2016)

Solr) = TT%{KI(%?> i _’iz)sz(mQJ__xa}

1
- 167r2/0 duG,, (ux) {(6’”’)(4- Xot)

(V=R :
y % + ZG”DKO(mQ\/:)] . (0)

where K;(mg V/—x2) are the modified Bessel functions.

Having the expressions of the light and heavy quark
propagators at hand, calculation of the theoretical part of
the correlation function is a straightforward but rather
tedious calculation. At this point, one technical remark
is in order. To be able to express the vacuum expectation
value (0|q(x)g(0)|0) in terms of the photon DAs, the
Fierz identity needs to be used. It should be noted here that
our approach in calculating the nonperturbative contribu-
tion to the correlation function follows the line of [23] for
the D*Dx coupling with the replacement of the pion DAs
by the photon DAs.

As has already been noted in constructing the sum rules
for the form factor F,(0), we have decided to choose the
structure (& - p)pgin both representations of the correlation
function. In obtaining the final result for the sum rule of
the form factor F,(0), the Borel transformation over the
variables p? and (p + ¢)? is implemented using the quark-
hadron duality ansatz. Using these steps of the calculation,
we finally get the following sum rule for the form factor
F 2 (0) .

mé mi
Qo Qo
_( L "o,

Apg Apg e N M%)FZ(O)

(S
+ [ dsidsaphisise I e, )

where Az o and Az 0, AT€ the residues of the corresponding

sextet and antitriplet baryons, respectively, whose expres-
sions can be found in [19] and [20]; M7 and M3 are the
Borel mass parameters for the corresponding channels. It
should be noted here that, for consistency, the perturba-
tive O(ay) corrections are neglected in the calculations of
residues since they are not included in sum rules (11).
These corrections might give considerable contribution to
the form factor F,(0) similar to the D*Dx case, but
calculation of the radiative corrections lies beyond the
scope of the present work. Explicit expression of IT5(theor)
can be found in the Appendix. The second term on the
left-hand side of Eq. (11) describes the contributions of
the higher states and continuum. In calculating the
contributions of these states, we use the quark-hadron
duality ansatz; i.e., above some predetermined thresholds
in the (s;,s,) plane, the hadronic spectral density is
replaced by the QCD spectral density p%°P (s, s,). Using
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this ansatz, the continuum subtraction can be carried out
by the procedure explained in [23]. Leaving aside the
technical details, in the case M? = M3 =2M? and
uy = 1/2, the subtraction procedure can be performed
by using the following formula:

Mz”g_sz/ M,
['(n) )
Q

We see from the expression of IT2(¢°") that the leading
twist term ¢, (uy) is proportional to m}M*, and higher twist
terms are proportional to m}M? or m3 M>. Therefore, higher
twist terms that are suppressed by inverse powers of M?
with respect to the leading ones remain unaffected.
Therefore, the continuum subtraction procedure is not
performed for the higher twist terms (for more detail see
[23]). It should be noted here that, in principle, single
dispersion integrals originating in the subtractions, which
make the double dispersion integral finite, can enter into the
spectral density, but these terms are all eliminated by the
double Borel transformations.

The masses of the initial and final heavy baryons are
quite close to each other; hence, we can set M% =
M3 = 2M?, which naturally leads to uy = 1/2. In our
numerical analysis, we use these values of M? and u,,.

At the end of this section, we present the formula needed
to calculate the decay rate of transitions under consider-
ation, whose expression is as follows:

Iﬂ<BQ1 - Bsz) =

where

is the magnitude of the photon momentum.

III. NUMERICAL RESULTS

In this section, we perform the numerical analysis
using the sum rules for the form factor F,(0). The
input parameters of the values in this calculation are as
follows: The quark condensate (iu)(u =1 GeV) =
—(0.243)3 GeV?, (35)|,=1 gev = 0.8(au)|,_; gey» and
m3 = (0.8 £ 0.2) GeV2, which is obtained from the
analysis of the two-point sum rules for the light baryons
[24,25] and B, B* [26], and f3, = —0.0039 GeV?* [18];
and magnetic susceptibility y, which is calculated in
[27-29], where we use y(u = 1 GeV) = —2.85 GeV~2 in
the present work.

