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Observable states are gauge invariant. In a non-Abelian gauge theory, these are necessarily composite
operators. We investigate the spectrum of these operators in the two-Higgs-doublet model. For this purpose,
we are working along the lines of the Fröhlich-Morchio-Strocchi mechanism to relate the physical
spectrum to the spectrum of the elementary particles. We also investigate the consequences of spontaneous
breaking of the global (custodial) symmetry group. Finally, we briefly comment on how to test the results
using lattice methods.
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I. INTRODUCTION

One requirement of particle physics theories is that their
experimentally observable consequences must be gauge
invariant. In Abelian gauge theories, this is achieved by a
suitable dressing of elementary operators yielding gauge-
invariant states and a gauge-invariant electric charge [1,2].
This additional dressing has a minor quantitative influence,
and therefore a perturbative description using the elemen-
tary, gauge-dependent electron and photon fields is suc-
cessful. Nonetheless, objects like the hydrogen atom can
still not be described perturbatively.
In non-Abelian gauge theories, the situation is more

involved. Every gauge-invariant operator is necessarily
composite, and gauge charges cannot be made gauge
invariant [1]. For QCD, due to confinement, this does
not surface as an additional complication, as only
composite states, hadrons, can be observed anyway. The
situation in the weak case is more subtle, due to the Brout-
Englert-Higgs (BEH) effect.
Since the gauge symmetry remains—even in the pres-

ence of the BEH effect—unbroken [3], gauge-invariant
states are still necessarily composite. These should be
considered to be the relevant degrees of freedom [4,5].
This is emphasized by the fact that the (lattice-regularized)
weak-Higgs sector shows no phase transition when moving
into a region with QCD-like physics, i.e. exhibiting con-
finement of weak charges in the sameway as in QCD [6–9].
Somewhat surprisingly, the spectrum of the weak-Higgs

sector is nonetheless described exceedingly well by the
spectrum of the elementary, gauge-dependent Higgs and
weak gauge boson fields in perturbation theory [10]. The
explanation for this rests in a combination of the special
structure of the Higgs sector together with the values of the
parameters in the standard model, the Fröhlich-Morchio-
Strocchi (FMS) mechanism [11,12]. In particular, in
the standard model, there is no spontaneous symmetry
breaking—not of the gauge or of the global (custodial)
symmetry group of the Higgs potential. It is, therefore,

a priori not clear whether, in theories with a different Higgs
sector, a similar argument could be made and, therefore,
whether perturbation theory would be at all able to predict
correctly the observable particle spectrum [13,14].
Arguably the simplest extension of the standard model

which alters these structural properties are two-Higgs-
doublet models (2HDM) [15], keeping the gauge group
but changing the global symmetry group of the Higgs
potential by adding a second Higgs doublet. Following the
standard perturbative treatment1 of the two-Higgs-doublet
model [15,17,18], we will apply the FMS mechanism to
this model and discuss lattice simulations to study it; in
particular, we will study its spectrum and the spontaneous
symmetry breaking of the global symmetry group (which is
indeed possible to occur in 2HDMs [19]).
In Sec. II, we will study the gauge-invariant operators in

the 2HDMs. This is important not only to apply the FMS
mechanism but also to prepare for lattice simulations. To
handle various global symmetry groups of the Higgs
potential, we employ the language of Majorana matrices
and spinors [17], reviewed in Sec. III. After this, we will
review and apply the FMS mechanism to the 2HDMs in
Sec. IV. We formulate spontaneous symmetry breaking in
Sec. V. We elaborate on the FMS mechanism in 2HDM
in Sec. V. In particular, we study the Spinð4Þ symmetric
potential and discuss the situations when a continuous or
discrete symmetry group is spontaneously broken in
Sec. VII. We outline how the results and assumptions
could be tested in lattice simulations of 2HDMs in
Sec. VIII, which is possible in principle [19,20]. This
would complement other investigations of beyond-the-
standard-model physics (BSM) using lattice techniques
[21]. The extension to include photons and fermions will be
discussed in Secs. IX and X, respectively. We conclude
in Sec. XI.

1We follow the conventions used in Ref. [16] for the signs and
constants.
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II. GAUGE-INVARIANT OPERATORS

We want to know the gauge-invariant operators of the
2HDM and, among these, the observable states that can be
identified with the elementary gauge-dependent fields in
perturbation theory (when the gauge is fixed).
Consider, for the moment, just the weak-Higgs

sector: there are two weak SUð2ÞL Higgs doublets ϕ1,
ϕ2 and the gauge field Wj

μ with j, k, l ¼ 1, 2, 3. The
Lagrangian is:

L≡ ððDμϕ1Þ†ðDμϕ1Þ þ ððDμϕ2Þ†ðDμϕ2Þ − Vðϕ1;ϕ2Þ

− 1

4
Wj

μνWjμν

Dμ ≡ ∂μ þ igWj
μ
σj

2

Wj
μν ≡− i

g
trð½Dμ; Dν�σjÞ ¼ ∂μW

j
ν − ∂νW

j
μ − gϵjklWk

μWl
ν;

where Vðϕ1;ϕ2Þ is the Higgs Potential, Dμ is the covariant

derivative dependent on the gauge field Wa
μ, W

j
μν is the

gauge field strength tensor, g is the coupling constant, ϵjkl is
the Levi-Civita tensor, and σj are the Pauli matrices in
gauge space.
The construction is more involved than for one Higgs

doublet, as it is possible to construct more gauge-invariant
composite operators from the two Higgs fields. In this
paper, we consider only polynomial operators.2 Any poly-
nomial combination of ϕ1, ϕ2 which is gauge invariant is a
polynomial on the linear independent inner products and
skew-symmetric terms [23]. The inner products are ϕ�

1aϕ
a
1 ,

ϕ�
2aϕ

a
2 , ϕ

�
2aϕ

a
1; there are also the skew-symmetric combi-

nations ϵabϕ
a
1ϕ

b
2 and ϵabϕ

a�
1 ϕb�

2 , with ϵab the Levi-Civita
symbol in two dimensions and ϕ�

jb ≡ ðϕb
j Þ� is the complex

conjugate with j ¼ 1, 2.
Besides these composite operators involving fields at

the same space-time points, it is possible to construct
composite operators like ϕ†

1ðxÞUðx; y; CÞϕ1ðyÞ, where
Uðx; y; CÞ is the parallel transport from y to x along
the path C. For an infinitesimal path, the parallel
transport involves the covariant derivative and for a
pointlike path this reduces to the previous set of
operators.
It is, of course, possible to construct gauge-invariant

composite operators just from gauge fields, essentially
W=Z balls. Since these do not involve Higgs fields, they

are the same as in Yang-Mills theory and, therefore, play no
role here.3

The basis of 16 types of primitive (i.e. algebraically
independent) gauge-invariant operators involving the Higgs
fields is, therefore,

(i) ϕ†
jðxÞUðx; y; CÞϕkðyÞ

(ii) ϕ†
jðxÞUðx; y; CÞϕ̄kðyÞ

(iii) ϕ̄†
jðxÞUðx; y; CÞϕkðyÞ

(iv) ϕ̄†
jðxÞUðx; y; CÞϕ̄kðyÞ

where ϕ̄j
aðxÞ≡ ϵabϕ�

jbðxÞ, the indices j, k ¼ 1, 2 are Higgs
flavor indices and a, b ¼ 1, 2 are gauge indices. The
parallel transport Uðx; y; CÞ is from y to x following the
path (line) C. It is an SUð2ÞL matrix (with no Higgs flavor
indices) and so it satisfies

