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We present the first detailed computation of the conversion of a bound muon into an electron mediated
by a doubly charged SUð2Þ singlet scalar. Although such particles are not too exotic, up to now their
contribution to μ-e conversion is unknown. We close this gap by presenting a detailed calculation, which
will allow the reader not only to fully comprehend the discussion but also to generalize our results to similar
cases if needed. We furthermore compare the predictions, for both the general case and an example model
featuring a neutrino mass at two-loop level, to current experimental data and future sensitivities. We show
that, depending on the explicit values of the couplings as well as on the actual future limits on the branching
ratio, μ-e conversion may potentially yield a lower limit on the doubly charged singlet scalar mass, which is
stronger than what could be obtained by colliders. Our results considerably strengthen the case for low-
energy lepton flavor violation searches being a very valuable addition to collider experiments.
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I. INTRODUCTION

The standard model (SM) of elementary particle physics
is the most well-tested description of nature we know.
While some parts are amazingly precise, such as the
quantitative explanation of the anomalous magnetic
moment of the electron being accurate to ten digits [1],
other sectors of the SM still seem mysterious and/or
incomplete. For example, the SM suffers from internal
inconsistencies such as the hierarchy problem [2] or the
strong charge parity problem [3], it does not feature any
good candidate to explain the dark matter in the Universe
[4], and it also fails to explain neutrino masses and mixings
[5]. More generally, the last point illustrates that the flavor
structure of the SM is not well understood, i.e., how the
three generations of fermions combine to mass eigenstates.
In particular, in the lepton sector, we know from the
observation of neutrino oscillations [6–13] that lepton flavor
is not conserved, e.g., in processes like ν̄μ → ν̄e. Yet, in the
charged lepton sector, we have not observed any flavor
changing reaction—even though all fundamental conserva-
tion laws such as energy, momentum, and angular momen-
tum would not forbid lepton flavor violating (LFV) decays
like μ → eγ or τ → μγ. On the contrary, experimental limits
on the branching ratios of these processes are extremely
strong, e.g.: BRðμ → eγÞ < 5.7 × 10−13@90% C.L. [14],
BRðτ → eγÞ < 3.3 × 10−8@90% C.L. [15], and
BRðτ → μγÞ < 4.4 × 10−8@90% C.L. [15].
However, there is no fundamental reason for lepton

flavor to be conserved. While in the SM it is accidentally
conserved at tree level [16], already when augmenting the

SM by massive neutrinos, LFV decays such as μ → eγ are
generated at one-loop level [albeit strongly suppressed by
the Glashow-Iliopoulos-Maiani (GIM) mechanism [17],
such that even in the most optimistic case the correspond-
ing branching ratio for μ → eγ would be no more than a
daunting 10−45 [18,19]]. More generally, due to no reason
being present for lepton flavor to be conserved, any type of
physics beyond the SM has a strong tendency to create LFV
reactions [20]. Accordingly, once we experimentally
observe any type of LFV process, it would be an unam-
biguous and groundbreaking signal for physics beyond the
SM—which up to now is only verified in the lab by
neutrino oscillations.
Thus, the experimental hunt for LFV reactions is

regarded as a high-priority matter in experimental advances
alternative to high-energy colliders. While experiments
like MEG [14] (μ → eγ), BABAR [14] (τ → eγ, τ → μγ),
SINDRUM [21] (μ → 3e), or Belle [22] (τ → 3e, τ → 3μ,
τ− → μ−eþe−, τ− → e−μþμ−) obtain their best limits
from “clean” decays with initial and final states only
containing elementary particles, in the near future the
most dramatic experimental advances are to be expected
for the conversion of muons bound on atomic nuclei to
electrons (μ-e conversion), with sensitivities quoted in
experimental proposals improving current limits by up to
sevenordersofmagnitude [23].1 It is this processwe focuson
in this paper.
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1Note that, although μ-e conversion does intrinsically contain
nuclear physics uncertainties that make it more difficult to
interpret experimental limits, it is nevertheless clear that this
process will yield a limit by far better than what we could
possibly expect from experiments on μ → eγ.

PHYSICAL REVIEW D 93, 055039 (2016)

2470-0010=2016=93(5)=055039(21) 055039-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.93.055039
http://dx.doi.org/10.1103/PhysRevD.93.055039
http://dx.doi.org/10.1103/PhysRevD.93.055039
http://dx.doi.org/10.1103/PhysRevD.93.055039


As μ-e conversion was proposed more than fifty years
ago [24,25], it is surprising that it has not even been
computed explicitly for some relatively generic settings.
The rate for μ-e conversion has been calculated for
channels like light or heavy Majorana neutrino exchange
[26], Z0-exchange [27], some specific extended scalar
sectors [28], or several supersymmetric settings [29–31];
however, the generic example of this decay being mediated
by a doubly charged SUð2Þ singlet scalar has only been
briefly estimated [32]. In this paper, we close this gap by
presenting the first detailed computation of that very
process. Up to now, not much technical information is
available in the literature, which is why we chose to present
the computation in great detail and illustrate all important
steps and subtleties involved. Our results are fully general
and hold for any doubly charged singlet scalar Sþþ
coupling to pairs of right-handed charged leptons by
LLFV ¼ fabSþþðlRaÞclRb þ H:c: (such a coupling cannot
be forbidden in practice). We in passing also investigate the
validity of the approximation applied in Ref. [32] revealing
that, while we generally confirm the results obtained there,
the estimate based on effective field theory (EFT) turns
out to be not as accurate as anticipated. Furthermore, even
if the doubly charged scalar was, say, a component of a
Higgs triplet field, the principal computation would not
change very significantly, so that our results could even be
extended to this case. Thus, also to maximize the appli-
cability of our results and the interest to a wide readership,
we present our computation in a fairly detailed manner, to
ease the comparison with similar frameworks.
However, the purpose of our work is two fold. On top of

