
Probing the electroweak phase transition at the LHC

Peisi Huang,1,3 Aniket Joglekar,1 Bing Li,1 and Carlos E. M. Wagner1,2,3
1Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA

2Kavli Institute for Cosmological Physics, University of Chicago, Chicago, Illinois 60637, USA
3HEP Division, Argonne National Laboratory, 9700 Cass Avenue, Argonne, Illinois 60439, USA

(Received 22 December 2015; published 31 March 2016)

We study the correlation between the value of the triple Higgs coupling and the nature of the electroweak
phase transition. We use an effective potential approach, including higher order, nonrenormalizable terms
coming from integrating out new physics. We show that if only the dimension six operators are considered,
large positive deviations of the triple Higgs coupling from its standard model (SM) value are predicted in
the regions of parameter space consistent with a strong first order electroweak phase transition. We also
show that at higher orders sizable and negative deviations of the triple Higgs coupling may be obtained, and
the sign of the corrections tends to be correlated with the order of the phase transition. We also consider a
singlet extension of the SM, which allows us to establish the connection with the effective field theory
approach and analyze the limits of its validity. Furthermore, we study how to probe the triple Higgs
coupling from the double Higgs production at the LHC. We show that selective cuts in the invariant mass of
the two Higgs bosons should be used, to maximize the sensitivity for values of the triple Higgs coupling
significantly different from the standard model one.
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I. INTRODUCTION

After the Higgs discovery at the LHC [1,2], the Higgs
properties, including the Higgs mass and the Higgs
couplings to the standard model (SM) particles, were
measured [3–5]. Those measurements show that the
Higgs boson properties are close to the SM ones. Those
properties are related to the gauge transformation properties
of the Higgs field and with the mechanism of electroweak
symmetry breaking, but provide little information about the
properties of the Higgs potential. In the SM, a quadratic
coupling and a quartic coupling completely specify this
potential. In the theories beyond the SM, there can be
contributions to the effective potential from the higher
dimensional operators, with an effective cutoff given by the
characteristic new physics scale of the theory. As a result,
the self interactions of the Higgs field, most notably the
triple Higgs coupling (λ3), are modified.
What makes the deviation of λ3 from its SM value

even more exciting is that λ3 is closely related to the
strength of the electroweak phase transition (EPT) [6–13].
Understanding the nature of the EPT will advance our
knowledge of the possible realization of electroweak
baryogenesis [14], which is an attractive explanation of
the baryon antibaryon asymmetry, that can only happen if
the EPT is first order. Today the electroweak symmetry is
clearly broken, while in the early Universe the SUð2Þ ×
Uð1Þ symmetry was preserved, a result that may be easily
understood considering the finite temperature effects to
the effective potential. About 10−10 seconds after the big
bang, the Universe underwent a phase transition from
the unbroken phase to the broken phase. This leads to

formation and expansion of bubbles of the true vacuum
configuration in the false, gauge symmetric vacuum. In the
presence of charge parity violation, particle interactions
with the expanding bubbles may lead to the creation of an
excess of baryons inside the bubbles by means of baryon
number violating processes induced by sphalerons [15].
These sphaleron processes, if they were in equilibrium
inside the bubbles, would wipe off the created excess of
baryons. The rate of these processes depends exponentially
on the ratio of the vacuum expectation value (VEV) to the
critical temperature at the time of the phase transition and is
suppressed if the phase transition is of strong first order
[16]. Unfortunately, in the pure SM scenario, the require-
ment of a sufficiently strong first order phase transition
translates into an upper bound on the Higgs mass of about
35 GeV [17,18]. The discovery of the Higgs boson at
125 GeV excludes such a simple scenario [1,2]. This
motivates a further investigation of the viability of the
electroweak baryogenesis in minimally extended scenarios.
A first order electroweak phase transition (FOEPT)

may lead to the production of gravitational waves, but
the characteristic scales associated with it make their
detection very difficult, albeit not impossible, to detect
in the near future [19–25]. Alternatively, the models that
lead to a FOEPT through a relevant modification of the zero
temperature effective potential can be probed from the
deviation of λ3 from its SM value, as suggested in previous
studies [8,11,12].
At the LHC, λ3 can be probed by the process of double

Higgs production. Mainly due to the destructive interfer-
ence between the one-loop diagrams, the production cross
section reduces initially, as the λ3 is enhanced from its SM
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value. At the next-to-leading order (NLO), the minimum
occurs for λ3 ∼ 2.45λSM3 [26]. Further enhancement of the
λ3 value increases the cross section again, which exceeds
the SM value for λ3 > 5λSM3 . The cross section also
increases if the correction to λSM3 is negative. The bb̄γγ,
bb̄τþτ−, bb̄WþW− and bbb̄ b̄ channels [27–35] have been
studied. These studies showed that around 50% accuracy
can be achieved from the bb̄γγ channel alone assuming that
λ3 is not too far away from its SM value and the acceptance
for different values of λ3 stays the same. However, as
pointed out in [31], the acceptance drops significantly for
large values of λ3. In this article we perform a detailed study
of the impact of a large deviation from λSM3 on the double
Higgs production process. We also present an analysis of
the LHC searches for this process including relevant QCD
background contributions that have been overlooked in the
previous studies.
The organization of this article is as follows: In Sec. II,

we calculate the values of λ3 if the EPT is first order in a
simplified model, where we include higher order terms in
the effective potential. In Sec. III, we compare our results to
those obtained in singlet extensions like the ones that may
be obtained from the scalar Higgs sector in the next to
minimal supersymmetric standard model (NMSSM). In
Sec. IV, we discuss the measurement of λ3 at the LHC, for
the SM-like values as well as for values of λ3 that present a
large positive or negative deviation with respect to the SM
value. We reserve Sec. V for the conclusions and some
technical details for the appendixes.

II. THE EFFECTIVE POTENTIAL AND THE
TRILINEAR HIGGS COUPLING

A modification of the nature of the phase transition may
be achieved by adding extra terms to the Higgs potential
[36–38]. These may appear through relevant temperature
dependent modifications of the Higgs potential, beyond
those associated with the increase of the effective
mass parameter, which lead to the symmetry restoration
phenomenon (see, for example, Refs. [39–54]).
Alternatively, these effects may be already present at

zero temperature, through additional terms in the Higgs
potential induced by integrating out new physics at the
scales above the weak scale. In this section we concentrate
on the second possibility and illustrate the impact of such
additional terms on the enhancement of λ3 in minimally
extended models. Several simple extensions of the SM
are capable of generating the required extra terms in the
potential and have been studied in the literature [6–13,
55–59]. In Sec. III, we analyze one such example, where a
gauge singlet is added to the SM. This can lead to a relevant
modification of the trilinear Higgs coupling with respect to
the SM value λSM3 , even for values of the singlet mass much
larger than the weak scale. In such a case, the singlet
decouples from physics processes at the LHC, allowing a

comparison of these results with the ones obtained in the
effective low energy field theory.
In this section, we take a general approach to the

effective field theory (EFT), where nonrenormalizable
terms are added to the Higgs potential. We investigate
whether these can potentially generate considerably larger
cross sections for the gg → hh process compared to the
standard model. We also explore the possibility of these
being compatible with a strongly first order electroweak
phase transition (SFOEPT). Such modifications to λSM3
would make for a viable probe to the new physics at the
LHC and beyond.

A. Nonrenormalizable terms in the low energy
Higgs potential

The general formalism in this section is as follows. All
the tree-level effective operators represented by powers of
ðϕ†ϕÞ are added to the usual Higgs potential at the
temperature T ¼ 0 as follows,

Vðϕ; 0Þ ¼ m2

2
ðϕ†ϕÞ þ λ

4
ðϕ†ϕÞ2

þ
X∞
n¼1

c2nþ4

2ðnþ2ÞΛ2n
ðϕ†ϕÞnþ2; ð1Þ

where ϕ ¼ vþ h and hence the VEV is given as
hϕi ¼ 246 GeV. This leads to a correction to the SM
value of the triple Higgs coupling as shown in Appendix A,

λ3 ¼
3m2

h

v

�
1þ 8v2

3m2
h

X∞
n¼1

nðnþ 1Þðnþ 2Þc2nþ4v2n

2nþ2Λ2n

�
: ð2Þ

The nonzero temperature effects are approximately
accounted for by adding a thermal mass correction term
to the Higgs potential. This term is generated in the high-T
expansion of the one-loop thermal potential. At temper-
ature T, we get m2ðTÞ ¼ m2 þ a0T2. We have ignored the
small cubic term contributions as well as the logarithmic
contributions as they are suppressed compared to the
contributions from higher order terms. Here we have
assumed that the heavy new physics is not present in the
EFT at the weak scale and therefore its contribution is
Boltzmann suppressed at the EPT scale. In such a case a0 is
a constant proportional to the square of SM gauge and
Yukawa coupling constants. Assuming all c2n ≃ 1, the
minimum value that Λ can achieve is 174 GeV in this
formulation, at which point the convergence of the series is
lost for values of ϕ close to its VEV. However, in any
consistent EFT, the cutoff scale Λ is considerably higher
than 174 GeV.
Using Eq. (2), we define another quantity δ which

quantifies the deviations of the trilinear Higgs coupling
with respect to the SM value as
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δ ¼ λ3
λSM3