Ua
dðx; y; CÞ ¼ −ϵabU�c

b ðx; y; CÞϵcd;
where U�c

b ðx; y; CÞ≡ ðUb
cðx; y; CÞÞ�

ϕ̄†
jðxÞUðx; y; CÞϕ̄kðyÞ ¼ ðϕ†

jðxÞUðx; y; CÞϕkðyÞÞ�
ϕ̄†
jðxÞUðx; y; CÞϕkðyÞ ¼ −ðϕ†

jðxÞUðx; y; CÞϕ̄kðyÞÞ�:

Therefore, the above list includes the complex conjugates
of all the operators of the list.
Note that for infinitesimal line elements

Uðx;y;CÞ≈ð1þDμðxÞdlμ1Þð1þDνðxÞdlν2Þ…ð1þDαðxÞdlαnÞ

where dl1; dl2;…; dln (with n finite) are infinitesimal
Lorentz vectors which form the infinitesimal path C by
concatenation. In the following, we mainly consider the
terms of order 1, yielding a scalar part, and of order dl1,
yielding a Lorentz vector part.

III. MAJORANA CONSTRUCTION

In this section, we write the possible gauge-invariant
operators in the language of Majorana spinors (representa-
tions of the symmetry of the Higgs doublets, not of the
Lorentz group) [17]. We use matrices with well defined
commutation relations instead of the Higgs flavor indices.
It is useful for that purpose to review some consequences of
generalizations of Pauli’s theorem [27]:
Let Aa, Ba, a ∈ f1;…; 2ngwith n < 4 a natural number,

be two sets of 2n × 2n complex unitary matrices satisfying

AaAb þ AbAa ¼ 2gab1

BaBb þ BbBa ¼ 2gab1
2The result above can be extended [22]: a generic function f of

the fields ϕ1ðxÞ, ϕ2ðxÞ and the Wilson lines Uðx; y; CÞ is a
function of the primitive operators listed in the basis of 16 types,
with no restriction on f to be a polynomial. What this generically
means can be found in [22]. E. g. f must have a finite number of

arguments. For instance, the length of the Higgs field
ffiffiffiffiffiffiffiffiffiffi
ϕ†
1ϕ1

q
is a

function of the operator ϕ†
1ϕ1, included in the above list.

3The gauge-invariant content of the gauge field can be written
as a function of the traces of Wilson loops, i.e. trðUðx; x; C0ÞÞ
with C0 a closed path [24] (in classical field theory it is proved, in
quantum field theory it is believed). Nonperturbatively, these
operators also carry all the information about the bound-state
spectrum, if they have nonzero overlap with all states [25,26].
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where g≡ diagð−1;…;þ1;…Þ, with n entries equal to −1
and n entries equal to þ1. Then:
(1) there is a complex unitary matrix S such that

Ba ¼ SAaS−1, for all a ∈ f1;…; 2ng. S is unique
up to a phase;

(2) there is a basis where all Aa are real. If Aa and Ba are
all real, then S can be made real;

(3) the Clifford algebra over the complex (resp. real)
numbers generated by the matrices Aa is isomorphic
to the algebra of the 2n × 2n complex (resp. real)
matrices.

Also useful is the conjugation operator Θ, an antilinear
involution commuting with the matrices Aa. It follows from
the above theorem that Θ is unique up to a complex phase.
The set of Majorana spinors is the set of 2n-dimensional
complex vectorsu satisfying theMajorana condition (defined
up to a complex phase)Θu ¼ u. The set ofMajorana spinors
is then a 2n-dimensional real vector space. Note that linear
combinations of Majorana spinors with complex prefactors
in general do not satisfy the Majorana condition.
In the following, we will consider different dimensions

2n for the Majorana spinors. For n ¼ 1, we define the Pauli
matrices as σ1 ≡ A2, σ2 ≡ iA1, σ3 ≡−iσ1σ2 ¼ A2A1. The
Pauli spinor is a two-dimensional complex vector.

For n ¼ 2, let Φ≡ 1ffiffi
2

p
h
ξ̄
ξ

i
be a Majorana spinor satisfy-

ing the Majorana condition ðiσ2 ⊗ iσ2ÞΦ� ¼ Φ, implying
ξ̄ ¼ iσ2ξ� where ξ is a Pauli spinor. The Pauli matrix on the
right acts on the Pauli spinors ξ, ξ̄, the one on the left acts on

the space
h
ξ̄
ξ

i
. Below it is illustrated how the usual Higgs

doublet is rewritten as a Majorana spinor, and how both
gauge and custodial transformations act.4

For the 2HDM, there is also a flavor space and thus an
eight-dimensional Majorana spinor is necessary. Consider

for n ¼ 3, ϕ≡
hΦ1

Φ2

i
, where Φ1;2 are the previous four-

dimensional Majorana spinors. Then ϕ satisfies the
Majorana condition ð1 ⊗ iσ2 ⊗ iσ2Þϕ� ¼ ϕ. In this
expression, the Pauli matrix on the right acts on the
Pauli spinors, the one in the middle acts on the custodial

space
h ~ξ
ξ

i
, while the one on the left acts on the flavor

space
hΦ1

Φ2

i
.

We define now Σj ≡ Ajþ3 (j ¼ 1, 2, 3), Σ4 ≡ A1A2A3

and Σ5 ≡ Σ1Σ2Σ3Σ4 ¼ −A7. There is a basis where
ϵjklAkAl ¼ 1 ⊗ 1 ⊗ iσj, ϵjklΣkΣl ¼ 1 ⊗ iσj ⊗ 1, Σ5 ¼
σ3 ⊗ 1 ⊗ 1 and Σ4 ¼ σ1 ⊗ 1 ⊗ 1.
The generators of the gauge transformations SUð2ÞL

are ϵjklAkAl ¼ 1 ⊗ 1 ⊗ iσj. We use the shorter nota-
tion iσjϕ≡ ð1 ⊗ 1 ⊗ iσjÞϕ.
The matrices 1;Σa a ¼ 1;…; 5 form a basis for

the Hermitian matrices conserved by the generators of
SUð2ÞL. Note that the Σa anticommute with each
other. The matrices ½Σa;Σb� form a basis for the
skew-Hermitian matrices conserved by the generators
of SUð2ÞL and are the generators of a Spinð5Þ
group.5

Therefore we rewrite the basis of 16 types of primitive
composite operators as

(i) ϕ†ðxÞUðx; y; CÞϕðyÞ (singlet under SOð5Þ);
(ii) ϕ†ðxÞUðx; y; CÞΣaϕðyÞ (5 representation of

SOð5Þ);
(iii) ϕ†ðxÞUðx; y; CÞ½Σa;Σb�ϕðyÞ; a; b ¼ 1;…; 5 (10

representation of SOð5Þ);

IV. OBSERVABLE STATES OF THE
TWO-HIGGS-DOUBLET MODEL

We can now evaluate the spectrum of the 2HDMs. For
this purpose, we specify the Higgs potential of the model
and its symmetry group, following the basis-invariant
formalism [18].

VðϕÞ ¼ μaϕ
†Σaϕþ 1

2
λabðϕ†ΣaϕÞðϕ†ΣbϕÞ

where a; b ¼ 0; 1;…5 and Σ0 ≡ 1.