1 S0 ) _
—/ dse™/M (s —m%H)", (n>1).
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The sum rules for the form factor F,(0) also contain
three auxiliary parameters, namely, the Borel mass param-
eter M?, the arbitrary parameter, and the continuum
threshold sy. Obviously, any physical quantity must be
independent of the above-mentioned auxiliary parameters.
Therefore, we should find the regions of these parameters
for which the form factor F,(0) shows no sensitivity to
their variation. The continuum threshold is related to the
mass of the first excited state. The energy needed to
excite the particle from the ground state to the first
excited state is equal to (/5o —m), where m is the mass
of the baryon in its ground state. Usually, (/5o —m)
varies in the interval 0.3 GeV to 0.8 GeV. The exper-
imental values of the heavy baryons are reproduced quite
well if the continuum threshold varies in the following
regions:

(3.1 +0.1) GeV, for Z.— A,
(3.2£0.1) GeV, for E. - E,

So = (13)
(6.6 £0.2) GeV, for X, —» A,
(6.7+£0.2) GeV, for B, — E,.

The upper and lower bounds of the Borel mass parameter
M? are determined by imposing the following two
conditions:

(1) The contributions of the higher states and continuum
should be less than the contributions of the
ground state.

(2) Contributions of the higher twist terms should be
less than the contributions of the leading twist terms.

As a result of these two conditions, the “working regions”
of the Borel parameter for the transitions under consid-
eration are determined to be

2.0 GeV? < M? <3.0 GeV?,
2.2 GeV? < M? < 3.4 GeV?,
5.0 GeV2 < M? < 7.0 GeV?,
5.0 GeV2 < M? < 7.5 GeV?,

for £, - Ay,

=/

for 2, - E.y,
for X, = Ay,

for B — E,y. (14)

In order to find the working region of the arbitrary
parameter f for the transitions under consideration, we
have studied the dependence of F,(0) on cosf, where
p =tan@, at several fixed values of the continuum
threshold s, and Borel parameters M? chosen from
the working regions given in Eqgs. (13) and (14),
respectively. Our numerical analysis shows that in the
domain —0.7 < cos@ < —0.4, which is common for all
the considered radiative decays, the form factor F,(0) is
practically independent of the arbitrary parameter /3, and
we finally obtain the following values for the form
factor F,(0):
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TABLE II.  Decay widths of the X, — A,y and E’Q — Epy transitions (in units of KeV).

This work 3] [41  I5] 7] [8] [10] [ [12] [13]
f - Ay 500+£170 6055 60 915 - 164 60.7+ 1.5 87 120 46
B > Bfy 85425 - - 197 - 54 127+ 15 - 14 10
B0 =0  027+0.06 - - 04  12+07 002 0174002 - 033 00015
05 A% 152.0+60.0 - - - - 287.65 - - - -
B0 gy 47.0£21.0 - - - - - - - - -
B - Sy 33413 - - - 311£18 - - - - -

3.040.5)
2.5+04)
0.45 +0.05) for Z° — 5%
10.0+20) for 0 — A%
9.0+£20)  for E — 5y

=b
24+0.5) for 8, —» &)7.

for X7 - Afy

—/+ —_t
for EF — Efy

(
(
F,(0) = E
(
(

Note that exact SU(3) U-spin flavor symmetry forbids
the E’g — B,y decay. The nonzero value of F,(0) for
this decay indicates the violation of the aforementioned
symmetry.

A few words about the uncertainty in determination of
the form factor F,(0) are in order. The radiative O(a;)
corrections can of course bring their own uncertainty in the
calculation of the form factor F,(0), which is not taken into
account in the present work. We estimate that the uncer-
tainties are only coming from the errors in the values of the
input parameters entering into the sum rules.

Having calculated the values of the form factor F,(0), we
can easily calculate the values of the considered decay
widths by using Eq. (14), and the results are summarized in
Table II. In this table, for completeness, we also present the
predictions on the decay widths calculated in other
approaches, such as the nonrelativistic quark model [3],
the QCD sum rules method [4], heavy hadron chiral
|

perturbation theory ([5,7], and [8]), the relativistic quark
model [10], heavy quark symmetry that is implemented
with the light quark symmetry [11], the naive static quark
model [12], and the bag model [13].

From the comparison of our results with those existing in
the literature, we see that our predictions are closer to the
predictions of the relativistic quark model, and in particular,
our result for the Z,~ — E,y transition coincides with the
result of [7]. We also observe that there appears to be a
considerable difference among our results and the predic-
tions of the other approaches on the decay widths of the
considered transitions. Of course, only the experimental
measurements of these decays can play the “judge” for
choosing the right “theory.”

In conclusion, we calculate the form factor F,(0) for the
2y = Apy and E’Q — Eyy transitions within the light cone
QCD sum rules method. The corresponding decay widths
are estimated by using these values of the form factor
F,(0). Comparison of our predictions on decay widths with
the results of other approaches is presented.