− 1 ¼ 8v2

3m2
h

X∞
n¼1

nðnþ 1Þðnþ 2Þc2nþ4v2n

2nþ2Λ2n ; ð3Þ

where we restrict jc2nþ4j < 1.
The values of the enhancement of λ3 for a given Λ for

all potentials satisfying these conditions are shown in
Fig. 1. This maximal possible value, shown in the
uppermost black (dashed) line in all the panels in
Fig. 1, is obtained assuming all c2n ¼ 1 and leads to a
large enhancement even at a relatively large value of Λ.
However, the only condition that we have imposed on the
potential so far is the existence of a local minimum with a
second derivative consistent with the measured Higgs
mass mh ≃ 125 GeV. For this minimum to represent the
physical vacuum of the theory, however, it should be a

global one. As we show, the global minimum requirement
imposes strong constraints on the possible enhancement
of the triple Higgs coupling.
In our further analysis, we choose not to consider the

terms of the order higher than ðϕ†ϕÞ5 as they introduce
negligible corrections for the cutoffs higher than v as shown
in Fig. 1. We separately analyze the nature of the phase
transition and the maximum positive and negative values
for δ in each of the three cases corresponding to ðϕ†ϕÞ3,
ðϕ†ϕÞ4 and ðϕ†ϕÞ5. Let us stress that these momentum
independent operators preserve the custodial symmetry
and evade the tight phenomenological constraints coming
from the ρ parameter. The momentum dependent non-
renormalizable operators [13,60–62], instead, may contrib-
ute to the oblique corrections and are very tightly

FIG. 1. Triple Higgs coupling correction δ as a function of the cutoffΛ. The upper dashed black line shows the maximum value of δ for
the infinite sum with all jc2nj ¼ 1. The dashed dark blue shows the values consistent with a FOEPT for the ðϕ†ϕÞ3 potential extension,
for c6 ¼ 1, while for the same conditions the solid light blue line is forbidden due to the absence of electroweak symmetry breakdown.
Figures 1(a)–1(b) show the results for the ðϕ†ϕÞ4 potential. The different colors correspond to the different hierarchies of the effective
potential coefficients as explained in the text. Figure 1(a) shows the general case while Fig. 1(b) shows the result if a FOEPT is
demanded. Figures 1(c)–1(d) show similar results but for the ðϕ†ϕÞ5 potential, with different colors again corresponding to different
coefficient hierarchies defined in the text. The lower solid black line shows the maximal negative values of δ possible for the order
ðϕ†ϕÞ4 potential.
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constrained by the electroweak precision measurements. A
particularly relevant one for our analysis is

cH
8Λ2

∂μðϕ†ϕÞ∂μðϕ†ϕÞ: ð4Þ

This correction plays a relevant role in the singlet case that
we discuss below, but is also restricted by the measurement
of the Higgs production rate and tends to be small, which
will be discussed later. Hence, in most of our analysis
we ignore the momentum dependent corrections but we
consider them in the comparison with the singlet case in
Sec. III B.

1. Higgs potential of order ðϕ†ϕÞ3
From Eqs. (1)–(2), the potential and the triple Higgs

coupling are given by

Vðϕ; TÞ ¼ m2 þ a0T2

2
ðϕ†ϕÞ þ λ

4
ðϕ†ϕÞ2 þ c6

8Λ2
ðϕ†ϕÞ3;

ð5Þ

λ3 ¼
3m2

h

v

�
1þ 2c6v4

m2
hΛ

2

�
: ð6Þ

This case has been studied in the literature in various
contexts [6–13,63,64]. We point out a few key things
pertaining to this case in the present context.
We require c6 > 0 for the stability of the potential.1 The

requirement that there should be a minimum of the
potential at ϕ ¼ ϕc degenerate with the extreme at
ϕ ¼ 0 for the temperature T ¼ Tc leads to

λ2 ¼ 4m2ðTcÞ
c6
Λ2

: ð7Þ

This implies that m2ðTÞ, which is the curvature of the
potential at ϕ ¼ 0, should be greater than zero at T ¼ Tc
for the phase transition to be of the first order. The
minimum of the potential at the critical temperature is at

ðϕ†
cϕcÞ ¼ v2c ¼ −

λΛ2

c6
: ð8Þ

This implies that an additional condition to obtain a FOEPT
is that the effective quartic coupling should be negative,
namely λ < 0.
The value of the Higgs mass imposes a relation between

λ and c6, namely

λþ 3c6
2Λ2

v2 ¼ m2
h

2v2
: ð9Þ

Using Eqs. (8)–(9) gives

c6
Λ2

¼ m2
h

3v2ðv2 − 2
3
v2cÞ

; ð10Þ

from where all coefficients m2, λ and c6 may be written in
terms of themh, vc and v. Using these relations one obtains

T2
c ¼

3c6
4Λ2a0

ðv2 − v2cÞ
�
v2 −

v2c
3

�
: ð11Þ

Demanding both c6 and T2
c to be positive, we get vc < v.

This translates into an upper bound on c6 using Eq. (10),

c6
Λ2

<
m2

h

v4
: ð12Þ

Then from Eq. (6), we conclude that the coupling can be
enhanced by a factor of 3 at most. Moreover, demanding
v2c > 0, or equivalently λ < 0, puts an additional constraint
on the obtention of a FOEPT, namely

c6
Λ2

>
m2

h

3v4
ð13Þ

which implies a minimal enhancement of a factor two
thirds.
This implies that a FOEPT may only be obtained if the

following conditions are fulfilled:

2

3
≤ δ ≤ 2: ð14Þ

Moreover, for c6 ¼ 1, Eqs. (12)–(13) imply a bound on the
effective cutoff Λ, namely

v2

mh
< Λ <

ffiffiffi
3

p
v2

mh
; ð15Þ

which correspond to upper and lower bounds on Λ of
approximately 484 and 838 GeV respectively, and larger
enhancement δ is obtained for the smaller values of the
cutoff. The phase transition becomes stronger first order for
smaller values of the cutoff and becomes a weakly first
order one for values of Λ close to the upper bound in
Eq. (15). Let us stress that for values of Λ below the lower
bound in Eq. (15), Λ < 484 GeV, the minimum at T ¼ 0 is
no longer a global minimum and hence electroweak
symmetry breaking does not occur.
In Fig. 1, we show the possible triple Higgs coupling

enhancement factor δ as a function of the cutoff Λ for
different extensions of the SM effective potential. The

1We understand that even for c6 < 0 the stability could be
recovered for field values that are above the cutoff, where the EFT
is not valid. We consider the case of c6 < 0 when we study the
ðϕ†ϕÞ4;5 extensions.
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particular case of the potential of order ðϕ†ϕÞ3 is repre-
sented by the blue curve. The maximum enhancement
λ3 ¼ 3λSM3 is achieved at Λ ∼ 484 GeV. For the cutoffs
above Λ ∼ 838 GeV, not shown in the figure, the phase
transition is not first order anymore, but the Higgs potential
is still a viable one. Note that the low value of the cutoff
does not necessarily correspond to any physical mass scale,
as is discussed in the singlet case, in Sec. III.
Let us note before closing that in Ref. [65] it is found that

for a FOEPT to take place, the enhancement due to a six-
dimensional operator to the Higgs potential cannot be
larger than ∼20%. In order to understand the difference
between their result and ours we notice that in their
normalization, the coefficient of the ðϕ†ϕÞ3 term is written
as c̄6λ

f2 , where λ is the coefficient of the ðϕ†ϕÞ2 term.2 The

discrepancy is due to the assumption in Ref. [65] that
c̄6 > 0 and c̄6v2=f2 is small. As we showed above, for a
FOEPT to take place, the effective quartic coupling λ < 0,
which means c̄6 < 0 is required for the stability of the
potential. Also, for λ < 0, the required condition to obtain a
positive Higgs mass is c̄6v2=f2 < − 2

3
. Thus, in the notation

of Ref. [65], jc̄6jv2=f2 cannot be used as a small expansion
parameter in the region of parameters consistent with a
FOEPT. Finally, the upper bound assumed on c̄6=Λ2,
coming from Ref. [7], is similar to the one we derived
in Eq. (12) and is applicable to c6=Λ2 and not to c̄6=Λ2.