4For n ¼ 2, we identify A1 ¼ 1 ⊗ iσ1, A2 ¼ 1 ⊗ iσ2, A3A4 ¼
iσ3 ⊗ 1, A4A5 ¼ iσ1 ⊗ 1. The SUð2ÞL group generators are Aa

while the matrices ½Aa; Ab� (a, b ¼ 3, 4, 5) form a basis for the
skew-Hermitian matrices invariant under SUð2ÞL. These matrices
form a Spinð3Þ group, i.e. the SUð2ÞR custodial group [15].

Take a Pauli spinor ξ ¼
h aþ ib
cþ id

i
, with a, b, c, d real numbers.

Then it is mapped on a Majorana spinor
ffiffiffi
2

p
Φ ¼

h
ξ̄
ξ

i
¼

ae1 þ be2 þ ce3 þ de4, where the basis vectors are the columns
of the matrix:

U†≡ 1ffiffiffi
2

p ½e1 e2 e3 e4 �

¼

2
6664

0 0 1 −i
−1 i 00

1 i 0 0

0 0 1 i

3
7775; which changes to a real basisUΦ¼

2
6664

a

b

c

d

3
7775

We have ðiσ2 ⊗ iσ2Þ ¼ U†U� and so the Majorana condition is
the real condition U�Φ� ¼ UΦ. The Majorana condition is
equivalently Φbc ¼ ϵbdϵcfΦ�

df where Φ�
bc ≡ ðΦbcÞ�.

5the full group is ðSpinð5Þ × SUð2ÞLÞ=Z2; Spinð5Þ is the double
cover of SOð5Þ; ½Σa;Σb�≡ΣaΣb−ΣbΣa is the commutator; 1 ¼
1
5!
ϵabcdfΣaΣbΣcΣdΣf and so Σa ¼ 1

4!
ϵabcdfΣbΣcΣdΣf; Uðx; y; CÞ

acts on the gauge indices and so it commutes with Σa.
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If we promote the parameters of the Higgs potential to
background fields,6 the Lagrangian is invariant under the
gauge group SUð2ÞL and the group of background
symmetries Spinð5Þ with generators ½Σa;Σb�. The gauge-
invariant composite operators are, therefore, classified
according to the representations of the global Spinð5Þ
group. The elementary eight-dimensional spinor ϕ
containing the Higgs fields is the tensor product of a
four-dimensional complex representation of Spinð5Þ and a
two-dimensional complex representation of SUð2ÞL, veri-
fying a Majorana condition. Hence, for a, b ≠ 0, μ0, λ00 are
singlets, μa, λ0a are five-dimensional representations of
SOð5Þ and λab is a tensor of SOð5Þ.
Now let Vðϕ ¼ vffiffi

2
p ϕ0Þ be an absolute minimum of the

classical potential, where v is the vacuum expectation value
(VEV) and ϕ†

0ϕ0 ¼ 1. Without loss of generality due to the
background symmetry, by reparametrization of the Higgs
potential we assume that Σ5ϕ0 ¼ ϕ0. Such a condition
involving Σ5 is not invariant for the generators ½Σ5;Σa� and
so it breaks the background symmetry Spinð5Þ → Spinð4Þ.
The consequences of this breaking will be discussed in the
next section. We define H1 ≡ 1þΣ5

2
ϕ and H2 ≡ Σ4

1−Σ5

2
ϕ;

hence, if ϕ ¼ vffiffi
2

p ϕ0 then H2 ¼ 0. Note that H1, H2 are not

complex doublets but four-dimensional Majorana spinors.
In Table I, 16 primitive operators are listed. There the
isomorphism Spinð4Þ≃ ðSUð2ÞR1 × SUð2ÞR2Þ with the
SUð2ÞR1 generators ΣjΣ4ð1þ Σ5Þ=2 and the SUð2ÞR2
generators ΣjΣ4ð1 − Σ5Þ=2 was used to classify the states.
After a complete gauge fixing in a suitable gauge

[11,12,29] the BEH effect allow us to expand the Higgs
field

ffiffiffi
2

p
ϕ ¼ vϕ0 þ φ around a constant reference point

vffiffi
2

p ϕ0 minimizing the Higgs potential. We assume now that

the fluctuations φ around the vacuum are generically small
compared to v. The reference point is chosen to obey

iσjϕ0 ¼ Σ4Σjϕ0 ðj ¼ 1; 2; 3Þ:

Thus, ϕ0 conserves a SOð3Þ × Spinð3Þ≃ ðSUð2ÞR1 ×
SUð2ÞR2Þ=Z2 symmetry, whose generators are
ðΣ4Σjð1þ Σ5Þ=2 − iσjÞ and Σ4Σjð1 − Σ5Þ, respectively.
We will use the reference point to fix a system of

coordinates for the gauge-dependent elementary fields.
The four projections ϕ0ϕ

†
0 and −Σ4Σjϕ0ϕ

†
0Σ4Σj (for

fixed j ¼ 1, 2, 3) which sum to the identity allow us to
decompose the four-dimensional real spinor representation
space of SUð2ÞL into four real subspaces of dimension one.
In the subspace proportional to ϕ0, we have the fields
ϕ†
0H1, ϕ

†
0H2. In the subspace proportional to Σ4Σjϕ0, we

have the would-be Goldstone bosons ϕ†
0Σ4ΣjH1 and, in

addition, ϕ†
0Σ4ΣjH2.

For the triplet representations of SUð2ÞL, we have
the projections 1

4
ðϕ0 ⊗ Σ4Σjϕ0 − Σ4Σjϕ0 ⊗ ϕ0Þðϕ†

0 ⊗
ϕ†
0Σ4Σj − ϕ†

0Σ4Σj ⊗ ϕ†
0Þ which decompose the three-

dimensional real representation space into three real sub-
spaces of dimension one. In the subspace proportional to
ðϕ0 ⊗ Σ4Σjϕ0 − Σ4Σjϕ0 ⊗ ϕ0Þ, we have in this gauge the

field ϕ†
0DμΣ4Σjϕ0 ¼ g

2
Wj

μ.
Keeping only the first terms involving up to one

elementary field in the expansion around the reference
point,

H†
1H1 ≈

v2

2
þ vϕ†

0φ

H†
1H2 ≈

v
2
ϕ†
0Σ4φ

H†
1ΣjΣ4H2 ≈

v
2
ϕ†
0Σjφ

H†
1DμΣjΣ4H1 ≈

gv2

4
Wj

μ ðj ¼ 1; 2; 3Þ;

TABLE I. Gauge-invariant states corresponding to the elementary states of 2HDM classified by the custodial
symmetry Spinð4Þ≃ ðSUð2ÞR1 × SUð2ÞR2Þ, where the potential has an absolute minimum for a minimum satisfying
Σ5ϕ ¼ ϕ. The indices are j ¼ 1, 2, 3 and a ¼ 1, 2, 3, 4. Note that for the expansion the gauge was fixed such thatffiffiffi
2

p
ϕðxÞ ¼ vϕ0 þ φðxÞ; Σ5ϕ0 ¼ ϕ0; iσjϕ0 ¼ Σ4Σjϕ0; ϕ

†
0ϕ0 ¼ 1.