a very general computation, we also present an application
of our results to one particular example model. This model,
first presented in Ref. [33], features a doubly charged
singlet scalar field Sþþ that, in addition to the coupling to
right-handed charged leptons lRa and lRb with strengths
fab, also features an effective coupling of strength ξ to a
pair of W-bosons,

LSþþ ¼ LSM −
g2v4ξ
4Λ3

SþþW−
μW−μ þ fabSþþðlRaÞclRb

þ H:c: − V 0; ð1Þ
where V 0 ¼ M2

SS
þþS−− þ λSðSþþS−−Þ2 þ λHSðH†HÞ

ðSþþS−−Þ and v ¼ 246 GeV. This model is in some sense
the simplest setting one could possibly write down to
generate a light neutrino mass, because it contains only one
single particle with certain couplings in addition to the
SM.2 Light neutrinos then receive a mass at two-loop level,
by a diagram containing Sþþ as a crucial ingredient [33].
This implies that both the couplings (fab & ξ) as well as the

mass (MS) of the doubly charged scalar are constrained by
phenomenology. While in Ref. [33] all neutrino observables
and nearly all low-energy LFV observables, as well as
neutrinoless double beta decay and collider limits, have been
taken into account, the crucial process of μ-e conversion had
not been investigated so far. This is another gap we closewith
this paper on the technicalities of the process, which comple-
ments Ref. [34] that focuses in particular on the comple-
mentarity between high- and low-energy bounds.3

This paper is structured as follows. We first discuss the
long-range (i.e., photonic) contributions to μ-e conversion in
great detail in Sec. II, which serves as a first approximation to
the true result. We then include the short-range (nonphotonic)
contributions in Sec. III, which only slightly modify the
branching ratios. We conclude in Sec. IV. Finally, technical
details are summarized in Appendixes A (Feynman rules)
and B (details on the scalar three-point function).

II. LONG-RANGE (PHOTONIC) CONTRIBUTIONS

The goal of this section is to derive the particle physics
part of the branching ratio for coherent μ-e conversion in a
muonic atom, for the moment focusing on the long-range
contributions only, i.e., those diagrams that basically attach
a diagram for μ → eγ to a nucleus. As we will see, this
already comes very close to our final result because the
photonic contributions turn out to dominate the nonpho-
tonic short-range contributions by far. This is very con-
venient, because for the case of long-range contributions
being dominant, the total amplitude factorizes into a
particle physics and a nuclear physics part. Thus, the
nuclear physics factor (which quantifies all nuclear physics
contributions) can be computed separately and it can easily
be updated once improved computations become available
—as done for neutrinoless double beta decay.

A. The physics of μ-e conversion

Taking into account gauge invariance,4 the most general
form for the photonic matrix element (i.e., for the μ− −
e− − γ vertex) can be written as [16,36–39]

iM ¼ −ieA�
νðqÞūeðpeÞ

�
ðfE0ðq2Þ þ γ5fM0ðq2ÞÞ

×

�
γν −

qqν

q2

�
þ ðfM1ðq2Þ þ γ5fE1ðq2ÞÞ

iσνρqρ
mμ

þ 2
qν

mμ
f3ðq2Þ þ 2

qν

mμ
γ5g3ðq2Þ

�
uμðpμÞ; ð2Þ

2Alternatively, one could view the setting as a whole class of
models that are at low energies described by the effective theory
defined by Eq. (1).

3We are furthermore preparing a study of the lepton number
violating conversion μ− to a eþ [35], which comprises an
experimental alternative to neutrinoless double beta decay.

4Note that, due to the (Abelian) Ward identity, it holds that
f3 ¼ g3 ¼ 0 for the photonic case. This is an additional cross
check for our computation and was confirmed when determining
the form factors.
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where q ¼ pμ − pe is the photon momentum and
σνρ ≡ i

2
½γν; γρ�.5 The functions f are form factors that in

general depend on the momentum transfer. They are the
quantities that ultimately encode the loop structures
involved in the diagrams. Note that the amplitude as
reported in Eq. (2) is the same for both μ → eγ and μ-e
conversion. However, both processes nevertheless yield
qualitatively different information. The reason is that
μ → eγ is strongly simplified by on-shell relations being
applicable only for external photons, in particular, q2 ¼ 0
(the photon is massless) and ϵνqν ¼ 0 (the photon is
transversal). On the contrary, in μ-e conversion, the off-
shell part of the amplitude strongly contributes, which is
reflected in the resulting bounds on the effective model
used as an example here being very different for both
processes [34].
The decisive observable is the branching ratio of μ-e

conversion with respect to ordinary muon capture, which is
simple if the long-range contributions dominate [36],