2. Higgs potential of order ðϕ†ϕÞ4
From Eqs. (1)–(2), the potential and the triple Higgs

coupling are

Vðϕ; TÞ ¼ m2 þ a0T2

2
ðϕ†ϕÞ þ λ

4
ðϕ†ϕÞ2 þ c6

8Λ2
ðϕ†ϕÞ3

þ c8
16Λ2

ðϕ†ϕÞ4; ð16Þ

λ3 ¼
3m2

h

v

�
1þ 2c6v4

m2
hΛ

2
þ 4c8v6

m2
hΛ

4

�
: ð17Þ

This case is particularly interesting because contrary to
the ðϕ†ϕÞ3 case, the trilinear Higgs couplings may be either
enhanced or suppressed and one can even get an inversion
of the sign of λ3 with respect to λSM3 . As mentioned before, a
suppression or change of sign of λ3 would be interesting
from the collider perspective as it avoids the problem of a
strong destructive interference between the box and the
triangle diagrams for gg → hh.
The orange and green regions in Figs. 1(a)–1(b)

correspond to the regions consistent with the experimental
values of the Higgs mass and the Higgs VEV. Figure 1(a)

shows the possible modifications (δ) of the λSM3 possible in
this case. Figure 1(b) outlines the region in Fig. 1(a) which
corresponds to the FOEPT. This shows that an inversion of
sign or suppression of λ3 with respect to λSM3 necessarily
implies that the phase transition is not a first order one. In
the construction of Fig. 1(b), we have not considered the
region of the parameter space corresponding to potentials
with barriers between the minima at ϕ ¼ 0 and ϕ ¼ v at
T ¼ 0. This is due to the fact that a metastability analysis
would be required to determine the part of this region in
which a FOEPT takes place. Therefore, this rather small
region is neglected in our analysis. As a result of this, a
small part of the dashed blue curve is not surrounded by the
shaded regions. The same is true for Fig. 1(d).
In Figs. 1(a)–1(b), the different colors indicate different

regions of the parameter space. The orange region corre-
sponds to jc6j ¼ 1, 0 < c8 < 1, while the green region
corresponds to jc6j < 1, c8 ¼ 1. The regions can overlap,
because a different combination of c6 and c8 can produce
the same value of δ for the same cutoff. In fact, beneath all
of the orange region above the blue curve there exists a
green region. We observe that it is possible to obtain λ3
values ranging from −2λSM3 to 6λSM3 for cutoffs higher than
250 GeV. Demanding a FOEPT reduces it to a smaller
range from 5

3
λSM3 to 5λSM3 . We also note from Fig. 1(b) that

the FOEPT has a lower bound on the cutoff ∼300 GeV,
which is somewhat lower than in the ðϕ†ϕÞ3 case. Note that
the contribution to λ3 from the dimension-8 operators is
suppressed compared to that from the dimension-6 oper-
ators. The fact that in a ðϕ†ϕÞ4 theory, λ3 has a much larger
range in the general case compared to a ðϕ†ϕÞ3 theory, and
in the region consistent with the FOEPT is because with c8
being a positive number, c6 is allowed to take negative
values in the range of jc6j < 1 in a ðϕ†ϕÞ4 theory, while
0 < c6 < 1 has to be fulfilled in a ðϕ†ϕÞ3 theory.
Let us stress that negative values of δ imply that the

curvature is decreasing at ϕ ¼ v. If this behavior is
preserved at larger values of ϕ, one would expect a
maximum of the potential for ϕ > v. Then the stability
of the potential means there has to be one more minimum
for ϕ > v. The deeper the extra minimum, the more
negative the value of λ3. Thus, demanding the physical
minimum to be a global one, a maximal negative value
would occur at the point where both minima have the same
potential value. In order to retain the analytic control, we
plot the analytical bound coming from the point marking
the end of the absolute stability. For the ðϕ†ϕÞ4 case, this
bound is the black curve at the bottom of each panel of
Fig. 1. As shown in Appendix B, this maximally negative
enhancement is given as

δ > −
x

1þ ffiffiffiffiffiffiffiffiffiffiffi
1þ x

p ; where x ¼ 4v4

m2
hΛ

2
: ð18Þ2We denote the coefficient used in Ref. [65] c̄6, not to confuse

it with the coefficient c6 defined above.
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Observe, however, that for Λ≃ 250 GeV the second
minimum would occur at values of ϕ of order or larger
thanΛ, and hence this analytical result should be taken with
care. The numerical results of Fig. 1 were obtained by only
demanding the physical minimum to be the global one. The
largest negative enhancements obtained numerically are
consistent with the predictions of Eq. (18) up to values of
Λ≃ v. Let us stress again that although we show examples
with very low cutoff values, those low cutoff values may be
hard to realize in any realistic model.

3. Higgs potential of order ðϕ†ϕÞ5
From Eqs. (1)–(2), the potential and the triple Higgs

coupling in this case are

Vðϕ; TÞ ¼ m2 þ a0T2

2
ðϕ†ϕÞ þ λ

4
ðϕ†ϕÞ2 þ c6

8Λ2
ðϕ†ϕÞ3

þ c8
16Λ4

ðϕ†ϕÞ4 þ c10
32Λ6

ðϕ†ϕÞ5; ð19Þ

λ3 ¼
3m2

h

v

�
1þ 2c6v4

m2
hΛ

2
þ 4c8v6

m2
hΛ

4
þ 5c10v8

m2
hΛ

6

�
: ð20Þ

Most of the analysis is the same as that for the ðϕ†ϕÞ4
case, and the extra minimum develops for ϕ > v, when the
correction to λSM3 is negative. Barring the possibility of
metastability, the bound on the maximal negative correction
corresponds to the point in which the extra minimum is
degenerate with the physical one.

Figure 1(c) shows the possible modifications to λSM3 by
viable Higgs potentials that obey the experimental con-
straints on the Higgs mass and the VEV. We see that for
the cutoffs near 250 GeV, one can obtain variation in the λ3
from −5λSM5 to 7λSM3 . Such large deviations make the triple
Higgs coupling measurements at the LHC an exciting
probe to the new physics. Figure 1(d) shows a subset of the
region in the left panel, in which a SFOEPT can take place.
The black and blue lines are retained from Figs. 1(a)–1(b)
and serve as a reference for the comparison between the top
and bottom rows.
In Figs. 1(c)–1(d) the orange regions correspond to

jc6j ¼ 1, jc8j < 1, 0 < c10 < 1, the green region corre-
sponds to jc6j < 1, jc8j ¼ 1, 0 < c10 < 1 and the purple
region corresponds to jc6j < 1, jc8j < 1, c10 ¼ 1. As
expected, two clusters are observed in the orange and
green regions corresponding to the sign flips of c6 and c8
respectively. As in the case of ðϕ†ϕÞ4, there is overlap
between the regions. The green region is present beneath all
the area occupied by the orange region, while the purple
region is present beneath all the area occupied by the other
two colors.
An interesting feature of this kind of potential is the

presence of negative enhancements in Fig. 1(d) for the
orange and green regions. This means that in principle there
are regions of parameters in which a negative enhancement
of λ3 may be obtained consistently with a FOEPT. Figure 2
shows an example of the Higgs potentials, which is of order
ðϕ†ϕÞ5, and satisfies the Higgs mass and the VEV con-
straints and also undergo a SFOEPT with large negative

0. 0.5 1. 1.5 2.
–0.05

0.

0.05

0.1

0.15

φ / v

V
( φ

)/
v

4

0. 0.2 0.4 0.6 0.8
0.

0.0002

0.0004

0.0006

0.0008

φ / v

V
( φ

)/
v

4

FIG. 2. Example of order ðϕ†ϕÞ5 potentials that correspond to the negative correction and also produce SFOEPT. In the left panel, the
red line indicates the potential at T ¼ 0, and the blue line corresponds to the temperature where the curvature at ϕ ¼ 0 is 0. The green
line corresponds to the intermediate temperature of ∼35 GeV. The purple curve on the right shows the potential at T ¼ Tc. The
coefficients c6 ¼ 0.906, c8 ¼ −1, c10 ¼ 0.346, while Λ ∼ 263 GeV, Tc ∼ 44 GeV assuming a0 ∼ 3 as in the SM and δ ¼ −1.23.
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enhancements of the triple Higgs coupling. In the left panel,
the red line at the bottom corresponds to the potential at
T ¼ 0, while the blue line depicts the potential at T ¼ Tf

that corresponds to the curvature at ϕ ¼ 0 being 0. The
green (dashed) line represents an intermediate temperature.
In the right panel, the purple curve shows the phase
transition of the corresponding potential in the left panel
at T ¼ Tc. Let us stress that negative enhancements of the
triple Higgs couplings are only consistent with a FOEPT
for small values of the cutoff, Λ≲ 350 GeV. Hence, the
correlation between the negative enhancements and the
absence of a FOEPT remains generally valid.

III. MINIMAL EXTENSION WITH A SINGLET

Minimal extensions of the SM with just one singlet and
their impact on electroweak baryogenesis have been
studied in the literature [8,9,11,65–72]. Well-motivated
UV complete scenarios such as the NMSSM also have
an additional singlet, which can mix with the SM
Higgs [6,73].
In Sec. III Awe calculate the maximum enhancement of

the triple Higgs coupling that can be allowed under the
constraints of electroweak baryogenesis and the experi-
mental constraints coming from the LHC. In Sec. III B we
assume that the singlet is heavy and integrate it out giving
rise to an EFT. The resultant expressions for the triple
Higgs enhancement and bounds on the FOEPT region can
be shown to be the same as those generated from the full
Lagrangian in the small mixing angle limit. At the same
time, this approach represents an example of the potentials
discussed in the previous section and therefore allows one
to discuss the validity and limitations of the effective theory
approach.

