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Within the Bethe-Salpeter formalism for instantaneous interactions, we describe, along a totally analytic
route, the lightest pseudoscalar mesons by quark-antiquark bound states which show at least three
indispensable general features—namely, the (almost) masslessness required for pions and kaons to be
interpretable as (pseudo-)Goldstone bosons, the suitable asymptotic behavior in the limit of large spacelike
relative momenta as determined by the relationship between quark mass function and Bethe-Salpeter
amplitudes, and a pointwise behavior for finite spacelike relative momenta suited for guaranteeing color
confinement.
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I. INTRODUCTION

Within particle physics, the members of the multiplet of
lightest pseudoscalar mesons, viz., pions and kaons, can be
interpreted from two perspectives: on the one hand, they
appear to be bound states of the fundamental degrees of
freedom (i.e., quarks and gluons) of quantum chromody-
namics (QCD), the quantum field theory which describes
the strong interactions; on the other hand, they may be
regarded as the nearly massless (pseudo-)Goldstone bosons
of the spontaneously (and, to a minor degree, explicitly)
broken chiral symmetries of QCD.
Quantum field theory describes bound states by means

of the covariant Bethe-Salpeter formalism [1]. The latter’s
instantaneous limit [2], with the Salpeter equation [3] as
its most prominent outcome, enables us to evade
obstacles arising in applications of this framework.
Recently, by use of earlier developed inversion tech-
niques [4], we related, for Goldstone-type quark-
antiquark bound states, Salpeter solutions compatible
with constraints arising from QCD Dyson-Schwinger
equations to configuration-space potentials VðrÞ,
r ¼ jxj, encoding the impacts of strong interactions
[5,6]. In this paper, we implement, in addition, boundary
conditions imposed by color confinement on the solu-
tions of the Bethe-Salpeter equation.
The outline of this paper is as follows: In Sec. II, we

present a rather condensed sketch of our actual route
from the Bethe-Salpeter equation to the interaction poten-
tials responsible for the formation of light pseudoscalar
mesons acting as pseudo-Goldstone bosons of QCD. In
Sec. III, we briefly recall how to exploit solutions of the

Dyson-Schwinger equation for the quark propagator to
derive information about the behavior of meson Salpeter
amplitudes. In Sec. IV, we considerably refine the outcomes
of Ref. [6] by taking into account a particular implication of
the violation of the axiom of reflection positivity—which
acts as a sufficient but not necessary condition for
confinement—for the propagator of any colored degree
of freedom of QCD. In Sec. V, we discuss some of those
cases that allow for analytic derivation of the potentials.
Finally, in Sec. VI, we collect the insights gained by this
sharpened analysis.

II. INSTANTANEOUS BETHE-SALPETER
HANDLING OF MESONS

A. The Salpeter approach to fermion-antifermion
bound states

Within the framework of relativistic quantum field
theories, the bound states of elementary particles—with
total momentum P and relative momentum p—can be
described by their Bethe-Salpeter amplitude Φðp;PÞ,
governed by the homogeneous Bethe-Salpeter equation
[1]. If the interactions between the bound-state constituents
may be approximated by their instantaneous limit and if
the propagators of these particles depend on the time
component p0 of p in a sufficiently simple form, this
Bethe-Salpeter equation reduces, upon integration over p0,
to a (generic) instantaneous Bethe-Salpeter equation [2] for
the Salpeter amplitude

ϕðpÞ≡ 1

2π

Z
dp0ΦðpÞ: ð1Þ

Assuming, for the bound-state constituents, free propaga-
tion with effective masses leads to the Salpeter equation
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[3]. Defining, for the particle i ¼ 1, 2 of mass mi and
momentum p, its free energy EiðpÞ, Dirac Hamiltonian
HiðpÞ and projection operators Λ�

i ðpÞ for positive or
negative energy according to

EiðpÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

i

q
;

HiðpÞ≡ γ0ðγ · pþmiÞ;

Λ�
i ðpÞ≡ EiðpÞ �HiðpÞ

2EiðpÞ
; ð2Þ

this Salpeter equation, for the bound states of a fermion of
mass m1 and momentum p1 and an antifermion of mass m2

and momentum p2, can be cast into the form

ϕðpÞ ¼
Z

d3q
ð2πÞ3

�
Λþ
1 ðp1Þγ0½Kðp; qÞϕðqÞ�γ0Λ−

2 ðp2Þ
P0 − E1ðp1Þ − E2ðp2Þ

−
Λ−
1 ðp1Þγ0½Kðp; qÞϕðqÞ�γ0Λþ

2 ðp2Þ
P0 þ E1ðp1Þ þ E2ðp2Þ

�
: ð3Þ

The integration kernel, Kðp; qÞ, subsumes the interactions
experienced by the bound-state constituents. If the fermions
couple identically, its action on ϕðqÞ forms a series of
products of tensor products Γ ⊗ Γ of matrices Γ in Dirac
space and Lorentz-scalar potentials VΓðp; qÞ:

½Kðp; qÞϕðqÞ� ¼
X
Γ
VΓðp; qÞΓϕðqÞΓ:

The energy projectors in Eq. (2) entail for all solutions (1)
the (in fact, single [7]) constraint

Λþ
1 ðp1ÞϕðpÞΛþ

2 ðp2Þ ¼ Λ−
1 ðp1ÞϕðpÞΛ−

2 ðp2Þ ¼ 0: ð4Þ

Evidently, such three-dimensional reduction enables us to
construct a relationship between (Poincaré-covariant)
descriptions of bound states by means of the Bethe-
Salpeter equation and the notion of static interaction
potentials acting between the bound-state constituents.