BRðμ−N→e−NÞjlong-range¼
8α5mμZ4

effZF
2
p

Γcapt
Ξ2
particle; ð3Þ

where α is the fine structure constant and Γcapt is the rate for
ordinary muon capture (with emission of a νμ) on the
nucleus under consideration, which is quasi-identical to the
total rate. Furthermore, the effective atomic charge Z4

eff ¼
πZ

α3m3
μ
· 4π

R∞
r¼0 dr r

2jΦ1s;μðrÞj2ρpðrÞ [with Φ1s;μðrÞ being the

1s wave function of the muon bound to a nucleus of atomic
number Z] and the nuclear matrix element (NME) Fp ¼
4π
R
∞
r¼0 dr

r
mμ

sinðrmμÞρpðrÞ can both be calculated easily if
the proton charge density ρpðrÞ inside the nucleus
is known.
Let us discuss the physics of μ-e conversion before

entering the actual computation. In Eq. (3), all the particle
physics is contained in the factor Ξ2

particle, which is our main
quantity of interest. It is explicitly given by [36]

Ξ2
particle ¼ jfE0ð−m2

μÞ þ fM1ð−m2
μÞj2

þ jfE1ð−m2
μÞ þ fM0ð−m2

μÞj2: ð4Þ

Thus, in our computation, we “only” need to extract the
form factors fE0;E1;M0;M1 from the amplitude and to
evaluate them at a four-momentum transfer of
q2 ¼ −m2

μ. Once we achieve that, we can immediately
use Eq. (3) to obtain the branching ratio for μ-e conversion.
However, there are several other aspects to the process

that have to be discussed before we can start our compu-
tation. While the basic principle behind μ-e conversion, the

capture of a bound muon with subsequent emission of a fast
electron, is easy to grasp, several subtleties make this
process comparatively difficult to compute in practice.
Further (technical) details on this discussion can be found,
e.g., in [37,40–42].
First, let us have a look at the initial state muon. It is not

free but in the 1s bound state of a muonic atom. Also the
final state electron is not free, as it does feel the influence of
the electric field of the remainder of the atom present in the
final state. Thus, to take into account all resulting effects, it
is easiest to perform the computation in real space and to
use the solutions of the Dirac equation in a Coulomb
potential instead of the spinors corresponding to free
particles: ūeðpeÞ → ψ̄eðpe; rÞ and uμðpμÞ → ψμðpμ; rÞ.
Second, a simplification arises from the muon mass

being the dominant energy scale compared to the binding
energies Eb involved or to the electron mass: mμ ≫ me >
Eb ≈ 13.6 eV · mμ

me
Z. Thus, we can set the electron mass to

zero, me ≈ 0, and we can treat the muon nonrelativistically.
This furthermore implies that the kinematics of the process
are in effect very similar to those of a t-channel diagram,
with both the initial state muon and the initial (and final)
state nucleus being nearly at rest; we can thus approxi-
mate q2 ≃ −m2

μ.
Third, given the nature of the process, it is unavoidable to

consider some atomic and nuclear physics aspects.
Fortunately a standard formalism exists to take them into
account. For example, the photon couples to electric
charges (no matter if it is on or off shell), which means
that the corresponding part of the matrix element must be
proportional to the proton charge density ρðPÞðrÞ
in the nucleus: hNjq̄γνqjNi ∝ ZeρðPÞðrÞδν0. Thus, the
full amplitude for the process must have the following
structure:

M ∝
Z

d3rψe
jlmðpe; rÞΓνψμ

jμlμmμ
ðpμ; rÞZeρðPÞðrÞδν0; ð5Þ

where Γν includes the form factors and Lorentz structure
displayed explicitly between the two spinors in Eq. (2).
Given that the nucleus is taken to be nonrelativistic, its
four-current density consists of only the 0-component to a
good approximation, which is why effectively only Γ0

contributes to the amplitude.6 This implies further simpli-
fications: the prefactor qν ¼ pν

μ − pν
e in front of the form

factors f3 and g3 reduces to q0 ≃mμ −mμ ¼ 0 for the
case of a nonrelativistic muon in the initial state dictating
the electron energy in the final state. Thus, even for

5In order to prevent any confusion, we do not use the letter “μ”
as the Lorentz index; instead, we only use it to refer to the muon.

6Note that at this point we have in fact broken Lorentz
invariance, because we have chosen a particular system—namely,
the rest frame of the nucleus. However, for a nonrelativistic bound
system this makes perfect sense because all relevant quantities
can be expressed easily and, after all, we can compute a Loretz-
invariant amplitude in any frame.
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non-vanishing f3 and g3, they would not contribute to the
conversion process.
Finally, we need to discuss the forms of the muon and

electron wave functions. They depend on the details of the
atomic physics configuration. We follow the standard
approach taken in textbooks [40], and write the fermion
spinor in terms of “upper” and “lower” radial components f
and g. Since we work in the Dirac representation, only the
upper component survives in the nonrelativistic limit (i.e.,
for the muon). Encoding the angular part in spherical
harmonic spinors Ωjlm, we can thus describe the physics of
both the muon and the electron by wave functions of the
following form:

ψ jlm ¼
� fðrÞΩjlm

ð−1Þ1=2ð1þl−l0ÞgðrÞΩjl0m

�
; ð6Þ

with total angular momentum j, orbital angular momenta l
and l0 ¼ 2j − l, and spin projection m. In the 1s state, the
muon has quantum numbers ðj;l;l0;mÞ¼ð1=2;0;1;�1=2Þ.
Thus, angular momentum conservation dictates quantum
numbers of ð1=2;0;1;�1=2Þ or ð1=2;1;0;�1=2Þ for the
final electron. Depending on the configuration, different
parts of the amplitude in Eq. (2) will contribute (e.g., only
structures featuring γ5 survive for l ¼ 1). Exploiting that
the initial state muon is nearly at rest, while the final
state electron is highly relativistic, we can furthermore set
gl¼0
μ ≃0 as well as fl¼1

e ¼−gl¼0
e and gl¼1

e ¼fl¼0
e . Finally,

because the two final states with l ¼ 0 and l ¼ 1 are
distinguishable, we have to sum over probabilities rather
than amplitudes; hence the form in Eq. (4).

B. Determination of the form factors

In our example model, or more generally in any setting
featuring a doubly charged scalar coupling to right-handed
charged leptons as in Eq. (1), μ-e conversion is realized at
one-loop level only. The decisive diagrams are those in

which the initial state muon turns into a virtual antilepton/
S−− combination, which then turns into an electron. A
photon can couple to either of these particles, thus implying
four different diagrams (see Fig. 1, diagrams I–IV).7 In
principle, one could also have a loop containing aW-boson
and a neutrino, with three possibilities to couple a photon to
(see Fig. 1, diagrams V–VII). The latter three diagrams are,
however, strongly suppressed by the GIM mechanism [17].
Furthermore, one could in either of these diagrams trade

the photon for a Z-boson, which yields another seven
diagrams. In addition, a Z-boson could also couple to the
neutrino line (which the photon could not); see diagram
VIII in Fig. 1. One could also replace all Z-boson lines by
Higgs bosons. However, all these diagrams with heavy
exchange particles contribute to the short-range part of the
amplitude, cf. Sec. III, which is by far subdominant.
Finally, there could also be box diagrams with two W-
bosons each; see diagrams IX–X in Fig. 1. These could
mediate the process but are GIM suppressed, too [43].
Thus, starting with the long-range/photonic part, the only
relevant diagrams are I–IV as displayed in Fig. 1. We
compute these in the following.
Beginning with momentum assignments, we have

chosen the photon momentum to be incoming, i.e., we
use q0 ¼ pe − pμ ¼ −q in order to adapt a notation con-
sistent with our tool of choice, Package-X [39], to reliably
compute the loop integrals. We furthermore use the
approximation of a massless electron, which only intro-
duces an error at the sub% level. We also use the fact that
the electron is on shell and the muon is approximately on
shell (as it is only bound nonrelativistically): p2

e ¼ m2
e ≈ 0,

p2
μ ≃m2

μ, and q02 ≃ −m2
μ.

In order to obtain the decisive matrix elements, we make
use of the Feynman rules given inFigs. 8–12; seeAppendixA.
Let us now go through all contributions in detail. From
diagram I in Fig. 1(a), we obtain the matrix element,

iMI¼−4QSef�eafaμAνðq0ÞūeðpeÞ
Z

ddk
ð2πÞd

PLkð2pμ−2kþq0Þν
½k2−m2

aþ iϵ�½ðpμ−kþq0Þ2−M2
Sþ iϵ�½ðpμ−kÞ2−M2

Sþ iϵ�uμðpμÞ; ð7Þ

where d ¼ 4 − 2ε is the dimension of the integral, and we have written the matrix element in terms of the chargeQS ¼ −2.8

We use Package-X [39], where the most general form of the matrix element given in Eq. (2) is put in the form of

iM ¼ ieAνðq0ÞūeðpeÞ
��

γν −
q0q0ν

q02

�
F1ðq02Þ þ

iσνρq0ρ
mμ

F2ðq02Þ þ 2
q0ν

mμ
F3ðq02Þ

þ
�
γν −

q0q0ν

q02

�
γ5G1ðq02Þ þ

iσνρq0ρ
mμ

γ5G2ðq02Þ þ 2
q0ν

mμ
γ5G3ðq02Þ

�
uμðpμÞ; ð8Þ

to compute the form factors F1, F2, F3, G1, G2, and G3. The form factors obtained from the Package-X computation are
related to the ones from Eq. (2) by

8This seemingly too formal notation serves to display the cancellation of divergences more clearly.

7In Figs. 1(a)–1(j), the gray parts indicate that the quarks are bound within the nucleus. We solely need the black part of each diagram
to determine the form factors, so that we are displaying the hadronic part only for the sake of illustration.
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FIG. 1. One-loop contributions to μ-e conversion.
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fE0ðq2Þ ¼ −F1ðq02Þ;
fM0ðq2Þ ¼ G1ðq02Þ;
fE1ðq2Þ ¼ G2ðq02Þ;
fM1ðq2Þ ¼ F2ðq02Þ;
f3ðq2Þ ¼ −F3ðq02Þ;
g3ðq2Þ ¼ −G3ðq02Þ: ð9Þ

Before calculating the factor Ξ2
particle from the form factors,

we first check our computation by taking a closer look at
the UV divergences. Since there is no tree-level three-point

vertex connecting muon, electron, and photon, and thus no
counterterm in the Lagrangian, the combination of dia-
grams I–IV in Fig. 1 must be finite. We thus need to extract
the divergent part from each matrix element, which for
diagram I is given by

iMdiv
I ¼ i

ð4πÞ2
2

ε
QSef�eafaμAνðq0ÞūeðpeÞPLγ

νuμðpμÞ:

ð10Þ

The matrix element for the second diagram given in
Fig. 1(b) yields

iMII ¼ −4Qlþef�eafaμAνðq0ÞūeðpeÞ
Z

ddk
ð2πÞd

PLðkþ q0 þmaÞγνðkþmaÞPR

½k2 −m2
a þ iϵ�½ðpμ − kÞ2 −M2

S þ iϵ�½ðkþ q0Þ2 −m2
a þ iϵ� uμðpμÞ; ð11Þ

where Qlþ ¼ 1, and it adds

iMdiv
II ¼ −

i
ð4πÞ2

1

ε
Qlþef�eafaμAνðq0ÞūeðpeÞPLγ

ργνγρPRuμðpμÞ ð12Þ

to the divergent part.
From Fig. 1(c), we extract

iMIII ¼ −4Qe−ef�eafaμAνðq0ÞūeðpeÞ
Z

ddk
ð2πÞd

γνpμPLk

½p2
μ þ iϵ�½ðpμ − kÞ2 −M2

S þ iϵ�½k2 −m2
a þ iϵ� uμðpμÞ; ð13Þ

with Qe− ¼ −1, and obtain

iMdiv
III ¼ −

i
ð4πÞ2

2

ε

Qe−

m2
μ
ef�eafaμAνðq0ÞūeðpeÞγνpμPLpμuμðpμÞ: ð14Þ

Finally, the matrix element of Fig. 1(d) leads to

iMIV ¼ −4Qμ−ef�eafaμAνðq0ÞūeðpeÞ
Z

ddk
ð2πÞd

PLkðpμ þ q0 þmμÞγν
½ðpμ þ q0Þ2 −m2

μ þ iϵ�½ðpμ − kþ q0Þ2 −M2
S þ iϵ�½k2 −m2

a þ iϵ� uμðpμÞ;

ð15Þ

with Qμ− ¼ −1 and a divergent contribution of

iMdiv
IV ¼ i

ð4πÞ2
2

ε

Qμ−

m2
μ
ef�eafaμAνðq0ÞūeðpeÞPLðpμ þ q0Þ

× ðpμ þ q0 þmμÞγνuμðpμÞ: ð16Þ

In d ¼ 4 dimensions, the Lorentz structures simplify due to
the relations γργνγρ ¼ −2γν and pp ¼ p2 and upon em-
ploying the approximate on-shell conditions. As a conse-
quence, the divergent part of the μ-e conversion amplitude
takes the form

iMdiv ¼ i
ð4πÞ2

1

ε
ef�eafaμAνðq0ÞūeðpeÞ

× ½ð2QS þ 2Qlþ −Qe− −Qμ−ÞPLγ
ν�uμðpμÞ;

ð17Þ

which indeed vanishes as soon as we enter the charges
explicitly, as to be expected.
Checking with Package-X confirms that all form factors

are finite. It also shows that, under the assumption of both
muon and electron being approximately on shell in combi-
nation with kinematic relations following a vanishingly
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small momentum of the nucleus, both F3 and G3 vanish exactly, which confirms the general structure in Eq. (2) for the
photonic case and agrees with the considerations of the previous section, where the same arguments led to q0 ¼ −q00 → 0
and thereby to the disappearance of these structures from the branching ratio.
We have also extracted the finite parts of the form factors, which are the actual physics contributions. They take the

following forms:

F1ð−m2
μÞ ¼G1ð−m2

μÞ

¼ −
1

128π2m4
μ

X
a¼e;μ;τ

f�eafaμ

�
2m2

μð−5m2
a þ 6m2

μ þ 5M2
SÞ− 2Sam2

μðm2
a þ 3m2

μ −M2
SÞ ln

�
2m2

a

2m2
a þm2

μð1þ SaÞ
�

þ 4SSm2
μðm2

a þm2
μ −M2

SÞ ln
�

2M2
S

2M2
S þm2

μð1þ SSÞ
�
þ ð3m2

að2m2
a −m2

μ − 4M2
SÞ þ 5m4

μ − 7m2
μM2

S þ 6M4
SÞ ln

�
m2

a

M2
S

�

þ 2Tað−6m2
a þm2

μ þ 6M2
SÞ ln

�
2maMS

m2
a −m2

μ þM2
S − Ta

�
þ 2m2

μ½ðm4
a þ 8m2

am2
μ þM4

S − 2M2
Sðm2

a þ 2m2
μÞÞ

×C0½0;−m2
μ;m2

μ;ma;MS;ma� þ 2ðm4
a − 2M2

Sðm2
a − 2m2

μÞ þM4
SÞC0½0;−m2

μ;m2
μ;MS;ma;MS��

�
; ð18Þ

as well as

F2ð−m2
μÞ¼−G2ð−m2

μÞ

¼−
1

128π2m4
μ

X
a¼e;μ;τ

f�eafaμ

�
2m2

μð−m2
aþ6m2

μþM2
SÞþ2Sam2

μð3m2
aþm2

μ−3M2
SÞln

�
2m2

a

2m2
aþm2

μð1þSaÞ
�

þ4SSm2
μð−3m2

aþm2
μþ3M2

SÞ ln
�

2M2
S

2M2
Sþm2

μð1þSSÞ
�
þðm2

að−2m2
a−7m2

μþ4M2
SÞþm4

μþ5m2
μM2

S−2M4
SÞln

�
m2

a

M2
S

�

þ2Tað2m2
a−3m2

μ−2M2
SÞln

�
2maMS

m2
a−m2

μþM2
S−Ta

�
þ2m2

μ½ð−3m4
a−3M4

Sþ2M2
Sð3m2

aþ2m2
μÞÞ

×C0½0;−m2
μ;m2

μ;ma;MS;ma�þ2ð−3m4
aþ2m2

að3M2
Sþ2m2

μÞ−3M4
SÞC0½0;−m2

μ;m2
μ;MS;ma;MS��

�
: ð19Þ

Here, we have used the following abbreviations:

Si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

i =m
2
μ

q
; SS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4M2

S=m
2
μ

q
; and

Ta ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðma −mμ −MSÞðma þmμ −MSÞðma −mμ þMSÞðma þmμ þMSÞ

q
: ð20Þ

Moreover, the scalar three-point function in four dimensions is given by [39]

C0½p2
1; p

2
2; Q

2;m2; m1; m0� ¼ −
Z

1

0

dx
Z

1−x

0

dy½p2
1x

2 þ p2
2y

2 þ ðp2
1 þ p2

2 −Q2Þxyþ ðm2
1 −m2

0 − p2
1Þx

þ ðm2
2 −m2

0 − p2
2Þyþm2

0 − iϵ�−1; ð21Þ

which corresponds to the assignment given in Fig. 13 in Appendix B and which makes use of Q≡ p1 − p2.
The scalar three-point function in Eq. (21) agrees with the original one from Passarino and Veltman [44–46] upon

rearranging the mass terms and considering the change of metric,9 such that

C0½p2
1; p

2
2; Q

2;m2; m1; m0� ¼ −CPassarino-Veltman
0 ½−p2

1;−p2
2;−Q2;m1; m0; m2�:

9In order to compare the scalar three-point function from Passarino and Veltman with the one given in Eq. (21), one needs to switch
the Minkowski metric from ð−1; 1; 1; 1Þ to ð1;−1;−1;−1Þ. One also needs to shift the outer Feynman parameter x ¼ 1 − x0, such thatR
1
0 dx

R
x
0 dy →

R
1
0 dx0

R
1−x0
0 dy.
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Inserting the form factors listed in Eqs. (18)–(19) into Eq. (4), we eventually obtain

Ξ2
particle ¼ jfE0ð−m2

μÞ þ fM1ð−m2
μÞj2 þ jfM0ð−m2

μÞ þ fE1ð−m2
μÞj2

¼ j−F1ð−m2
μÞ þ F2ð−m2

μÞj2 þ jG1ð−m2
μÞ þ G2ð−m2

μÞj2
¼ 2jF1ð−m2

μÞ − F2ð−m2
μÞj2

¼ 1

512π4m8
μ

���� X
a¼e;μ;τ

f�eafaμ

�
2m2

μðm2
a −M2

SÞ þ 4SSm2
μðM2

S −m2
aÞ ln

�
2M2

S

2M2
S þm2

μð1þ SSÞ
�

þ 2Sam2
μðm2

a þm2
μ −M2

SÞ ln
�

2m2
a

2m2
a þm2

μð1þ SaÞ
�
− ð2m4

a þm4
μ − 3m2

μM2
S þ 2M4

S þm2
am2

μ − 4m2
aM2

SÞ ln
�
m2

a

M2
S

�

þ 2Tað2m2
a −m2

μ − 2M2
SÞ ln

�
2maMS

m2
a −m2

μ þM2
S − Ta

�
þ 2m2

μðm2
a −M2

SÞ½ð−m2
a − 2m2

μ þM2
SÞ

× C0½0;−m2
μ; m2

μ;ma;MS;ma� þ 2ð−m2
a þm2

μ þM2
SÞC0½0;−m2

μ; m2
μ;MS;ma;MS��

�����2: ð22Þ

We can greatly simplify this expression by exploiting the mass hierarchy MS ≫ me;μ;τ. Hence, each term in Eq. (22) is
expanded around MS → ∞ up to Oð1=M2

SÞ, which has to be done in a careful manner.10 That way, we observe delicate
cancellations at the orders M4

S, M
2
S, and M0

S, such that the remaining expression takes the form

Ξ2
particle ¼

1

288π4m2
μM4

S

����� X
a¼e;μ;τ

f�eafaμ

 
4m2

amμ−m3
μþ 2ð−2m2

aþm2
μÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

aþm2
μ

q
Arctanh

"
mμffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4m2
aþm2

μ

q
#
þm3

μ ln

�
m2

a

M2
S

�!�����
2

;