A. Enhancement in the full scalar Lagrangian
of the singlet extension

Consider a general scalar potential, with one-loop
thermal correction only in the mass term, that can be
written in a canonically normalized Lagrangian for the SM
extended with one singlet field ϕs,

Vðϕh;ϕs; TÞ ¼
m2

0 þ a0T2

2
ϕ2
h þ

λh
4
ϕ4
h þ ahsϕsϕ

2
h

þ λhs
2

ϕ2
sϕ

2
h þ tsϕs þ

m2
s

2
ϕ2
s

þ as
3
ϕ3
s þ

λs
4
ϕ4
s : ð21Þ

Here, ϕh is the Higgs field. The VEV for the Higgs field is
v ¼ 246 GeV. We assume that ms is larger than the weak
scale and we therefore ignore the very small temperature
corrections affecting the singlet mass.
We stay in the limit where as and λs are much smaller

compared to ahs and λhs and drop the as and λs terms. This

limit allows us to retain analytical control over the
expressions for the mixing and triple Higgs coupling
enhancement and to clearly demonstrate the connection
with the EFT.3 Within this approximation, the mass squared
matrix in the basis ðϕhϕsÞ is

M2 ¼
�
m2

11 m2
12

m2
21 m2

22

�

¼
�

2λhv2 2ðahs þ λhsvsÞv
2ðahs þ λhsvsÞv m2

s þ λhsv2

�
; ð22Þ

where the VEV of the singlet field calculated at the Higgs
vacuum is

vs ¼ −
ts þ ahsv2

m2
s þ λhsv2

: ð23Þ

The gauge eigenstate basis can be converted to the mass
eigenstate basis as follows:

ϕh ¼ cos θh1 − sin θh2 þ v; ð24Þ

ϕs ¼ sin θh1 þ cos θh2 þ vs: ð25Þ

The mixing is given as

tan 2θ ¼ 4vðahs þ λhsvsÞ
2λhv2 −m2

s − λhsv2

¼ 4vðahsm2
s − tsλhsÞ

ð2λhv2 −m2
s − λhsv2Þðm2

s þ λhsv2Þ
: ð26Þ

We use Eqs. (22) and (26) to convert the potential in
Eq. (21) to the mass basis ðh2h1Þ at the temperature T ¼ 0,
where h1 is the lighter of the two scalar fields. The third
derivative of the potential in Eq. (21) with respect to
h1 gives the triple Higgs coupling for the lower mass
excitation as

λ3 ¼ 6λhvhcos3θ

�
1þ

�
λhsvs þ ahs

λhvh

�
tan θ þ λhs

λh
tan2θ

�
:

ð27Þ

In the limit of v2 ≪ m2
s , one can easily show that the h1

mass is given by

m2
h ¼ 2λhv2 − 4v2

ðahsm2
s − tsλhsÞ2

ðm2
s þ λhsv2Þ3

: ð28Þ

Using Eqs. (29), (28), and (26), we get

3The effects of as and λs on the triple Higgs coupling
enhancement may be considered by performing an expansion
in v=ms [74].
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λ3 ¼
3m2

h

v

�
cos3θ þ

�
2λhsv2

m2
h

�
sin2θ cos θ

�
: ð29Þ

For θ ¼ 0, we recover the SM result of λ3 ¼ 3m2
h

v .
In the small θ limit, the above formula reduces to

λ3 ¼
3m2

h

v

�
1þ

�
2λhsv2

m2
h

−
3

2

�
tan2θ

�
: ð30Þ

The same result can be recovered in the EFTapproach by
integrating out the heavier state as shown in Sec. III B. For
the FOEPT in such a potential, we impose the following
conditions:

Vð0; TcÞ ¼ Vðvc; TcÞ; V 0ðvc; TcÞ ¼ 0: ð31Þ

This leads to [6]

v2c ¼
1

λhs

0
B@−m2

s þ
ffiffiffiffiffi
2

λh

s ����msahs −
λhsts
ms

����
1
CA: ð32Þ

Here vc is the value of the doublet scalar field at the critical
temperature (Tc). The value of S is set to

vs;c ¼ −
ts þ ahsv2c
m2

s þ λhsv2c
; ð33Þ

which minimizes the potential at ϕh ¼ vc. The constraints
on the derivatives,

V 0ðϕc; TcÞ ¼ 0; V 0ðv; 0Þ ¼ 0; ð34Þ

imply a0T2
c¼8ðFðv2cÞ−Fðv2ÞÞ. Here Fðϕ2Þ¼−V 0ðϕ;0Þ

ϕ

and v¼246GeV.
In Fig. 3 we show the enhancements of the trilinear

couplings for different values of the singlet mass msinglet

and the quartic coupling λh. The orange region in Fig. 3
corresponds to the region consistent with a FOEPT, i.e. the
boundaries correspond to v2c ¼ 0 and T2

c ¼ 0.
From Eqs. (32) and (28), it follows that for Tc ¼ 0, or

equivalently vc ¼ v one obtains

tan2θðvc ¼ vÞ≃ m2
h

λhsv2
: ð35Þ

Similarly, for vc ¼ 0, one obtains

tan2θðvc ¼ 0Þ≃ m2
h

3λhsv2
: ð36Þ

Using these expressions for small mixing angles,
Eq. (30), one can easily show that

δðvc ¼ vÞ≃ 2 −
3m2

h

2λhsv2
ð37Þ

while in the case of vc ¼ 0 one obtains

δðvc ¼ 0Þ≃ 2

3
−

m2
h

2λhsv2
: ð38Þ

The region compatible with a FOEPT is always between
these boundaries of vc ¼ 0 and vc ¼ v. Thus, the enhance-
ment to the triple Higgs coupling is always less than 3, a
result similar to the one obtained in the ðϕ†ϕÞ3 extension of
the Higgs potential discussed in Sec. II A 1. Finally, let us
mention that the SFOEPT constraint of vc > Tc [16] is
almost always satisfied in the shown orange region.
In Fig. 3, we also show experimental constraints coming

from Higgs physics and electroweak precision measure-
ments. The mixing parameter sin2 θ is denoted by the
blue contours. The precision measurements of the SM-like
Higgs properties at the LHC already impose strong con-
straints on the possible mixing angle of the singlet with
the doublet. For example, the measurement of the Higgs
production signal rates imposes an upper bound on sin2 θ.
If one takes the gluon fusion production process, the
combined measurement of ATLAS and CMS gives a signal
strength [75]

μggF ¼ 1.03þ0.17
−0.15 : ð39Þ

When the other subleading processes, including the weak
boson fusion, associated production and tth production are
considered z, one obtains a combined signal strength

μ ¼ 1.09þ0.11
−0.10 : ð40Þ

Since the mixing with a singlet leads to an overall
decrease of all couplings to fermions and gauge bosons,
the Higgs decay branching ratios are not affected and the
signal strength is proportional to cos2 θ. Hence, from
Eqs. (39)–(40) one obtains a 95% confidence level upper
bound on sin2 θ, namely

sin2θ < 0.27 ð41Þ

if only the more precisely measured gluon fusion processes
are considered, and sin2 θ < 0.11 if the fit to all production
processes is considered. In our work, we considered both
bounds, as an indication of the constraints on the possible
realization of this scenario.
In the case of small θ, as seen from Eq. (30), the

correction to λ3 compared to the SM is proportional to
sin2 θ. From this, it is evident that the upper bound on the
mixing is translated into an upper bound on the enhance-
ment of λ3,
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δ< sin2θmax

�
2λhsv2

m2
h

−
3

2

�
∼ sin2θmax

�
8λhs−

3

2

�
: ð42Þ

Hence, these constraints become more severe for smaller
values of λhs.
From Eqs. (30) and (42), we also see that reducing λhs

below
3m2

h
4v2 leads to small negative values of δ. Therefore, a

small suppression of the triple Higgs coupling with respect
to the SM is viable for these values of λhs. As shown in
Fig. 3, for these values of λhs the FOEPT region shifts
rapidly to the higher mixing values and becomes unviable.
Thus, there is trade-off between FOEPT and suppression of

the triple Higgs coupling with respect to the SM as shown
in the EFT case in the previous section.
Moreover, a light singlet that mixes with the SM Higgs

will be produced at the LHC and may be searched for in
various decay channels. This puts an additional constraint
on the realization of this model, which is also shown in
Fig. 3. The region to the left of the dark red solid line is
excluded by the Higgs searches in the WW and ZZ
channels [76].
The mixing between the doublet and the singlet is also

constrained by precision W mass measurement [77,78].
The world average for the mass of the W boson is mW ¼
80.385� 0.015 GeV [79] including data from LEP II [80],
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FIG. 3. Contours of the mixing parameter sin2θ (solid blue line) and of the enhancement of the triple Higgs coupling (dashed green
line) given by Eq. (29) in the msinglet − λh plane. The blue shaded region denotes 2σ exclusion due to the gluon fusion channel. The
orange shaded region represents the region consistent with a FOEPT. The region excluded up to 2σ confidence level by Higgs precision
measurements is shaded in red. The constraints coming from mW are shown by magenta (short-dashed) lines. In the top-left panel we
present results for λhs ¼ 0.5, while in the top-right, bottom-left and bottom-right panels we present results for λhs ¼ 1, 2, 4 respectively.
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CDF [81] and D0 [82]. The prediction of the W mass is
obtained by calculating the muon lifetime, which yields the
relation,

m2
W

�
1 −

m2
W

m2
Z

�
¼ παffiffiffi

2
p

GF

ð1þ ΔrÞ; ð43Þ

where Δr summarizes the radiative corrections. In the SM,
in the on shell scheme, mSM

W ¼ 80.361� 0.007 GeV
[83,84],4 which corresponds to ΔrSM ¼ ð37.979�
0.406Þ × 10−3, with the mass of the Higgs mh ¼ 125 GeV.
From Eq. (43), Δrexp ¼ ð36.32� 0.96Þ × 10−3, which is
about 1.7σ from the SM value. Δr can be parametrized as

Δr ¼ Δαþ c2w
s2w

�
δm2

Z

m2
Z
−
δm2

W

m2
W

�
þ ðΔrÞrem; ð44Þ

where Δα is the radiative correction to the fine structure
constant α, and cw and sw are the cosine and sine of the
weak mixing angle. The second term is the on-shell self-
energy correction to the gauge boson masses, which is well
approximated by its value at zero momenta, and relates to

the ρ parameter as − c2w
s2w
Δρ. The last term, ðΔrÞrem, includes

vertex corrections and box diagrams at one-loop level,
which are subleading. In the case of having a singlet mixed
with the SM Higgs boson, Δr is given by

Δr ¼ ΔrSM −
c2w
s2w

ðΔρsinglet − ΔρSMÞ; ð45Þ

where Δρsinglet and ΔρSM are the Δρ calculated in the case
with a mixed-in singlet and the SM [86].