B. Light pseudoscalar mesons

The Salpeter amplitude ϕðpÞ of any bound state com-
posed of a spin-1

2
fermion and a spin-1

2
antifermion with

vanishing total spin quantum number involves, upon
expansion over some basis in the “Dirac” space of complex
4 × 4 matrices, just two independent components. Let us
call them φ1ðpÞ and φ2ðpÞ. The general form of a Salpeter
amplitude ϕðpÞ is determined by the constraint (4). It can be
read off from, e.g., Eq. (4.9) of Ref. [8] or Eq. (12) of
Ref. [9]; for the bound states of interest, only three terms
enter into such “Dirac” expansion of ϕðpÞ. For simplicity,
we focus in the following on the flavor-symmetric limit of
bound states of a quark and an antiquark of equal masses
m1 ¼ m2 ¼ m. Then, recalling the definition (2) of the

Dirac Hamiltonian, two of the three terms merge to HðpÞ,
and all ϕðpÞ acquire the form

ϕðpÞ ¼
�
φ1ðpÞ

HðpÞ
EðpÞ þ φ2ðpÞ

�
γ5: ð5Þ

It is not an extremely daring move to assume the
interaction kernel to be of convolution type and to
respect spherical symmetry. In this case, clearly, the trivial
reference to angular variables may be separated from the
dependence on the radial momentum variables p≡ jpj,
etc.; the Salpeter equation (3) can be reduced to an
equivalent system of coupled equations for the radial
factors φiðpÞ of the independent Salpeter components
φiðpÞ, i ¼ 1; 2;…, and the effective interactions may be
described by central potentials VΓðrÞ, each of which enters
the radial equations by its Fourier-Bessel transforms [8,9].
Dropping the index Γ, the latter read, in terms of the
spherical Bessel functions of the first kind [10] jiðzÞ,
i ¼ 0;�1;�2;…,

VLðp; qÞ≡ 8π

Z
∞

0

drr2jLðprÞjLðqrÞVðrÞ; p≡ jpj;

q≡ jqj; L ¼ 0; 1; 2;…:

We intend to infer (or, at least, to constrain) the potential
functions VΓðp; qÞ from some knowledge of the solutions
ϕðpÞ of the Salpeter equation (3). In order to pose a well-
defined inversion problem, the Lorentz nature of the Dirac-
matrix tensor products Γ ⊗ Γ entering in one’s interaction
kernel Kðp; qÞ must be specified. As is done in Refs. [5,6],
we adopt for Γ ⊗ Γ the Fierz-symmetric linear combina-
tion of scalar, pseudoscalar and vector Dirac structures

Γ ⊗ Γ ¼ 1

2
ðγμ ⊗ γμ þ γ5 ⊗ γ5 − 1 ⊗ 1Þ:

Apart from its phenomenological importance, the advan-
tage of this choice is the collapse of the Salpeter equa-
tion (3) for a spin-singlet bound state to two coupled
eigenvalue equations for the two radial components, φ1ðpÞ
and φ2ðpÞ, determining the Salpeter amplitude (5) [7]:

2EðpÞφ2ðpÞ þ 2

Z
∞

0

dqq2

ð2πÞ2 V0ðp; qÞφ2ðqÞ ¼ M̂φ1ðpÞ;

2EðpÞφ1ðpÞ ¼ M̂φ2ðpÞ;

EðpÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
:

ð6Þ

For all bound states with mass eigenvalues M̂≡ffiffiffiffiffiffi
P2

p
¼ 0—and thus, in particular, for every Goldstone

boson, owing to its inevitably vanishing mass—these
equations decouple: the second relation (being of purely
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algebraic nature) forces φ1ðpÞ to vanish identically, i.e.,
φ1ðpÞ≡ 0, whereas the other one—an integral equation
equivalent to the spinless Salpeter equation1—governs, via
φ2ðpÞ, the Salpeter amplitude of any massless spin-singlet
meson:

EðpÞφ2ðpÞ þ
Z

∞

0

dqq2

ð2πÞ2 V0ðp; qÞφ2ðqÞ ¼ 0: ð7Þ

Thus, the general form of each spin-singlet solution ϕðpÞ
corresponding to a vanishing mass eigenvalue M̂ of the
Salpeter equation (3) with the Lorentz structure of its
interaction kernel of the Fierz-symmetric form Γ ⊗ Γ ¼
1
2
ðγμ ⊗ γμ þ γ5 ⊗ γ5 − 1 ⊗ 1Þ is given by ϕðpÞ ¼ φ2ðpÞγ5.

So, the actual task is to solve the Salpeter equation (7) for
known potential function V0ðp; qÞ or, by inversion, to
extract the underlying potential VðrÞ from knowledge of its
solution φ2ðqÞ.