ð23Þ

at leading order. Including the next-to-leading contribution
would change our result by roughly 4%/at per mille level
for the τ contribution/the μ and e contributions being
dominant, as we have checked numerically. Note that
the cancellations mentioned may not materialize numeri-
cally when employing the full expression in Eq. (22) in case
large numbers are not treated with sufficient accuracy in a
numerical computation.
Let us take a moment to compare our results to the

previous ones obtained in Ref. [32], based on an
estimate using EFT. We should in fact recover the
results obtained there in the limit of a sufficiently heavy

scalar. To perform this consistency check, it is first of all
useful to look at the form factors themselves, which are
displayed in the left and middle panels of Fig. 2 (in a
zoomed version in the latter case), in units of f�eafaμ. As
can be seen, the magnitudes of the form factors faE0
(¼ −faM0) are in all cases a ¼ e, μ, τ bigger for smaller
scalar masses; however, they later on decrease from
Oð10−8Þ −Oð10−7Þ for MS ∼ 100 GeV to Oð10−10Þ −
Oð10−9Þ for MS ∼ 1000 GeV. The form factors
faE1 ¼ −faM1, in turn, do not depend on the charged
lepton masses and they decrease from about Oð10−9Þ for
MS ∼ 100 GeV to Oð10−11Þ for MS ∼ 1000 GeV. That
already implies that the approximation for the numerical
values of the form factors used in Ref. [32] for the case
of doubly charged scalars is only accurate to about 10%.
This can also be seen from the right panel of Fig. 2,
displaying the ratio between the form factors faE0 and
faE1, and it implies a percent accuracy of the photonic
decay rate when computed with faE1 and faM1 being
neglected. Note that, however, as we see in Sec. III,
short-range contributions lead to a modification of the
same size.
For completeness, let us display the explicit versions

of the purely photonic form factors in the limit of a very
large MS:

10While the expansion of the first few terms does not make a
problem, the Passarino-Veltman functions require a cautious
treatment. To this end, we rewrite the Passarino-Veltman func-
tions in terms of dilogarithms. Instead of the Mathematica
function PolyLog[2,x], Package-X [39] uses its own function
DiLog[x,A]. The latter has a branch cut discontinuity in the
complex x plane running from 1 to ∞. For real x ≤ 1 or complex
x the DiLog[x,A] is equivalent to PolyLog[2,x]. However, for real
x > 1, the side of the branch cut that DiLog[x,A] evaluates is
given by the prescription limϵ→0Li2½xþ iAϵ�. Thus, the sign of A
fixes where DiLog evaluates. To expand the DiLog functions in
the limit MS → ∞, we need to insert numerical values for A.
Since the As all consist of combinations of ma;mμ, and MS, we
fix the scalar mass within A to an arbitrary value (considering
MS ≫ ma), and expand the remaining function.
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faE0
f�eafaμ

¼ −
faM0

f�eafaμ

¼
2m2

a þm2
μ logðma

MS
Þ

12π2M2
S

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

μ þ 4m2
a

q
ðm2

μ − 2m2
aÞ

12π2mμM2
S

× Arctanh

 
mμffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
μ þ 4m2

a

q
!
;

faE1
f�eafaμ

¼ −
faM1

f�eafaμ
¼ m2

μ

24π2M2
S
; ð24Þ

evaluated at q2 ¼ −m2
μ. While our formulas for the form

factors are basically identical to those obtained in Ref. [32],
note that this reference seems to contain a relative sign
difference between fE0 and fM0 compared to our results,
which can alter the resulting numerical predictions. Given
that we have automatized our computation to a high degree
and that we have explicitly performed several decisive
cross-checks, such as showing that the divergent parts of
the loop amplitudes contained in Eqs. (10), (12), (14), and
(16) do indeed cancel, we are confident that all our relative
signs should be correct.
The expression displayed in Eq. (23) is our final result

for the photonic contribution of the doubly charged scalar
to μ-e conversion. In combination with Eq. (3), it can be
used to compute the corresponding branching ratio for any
choice of Yukawa couplings fab and scalar mass MS, as
long as the nuclear physics quantities entering the equa-
tions are known. However, these quantities suffer from
uncertainties that we currently cannot resolve. Thus, when
aiming at a bound on the squared particle physics amplitude
displayed in Eq. (23), it is easiest to absorb all uncertainties
into the experimental bounds, meaning that an experimen-
tal upper bound on the branching ratio translates into a
range of upper bounds on Ξ2

particle. This one can do as long
as the nuclear physics and particle physics parts factorize,
as is the case in Eq. (3).

C. Nuclear physics, experimental aspects,
and resulting bounds

The main nuclear physics quantities entering the branch-
ing ratio in Eq. (3) are Z, Zeff , and Fp. Out of those, the
atomic number Z can be trivially looked up; however,
the computation of the effective atomic charge Zeff and of
the nuclear matrix element Fp require knowledge of the
proton charge density ρpðrÞ, with r being the distance to
the center of the nucleus. A good reference summarizing
the nuclear physics aspects is Ref. [37]: based on the classic
Refs. [47,48], the authors assign different simplified
nuclear models (such as harmonic oscillator models as
well as different Fermi- and Gaussian-type models) to the
different nuclei. In order to use values that are as updated as
possible, we have however instead relied on the online
database called The Nuclear Charge Density Archive [49],
whose data are to the greatest extent identical to those used
in the previous references, but they nevertheless contain
some updates or smaller corrections. We stress that, from a
nuclear physics point of view, the process of μ-e conversion
would certainly deserve more attention. Although some
example computations of NMEs exist [50–54], they still
seem not as advanced and/or up to date as the compara-
tively involved computations of NMEs for neutrinoless
double beta decay (see, e.g., Refs. [55–62]), and, in
particular, they do not cover all relevant cases. On the
other hand, the process of μ-e conversion was recognized
by parts of the nuclear physics community also in recent
years [50], so that hopefully, at some point, it will be clear
how safe the bounds obtained truly are.
The relevant nuclear charge densities are displayed in

Fig. 3 for the isotopes under consideration. The corre-
sponding effective atomic charges and NMEs are displayed
in Table I. Note that, as long as the particle physics and
nuclear physics parts factorize, cf. Eq. (3), all nuclear
physics dependence can be absorbed into the experimental
bounds. Hence, we can conveniently compare bounds from
different experiments that constrain the same particle
physics amplitude.