Lorentz rep. JðSUð2ÞR1Þ JðSUð2ÞR2Þ Operator Expansion

scalar 0 0 H†
1H1

v2
2
þ vϕ†

0φ
scalar 0 0 H†

2H2
0

scalar 1=2 1=2 H†
1ΣaΣ4H2

v
2
ϕ†
0Σaφ

vector 1 0 H†
1DμΣjΣ4H1

gv2

4
Wj

μ

vector 0 1 H†
2DμΣjΣ4H2

0

vector 1=2 1=2 H†
1DμΣaΣ5Σ4H2 þH†

2DμΣaΣ5Σ4H1
0

6A (nondynamical) background field or spurion enters in the
definition of the Lagrangian but it is not a variable of the
Lagrangian. When calculating the observables, the background
fields are replaced by numerical values. It is a representation of a
group of background symmetries of the Lagrangian, but there are
no Noether’s currents associated with such background sym-
metries if the numerical values are non-null. The observables are
invariant under the action of the group of the background
symmetries. See [28] for more details and related approaches.
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as a generalization of the 1HDM [11,12]. It is straightfor-
ward to see that all other possibilities from the basis of
primitive invariants involving at most one covariant deriva-
tive expand to two or more elementary fields at leading
order, since the vacuum expectation value satisfies Σ5ϕ0 ¼
ϕ0 and so its contribution to H2 is null. It is possible to
construct states with different Lorentz representation than
those considered, using further covariant derivatives, but
such states cannot expand to a single elementary field, as
there are none with other Lorentz quantum numbers.

V. SPONTANEOUS SYMMETRY
BREAKING IN 2HDMs

We saw in the previous section that by choosing a
reference point minimizing the Higgs potential we neces-
sarily break the background symmetry Spinð5Þ → Spinð4Þ.
Therefore, if the absolute minimum is not unique (up to
gauge transformations) such a choice is necessarily in
conflict with a symmetry of the model. There are then two
possibilities: either the symmetry of the model is sponta-
neously broken or it is not. Once the model is chosen,
whether there are spontaneously broken global symmetries
or not is a dynamical phenomenon, requiring suitable
calculation methods to test it. It may indeed occur in
2HDMs [19] depending on the Higgs potential. Without
further information, we can only assume that it occurs or
that it does not occur.
We assume from now on that whenever the choice of an

absolute minimum is in conflict with a global symmetry of
the model, such symmetry is spontaneously broken. Then
the correspondence established in the previous section is
valid since, in the picture where spontaneous symmetry
breaking is a particular case of explicit symmetry breaking
[19], the conflict is avoided as such a would-be global
symmetry of the model is explicitly broken by an infini-
tesimal parameter.
But such an assumption must be confirmed. In Sec. VII,

we study particular 2HDMs and evaluate the consequences
for the spectrum for the possibility that the assumption is
not valid. Note that the definition of spontaneous symmetry
breaking crucially depends on the physically realizable
operations [30].

VI. THE FMS MECHANISM

The FMS mechanism establishes that there is a corre-
spondence between the elementary gauge-dependent fields
and the primitive composite states obtained by replacing
the reference point vffiffi

2
p ϕ0 (used to fix the gauge-dependent

coordinate system) by the field H1. The correspondence is
one-to-one, except for the would-be Goldstone bosons
ϕ†
0Σ4ΣjH1 which disappear from the spectrum, since

Σ4Σj is skew adjoint and, therefore, H†
1Σ4ΣjH1 ¼ 0. As

we have seen in Sec. IV, this correspondence applies to the

2HDMs—under the assumption of spontaneous symmetry
breaking for nonunique minima of the potential.
Such correspondence becomes an equality if the field

fluctuations become small enough, compared to the VEV.
Consider, for instance, the complete expansion of the scalar
operator:

2H†
1H1 ¼ v2 þ 2vϕ†

0φþ φ†φ:

A correlator of this gauge-invariant operator would yield
to leading order just the propagator of the fluctuation field
ϕ†
0φ. Since the mass is given by the poles, to this order the

composite state will have the same mass mH as the
elementary state [11,12]. This explains why the physical
composite scalar operator has the same mass as the
elementary Higgs field. A similar argument can be made
for the gauge bosons [11,12]. Therefore, the spectrum
harbors a physical vector triplet with the same mass as the
elementary gauge bosons. The would-be Goldstone bosons
ϕ†
0ΣjΣ4φ constitute the longitudinal degrees of freedom of

Wj
μ. For states with quantum numbers where there is no

leading term corresponding to any elementary particle, the
first contribution comes from scattering states. Of course, it
is possible to doubt the correctness of the expansion.7

But the prediction has been confirmed nonperturbatively
in various lattice calculations for the weak-Higgs theory
with one doublet [25,26,35,36]. Thus, the FMS mechanism

7The operators vϕ†
0φ and φ†φ have the same quantum

numbers; hence, they cannot be distinguished, except in an
approximate way by the energy spectrum or in perturbation
theory (in Quantum Electrodynamics we should also sum all
possible initial and final states including those with soft photons
in a finite energy window, to avoid infrared divergences [31]).
The operator φ†φ is assumed to be a scattering state such that its
energy spectrum starts at ∼2mH, despite that it involves the
following interactions:

(i) the Higgs decay width is a few MeV; the binding energy
of the SUð2ÞL gauge interactions is expected to be below
0.1 GeV if it exists at all (consider for instance a
positronium where the electron mass is replaced by the
Higgs mass and the coupling constant is replaced by the
weak coupling constant)

(ii) the binding energy of the interactions from the Higgs
potential is extremely weak when it exists at all [32–34]
(for theparameters’scale around theStandardModel) and so
the energy spectrum starts at∼2mH . Moreover no evidence
that such bound states exist have yet been found for the
Standard Model [25,26].

In general, since the Higgs is among the most heavy
gauge-dependent elementary fields, the energy spectrum of the
next-to-leading contributions starts far from the mass of the
gauge-dependent elementary field and so are negligible (with
respect to the leading contribution) for the state’s mass near the
mass of the elementary field. In standard perturbation theory, the
mass of the asymptotic states is the mass of the elementary fields,
for the remaining intermediate states we do not expect deviations
since the (gauge-invariant) Lagrangian is the same—unless there
are new bound states or other unexpected nonperturbative effects.
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appears to be indeed the correct description of the electro-
weak theory.
At loop level, where renormalization scheme issues

affect the poles on the right-hand side, the situation
becomes more involved, and it is not yet fully developed
[11,12]. It remains to be checked the contribution in
perturbation theory from the next-to-leading terms of the
gauge-invariant states, since there are measured precision
electroweak observables which must be accounted for.
However, there are theoretical arguments indicating that
the standard perturbative expansion assuming a gauge-
dependent vacuum expectation value cannot be asymptotic
to gauge-dependent correlation functions [12]. Thus, the
standard perturbative expansion may still not fully capture
all features, though the consequences of this are likely
quantitatively irrelevant for the standard model.
The expansion of H†

1ΣaΣ4H2 ða ¼ 1;…; 4Þ selects the
components of the second Higgs doublet, and thus the
spectrum contains a quadruplet of particles with the same
masses as the fields of the second Higgs doublet. Since no
other operator has a nonvanishing leading order, this
completes the spectrum. Thus, for the 2HDMs under the
assumptions of no spontaneous global symmetry breaking
and that the next-to-leading terms do not lead to significant
deviations, the FMS mechanism predicts, as for the
standard model case, a coincidence of the perturbative
and physical spectrum. Of course, these assumptions and
the FMSmechanism must be validated nonperturbatively in
2HDMs, a point we will return to in Sec. VIII.
The FMS mechanism can be extended to fermions

[11,12], yielding

ffiffiffi
2

p
H†

1Ψ ¼ vϕ†
0Ψþ φΨ;

where ϕ†
0Ψ is a fermion field, e.g. an electron with left

chirality. Thus, composite operators of fermions and a
single Higgs particle yield a gauge-invariant description of
the fermions in the standard model, with the same mass at
leading order. This is possible due to the scalar nature of the
Higgs, which does not alter the spin or parity of the states.
However, due to the intrinsic problem with chiral gauge
theories on the lattice, not to mention the computational
costs for even a moderately extended mass hierarchy, there
is not yet any numerical evidence for this correspondence in
the full standard model, or even just a subset of the fermion
sector. The extension of the FMS mechanism to include
photons and fermions in the 2HDMs will be discussed in
Secs. IXs and X, respectively.