Δρsinglet − ΔρSM

¼ GF
m2

Z

2
ffiffiffi
2

p
π2

sin2θ
�
HT

�
m2

Singlet

m2
Z

�
−HT

�
m2

h

m2
Z

��
; ð46Þ

where

HTðxÞ ¼
3

4
x

�
logðxÞ
1 − x

−
logðx ×m2

Z=m
2
WÞ

1 − x ×m2
Z=m

2
W

�
: ð47Þ

The constraints on sin2 θ obtained from theW mass become
quite severe since as mentioned above, the SM is already
in tension with the W mass measurement, and the singlet
contribution increases this tension. The 2σ constraint
coming from Δr calculated from Eq. (45) is shown by
the lowered dashed magenta line in Fig. 3. On the other

hand, if one assumes that some other new physics, which
does not modify the loop induced Higgs production
processes in a relevant way, is responsible for the difference
between the SM and the current W mass measurement the
bounds become significantly weaker as seen from the upper
dashed magenta line in Fig. 3. It follows from Fig. 3 that
even considering the tight constraints coming from Higgs
measurements and precision electroweak parameters, a
strongly first order phase transition is possible in these
scenarios, provided λhs ≳ 1. Large values of the singlet
mass, of the order of the TeV scale, are possible in this case,
making sin2 θ small. In our analysis, we ignore the one-
loop contributions to the effective potential since they are
suppressed compared to the tree-level mixing effects. When
λhs is sizable, as we show in the lower panels in Fig. 3,
those corrections may not be negligible and should be
taken into account in a more refined analysis of the critical
parameters.
Before concentrating on the EFT analysis let us stress

that an important contribution to the double Higgs pro-
duction cross section that is always missed in this analysis
is the resonant double Higgs production induced by the
singlet. This can lead to a relevant contribution if the singlet
is below the TeV scale and the mixing is sizable [87]. For
instance, at the LHC with a center of mass energy of
14 TeV a 500 GeV singlet with a mixing of sin2 θ ¼ 0.2
will lead to a resonant production cross section through
gluon fusion for the singlet of about 1.13 pb [88]. Under
these conditions the branching ratio BRðS → hhÞ ∼ 0.013.
Then the double Higgs production rate induced by the
singlet is about 15 fb, which is about a factor of 4 smaller
than the SM double Higgs production rate. Such a singlet
would show up in the invariant mass distribution as a
narrow resonance, as the singlet width is about 17 GeV.
When the singlet gets heavier, say about 1 TeV, and for a
mixing angle sin2θ ¼ 0.1, the double Higgs production
induced by the singlet is reduced to about 2.6 fb, which is
significantly suppressed compared to the double Higgs
production from the box and triangle diagrams, and
difficult to detect in the standard decay channels. Then,
in the region of a heavy singlet and small mixing angle, the
EFT gives a proper description of the physics involved in
double Higgs production. In this case, the singlet presence
may only be inferred indirectly and one can make contact
with an effective theory description of the modification of
the trilinear couplings and of the double Higgs produc-
tion rate.

B. EFT formulation for the singlet extension

In the limit of large values of the singlet mass ms, and
small mixing between the SM-like Higgs and the heavy
singlet, we can integrate out the heavy singlet, and the
resulting EFT should describe the same physics as we have
described in the previous subsection.

4A calculation at the full two-loop level in the MS scheme
shows a value of mW ¼ 80.357� 0.009� 0.003 GeV [85]. We
stick to the on shell scheme calculation in our discussion, and the
difference between the W mass calculation in both schemes
would lead only to a minor change in our results.
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For momenta very small compared to the masses of the
scalars, solving the equation of motion for the singlet
gives

ϕs ¼ −
ts þ ahsh2

m2
s þ λhsh2

: ð48Þ

Substituting this into the original potential in Eq. (21)
yields an effective potential for h, which is given by [6]

Vðh; TÞ ¼ m2ðTÞ
2

ϕ2
h þ

λh
4
ϕ4
h −

ðts þ ahsϕ2
hÞ2

2ðm2
s þ λhsϕ

2
hÞ
; ð49Þ

where m2ðTÞ ¼ m2
0 þ a0T2. The integration out of the

singlet also leads to a modification of the Higgs kinetic
term, which means that the well-normalized Higgs field
H will no longer be given by h, but will be affected by
the mixing with the singlet. In other words, substituting
the equation of motion of S in its kinetic term leads to an
h dependent normalization factor,

ð∂μϕhÞð∂μϕhÞ þ ð∂μϕsÞð∂μϕsÞ

→

�
1þ 4ϕ2

hðahsm2
s − tsλhsÞ2

ðm2
s þ λhsϕ

2
hÞ4

�
ð∂μϕhÞð∂μϕhÞ: ð50Þ

Demanding thatH is well normalized and retaining up to
first order in the small parameter

z ¼ ðahsm2
s − tsλhsÞ2v2
m8

s
ð51Þ

we obtain

ϕH ¼ ϕh þ
2zϕ3

h

3v2
þOðϕ5

hÞ: ð52Þ

The corresponding cH is

cH
4Λ2

¼ z
v2

: ð53Þ

The variable z defined above is related to the mixing angle
between the singlet and the doublet. From Eq. (26), we can
write

tan22θ ¼ 16z
ð2λhy − 1 − λhsyÞ2ð1þ λhsyÞ2

¼ 4tan2θ þOðtan3θÞ: ð54Þ

Substituting Eq. (61) and retaining first order in z we get

tan22θ ¼ 16zþOðz2Þ ¼ 4tan2θ þOðtan3θÞ
⇒ tan2θ ∼ 4z: ð55Þ

From Eqs. (53), and (55), the constraint from the Higgs
signal strength, Eq. (41), implies that cH tends to be small,
namely

cHv2

Λ2
< 0.37: ð56Þ

Inverting the relation between ϕh and ϕH given in
Eq. (52) one obtains

ϕh ¼ ϕH −
2z
3v2

ϕ3
H þOðϕ5

HÞ: ð57Þ

Substituting this in Eq. (49), we get an effective potential,
which retaining up to order H6 corrections is given by

VeffðϕH; TÞ ¼
m2

2
ϕ2
H þ

�
λh − 2z=y

4
−
2m2z
3v2

�
ϕ4
H

þ
�
−4zðλh − 2z=yÞ þ 3zλhs

6v2

�
ϕ6
H; ð58Þ

where y ¼ v2=m2
s . This shows the presence of a large

negative correction to the quartic coupling, of order 2z=y.
This correction, which depends only on ratios of mass
parameters, allows for the presence of a negative effective
quartic coupling which, according to our analysis of the
EFTat this order in Sec. II A 1, is essential for the obtention
of a FOEPT.
Using this potential Eq. (49) we apply the Higgs mass

condition to write�
V00
eff −

V 0
eff

ϕH

�����
ϕH¼hϕHi

¼ m2
H; where hϕHi ¼ vþ 2zv

3
:

ð59Þ

Solving this simultaneously with

V 0
eff

ϕH

����
ϕH¼hϕHi

¼ 0 ð60Þ

leads to a relation of the value of λ and the Higgs mass,

λ ¼ λh −
2z
y
¼ m2

H

2v2
þ
�
2m2

H

v2
− 6λhs

�
z: ð61Þ

Sincem2
H=ð2v2Þ≃ 1=8, for small values of z the coefficient

of the quartic coupling λ is small in magnitude and may be
negative for λhs of order 1.
Moreover, a sizable correction to the sixth order term

appears, which is there even in the absence of kinetic term
corrections. Observe that λh − 2z=y, which as shown above
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corresponds to λ in the EFT analysis, appears also in the
first term in the ϕ6

H coefficient. Since λ is small as discussed
above, the ϕ6

H coefficient is dominated by the second term
in the bracket. The cutoff scale can be then calculated from

c6
8Λ2

∼
3λhsz
6v2

¼ λhsðam2
s − tsλhsÞ2
2m8

s
: ð62Þ

The corresponding cutoff scale is, for c6 ¼ 1,

Λ2 ¼ m8
s

4λhsðam2
s − tsλhsÞ2

: ð63Þ

Thus, when (am2
s − tλhs) and λhs become sizable, Λ could

be significantly lower than ms. However, am2
s − tλhs is

related to sin2 θ, which is constrained by electroweak
symmetry breaking, precision Higgs measurements, heavy
SM-like Higgs searches, and W mass as discussed above;
the cutoff scale cannot be lowered arbitrarily. For example,
since λ is small, from Eq. (61), we have