APPENDIX

In this appendix, we present the explicit form of the
correlation function TTE("eo") for the form factor F,(0),
which is determined from the coefficient of the (e - p)pg
structure.

3
[1B(theor) — 1;{3;4 (1 _ﬂZ)(eS _ €u)m2M4(IZ — 2m12)I3 + m}tL;)
1 _ _
e (1 PP amiM e, (58) — eu () (Ts = mi L) ()
L
1536+/37*

(1= B)mpM?*{(1 + ) (e, — e,)(g2G*) (3T, — 4m>TL3) + 64pn*m; (e, (5s) — e (uu)) L5

= 24(1 = p)mj,z* (e, (5s) — e, (@) Aug)Zs — 64e,m,a*((5s) — (au))(Z, — myZs)}

1
+ -
64+/372

(1= B)ymyM? (e, (5s) — e, (au) {[(5 + B)To — 42 + P)m;T5][i2(S. 1) — in(T . 1)]

+ (14 58)T, = 4(1 + 28)m3T5][ix(S. 1) + ix(T5. 1)] = 8(2 + B)m} T35 (h,)
+2(1 = (T, = 2m3ZL3)in(T 1. 1) 4+ L,ir(T 5, 1)]
=2[(34+p)ir(S.v) + (1 + 3/})1‘2(5‘, v)|(Z, —2m31;)
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- 4[ﬂ12 - (1 +ﬂ)mil’3}lz(7-2, ’U) - 4(1 —ﬁ)Iziz(Tg,, 1)) + 4[1-2 - (1 +ﬂ)miI3]12(74, ’U}

+ 732\}5752 (1= p)ymM>f3,(e; — e,)2(3 + B)(Zy — m3T3)j1 (w") — (1 + B)(Z, — m2T3 )y ()]
e~m/M? . .
+m(l — PG (e,(55) — e, (au)){3(1 + B)ir(S. 1) +3(1 + p)ir(S. 1)

+ 205 (T 1. 1) + 3i5(T 2. 1) = 2i5(T 5. 1) = 3i5(T 4. 1) = 6ir(S, v) = 2ir(S, v) — 4ir(T 5, )
+4iy(T3,0) + 16]5(hy) = B0 (T 1, 1) = 3i5(T 2, 1) = 2iy(T 3, 1) + 3i5(T 4, 1)
+2i5(8, v) + 6i5(S, v) + 4ir(T 3, v) — 4ir (T4, v) — 8}2(%)]}

2 72
e—mb/M

+m (1 =P {(1 = B) (2G> (e (5s) — e, (au))A(uy)

= 2(e, (55) — e, (au))[3(1 + B)(g5G*) — (3 + B)(5:G?)
= 811+ 58) f3,mgn® i (") = 4(2 + 55) f5,miawr (uo)]}

. %u = B)Fyymimi (e, (55) — e @) 203 + AT (") + Py (uo)]

" ﬁ (1 = B GG} (e (5s) — ey (3pm + 85,7 [2(3 + )Ty (w") + Ay (o)}

N ﬁ (1= B) 3 (GG mim3 (e, (5s) = e, () [2(3 + B)js (v") + Py (o))

} ﬁﬂ = D)fsy (G GHmimi (e (5s) = (@) 23 + )i (w*) + By (uo)]

_ %(1 — B)Pmd(eu (55) — ey{u)) - JW“ = B2 = By (e, (5s) — e (i) + ey ((5s) - @)
_ ngmb(l — DB+ fylle, - e)FG?)

+ 96my, 7% (e, (5s) — eg(@u)) — 3mpe™ M (e, — e,)(3G*) Tolji (v")

- m (1- ﬂ)2<9§G2>m127(es<§s> — eu<ﬁu>))(12(py(u0)
e_mi/Mz 202
" 23043 (1 =P)f3,196B(e,(5s) — es(au)) — ﬂzinb (1+ B)(es — eu) (2G?) (1 = 3m2e™ /M T,) Y (ug).

The functions i, (¢, f(v)), jo(f(u)), where (£ = 1,2), and Z,, entering into the correlation function TT3(h<") are defined as

h(d.f(v) = / Da, A ' dvag. @) f ()5 (k= o),
b0 (0) = [ Dar [ oty )03 k= ),
~ 1
Gi(7w) = [ durtw).

Ja(F () = / ' — ) (1),

0 e—s/M2
I,= ds ,
n
l”l2 N

b
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