C. Configuration-space inversion
of bound-state problem

Introducing, in terms of the spherical Bessel function
of the first kind j0ðzÞ ¼ ðsin zÞ=z [10], the Fourier-Bessel
transforms of Salpeter component φ2ðpÞ and kinetic term
EðpÞφ2ðpÞ by

φðrÞ≡
ffiffiffi
2

π

r Z
∞

0

dpp2j0ðprÞφ2ðpÞ;

TðrÞ≡
ffiffiffi
2

π

r Z
∞

0

dpp2j0ðprÞEðpÞφ2ðpÞ;

out of the system of coupled relations forming the
Bethe-Salpeter quintessence (6), the only member that
“survives” the Goldstone limit M̂ → 0, Eq. (7), reads, in
configuration space,

TðrÞ þ VðrÞφðrÞ ¼ 0:

From such a bound-state equation, the potential VðrÞ may
be read off by division by φðrÞ [6]:

VðrÞ ¼ −
TðrÞ
φðrÞ : ð8Þ

Of course, some caution must be exercised if the Salpeter
amplitude in configuration space, φðrÞ, exhibits one or
more zeros, since, in general, each such zero will induce a
singularity of the potential VðrÞ: for instance, if φðrÞ proves
to have a single zero at r ¼ r0 > 0, one might be well
advised to first consider the domain ð0; r0Þ∪ðr0;∞Þ and

then take the limits r → r0. It goes without saying that such
due care is implicitly understood in the following analyses.

III. QUARK PROPAGATOR CONSTRAINS
SALPETER AMPLITUDES

In the present context, both the foundation and the
primary source of information for constraining the behavior
of the Salpeter amplitude (1) as a function of the relative
momentum p is the observation [12,13] that, in the chiral
limit, the renormalized axial-vector Ward-Takahashi iden-
tity of QCD relates the solution of the Bethe-Salpeter
equation for a flavor-nonsinglet pseudoscalar meson to the
solution of the Dyson-Schwinger equation for the dressed
quark propagator SðpÞ, defined by two (real) Lorentz-scalar
functions which can be interpreted as the quark mass
function, Mðp2Þ, and the quark wave-function renormal-
ization function, Zðp2Þ:

SðpÞ ¼ iZðp2Þ
p −Mðp2Þ þ iε

; p≡ pμγμ; ε↓0: ð9Þ

From this relationship, we may conclude [6] that, in
Euclidean-space formulation, indicated by underlined
coordinates, the Bethe-Salpeter amplitudes of massless
pseudoscalar mesons in the center-of-momentum frame
(P ¼ 0) are controlled by Mðk2Þ and Zðk2Þ according to

Φðk; 0Þ ∝ Zðk2ÞMðk2Þ
k2 þM2ðk2Þ γ5 þ subleading contributions:

Ignoring the comparatively minor variation of Zðk2Þ with
k2 leads to the sought relation [6]

Φðk; 0Þ ∝ Mðk2Þ
k2 þM2ðk2Þ γ5 þ…: ð10Þ

In Ref. [6], we used as our first piece of information
about Mðk2Þ a kind of byproduct of a QCD-compatible
model calculation [13] of the quark propagator SðkÞ in
Euclidean space, viz., that in the chiral limit the quark mass
function decays for large k2 essentially like k−2:

lim
k2→∞

Mðk2Þ ∝ 1

k2
⇒ lim

k2→∞
Φðk; 0Þ ∝ lim

k2→∞

Mðk2Þ
k2

γ
5
∝

1

k4
γ
5
:

Introducing a parameter μ with the dimension of mass, and
guided by our preference for an analytic treatment if
feasible, we modeled the above feature of Φðk; 0Þ by the
simple ansatz

Φðk; 0Þ ¼ 1

ðk2 þ μ2Þ2 γ5: ð11Þ1For concise reviews elucidating various facets of the spinless
Salpeter equation, consult, e.g., Ref. [11].
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Integration with respect to the Euclidean-time k component
gave, for the Salpeter component φ2ðpÞ,

φ2ðpÞ ¼ 4

ffiffiffiffiffi
μ3

π

r
1

ðp2 þ μ2Þ3=2 ; μ > 0;

∥φ2∥2 ≡
Z

∞

0

dpp2jφ2ðpÞj2 ¼ 1;

which, in configuration space, is just the modified Bessel
function of the second kind K0ðzÞ [10]:

φðrÞ ¼ 4
ffiffiffiffiffiffiffi
2μ3

p
π

K0ðμrÞ; μ > 0;

∥φ∥2 ≡
Z

∞

0

drr2jφðrÞj2 ¼ 1:

For the kinetic term TðrÞ and the potential VðrÞ, this ansatz
yields [6], e.g., for μ ¼ m > 0,

TðrÞ ¼ 2
ffiffiffiffiffiffiffiffiffi
2m3

p

r
expð−mrÞ; VðrÞ ¼ −

π

2

expð−mrÞ
rK0ðmrÞ :

In the following, as our evident next step we improve the
somewhat naive ansatz (11) by accommodating, in addition
to the quark mass function’s asymptotic behavior consid-
ered above, the needs of color confinement as disclosed by
axiomatic quantum field theory [14].

IV. CONSEQUENCES OF THE AXIOM OF
REFLECTION POSITIVITY

Having taken advantage of our knowledge of the ultra-
violet behavior of the quark mass function, logically our
next move must be to fathom the implications of color
confinement for any potential VðrÞ specifying an inter-
action kernel Kðp; qÞ of the Salpeter equation (3).