λh ∼
2z
y
¼ 2ðam2

s − tsλhsÞ2
m6

s
: ð64Þ

Then the cutoff scale is about

Λ2 ∼
m2

s

2λhλhs:
ð65Þ

It is instructive to compare these results with those shown in
Fig. 3. For instance, whenmsinglet is about 1.4 TeV, λhs ¼ 2,
and λh ¼ 2, that is close to the boundary of the orange
region in the bottom-left panel of Fig. 3, the cutoff scale is
about 494 GeV, which is about the lower bound of the
cutoff scale in a ðϕ†ϕÞ3 theory and is consistent with
the left boundary of the orange region in this figure.
Similarly, for the same results of λh and λhs, and for
msinglet ¼ 2.4 TeV, that is closed to the other boundary in
the bottom-left panel of Fig. 3, the effective cutoff scale that
is obtained from Eq. (65) is about 848 GeV that is very
close to the upper bound on Λ that is obtained for a FOEPT
in the ðϕ†ϕÞ3 extension. One can check that similar values
of the cutoff are obtained at the left and right boundaries of
the orange regions in Fig. 3 for other values of λh, λhs
and msinglet.
After substituting Eq. (61) and considering the field

fluctuations of the field ϕH,

ϕH ¼ vH þH; ð66Þ

we obtain

λ3 ≡ gHHH ¼ 3m2
H

v

�
1þ 4z

�
2λhsv2

m2
H

−
3

2

��
: ð67Þ

Using Eqs. (67) and (55) we obtain

λ3 ¼
3m2

H

v

�
1þ

�
2λhsv2

m2
h

−
3

2

�
tan2θ

�
: ð68Þ

This formula is the same as that obtained in Eq. (30)
from the small mixing limit of the enhancement up to tan2 θ
order in the full renormalizable Lagrangian. Thus, as
expected, the EFT approach is equivalent to the small
mixing limit of the full theory. To make the analogy more
transparent let us emphasize that from Eq. (57) the
fluctuations of the field ϕh ¼ vþ h and H are related by

h ¼
�
1 −

tan2θ
2

�
H ≃ cos θH: ð69Þ

That is the same relation we obtain between h1 and h in
the full theory, Eq. (24), when we consider negligible h2
fluctuations associated with its decoupling from the low
energy theory.
We note that the effective potential derived in Eq. (58) is

of order ϕ6
H. This is the same order as the ðϕ†ϕÞ3 potential

described in Sec. II A 1. In this case, however, the range of
values of δ is not constrained from 2=3 to 2 as expected
from the ðϕ†ϕÞ3 theory, but is shifted to lower values. This
is due to the kinetic term corrections we did not consider in
the analysis in Sec. II. For λhs ≳ 1, the kinetic term
corrections remain significantly smaller than the ones
associated with the effective potential modification, which
are controlled by the λhs coupling. Expressing Eq. (67) in
terms of c6 and cH, using Eqs. (62) and (53), we obtain

λ3 ¼
3m2

H

v

�
1þ c6

2v4

m2
hΛ

2
−
3

2
cH

v2

Λ2

�
: ð70Þ

This is consistent with Eq. (6) when cH ¼ 0. Also, this is
consistent with Eq. (34) in Ref. [65] and Eq. (124) of
Ref. [89] when taking λ ¼ m2

h=ð2v2Þ. It is worth noticing
that Eq. (70) is suitable for the study of the region of
parameters consistent with a FOEPT while Eq. (34) in
Ref. [65] and Eq. (124) in Ref. [89] are only valid in the
region where λ can be approximated as m2

h=ð2v2Þ. As
mentioned in Sec. II A, it has been overlooked in
Ref. [65] that in the region consistent with a FOEPT, λ
is small and negative, and the proper relation between λ
and the Higgs mass can only be obtained after including
the higher order corrections proportional to c6, Eq. (9),
and therefore λ ¼ m2

h=ð2v2Þ is no longer a valid approxi-
mation in this region.
Higher powers of ϕH in Eq. (58) can be obtained by

retaining more terms in the expansions with respect to z and
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y variables. For instance, we have checked that at next order
the well-normalized field is given by

ϕH ¼ ϕh þ
2zϕ3

h

3v2
−
2ðz2 þ 4yzλhsÞϕ5

h

5v4
: ð71Þ

Expressing h in terms of H,

ϕh ¼ ϕH −
2zϕ3

H

3v2
þ 2ð13z2 þ 12yzλhsÞϕ5

H

15v4
; ð72Þ

one can obtain the value of δ, as we did below, that is
given by

δ ¼
�
−6þ 8v2λhs

m2
h

�
zþ

�
30 −

48v2λhs
m2

h

�
z2

þ
�
40λhs −

32v2λ2hs
m2

h

�
yz: ð73Þ

That indeed reproduces the small θ expansion of the exact
formula, Eq. (30).
Again, it is straightforward to see that H and h are

related by

h ¼
�
1 −

tan2θ
2

þ 3tan4θ
8

�
H ≃ cos θH ð74Þ

as expected from the relation between h1 and h in the full
theory, Eq. (24).
Before we concentrate on collider phenomenology, let us

comment on the negative enhancement in a theory with a
mixed-in singlet. Once a small singlet quartic coupling λs is
turned on to stabilize the potential, λhs can go to negative
values, as long as jλhsj <

ffiffiffiffiffiffiffiffiffi
λhλs

p
. A small λs leads to a

contribution to λ3 suppressed by sin3 θ, ∼6λsvs sin3 θ. As
seen in Eq. (68), a negative λhs provokes a negative
enhancement while a small positive λs adds negligible
contribution to λ3. We note that, in the EFT context, the λs
term generates a term of order 1

4
λs

a4hs
ms8 H

8 in the effective
potential, and allows for the terms of order of H6 negative.
Therefore, a theory with a negative λhs may result in a
negative enhancement in λ3 as we go beyond a ðϕ†ϕÞ3
theory described before, as shown for instance in the green
region in Fig. 1.

IV. MEASUREMENT OF THE TRIPLE HIGGS
COUPLING AT THE LHC

The triple Higgs coupling λ3 can be probed by the double
Higgs production at the LHC. At the leading order (LO),
there are two diagrams contributing to the process: the
triangle diagram, which is sensitive to λ3, and the box
diagram. The two diagrams interfere with each other
destructively. The LO matrix elements of the subprocess
are known [90–92]. NLO QCD corrections are known [93]

in an EFT approach, by applying the low energy theorem
(LET) [94] within the infinite quark mass approximation.
Next-to-next-to-leading order (NNLO) corrections in the
large quark mass limit are calculated in [95–97]. Next-to-
next-to-leading logarithmic (NNLL) corrections are calcu-
lated in [98,99]. For our analysis, we take a NNLO
K-factor ¼ 2.27 [95].
For our analysis, we assume the double Higgs produc-

tion is modified because of the altered λ3 coupling. The
double Higgs production rate could also be modified by
introducing new particles that couple to the gluon, and the
Higgs in the loop [100,101]. Those new particles change
the amplitudes corresponding to the triangle diagram and
the box diagram at the same time and also contribute to the
single Higgs production, which is well measured at the
LHC. Therefore, those contributions are constrained and
tend to be small for the double Higgs production [101].
For the Higgs decays, we consider γγ, τþτ−, WþW− and

bb̄ modes, which are measured in the single Higgs
production at the LHC. The production rate of double
Higgs is suppressed by three orders of magnitude compared
to the single Higgs production at the LHC [88], so one of
the two Higgs bosons needs to decay to bb̄ for statistics,
and γγ, τþτ−, and WþW− modes can be considered for the
other Higgs boson. We do not study the bb̄WþW− decay
mode due to the overwhelming tt̄ background that renders a
low significance [28,29]. The four b final states suffer from
a large QCD background and therefore are very difficult for
the LHC even in the boosted region of the Higgs boson,
where the jet substructure techniques may be used [28]. In
this work, we therefore focus on the bb̄γγ mode.
The irreducible background in the hh → bb̄γγ channel

includes bb̄γγ, tt̄hðγγÞ and Zðbb̄ÞhðγγÞ processes.
Considering the possibility that a charm or light quarks
fake a bottom quark, and a light jet fakes a photon, the
processes cc̄γγ, jjγγ, and bγjj also contribute to the
background. The tt̄h background can be efficiently sup-
pressed by vetoing extra jets, leptons or missing energy.
Requiring the invariant mass of the two b-jets, mbb̄ and the
two photons, mγγ within some window of the Higgs mass
helps to reduce the Zh background and the QCD back-
ground. In the previous studies, a cut on the invariant mass
of the two Higgs bosons, mhh [29,31,33], or some equiv-
alent cuts were required [34] to be imposed to further reject
the background. In those studies, it was shown that anOð1Þ
precision in the triple Higgs boson coupling λ3 may be
achieved at the 14 TeV run of the LHC, with a high
integrated luminosity of order 3000 fb−1.
As pointed out in [31], and also noticed in [34], the

acceptance of new physics with large λ3 compared to the
SM value is much lower for the same set of cuts. The reason
for this behavior is that themhh distribution is very different
for the SM and for new physics with a large λ3. When mhh
is below the 2mt threshold, there are only real parts of the
triangle and the box diagram, and these two diagrams
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interfere with each other destructively. The cancellation is
exact at the 2mt threshold at λ3 ¼ 2.45λSM3 . When mhh is
above the 2mt threshold, imaginary parts start to develop,
and the destructive interference is not as strong as it is
below the 2mt threshold. So as λ3 increases, the cross
section increases more significantly below the 2mt thresh-
old than above the 2mt threshold. This means that, as λ3
increases, the distribution ofmhh shifts to smaller values, as
shown in Fig. 4, where we plot the normalized mhh
distribution using MCFM [102] for various values of λ3.
Thus, using the same set of cuts for new physics with a
large λ3 leads to a low acceptance at the LHC. Therefore, a
modified cut on mhh, mhh < 2mt should be used when
searching for new physics with a large λ3.
The mhh distribution also helps to distinguish positive

and negative values of λ3. For negative λ3, the mhh
distribution shifts to larger values compared to the positive
λ3 that yields the same production for gluon fusion because
of the constructive interference between the box and the
triangle diagrams, as shown in Fig. 4. Then, the negative
and positive values of λ3 that have the same total rate of
gluon fusion can be distinguished by studying the mhh
distribution.