VII. THE Spinð4Þ SYMMETRIC 2HDM

Now, we generalize the statements of the previous
section.

The most general Spinð4Þ symmetric potential is

VðϕÞ ¼ μ0ϕ
†ϕþ μ5ϕ

†Σ5ϕþ 1

2
λ00ðϕ†ϕÞ2

þ λ05ðϕ†ϕÞðϕ†Σ5ϕÞ þ
1

2
λ55ðϕ†Σ5ϕÞ2 ð1Þ

An analysis of the minima structure of the above potential
is given in appendix A. To avoid breaking the Spinð4Þ
group spontaneously we assume that the minimum the
potential satisfies �Σ5ϕ ¼ ϕ.
We will assume from now on that λ05 ¼ 0, and we will

study three particular cases in detail:
(1) The maximally symmetric case where μ5 > 0 and

λ55 ¼ 0 has a unique minimum (up to gauge trans-
formations) and its phenomenology is well studied
and viable (in the sense that it is not ruled out by
experiments) [37]. It will be used as a kind of
“control sample” since no surprises are expected
from the lattice simulations in the parameter space
allowed by the experiments in comparison with
perturbation theory, as discussed in the previous
section.

(2) The limit μ5 → 0 with μ5 > 0 and λ55 ≠ 0 will be
used for a study of spontaneous symmetry breaking
of the Z2 discrete symmetry which appears when
μ5 ¼ 0 and λ55 ≠ 0. Since discrete symmetries break
without Goldstone bosons, the spectrum of this
theory is expected to be similar to the maximally
symmetric case.

(3) The limit μ5 → 0 with μ5 > 0 and λ55 ¼ 0 will be
used to study spontaneous symmetry breaking of the
continuous Spinð5Þ → Spinð4Þ symmetry which
appears when μ5 ¼ 0 and λ55 ¼ 0. According to
Goldstone’s theorem, we expect four massless Gold-
stone bosons.

Without loss of generality, we assume μ5 ≥ 0
(we can change its sign by a background symmetry
transformation ϕ → Σ4Σ5ϕ). We then have that λ00¼
ðm2

hþm2
H−2μ5Þ=v2, λ55¼ð−m2

Hþ2μ5Þ=v2, μ0¼m2
h
2
−μ5

and for the absolute minimum of the potential
Σ5ϕ0 ¼ ϕ0. The terms in μ5, λ55 break (softly if λ55 ¼ 0)
the symmetry Spinð5Þ → Spinð4Þ [17], giving the same
mass mH to the Higgs states ϕ†

0Σaφ (a ¼ 1, 2, 3, 4) which
are now mass eigenstates [18]—these states are related to
the states H�, R and I defined in Sec. IX. The mass of the
Higgs boson ϕ†

0φ is mh while the mass of the W gauge
triplet is mW ≡ gv=2 (at tree level). When λ55 ¼ 0,
then 4μ5 ¼ 2m2

H so ðm2
H þm2

h −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4

H þm4
h

p Þ < 4μ5 <
ðm2

H þm2
h þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4

H þm4
h

p
Þ and there is only one minimum.

When μ5 ¼ 0 then a discrete symmetry Z2 appears, the
group is Spinð4Þ ⋊ Z2 with the Z2 transformation ϕ → Σ4ϕ
and the subgroup Spinð4Þ is a normal subgroup.
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A. Breaking of a continuous symmetry?

A conceptually interesting question is what happens if a
(global) continuous symmetry of the Higgs potential is
spontaneously broken, which is indeed possible [19]. In a
standard perturbative analysis, this will give rise to mass-
less Goldstone bosons originating from the Higgs doublets.
These would be part of the spectrum and would, therefore,
add additional light particles to the spectrum, which could
be interpreted, e.g., as axions. It is, therefore, interesting to
see how this translates in the FMS perspective.
Since the unbroken subgroup is the Spinð4Þ group, the

observable states are given in Table I. First, consider the
quadruplet,

H†
1ϵjklΣaΣ4H2:

This operator selects the four components ofH2 which turn
out in this basis to be just the additional Goldstone bosons,
as can be read off from the potential. Hence, this gauge-
invariant operator indeed carries the information on the
physical Goldstones, which also have been observed in
lattice calculations for a different symmetry [19].
This leaves only the vector states. The operators are

H†
1Dμ½Σj;Σk�H1

H†
2Dμ½Σj;Σk�H2

H†
1Dμ½Σa;Σ5�ðΣ4H2Þ:

The first two are each triplets under the SUð2ÞR1;2 sub-
groups. The last one is a quadruplet. Since onlyH1 expands
to a nonzero value, only the first operator yields a triplet
with the mass of theW bosons, and all other vanishes. This
is a particularly nice manifestation of the symmetry break-
ing pattern, as the ten operators in the multiplet of the
broken symmetry are no longer degenerate since only one
yields massive states and the other two, scattering states.
Thus, in the case of a spontaneous breakdown of the

global symmetry group, the physical spectrum coincides
with the one in perturbation theory. However, if the
assumption of spontaneous symmetry breaking is not valid,
then all correlators should give an identical result and so we
will have a multiplication of vector degrees of freedom (as
was pointed out in [13], where the absence of spontaneous
symmetry breaking was implicitly assumed).

B. Breaking of a discrete symmetry?

Until now, we assumed that the potential has only one
continuous connected set of minima, like in the one-Higgs-
doublet case. In the standard model case, this is the only
possibility. But in the 2HDM case, it is possible to have
not sets of absolute minima that are not continuously
connected.

This situation is found for the potential (1) for the case
λ05 ¼ μ5 ¼ 0 [17]. In this case, an additional global Z2 in
the custodial symmetry arises, yielding a Spinð4Þ ⋊ Z2

symmetry group. There are then different symmetric sets of
absolute minima, not continuously connected by gauge
transformations. These sets of minima are related by the Z2

subgroup and cannot be continuously deformed into
each other.
Their presence has great significance for the physical

spectra in the absence of the spontaneous symmetry
breaking. It essentially implies that the multiplets of the
SUð2ÞR1;R2 groups are symmetric under exchanges of the
respective groups. Thus, the corresponding spectra have to
be identical if no spontaneous symmetry breaking occurs.
In particular, there are two degenerate vector triplets.
If the discrete symmetry is spontaneously broken, then

the physical spectrum is the one of standard perturbation
theory, where only one triplet of vector bosons appears.