A. Confinement and analytic properties
of Schwinger functions

From the point of view of experiment, color confinement
forms a just heuristic description of the empirically
established fact of nonobservation of isolated colored
particles—i.e., the absence of the fundamental colored
degrees of freedom of quantum chromodynamics from the
spectrum of observable states. Within the framework of
quantum field theory, a precise definition of color confine-
ment may be formulated [15,16] in terms of Schwinger
functions, specific (not time-ordered) analytic n-point
functions of field operators in Euclidean space, by analytic
continuation of the Wightman functions of axiomatic
quantum field theory [14]. By the Osterwalder-Schrader
reconstruction theorem [17], each Schwinger function

related to an element of the Hilbert space of observ-
ables fulfills the axiom of reflection positivity. In other
words, compliance with the axiom of reflection pos-
itivity forms a necessary condition for such relationship
of Schwinger functions to elements of the Hilbert space
of observables.
For a two-point Schwinger function, the fulfilment of the

axiom of reflection positivity is equivalent to the existence
of a Källén-Lehmann representation of this Schwinger
function. This, in turn, forbids inflection points of this
Schwinger function at spacelike momenta [16]. Phrased the
other way around, a two-point Schwinger function with any
such inflection point violates the axiom of reflection
positivity and therefore cannot correspond to an element
in the Hilbert space of observables: the respective degree of
freedom is subject to confinement.
Our aim is to confine quarks, with mass functionMðk2Þ,

inside a Goldstone-type meson with bound-state mass
M̂ ¼ 0—that is, to prevent the quarks from entering the
spectrum of observables by hindering them from propa-
gating to infinity. In other words, we must assure that a
quark propagator is not the propagator of an observable
particle. According to the above, one circumstance which
guarantees this is the violation of the axiom of reflection
positivity by the (Euclidean-space) quark two-point
Schwinger function, connected to the propagator associated
with the quark in Minkowski space. Now, the Källén-
Lehmann representation of a Schwinger function severely
constrains its momentum-space behavior in a variety of
ways. Among others, it does not tolerate the presence of an
inflection point at spacelike momenta. Hence, a possibility
to achieve such a confinement-enforcing breach of the
axiom of reflection positivity is to assume for the two-point
Schwinger function a behavior incompatible with at least
one of the simple constraints imposed on the analytical
properties of any two-point Schwinger function by the
sheer fact of its possession of a Källén-Lehmann repre-
sentation. Of course, confinement may originate from other
roots or reveal itself in a different manner.
For the purpose of the present investigation, we would

like to place our full wager on the occurrence of an
inflection point. Following an admittedly rather heuristic
line of argument, let us assume that the confinement-
promoting properties of the quark two-point Schwinger
function will be carried over to the quark propagator (9)
in Euclidean-space representation, and let us tentatively
attribute the latter characteristics to some appropriate
behavior of the quark mass function Mðk2Þ. Then, by
Eq. (10), resulting from the relationship between the
(two-point) quark propagator and (three-point) quark-
meson vertex implied [12,13] by the axial-vector Ward-
Takahashi identity of QCD, such facets will eventually get
imprinted on the Bethe-Salpeter amplitude Φðk; 0Þ of the
Goldstone-type quark-antiquark bound state.
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B. Implementation of some consequences
of color confinement

In view of the fundamental interrelationships, compen-
diously sketched in Sec. IVA, between the qualitative
pointwise behavior of propagators in momentum-space
representation and the occurrence of confinement of the
associated elementary excitations, we now consider an
ansatz for the Bethe-Salpeter amplitude compatible with
the requirements of confinement.
Clearly, by way of our starting point, Eq. (10), ensuring

color confinement by asserting the existence of an inflec-
tion point in the quark mass function Mðk2Þ will be
reflected by the pointwise behavior of the associated
Bethe-Salpeter amplitude Φðk; PÞ. Therefore, in the
center-of-momentum frame of the bound state, all these
considerations, combined with our bias towards analytic
manageability, suggest an ansatz for Φðk; 0Þ of still rather
simple form:

Φðk;0Þ¼
�

1

ðk2þμ2Þ2þ
ηk2

ðk2þμ2Þ3
�
γ
5
; μ>0; η∈R:

ð12Þ

An integration with respect to the momentum component
k4 yields the Salpeter amplitude

ϕðkÞ≡ 1

2π

Z
dk4ΦðkÞ

¼ 4ð1þ ηÞk2 þ ð4þ ηÞμ2
16ðk2 þ μ2Þ5=2 γ

5
∝ φ2ðjkjÞγ5;

and thus, according to Eq. (5), the normalized Salpeter
function φ2ðpÞ we are interested in:

φ2ðpÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

256μ3

π½256þηð320þ109ηÞ�

s
4ð1þηÞp2þð4þηÞμ2

ðp2þμ2Þ5=2 ;

∥φ2∥2¼1: ð13Þ

So, in momentum space our Salpeter component exhibits a
smooth behavior. It assumes a (for all η real) finite value at
the origin p ¼ 0, and vanishes, of course, in the limit of
large p:

φ2ð0Þ ¼
16ð4þ ηÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π½256þ ηð320þ 109ηÞ�μ3
p ; φ2ðpÞ !

p→∞
0:

In configuration-space representation, this Salpeter-
component ansatz is expressible by means of two modified
Bessel functionsKnðzÞ of the second kind [10] of the orders
n ¼ 0, 1:

φðrÞ ¼ 16

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ3

256þ ηð320þ 109ηÞ

s

× ½4ð1þ ηÞK0ðμrÞ − ημrK1ðμrÞ�;
∥φ∥2 ¼ 1: ð14Þ

The two specific values η ¼ 0 and η ¼ −1 of the mixing
parameter constitute critical points of the inversion formal-
ism utilized here [4] in the sense that for these two excep-
tional values, it is no longer an interplay of the two
contributions to the right-hand side of Eq. (14) but rather
the first or second term alone that determines the behavior of
the configuration-space Salpeter component function φðrÞ,
and therefore the nature and shape of the interaction potential
VðrÞ. Accordingly, in all following claims these two critical
values of η deserve separate attention.
Obviously, φðrÞ diverges at the origin r ¼ 0, except for

η ¼ −1, and vanishes for large r:

φð0Þ ¼ 16

3π

ffiffiffiffiffiffiffi
2μ3

5

r
for η ¼ −1;

φðrÞ!
r→0

−
64ð1þ ηÞ

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ3

256þ ηð320þ 109ηÞ

s
lnðμrÞ!

r→0
∞

for η ≠ −1;

φðrÞ !
r→∞

0:

Due to the exponential decay of the modified Bessel
functions of the second kind KnðzÞ, n ¼ 0; 1; 2;…, the
configuration-space Salpeter component φðrÞ given by
Eq. (14) has one, and only one, zero, r0, for each choice
of the mixing parameter η lying in one of the intervals
−∞ < η<

≠
− 1 or 0<

≠
η < ∞. Table I lists the numerical

value of this zero (in units of 1=μ) for several choices of η
considered in the following. Barring the rather unlikely
possibility of an accidental zero of the kinetic term TðrÞ at
the same location r ¼ r0, the division by φðrÞ required by

TABLE I. Zero r0 of the Salpeter component (14) for μ ¼ 1 and
various mixing parameters η.

η r0½1=μ�
0.5 11.51002562…
1 7.51478467…
1.5 6.18423766…
2 5.51940196…

η r0½1=μ�
−1.25 0.41415074…
−1.5 0.90800844…
−1.75 1.27449577…
−2 1.55265125…
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Eq. (8) forces the zero r0 to induce a singularity of the
potential VðrÞ at r ¼ r0.
Figure 1 shows, in appropriate units of μ (or, equiv-

alently, for μ ¼ 1), for a few values of the mixing parameter
η, the behavior of our inflection-friendly ansatz for the
independent Salpeter component, in both momentum
space, Eq. (13), and configuration space, Eq. (14).
The only remaining challenge is to deduce the kinetic

term TðrÞ. In the following, this is done for two (trivially)
analytically accessible cases: m ¼ 0 (Sec. VA) and m ¼ μ
(Sec. V B).

V. ANALYTIC CONFIGURATION-SPACE
CONFINING POTENTIALS

Fed with the ansatz (13), our inversion machinery
promptly returns all sought-after potentials.
In view of our discussion of the presence of one zero r0 in

the ansatz (14) for the Salpeter component φðrÞ in Sec. IV B,
we have to expect that, for any value of the mixing parameter
η outside the “safe” interval −1 ≤ η ≤ 0, any potential VðrÞ
inferred in this way will develop a singularity at the location
of this zero r0. As a matter of fact, this singularity will prove
to be an infinite discontinuity of VðrÞ and VðrÞ to exhibit
one of the following two behaviors:

VðrÞ !
r→r−

0

þ∞; V 0ðrÞ !
r→r−

0

þ∞;

VðrÞ !
r→rþ

0

−∞; V 0ðrÞ !
r→rþ

0

þ∞;

VðrÞ !
r→r−

0

−∞; V 0ðrÞ !
r→r−

0

−∞;

VðrÞ !
r→rþ

0

þ∞; V 0ðrÞ !
r→rþ

0

−∞:

The mixing ~η where VðrÞ flips from one to the other is fixed
by its competing contributions.
As a consequence, for η∉½−1; 0�, when tracing this

potential VðrÞ, for r rising from the origin r ¼ 0, one
encounters an infinite discontinuity situated at r ¼ r0, i.e., a
region where this potential VðrÞ grows beyond bounds.
Accordingly, for interquark separations r smaller than
the φðrÞ zero r0—that is, in the region 0 ≤ r < r0—the
potential VðrÞ can be claimed to exhibit a confining
behavior. In this spirit, the location r0 of the singularity
of VðrÞ off the spatial origin r ¼ 0 might be interpreted as
introducing some sort of “confinement radius.”

A. Analytic treatment: Bound-state constituents
of mass m ¼ 0

For massless quarks, i.e., if m ¼ 0, the configuration-
space kinetic term TðrÞ corresponding to the Salpeter
component (14) can be expressed in terms of both modified
Bessel functions of the first kind [10] InðzÞ for n ¼ 0, 1 and
modified Struve functions [10] LnðzÞ for n ¼ 0, 1:

TðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2μ3

256þ ηð320þ 109ηÞ

s
8

πr

× fπ½4þ ηð4þ μ2r2Þ�½I0ðμrÞ −L0ðμrÞ�
þ πð4þ 5ηÞμr½I1ðμrÞ −L1ðμrÞ� − 4ð2þ 3ηÞμrg:

In the extracted interaction potential, the nasty normaliza-
tion factor necessarily drops out:
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FIG. 1. Independent Salpeter component fully defining, at least for any Salpeter equation (3) characterized by the Lorentz structure
2Γ ⊗ Γ ¼ γμ ⊗ γμ þ γ5 ⊗ γ5 − 1 ⊗ 1 of the interaction kernel, the Salpeter amplitude (5) for pseudoscalar mesons, shown in adequate
units of μ in its (a) momentum-space representation, φ2ðpÞ ∝ ðp2 þ 1Þ−3=2 þ ηðp2 þ 1

4
Þðp2 þ 1Þ−5=2, and its (b) configuration-space

representation, φðrÞ ∝ K0ðrÞ þ η½K0ðrÞ − rK1ðrÞ=4�, at the values η ¼ 0 (black solid line, Sec. IV. C of Ref. [6]), η ¼ 0.5 (red dotted
line), η ¼ 1 (magenta short-dashed line), η ¼ 1.5 (blue long-dashed line) and η ¼ 2 (violet dot-dashed line) of our mixing parameter.
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VðrÞ ¼ −fπ½4þ ηð4þ μ2r2Þ�½I0ðμrÞ −L0ðμrÞ� þ πð4þ 5ηÞμr½I1ðμrÞ −L1ðμrÞ� − 4ð2þ 3ηÞμrg
f2r½4ð1þ ηÞK0ðμrÞ − ημrK1ðμrÞ�g

. ð15Þ

With the relation πL1ðzÞ þ 2 ¼ πL−1ðzÞ [e.g.,
Eq. (12.2.4) of Ref. [10] for ν ¼ 0], it is trivial to show
that, for η ¼ 0, this potential VðrÞ reduces to that found in
Sec. V. A of Ref. [6]. At the origin r ¼ 0, this potential
VðrÞ develops, except for η ¼ −1, a Coulomb singularity
governed by the first term in its denominator and
logarithmically softened by the divergent behavior,
K0ðx → 0Þ ≈ − lnðxÞ, of the modified Bessel function
of the second kind K0ðxÞ:

Vð0Þ ¼ −2μ for η ¼ −1;

VðrÞ!
r→0

π

2r lnðμrÞ !r→0
−∞ for η ≠ −1:

With the exception of the case η ¼ −1, for which this
potential VðrÞ assumes a finite value, the independence of
this short-distance behavior of VðrÞ from the parameter η
controlling the amount of admixture of the second term in
our ansatz (12) renders clear the irrelevance of the second
term in the denominator of VðrÞ for the behavior of VðrÞ
at the origin r ¼ 0.
For the distance r rising from zero to ∞, the qualitative

behavior of the potential (15), exemplified in Figs. 2

through 4 in units of appropriate powers of μ (which is
tantamount to setting μ ¼ 1), varies among regions of η
separated by the critical points η ¼ 0 and η ¼ −1:
(1) For η > 0 (Fig. 2), VðrÞ rises for increasing r

monotonically to ∞ at the discontinuity at r ¼ r0,
where it jumps from þ∞ to −∞ and then remains
below zero up to r ¼ ∞.

(2) For −1 < η ≤ 0 (Fig. 3), in spite of the absence of
zeros in φðrÞ in this case, VðrÞ rises for increasing r
monotonically from its notorious singularity at r ¼
0 to ∞ for large r.

(3) For η ≤ −1 (Fig. 4), VðrÞ is affected by its “switch-
ing” value of η, ~η ≈ −1.520216412:
(a) For ~η < η < −1, with rising r, VðrÞ first stays

below zero up to r0; there it jumps from −∞ to
þ∞, then passes a local minimum and finally
rises to ∞ for large r.

(b) For −∞ < η < ~η, for r approaching the φðrÞ-
induced discontinuity from the left VðrÞ rises to
∞, then jumps fromþ∞ to −∞, and rises again,
for r → ∞, to ∞.
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FIG. 2. Configuration-space potential VðrÞ extracted from the
Salpeter equation (3) with interaction-kernel Lorentz structure
2Γ ⊗ Γ ¼ γμ ⊗ γμ þ γ5 ⊗ γ5 − 1 ⊗ 1 by assuming the ansatz
φ2ðpÞ ∝ ðp2 þ 1Þ−3=2 þ ηðp2 þ 1

4
Þðp2 þ 1Þ−5=2 for the nonvan-

ishing component of the Salpeter amplitude (5) to describe
massless pseudoscalar bound states of fermions with mass
m ¼ 0: VðrÞ ¼ −NðrÞ=DðrÞ with the two abbreviations
DðrÞ≡2r½4ð1þηÞK0ðrÞ−ηrK1ðrÞ� and NðrÞ≡π½4þηð4þr2Þ�
½I0ðrÞ−L0ðrÞ�þπð4þ5ηÞr½I1ðrÞ−L1ðrÞ�−4ð2þ3ηÞr for nota-
tional ease introduced for the denominator and numerator,
respectively, depicted for the values η ¼ 0 (black solid line,
Sec. V. A of Ref. [6]), η ¼ 0.5 (red dotted line), η ¼ 1 (magenta
short-dashed line), η ¼ 1.5 (blue long-dashed line) and η ¼ 2
(violet dot-dashed line) of our mixing parameter.
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FIG. 3. Configuration-space potential VðrÞ extracted from the
Salpeter equation (3) with interaction-kernel Lorentz structure
2Γ ⊗ Γ ¼ γμ ⊗ γμ þ γ5 ⊗ γ5 − 1 ⊗ 1 by assuming the ansatz
φ2ðpÞ ∝ ðp2 þ 1Þ−3=2 þ ηðp2 þ 1