A. Double Higgs production in the bb̄γγ channel

In order to understand the impact of the cuts in the mhh
invariant mass distribution on the reach for double Higgs
production at the LHC and future colliders, we have
performed a collider study of this process for different
values of the triple Higgs coupling and in different Higgs
decay channels. In spite of the low rate, one of the most

sensitive channels is when the Higgs decays into photons,
since it allows a good Higgs reconstruction with relatively
low background. We therefore performed a collider study
for the hh → bb̄γγ channel. The signal with various values
of λ3 is generated by MCFM [102], passed to Pythia8 [103]
for parton shower and hadronization, and then passed to
Delphes [104] for detector simulation. We apply a NNLO
K-factor of about 2.27 for the signal [95]. The background
processes are generated with MadGraph [105] and then
passed to Pythia and Delphes. We apply a NLO K-factor ¼
1.1 for tt̄h and a NNLO QCD, NLO EW K-factor ¼ 1.33
for Zh [88]. There are no higher order corrections known
for the QCD backgrounds, and therefore, all the QCD
processes are normalized to LO. We take a b-tagging
efficiency of 70% and a mistag rate of 24% for c-jets
and 2% for light jets [106]. We adopt a photon tagging rate
of 85% and a jet to photon fake rate ϵj→γ ¼ 1.2 × 10−4

[107]. We require the following cuts:

ptðbÞ > 30 GeV; jηðbÞj < 2.5;

ptðγÞ > 30 GeV; jηðγÞj < 2.5

112.5 GeV < mbb < 137.5 GeV;

120 GeV < mγγ < 130 GeV: ð75Þ

For the SM case, we further require

mhh > 350 GeV; ð76Þ

while for λ3 > 3λSM3 , we require

250 GeV < mhh < 350 GeV: ð77Þ
The results for LHC 14 TeV are displayed in Table I. As
shown in Table II, the significance reaches 5σ level at
λ3 ∼ 6.5λSM3 , and λ3 ∼ −0.2λSM3 at 14 TeV and 3000 fb−1.
One caveat of this analysis is that we include a K-factor for
the signal (and also for the ZH and tth background), but the
QCD background is only considered at LO. If we assume a
K-factor of about 2 for the QCD processes, the significance
drops by a factor of

ffiffiffi
2

p
, which can be compensated by the

fact that there are two detectors.
It is instructive to compare these results with those

obtained by the LHC experimental collaborations. ATLAS
and CMS have performed similar studies on the hh → bbγγ
channel. For HL-LHC, ATLAS expects a 1.3σ significance
for the SM case [34], and the CMS expectation is about
1.6σ [108]. These results are about a factor two weaker than
the ones we obtain in our study. On the other hand, the
results from current theoretical studies show a significance
range from 2σ to 6σ [27,29,31,33]. The difference with the
experimental results may proceed from different sources. In
our analysis, we use very simple cuts, and we do not
attempt to optimize the cuts for the SM background, but we
believe extra cuts do not help much in this case as it is a rare
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FIG. 4. Normalized mhh distributions for λ3 ¼ λSM3 ,
λ3 ¼ 2.45λSM3 and λ3 ¼ 7λSM3 and λ3 ¼ −2λSM3 . The cancellation
between the box and triangle diagram is exact at λ3 ¼ 2.45λSM3 at
2mt threshold, which explains the dip. Note that the distribution
shifts to smaller values as λ3 increases.
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process. We also do not try to perform a realistic detector
simulation.
The main issue we stress is the impact of the cuts in the

invariant mass distribution when studying possible mod-
ifications of the triple Higgs coupling. We obtain a very
significant sensitivity improvement in the case where λ3
deviates significantly from the SM; when we implement
the new cuts in Eq. (77) we propose such cases. For
instance, when λ3 ¼ 5λSM3 , if we use the cuts in Eq. (76), we
only expect a 0.67σ significance, while we expect 2.1σ
significance if we use the cuts in Eq. (77). Similar large
improvements are obtained for other sizable values
of λ3 > 3λSM3 .
Due to the relatively low sensitivity of the LHC in

looking for double Higgs production, it is interesting to
consider similar signatures at future colliders, in particular,
a future high energy pp collider. The sensitivity will
depend on many factors, including the center of mass
energy and the detector performance. To be specific, we
consider the case of a 100 TeV pp collider, assuming that
the detector performance stays the same as at the LHC,
performing similar cuts as the ones in the LHC analysis.
We show the results in Tables III–IV. In our analysis, we
considered only positive values of λ3, since as shown

above, the LHC is already sensitive to the negative values.
It is then easy to extrapolate the same analysis for higher
energies. The results presented in Table III show that a
100 TeV collider should be sensitive to triple Higgs boson
couplings λ3 ∼ 5λSM3 , where the same cuts proposed in
Eq. (75) were used. The significance we obtain is similar to
the ones obtained in Refs. [13] and [109] for the same
process. Again, we obtain a significant improvement of the
sensitivity at large values of λ3 > 3λSM3 when the new cuts
on mhh given in Eq. (77) are used.

B. Double Higgs production in the bb̄τþτ− channel

Since the Higgs has many different significant decay
channels, it is useful to think about double Higgs produc-
tion in channels different from the bbγγ considered in this
work. A particularly interesting one is the bbττ channel.
The bb̄τþτ− channel enjoys a larger cross section but
suffers from the difficulty in the event reconstruction due to
the missing energy associated with τ decays. It also suffers
from larger backgrounds that should be properly consid-
ered to obtain a realistic reach estimate.
The τ pair invariant mass mττ may be estimated by the

missing mass calculator [110], and similar methods could
be used to estimatemhh in this channel. In order to estimate
the reach in this channel, we assume that the mττ invariant

TABLE II. Significance expected for hh at the LHC at
ffiffiffi
s

p ¼
14 TeV for an integrated luminosity of 3000 fb−1 after applying
cuts in Eq. (75) þ Eq. (76) (λ3 < 3λSM3 ), or Eq. (75) þ Eq. (77)
(λ3 > 3λSM3 ).

λ3 λSM3 5λSM3 7λSM3 9λSM3 0 −λSM3 −2λSM3
S=

ffiffiffiffi
B

p
3.3 2.1 6.0 11 4.4 7.5 9.8

TABLE I. Cross section in fb of the hh signal and various
backgrounds expected at the LHC at

ffiffiffi
s

p ¼ 14 TeV after apply-
ing the cuts discussed in Eqs. (75)–(77).

σ (fb)
Eq. (75) þ
Eq. (76) (fb)

Eq. (75) þ
Eq. (77) (fb)

hhðbb̄γγÞ (λ3 ¼ λSM3 ) 0.15 1.0 × 10−2 � � �
hhðbb̄γγÞ (λ3 ¼ 5λSM3 ) 0.26 � � � 1.12 × 10−2

hhðbb̄γγÞ (λ3 ¼ 7 λSM3 ) 0.71 � � � 3.3 × 10−2

hhðbb̄γγÞ (λ3 ¼ 9 λSM3 ) 1.43 � � � 6.08 × 10−2

hhðbb̄γγÞ (λ3 ¼ 0) 0.29 1.33 × 10−2 � � �
hhðbb̄γγÞ (λ3 ¼ −λSM3 ) 0.50 2.26 × 10−2 � � �
hhðbb̄γγÞ (λ3 ¼ −2λSM3 ) 0.77 2.94 × 10−2 � � �
bb̄γγ 5.05 × 103 1.34 × 10−2 4.0 × 10−2

cc̄γγ 6.55 × 103 4.19 × 10−3 2.68 × 10−2

bb̄γj 9.66 × 106 4.60 × 10−3 1.38 × 10−2

jjγγ 7.82 × 105 2.38 × 10−3 5.26 × 10−3

tt̄h 1.39 1.40 × 10−3 2.33 × 10−3

zh 0.33 6.86 × 10−4 9.01 × 10−4

bb̄jj 7.51 × 109 5.34 × 10−4 6.47 × 10−4

TABLE IV. The significance of double Higgs production
expected for hh at a 100 TeV collider for an integrated luminosity
of 3000 fb−1 after applying cuts in Eq. (75) þ Eq. (76)
(λ3 < 3λSM3 ), or Eq. (75) þ Eq. (77) (λ3 > 3λSM3 ).

λ3 λSM3 3λSM3 5λSM3

S=
ffiffiffiffi
B

p
11 4.5 5.3

TABLE III. Cross section of the hh signal and various back-
grounds expected at a 100 TeV collider after applying the cuts
discussed in Eqs. (75)–(77).