VIII. LATTICE SIMULATIONS

The previous results have been obtained under the
assumption of the validity of the FMS mechanism. The
prerequisite for this is that the expansion parameter is
sufficiently small in general [11,12]. In the case with a
single doublet, this condition already does not hold true for
large regions of the phase diagram [26,36]; the regions with
very light and very heavy Higgs particles especially appear
to be still somewhat involved.
Since the relevant parameter range for the 2HDMs is

much larger without further experimental constraints, it
appears therefore important to check the validity of the
FMS mechanism. Lattice simulations are a possible tool,
and 2HDM are accessible in such simulations [19,20].
Calculating the spectrum and testing the FMS mechanism
is a straightforward extension of [25,26,36] and should not
pose a conceptual problem, although the correlators of
scalars especially are numerically expensive.
The basic approach would essentially be to simulate the

2HDM for various sets of parameters, and investigate the
spectroscopy of the states listed in Table I, possibly
supplemented by further states like in [26], as the FMS
mechanism also makes statements on these. This is left to
future investigations. Of course, if the FMS mechanism is
not found to be working, there is no a priori reason to
expect a relation between the gauge-dependent states and
the physical ones. In such a case, nonperturbative calcu-
lations would be mandatory anyway.
From a field-theoretical point of view, it would be

especially interesting to investigate the cases where sponta-
neous symmetry breaking of the global symmetry group
was assumed. In a finite lattice, there is no spontaneous
symmetry breaking: what we must do is estimate the results
for the infinite-volume limit and then extrapolate these
estimates to the limit where there is no explicit symmetry
breaking and check if this extrapolation indicates
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spontaneous symmetry breaking [19]. Consider the Higgs
potential of the previous section and the correlation
functions:

hH†
1ðyÞH1ðyÞH†

1ðxÞH1ðxÞi and

hH†
2ðyÞH2ðyÞH†

2ðxÞH2ðxÞi:

After gauge fixing, we can expand them as

hH†
1ðyÞH1ðyÞH†

1ðxÞH1ðxÞi≈
v4

4
þv2

2
hφ†ðyÞϕ0ϕ

†
0φðxÞiþ �� �

hH†
2ðyÞH2ðyÞH†

2ðxÞH2ðxÞi¼ hφ†
2ðyÞφ2ðyÞφ†

2ðxÞφ2ðxÞi;

where φ2 ≡ ϕ†
0Σ4φ. Neglecting interactions, we expect the

energy spectrum of the first correlation function to start at
the mass mh while for the second correlation function it
should start around the mass 2mH. The interactions should
change both correlation functions but not to the point where
the two correlation functions are exactly equal. This is what
we intend to simulate in the limit where μ5 → 0 but always
with μ5 > 0 and the Z2 symmetry is recovered. The same
applies to the remaining propagators (and its Z2 corre-
spondents). If from the start μ5 ¼ 0 then by definition of the
partition function and the correlation functions are Z2

symmetric.

IX. INTRODUCING PHOTONS

In this and the next section, we add photons and a
fermion to the 2HDM, respectively, under the assumption
that the FMS mechanism can be applied. In the case with
one doublet, these additions can be found already
in [11,12].
We now consider a Lagrangian invariant under theUð1ÞY

gauge symmetry with generator Σ1Σ2,

L≡
��

Dμ þ Σ1Σ2

g0

2
Bμ

�
ϕ

�†�
Dμ þ Σ1Σ2

g0

2
Bμϕ

�

− VðϕÞ − 1

4
Wa

μνWaμν − 1

4
BμνBμν;

where the Bμ is the Uð1ÞY gauge field, Bμν ≡ ∂μBν − ∂νBμ

is the gauge field strength tensor and finally g0 is the Uð1ÞY
coupling constant.8

Then the background symmetry is the semidirect product
ðUð1ÞY × Spinð3ÞÞ ⋊ Z2 of the custodial Spinð3Þ group
whose generators are Σ3Σ4, Σ3Σ5, Σ4Σ5 (the only ones that
commute with Σ1Σ2) and the Z2 group generated by
ϕ → Σ1ϕ. The Uð1ÞY × Spinð3Þ is a normal subgroup.
Any transformation may be written as the product of an
element of Uð1ÞY × Spinð3Þ and an element of Z2, for
instance the charge reversal transformation is ϕ → Σ2Σ3ϕ

and Bμ → −Bμ. Note that parity and charge reversal are
conserved separately in the absence of fermions.
To establish contact to the usual phenomenology, we

require that the vacuum is uncharged under the electro-
magnetic subgroup. The neutral vacuum condition is that
the field configuration minimizing the potential vϕ0 must
be aligned along a linear combination of Σ3;4;5 which all
commute with the Uð1ÞY generator Σ1Σ2. By reparamet-
rization, we choose Σ5ϕ0 ¼ ϕ0. We define

H1 ≡ 1 − iΣ1Σ2

2

1þ Σ5

2
ϕ

H2 ≡ Σ4Σ5

1 − iΣ1Σ2

2

1 − Σ5

2
ϕ:

The previous gauge-invariant operators can be rewritten,
making the mixing between hypercharge and weak isospin
manifest, as in the following:

(i) Wþ
μ ≡H†

1iDμΣ1Σ3H1

(ii) Zμ ≡ cos θWH
†
1iDμH1 − sin θW

gv2

4
Bμ

(iii) Aμ ≡ sin θWH
†
1iDμH1 þ cos θW

gv2

4
Bμ

(iv) H†
1H1

(v) H†
1ΣaH2 ða ¼ 3; 4Þ

(vi) Hþ ≡H†
1Σ1H2,

where θW is the weak angle with cos θW ≡ gffiffiffiffiffiffiffiffiffiffi
g2þg02

p .

Under a gauge transformation Uð1ÞY , where ϕ →
eΣ1Σ2

ϑ
2ϕ, we get

Wþ
μ → eiϑWþ

μ

Aμ → Aμ − 1

g sin θW
∂μϑ

Hþ → eiϑHþ:

The remaining states are invariant under Uð1ÞY. Note,
however, that because Uð1ÞY is an Abelian gauge sym-
metry, it is possible to provide a gauge-invariant dressing
for the hypercharge (or electromagnetic) subgroup in the
same way as for the standard model [1]. Since this is an
overall phase factor, this does not interfere with the present
construction, and we therefore do not explicitly include
it here.
Under charge conjugation, the states transform as

Wþ
μ → ðWþ

μ Þ�
Zμ → −Zμ

Aμ → −Aμ

Hþ → ðHþÞ�
H†

1Σ3H2 → −H†
1Σ3H2:8Dμ ≡ ∂μ þ igWj

μ
σj

2
is defined as in the previous sections.
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We now choose the minimum vffiffi
2

p ϕ0 to be constant and to
satisfy

ϵjklAkAlϕ0 ¼ ϵjklΣkΣlϕ0 ðj ¼ 1; 2; 3Þ:

Then the minimum conserves the electromagnetic
charge with generator ðΣ1Σ2 − A1A2Þ; that is,
ðΣ1Σ2 − A1A2Þϕ0 ¼ 0.
We now only consider the expansion around the vacuum.