4
Þðp2 þ 1Þ−5=2 for the nonvan-

ishing component of the Salpeter amplitude (5) to describe
massless pseudoscalar bound states of fermions with mass
m ¼ 0, VðrÞ ¼ −NðrÞ=DðrÞ with the two abbreviations
DðrÞ≡2r½4ð1þηÞK0ðrÞ−ηrK1ðrÞ� and NðrÞ≡π½4þηð4þr2Þ�
½I0ðrÞ−L0ðrÞ�þπð4þ5ηÞr½I1ðrÞ−L1ðrÞ�−4ð2þ3ηÞr for the
numerator and denominator, respectively, for a few η-parameter
choices from the interval −1 ≤ η ≤ 0: η ¼ 0 (black solid line,
again Sec. V. A of Ref. [6]), η ¼ −0.25 (red dotted line), η ¼
−0.5 (magenta short-dashed line), η ¼ −0.75 (blue long-dashed
line), and η ¼ −1 (violet dot-dashed line).
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With due satisfaction we find that, for massless quarks, the
ansatz (12) defines, irrespective of the choice of the mixing
η, for one reason or the other a potential capable of
confinement.

B. Analytic result: Bound-state constituents
of mass m ¼ μ > 0

In case the bound-state constituents’ mass m equals
precisely the mass μ that parametrizes our ansatz (12)—that
is, for μ ¼ m > 0—the numerator and denominator of the
integrand in the Fourier-Bessel transform of the kinetic
term EðpÞφ2ðpÞ resemble each other to a degree that
enables TðrÞ to be an analytic expression with Yukawa and
exponential contributions:

TðrÞ ¼ 4
ffiffiffiffiffiffiffiffiffi
2m3

p
½8þ ηð8 − 3mrÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

256þ ηð320þ 109ηÞp expð−mrÞ
r

:

Accordingly, our prototype potential for the case of massive
bound-state constituents reads

VðrÞ ¼ −
π½8þ ηð8 − 3mrÞ� expð−mrÞ

4r½4ð1þ ηÞK0ðmrÞ − ηmrK1ðmrÞ� : ð16Þ

Similarly to the case m ¼ 0 studied in Sec. VA, and for the
same reasons, except for η ¼ −1 the potential VðrÞ has its

logarithmically softened Coulomb singularity at the origin
r ¼ 0:

Vð0Þ ¼ −3πm=4 ¼ −m × 2.35619449… for η ¼ −1;

VðrÞ!
r→0

π

2r lnðmrÞ !r→0
−∞ for η ≠ −1:

In the limit r → ∞, all VðrÞ approach zero, with decay
controlled for η ¼ 0 by the modified Bessel function K0

[6], but for η ≠ 0 by the modified Bessel function K1 in the
denominator:

VðrÞ ¼ −
π

2

expð−mrÞ
rK0ðmrÞ !

r→∞
−

ffiffiffiffiffiffiffi
πm
2r

r
!
r→∞

0 for η ¼ 0½6�;

VðrÞ !
r→∞

−
3π

4

expð−mrÞ
rK1ðmrÞ !

r→∞
−
3

2

ffiffiffiffiffiffiffi
πm
2r

r
!
r→∞

0 for η ≠ 0:

The potential (16) rises to∞ in precisely those regions of
η that enforce a zero of φðrÞ, as depicted, for μ ¼ 1, in
Figs. 5 and 6 for those cases where a confining behavior
is found:
(1) For η > 0 (Fig. 5), VðrÞ fulfils all confining obli-

gations by growing beyond bounds for r↗r0, then
drops from þ∞ to −∞, and finally approaches zero
in the limit r → ∞.

(2) For −1 ≤ η ≤ 0, in which case VðrÞ does not
encounter a φðrÞ-related singularity, the monotonic
rise with r to the asymptotic value Vð∞Þ ¼ 0
betrays lack of confinement.
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FIG. 4. Configuration-space potential VðrÞ extracted from the
Salpeter equation (3) with interaction-kernel Lorentz structure
2Γ ⊗ Γ ¼ γμ ⊗ γμ þ γ5 ⊗ γ5 − 1 ⊗ 1 by assuming the ansatz
φ2ðpÞ ∝ ðp2 þ 1Þ−3=2 þ ηðp2 þ 1

4
Þðp2 þ 1Þ−5=2 for the nonvan-

ishing component of the Salpeter amplitude (5) to describe
massless pseudoscalar bound states of fermions with mass
m ¼ 0, VðrÞ ¼ −NðrÞ=DðrÞ with the two abbreviations
DðrÞ≡2r½4ð1þηÞK0ðrÞ−ηrK1ðrÞ� and NðrÞ≡π½4þηð4þr2Þ�
½I0ðrÞ−L0ðrÞ�þπð4þ5ηÞr½I1ðrÞ−L1ðrÞ�−4ð2þ3ηÞr for the
numerator and denominator, respectively, for a few η-parameter
values from the range −∞ < η ≤ −1: η ¼ −1 (black solid line, as
a benchmark), η ¼ −1.25 (red dotted line), η ¼ −1.5 (magenta
short-dashed line), η ¼ −1.75 (blue long-dashed line), and
η ¼ −2 (violet dot-dashed line).
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FIG. 5. Configuration-space potential VðrÞ extracted from
the Salpeter equation (3) with interaction-kernel Lorentz
structure 2Γ ⊗ Γ ¼ γμ ⊗ γμ þ γ5 ⊗ γ5 − 1 ⊗ 1 by assuming
the ansatz φ2ðpÞ ∝ ðp2 þ 1Þ−3=2 þ ηðp2 þ 1