σ (fb)
Eq (75) þ
Eq (76) (fb)

Eq (75) þ
Eq (77) (fb)

hhðλ3 ¼ λSM3 Þ 3.4 0.11 � � �
hhðλ3 ¼ 3λSM3 Þ 1.48 0.042 � � �
hhðλ3 ¼ 5λSM3 Þ 4.45 � � � 0.10

bb̄γγ 1.7 × 106 0.129 0.52

cc̄γγ 1.0 × 105 6.45 × 10−2 0.42

bb̄γj 1.19 × 105 1.68 × 10−2 6.72 × 10−2

jjγγ 2.73 × 106 1.92 × 10−2 7.3 × 10−2

tt̄h 86.41 2.72 × 10−2 2.53 × 10−2

zh 0.88 1.76 × 10−3 1.4 × 10−3

bb̄jj 4.07 × 1010 2 × 10−3 4.7 × 10−3
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mass can be reconstructed with a similar resolution as mbb
[110] invariant mass. Furthermore, we assume that the two
Higgs invariant mass mhh can be reconstructed as well as it
is obtained at the parton level. The discovery reach is then
estimated adopting the cuts and background calculations
presented in Ref. [29].
We go beyond the analysis of Ref. [29] by including

the relevant background coming from the bbjj process.
Under the above conditions, and assuming a jet to τ fake
rate ϵj→τ ¼ 1=100 [31], we obtain a significance S=

ffiffiffiffi
B

p
∼

3.75 for λ3 ¼ λSM3 that is similar to the one obtained in the
γγ channel. However, estimatingmhh in the bbττ channel is
very difficult. For that reason, CMS preforms a preliminary
study using the Stransverse mass mT2 instead of mhh to
distinguish the signal from the background, and shows a
0.9σ significance for HL-LHC [108]. That is significantly
smaller than the one found in [32] using a similar method.
Therefore, the bbττ channel may represent a good com-
plementary channel to the bbγγ one, and should be studied
further.

V. CONCLUSIONS

In this work, we have studied the modifications of the
triple Higgs couplings in theories in which the Higgs
potential is modified by the addition of higher order,
nonrenormalizable operators, induced by the presence of
new physics at the weak scale. Contrary to previous
statements in the literature, we have shown that a simple
addition of a dimension-6 operator may lead to a large
modification of the triple Higgs coupling λ3 with respect to
its SM value in the regions of parameter space consistent
with a FOEPT.
Furthermore, the addition of higher order operators may

also lead to a reduction of the triple Higgs coupling, or even
its change of sign, with relevant implications for collider
physics. Interestingly, negative enhancements of the triple
Higgs coupling tend to be associated with a second order
phase transition, while a first order phase transition tends to
be associated with a large positive enhancement of this
coupling.
We also argue, building on the previous results in the

literature, that different values of the triple Higgs coupling
will have a strong impact not only on the total cross section,
but also on the invariant mass distribution of double Higgs
production at the LHC. This motivates the use of different
cuts for double Higgs production for values of the trilinear
coupling about or smaller than the SM value than for the
large values of λ3. The determination of the total cross
section, together with the analysis of the invariant mass
distribution, may give hints not only about the magnitude
of the departure of the Higgs coupling with respect to the
SM value, but also of its sign. Considering these different
cuts in the invariant mass distribution and including
background processes that were previously ignored in

the literature, we showed that at the 14 TeV run of the
LHC at high luminosities, a significance of order of
3.3σ is expected for λ3 ¼ λSM3 , and a 5σ significance is
expected for λ3 ¼ 6.5λSM3 (-0.2λSM3 ) for the bb̄γγ channel.
The bb̄τþτ− channel presents a promising complementary
channel.
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APPENDIX A: TRIPLE HIGGS COUPLING

We add tree-level nonrenormalizable operators to the
Higgs potential to get the most general effective potential at
the tree level

VðϕÞ ¼
X∞
n¼1

k2n
2n

ϕ2n; ðA1Þ

where k2 ¼ m2, k4 ¼ λ and, for n ≥ 3,

k2n
2n

¼ c2n
2nΛ2ðn−2Þ : ðA2Þ

For the potential to have a minimum at the VEV it must
satisfy

∂V
∂ϕ

����
ϕ¼v

¼
X∞
n¼1

k2nv2n−1 ¼ 0: ðA3Þ

The second derivative at the VEV must be the square of
the Higgs boson mass as discovered by the CMS and
ATLAS experiments at the LHC [111,112],

∂2V
∂ϕ2

¼
X∞
n¼1

ð2n − 1Þk2nϕ2n−2;

∂2V
∂ϕ2

����
ϕ¼v

¼
X∞
n¼1

ð2n − 1Þk2nv2n−2 ¼ m2
h: ðA4Þ

Dividing Eq. (A3) by v and then subtracting it from
Eq. (A4), we get

X∞
n¼2

ðn − 1Þk2nv2n−4 ¼
m2

h

2v2
: ðA5Þ
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The third derivative gives the triple Higgs coupling as we
are already in the canonical normalization, where we can
substitute ϕ ¼ hþ v and v ¼ 246 GeV,

∂3V
∂ϕ3

����
ϕ¼v

¼
X∞
n¼2

ð2n − 1Þð2n − 2Þk2nv2n−3: ðA6Þ

Multiplying Eq. (A5) by 6v and subtracting it from
Eq. (A6) we get

λ3 ¼
∂3V
∂ϕ3

����
ϕ¼v

¼ 3m2
h

v

�
1þ

X∞
n¼3

4ðn − 1Þðn − 2Þk2nv2ðn−1Þ
3m2

h

�
: ðA7Þ

Substituting for k in terms of the cutoff of the effective
theory (Λ) and the corresponding dimensionless coeffi-
cients (c2n) from Eq. (A2), we obtain

λ3 ¼
3m2

h

v

�
1þ 8v2

3m2
h

X∞
n¼3

nðn − 1Þðn − 2Þc2nv2ðn−2Þ
2nΛ2ðn−2Þ

�
;

ðA8Þ

where jc2nj < 1. This can be written as

λ3 ¼
3m2

h

v

�
1þ 8Λ2

3m2
hv

2

X∞
n¼3

nðn − 1Þðn − 2Þc2n
�

v2

2Λ2

�
n
�
:

ðA9Þ

From this we clearly see that the series converges, even if
all c2n are 1, for

Λ >
vffiffiffi
2

p ∼ 174 GeV: ðA10Þ

APPENDIX B: MAXIMAL NEGATIVE
ENHANCEMENTS OF λ3 FOR ðϕ†ϕÞ4 AND ðϕ†ϕÞ5
The value of the triple Higgs coupling λ3 is associated

with the third derivative of the potential at the minimum,
which corresponds to the change in the potential curvature.
At the minimum of the Higgs potential at the VEV, the
curvature value is a measured positive constant. Therefore,
a negative λ3 implies even lower curvatures for the higher
values of ϕ. In the extreme case, where the curvature turns
negative, this generates a maximum. Hence there has to be
one more minimum for even higher values of ϕ so that the
potential is stable in the limit of ϕ → ∞. Let the position of
such a minimum be ϕ ¼ p.

This potential can be written as

vðϕÞ ¼ k8
8
ðϕ2 − v2Þ2ðϕ2 − p2Þ2 − k8

8
v4p4: ðB1Þ

Comparing this expression with the generic form of the
Higgs potential, Eq. (16), we get

k6
6
¼ −

3k8
4

ðp2 þ v2Þ;
λ

4
¼ −

k8
8
ðp4 þ v4 þ 4p2v2Þ: ðB2Þ

Substituting this in Eq. (A5) we obtain a relation between
k8 and the Higgs mass, namely

k8 ¼
m2

h

v2ðp2 − v2Þ2 : ðB3Þ

Substituting in Eq. (B2) gives

k6 ¼ −
3m2

h

2v2
ðp2 þ v2Þ
ðp2 − v2Þ2 ; ðB4Þ

k8 has to be positive for the stability of the potential.
Therefore k6 is the only term that contributes to the
enhancement with opposite sign. The maximal negative
value it can take is, for c6 < 1,

k6 ¼ −
3

4Λ2
: ðB5Þ

Equating the right-hand sides of Eq. (B4) and Eq. (B5)
yields

2m2
hðp2 þ v2ÞΛ2 ¼ ðp2 − v2Þ2v2: ðB6Þ

Solving for p2 gives

p2 − v2 ¼ m2
hΛ

2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4

hΛ
4 þ 4m2

hΛ
2v4

p
v2

: ðB7Þ

The right-hand side must be greater than 0 as p > v. This
implies

p2 − v2 ¼ mhΛ
v2

�
mhΛþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

hΛ
2 þ 4v4

q 	
: ðB8Þ

From Eq. (A7), we know

λ3
λSM3

− 1 ¼ 8v4

3m2
h

ðk6 þ 3k8v2Þ: ðB9Þ

Substituting Eq. (B4) in Eq. (B9) gives
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λ3
λSM3

− 1 ¼ −
4v2

p2 − v2
: ðB10Þ

Using Eq. (B8), we get the maximum negative enhance-
ment, namely

δ ¼ λ3
λSM3

− 1 ¼ −
x

1þ ffiffiffiffiffiffiffiffiffiffiffi
1þ x

p ; where x ¼ 4v4

m2
hΛ

2
:

ðB11Þ
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