Keeping only the first nonconstant terms in the expansion,
we get

Wþ
μ ≈

gv2

8
ðW1

μ − iW2
μÞ

Zμ ≈
gv2

4
ðcos θWW3

μ − sin θWBμÞ

Aμ ≈
gv2

4
ðsin θWW3

μ þ cos θWBμÞ

H†
1H1 ≈

v2

2
þ vϕ†

0φ

H†
1ΣaH2 ≈

v
2
ϕ†
0Σaφða ¼ 3; 4Þ

Hþ ≈
v
2
ϕ†
0ðΣ1 − iΣ2Þφ:

On the right-hand side, we can identify the states
described in perturbation theory: W�

μ ≡ 1ffiffi
2

p ðW1
μ � iW2

μÞ,
Zμ ≡ ðcos θWW3

μ − sin θWBμÞ, the photon field Aμ≡
ðsin θWW3

μ þ cos θWBμÞ, the charged Higgs boson H�≡
1ffiffi
2

p ϕ†
0ðΣ1 � iΣ2Þφ, the charge-parity (CP) pseudoscalar

I ≡ ϕ†
0Σ3φ and finally the scalars R≡ ϕ†

0Σ4φ and the
Higgs boson h0 ≡ ϕ†

0φ ¼ ϕ†
0Σ5φ.

The multiplet ðH0; R; IÞ transforms as a SOð3Þ vector
under custodial transformation. Also, the vacuum direction
u≡ ðϕ†

0Σ5ϕ0;ϕ
†
0Σ4ϕ0;ϕ

†
0Σ3ϕ0Þ will transform in the same

way and defines the Higgs basis.
In general, the vector Higgs mass eigenstates ðh1; h2; h3Þ

will result from a SOð3Þ rotation of the Higgs basis states
ðH0; R; IÞ, with angles determined by the Higgs potential.
Writing hj ¼ njaϕ

†
0Σaφ, with njanja ¼ 1, the SOð3Þ rota-

tion n relates the Higgs basis with the basis of mass
eigenstates. This works as in perturbation theory.
The states are precisely as the ones expected in pertur-

bation theory. Thus, provided the FMS mechanism works
without photons, the presence of photons should not be in
conflict with the FMS mechanism.

X. INTRODUCING FERMIONS

The weak interactions couple to the fermions such that
parity and charge reversal are not conserved separately, but
their composition symmetry CP is. The CP symmetry is
then violated by the CKM matrix.

Consider a fermionic field QL satisfying Σ1Σ2QL ¼
iQL, Σ5QL ¼ QL and transforming under the gauge sym-
metry SUð2ÞL in the same way as ϕ. This choice for QL
already fixes Σ5. As a consequence, the most general
minimum does not yet satisfy Σ5ϕ0 ¼ ϕ0. We introduce
the fermions dR, uR which are singlets under SUð2ÞL. We
set the hypercharges of the gauge symmetry Uð1ÞY as
QLð1=6YÞ, dRð−1=3YÞ, uRð2=3YÞ, i.e. for ϕ → eΣ1Σ2

ϑ
2ϕ then

QL → ei
ϑ
6QL. Hence, these are quarks.

The most general SUð2ÞL gauge-invariant products of ϕ
and QL are complex linear combinations of QLϕ, QLiΣ3ϕ,
QLiΣ2ϕ, QLiΣ1ϕ and their Hermitian conjugates.9 The
most general gauge-invariant form for the Yukawa cou-
plings with the quarks is then

−LYQ
¼ QLΓdϕdR þQLΣ3Σ1ΓuϕuR þ H:c:

Γw ≡ Γw0 þ Γw1Σ3Σ4 þ Γw2Σ4Σ5 þ Γw3Σ5Σ3Þ

with Γwa self-conjugate and acting as real scalars on ϕ,
where w ¼ u, d and a ¼ 0, 1, 2, 3.
The custodial Spinð3Þ group acts on ϕ and Γ†

w in the
same way with generators Σ3Σ4, Σ4Σ5 and Σ3Σ5, such that
the product Γwϕ is Spinð3Þ invariant. We thus continue
using a Majorana notation for the symmetries of the Higgs
potential, which appears to be working in the following, but
note the remarks in [15].
In this form, we can now finally assume, without loss of

generality by reparametrization of Γw, that the minimum
satisfies Σ5ϕ0 ¼ ϕ0. In this basis, we define H1≡
1−iΣ1Σ2

2
1þΣ5

2
ϕ, H2 ≡ Σ4Σ5

1−iΣ1Σ2

2
1−Σ5

2
ϕ, ~Hj ≡ Σ3Σ1H�

j .
The Yukawa couplings for the quarks are then rewritten as

− vffiffiffi
2

p LYQ
¼ QLH1MddR þQLH2N0

ddR þQL
~H1MuuR

þQL
~H2N0

uuR þ H:c:;

where Mw ≡ Γw0 þ iΓw1, N0
w ≡ Γw3 þ iΓw4. The

matrices Md ≡ULdiagðmd;ms;mbÞUd†
R and Mu ≡

ULV†diagðmu;mc;mtÞUu†
R are the quark mass matrices

and N0
d;u are matrices not necessarily diagonal in the quark

mass eigenstate basis which may induce Higgs mediated
flavor changing neutral currents at tree level. The conven-
tional Cabibbo-Kobayashi-Maskawa (CKM) matrix is
given by V. Note that color is not treated here explicitly,
but due to confinement any observable states involving
quarks or gluons are anyhow color singlets.

9The basis of symmetric matrices commuting with the gen-
erators of SUð2ÞL is f1;Σag, of skew-symmetric matrices is
f½Σa;Σb�g with a; b;¼ 1;…; 5, for a total of 16 matrices. Due to
the two projectors in QL, we must divide the total by 4 which
leaves us with four linearly independent products.
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There is a correspondence between the standard gauge
dependent fields and the SUð2ÞL gauge-invariant ones, as
in the 1HDM case [11,12]. The composite operators to be
considered

H†
1QL → e−i13ϑH†

1QL

~H†
1QL → ei

2
3
ϑ ~H†

1QL

still retain their gauge-dependence under the Abelian part,
with the indicated transformation with ei

ϑ
2 ∈ Uð1ÞY . Their

electromagnetic properties are thus the same as for the
elementary states.
The corresponding leading terms of the expansion after

gauge fixing are proportional to

dL ≡ ϕ†
0QL

uL ≡−ðϕ†
0Þ�Σ3Σ4QL

Again, because both Higgs doublets are Lorentz scalars, the
Lorentz quantum numbers of the composite and elementary
states agree.
The lepton sector with three right-handed neutrinos is

analogous in the absence of Majorana masses,10 with the
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix
replacing the CKM matrix. Hence, the argumentation for
them goes through unchanged and will not be repeated.

XI. SUMMARY

The demand of gauge invariance of physical observables
must be taken directly as a demand on the spectrum of any
theory. In the case of the standard model, the FMS
mechanism justifies that the spectrum can nonetheless be
rather well described by the spectrum of the gauge-
dependent elementary states. This both explains the success
and justifies the use of perturbation theory in the electro-
weak sector. If this were not the case, the description of the
physical states would, as in QCD, require nonperturbative
methods, even at weak coupling.
Here, we have investigated the two-Higgs-doublet exten-

sion of the standard model in the light of these insights and
extended the FMS mechanism to it. Assuming its validity,
we show that under some assumptions the physical
spectrum is expected to coincide with the one of the

elementary states, as obtained in perturbation theory.
These assumptions are that the field fluctuations around
the vacuum are small in average and that there is sponta-
neous symmetry breaking of the global symmetry group
whenever the gauge orbit minimizing the Higgs potential is
not unique.
To confirm that indeed the FMSmechanism is applicable

and that the assumptions are valid requires genuine non-
perturbative calculations. Since a failure would have sub-
stantial impact on the phenomenological relevance of these
models, they are a mandatory next step.