4
Þðp2 þ 1Þ−5=2 for

the nonvanishing component of the Salpeter amplitude (5) to
describe massless pseudoscalar bound states of fermions
with mass m ¼ 1: VðrÞ ¼ −fπ½8þ ηð8 − 3rÞ� expð−rÞg=
f4r½4ð1þ ηÞK0ðrÞ − ηrK1ðrÞ�g, for the values η ¼ 0 (black solid
line, Sec. V. B of Ref. [6]), η ¼ 0.5 (red dotted line),
η ¼ 1 (magenta short-dashed line), η ¼ 1.5 (blue long-dashed
line) and η ¼ 2 (violet dot-dashed line) of our mixing parameter.
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(3) For η < −1 (Fig. 6), the jump of VðrÞ at its
discontinuity flips for ~η ≈ −1.463012572:
(a) For ~η < η < −1, VðrÞ remains strictly negative

up to r0, performs a −∞ to þ∞ jump and
approaches in the limit r → ∞, via a local
minimum, zero from below.

(b) For −∞ < η < ~η, VðrÞ rises with r at its inevi-
table jump discontinuity at r ¼ r0 to þ∞,
succumbs to a fall to −∞ and resumes its rise
to zero in the far distance.

We are led to conclude that a proper incorporation of
confinement, manifesting itself by the presence of an
infinite discontinuity at the location of the zero r0 of the
configuration-space Salpeter amplitude φðrÞ, entails a
drastic alteration of the physical impact of the extracted
potential VðrÞ: whereas in Ref. [6], starting from a Salpeter-
amplitude ansatz equivalent to the special case of a
vanishing admixture of the second term in our present
ansatz (12), i.e., for η ¼ 0, we observed that not only for
m ¼ μ > 0 but, in fact, for allm ≥ μ the extracted potential
is not confining, here we obtain also for quarks with
nonzero mass, at least for the case m ¼ μ, confinement for
any mixing η∉½−1; 0� enabling the existence of a zero
of φðrÞ.

VI. SUMMARY AND DISCUSSION OF
FINDINGS, AND OUTLOOK

In the present study, we demonstrated, within an instanta-
neous Bethe-Salpeter formalism, that it is achievable to
formulate, for pseudoscalar mesons, exact analytical solu-
tions of the homogeneous Bethe-Salpeter equation for quark-
antiquark bound states that exhibit both the absolute confine-
ment demanded from colored degrees of freedom and the
masslessness expected for all Goldstone bosons related to
spontaneously broken continuous symmetries, in the sense of
establishing a rigorous relationship between tentatively
postulated solutions and the form of the effective interaction
responsible for the formation of such bound states.
By inversion, we harvest the effective interactions in the

disguise of configuration-space potentials that carry an
imprint of confinement2: the absence of free colored states
entails a zero of the bound-state wave function, which
causes the potentials to rise without limit at finite interquark
distance and thus appears as the crucial ingredient of the
present scenario.
Needless to say, our next step has to be to leave the

comparatively safe realm of analytic investigations and to
exploit the explicit findings for the quark mass functions
derived from phenomenologically reliable QCD-based mod-
els within the framework of Dyson-Schwinger equations
existing in the literature (unfortunately, however, available at
present only as the results of numerical computations) in
order to obtain a still more realistic understanding of the way
the strong interactions enter in the Salpeter approach to pions
and kaons [18]. Such analysis might even culminate in an
attempt to approximately reconstruct the shape of the Bethe-
Salpeter amplitudes for light pseudoscalar mesons in form of
an analytic expression.
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FIG. 6. Configuration-space potential VðrÞ extracted from
the Salpeter equation (3) with interaction-kernel Lorentz
structure 2Γ ⊗ Γ ¼ γμ ⊗ γμ þ γ5 ⊗ γ5 − 1 ⊗ 1 by assuming
the ansatz φ2ðpÞ ∝ ðp2 þ 1Þ−3=2 þ ηðp2 þ 1

4
Þðp2 þ 1Þ−5=2 for

the nonvanishing component of the Salpeter amplitude (5) to
describe massless pseudoscalar bound states of fermions
with mass m ¼ 1, VðrÞ ¼ −fπ½8þ ηð8 − 3rÞ� expð−rÞg=
f4r½4ð1þ ηÞK0ðrÞ − ηrK1ðrÞ�g, for “confining,” yet negative
mixing: η ¼ −1 (black solid line), η ¼ −1.25 (red dotted line),
η ¼ −1.5 (magenta short-dashed line), η ¼ −1.75 (blue long-
dashed line), and η ¼ −2 (violet dot-dashed line).

2One might wonder whether such a potential provides absolute
confinement. However, due to the rise of the potential to infinity
in suitable intervals adjacent to the off-origin discontinuity, we
may take as granted that any transmission coefficient for the
corresponding Schrödinger problem vanishes. Since the relativ-
istic kinetic energy is bounded from above by its nonrelativistic
counterpart, entering the Schrödinger equation, we expect that the
transmission coefficient of a spinless Salpeter equation with such
potential vanishes too.
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