ACKNOWLEDGMENTS

L. P. acknowledges the hospitality of the Institute of
Physics at the University of Graz, where most of this work
has been done, and of the Centro de Física Teórica de
Partículas at the Universidade de Lisboa. L. P. acknowl-
edges Gustavo Branco, Margarida Rebelo and Renato
Fonseca for useful conversations.

APPENDIX: MINIMA STRUCTURE OF THE
Spinð4Þ SYMMETRIC POTENTIAL

Defining Φ1 ≡ 1þΣ5

2
ϕ and Φ2 ≡ Σ4

1−Σ5

2
ϕ, the most

general Spinð4Þ symmetric potential can be rewritten as

VðΦ1;Φ2Þ ¼ − μ0ðΦ†
1Φ1 þ Φ†

2Φ2Þ − μ5ðΦ†
1Φ1 − Φ†

2Φ2Þ

þ 1

2
λ00ðΦ†

1Φ1 þ Φ†
2Φ2Þ2

þ 1

2
λ55ðΦ†

1Φ1 − Φ†
2Φ2Þ2:

The most general gauge orbit minimizing the potential
verifies uaΣaϕ ¼ ϕ, breaking the generators of Spinð4Þ
which do not commute with uaΣa, where u is a vector
representation of SOð5Þ normalized to uaua ¼ 1. Without
lost of generality, we can choose a basis such that
u1 ¼ u2 ¼ u3 ¼ 0. Then for u4 ≠ 0 the symmetry con-
served by the minimum is Spinð3Þ with generators ϵjklΣkΣl

and there are three spontaneously broken generators of
Spinð4Þ namely ΣjΣ4, so according to Goldstone’s theorem
we expect 3 massless Goldstone bosons, as was confirmed
in [19]. To avoid breaking the Spinð4Þ group spontaneously
we assume from now on that u4 ¼ 0, i.e. the gauge orbit
minimizing the potential verifies �Σ5ϕ ¼ ϕ.
Positivity at large field amplitudes requires λ00 > 0 and

λ00 þ λ55 > 0. From the stability conditions, 1
2
v2j≡

μ0þϵjμ5
λ00þλ55

> 0, i.e. 1
2
v22 ¼ 1

2
v21 − 2 μ5

λ00þλ55
, and the minima

(second derivative) conditions m2
hj ≡ 2ðμ0 þ ϵjμ5Þ > 0

and m2
Hj ≡ 2

ϵjμ5λ00−λ55μ0
λ00þλ55

> 0. The value of the minimum

is VðϕjÞ ¼ − ðμ0þϵjμ5Þ2
2ðλ00þλ55Þ < 0.

10Promoting the Mu;d and N0
u;d matrices to background fields,

there is an additional background flavor symmetry for the quarks
SUð3ÞQ × SUð3ÞU × SUð3ÞD and for the leptons in the absence
of Majorana masses SUð3Þl × SUð3Þe × SUð3Þν and also a
background CP(charge-parity) symmetry. There is also an
Abelian background symmetry Uð1Þ3 in addition to the global
symmetry Uð1Þnb × Uð1Þnl related to the baryonic and leptonic
(no Majorana masses) numbers. Since the Majorana mass terms
in seesaw type I are gauge singlets, the FMS mechanism can also
be extended to models with seesaw type I [38].
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We now look for further critical orbits for which both
u1≡Φ†

1Φ1>0 and u2≡Φ†
2Φ2>0. These will satisfy the

stability conditions −μ0−μ5þλ00ðu1þu2Þþλ55ðu1−u2Þ
¼0 and −μ0 þ μ5 þ λ00ðu1 þ u2Þ − λ55ðu1 − u2Þ ¼ 0;
therefore, u1 ¼ λ55μ0þλ00μ5

2λ00λ55
and u2 ¼ λ55μ0−λ00μ5

2λ00λ55
. The potential

is Vðu1; u2Þ ¼ − μ2
0

2λ00
− μ2

5

2λ55
The determinant of the Hessian

matrix for the variables ðu1; u2Þ is 2λ00λ55.
We now look for the critical orbit Φ†

1Φ1 ¼ 0 and
Φ†

2Φ2 ¼ 0. The Hessian matrix is diagonal with entries
−2ðμ0 þ μ5Þ < 0 and −2ðμ0 − μ5Þ, which have the oppo-
site signs of v21 and v22 respectively.
Without loss of generality, we assume μ5 ≥ 0 (we can

change its sign by an interchange Φ1 ↔ Φ2). So we have
v22 ≤ v21 and if v22 > 0 then Vðϕ2Þ ≥ Vðϕ1Þ, so for the first
orbit ϕ1, there is an absolute minimum. We identify v≡ v1,
mh≡mh1, mH≡mH1 and write λ00¼ðm2

hþm2
H−2μ5Þ=v2,

λ55 ¼ ð−m2
H þ 2μ5Þ=v2 and μ0 ¼ m2

h
2
− μ5.

The conditions u1 ¼ − m2
H2
m2

h
4v2λ00λ55

> 0 and u2 ¼
− m2

Hm
2
h

4v2λ00λ55
> 0 imply λ55 < 0 and m2

H2 > 0 so if ðu1; u2Þ
is a stability point, it is necessarily a saddle point since the
determinant of the Hessian matrix for the variables ðu1; u2Þ
is 2λ00λ55 < 0. In that case, we have that Vðu1; u2Þ −
Vðϕ1Þ ¼ − m4

Hm
2
h

8v2λ00λ55
> 0 as expected.

We also have v2
2

v2 ¼ ð1 − 4 μ5
m2

h
Þ. As for theHessianmatrix for

ϕ2, we have m2
h2 ¼ m2

h − 4μ5 with the same sign as v2
2

v2 and

m2
H2 ¼ 8μ25=m

2
h − 4μ5=m2

hðm2
h þm2

HÞ þm2
H;

i.e. m2
H2 ¼ 1

2m2
h
ð4μ5 −m2

h −m2
H − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m4
H þm4

h

p Þð4μ5−
m2

h −m2
H þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4

H þm4
h

p
Þ.

Note that m2
h−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4

Hþm4
h

p
<0 which implies m2

H þ
m2

h −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4

H þm4
h

p
< 2m2

H < m2
H þm2

h þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4

H þm4
h

p
.

We have the following possibilities:
(i) for ðm2

Hþm2
hþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4

Hþm4
h

p
Þ< 4μ5 < 2ðm2

hþm2
HÞ

then m2
h2 < 0 and m2

H2 > 0 and u1 < 0: two critical
orbits (ðv2=2; 0Þ absoluteminimum and (0, 0) saddle);

(ii) for m2
h < 4μ5 < ðm2

H þm2
h þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4

H þm4
h

p
Þ then

m2
h2 < 0 and m2

H2 < 0: two critical orbits
(ðv2=2; 0Þ absolute minimum and (0, 0) saddle);

(iii) for m2
Hþm2

h−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4

Hþm4
h

p
<4μ5<m2

h then m
2
h2 > 0

andm2
H2 < 0: three critical orbits (ðv2=2; 0Þ absolute

minimum, ð0; v22=2Þ saddle and (0, 0) local
maximum);

(iv) for 0< 4μ5 <m2
Hþm2

h−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4

Hþm4
h

p
then m2

h2 > 0

and m2
H2 > 0 and u1 > 0: four critical orbits

(ðv2=2; 0Þ absolute minimum, ð0; v22=2Þ local
minimum, ðu1; u2Þ saddle and (0, 0) local maximum).
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