FIG. 2. Form factors and ratios of form factors as functions of MS.
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The relevant nuclei we have taken into consideration
are those for which either existing limits can be found or
that are planned to be used in future experiments. The
best existing limits were all obtained by the SINDRUM II
experiment: BRðμ−Ti→e−TiÞ<4.3×10−12@90% C.L. on
48Ti [63], BRðμ−Au → e−AuÞ < 7 × 10−13@90% C.L.
on 197Au [64], and BRðμ−Pb → e−PbÞ < 4.6 × 10−11

@90% C.L. on 208Pb [65]. Projections for future sensitiv-
ities are announced by DeeMe [66] for 28Si,
BRðμ−Si → e−SiÞ < 1 × 10−14, by COMET [67] for
27Al, BRðμ−Al → e−AlÞ < 2.6 × 10−17,11 and by
PRISM/PRIME [69] for 48Ti, BRðμ−Ti → e−TiÞ < 1×
10−18. However, due to the nuclear physics increasing or
decreasing the rate for certain nuclei, it is not a priori clear
whether the nuclei used in actual experiments have the
greatest discovery potential. In order to disentangle these
tendencies, we have depicted in Fig. 4 both the general
discovery potential (i.e., the possible limit on the parameter
Ξparticle) for a given limit on the branching ratio versus the
actual future sensitivities and past limits. The left panel
exhibits how far down a limit on Ξparticle could go for a
hypothetical bound of 1 × 10−18 on the branching ratio
assumed for all isotopes (which is identical to the quoted
future sensitivity by PRISM/PRIME for 48Ti). As one can
see, the best isotope for μ-e conversion and thus the (quite
literally) golden channel would be the transition on 197Au,
followed by 208Pb and 48Ti. Glancing at the right panel, the
true best future sensitivity is in fact expected to be reached
for 48Ti by PRISM/PRIME. These simple considerations
imply that, if it was possible to build a future experiment

with BRðμ−Au → e−AuÞ < 1 × 10−18 instead of BR
ðμ−Ti → e−TiÞ, we might even be able to boost our limit
on Ξparticle even further than currently planned.
To get a first impression of the limits one can obtain from

this process, we ignore relative phases for the time being,
i.e., we take f�ab ¼ fab. To get a feeling for how strong the
constraints could get, we choose the following scenarios: as
limiting cases we take a rather optimistic scenario with
comparatively large couplings, fab ¼ 10−2 (∀a; b ¼ e, μ,
τ), and a rather pessimistic scenario with small couplings,
fab ¼ 10−4. As we will see, these scenarios indeed com-
prise “envelopes” of the more concrete scenarios, although
of course they comprise no strict boundaries, e.g., even
more optimistic scenarios could be consistent with data if
the scalar mass MS was chosen to be sufficiently large.
On the other hand, in Ref. [33], three categories of valid

benchmark points were introduced. They have been found
by numerically scanning the parameter space for two-loop
mass generation of light neutrinos using the Lagrangian
given in our Eq. (1).

(i) Red points: fee ≃ 0 and feτ ≃ 0,
(ii) Purple points: fee ≃ 0 and feμ ≃ − f�μτ

f�μμ
feτ,

(iii) Blue points: feμ ≃ − f�μτ
f�μμ

feτ.
These categories of points were chosen such that they
reproduce all relevant low-energy phenomenology, i.e., all
neutrino oscillation parameters as well as all LFV / lepton
number violating (LNV) bounds, with μ-e conversion
being the only exception. Note that the consistency of
these benchmark categories partially arises from correla-

tions, like feμ ≃ − f�μτ
f�μμ

feτ for the purple points, which lead

to cancellations in the rate for μ → eγ. However, these
cancellations do not appear anymore in μ-e conversion, as
we illustrate in the following. In order to not only show a
few isolated points as found in Ref. [33], we for illustrative
purposes present idealized scenarios that roughly corre-
spond to the three categories of benchmark points. The
explicit parameter choices for these scenarios are displayed
in Table II, and they approximately correspond to the
average of the values reported in Table VII of Ref. [33].
We are now ready to present our results for μ− − e−

conversion when only taking the photonic (long-range)

FIG. 3. Electric charge densities of the isotopes under consid-
eration. The normalizations are chosen such that

R
d3r ρpðrÞ≃ Z

for each isotope.

TABLE I. Atomic numbers Z, effective atomic charges Zeff
according to Eq. (127) of Ref. [36], and NMEs Fp according to
Eq. (129) of Ref. [36] for the isotopes under consideration. We
also quote the rates for ordinary muon capture, cf. Table VIII in
Ref. [37] (note the typo “Pb-207” in that reference).

Isotope Z Zeff Fp Γcapt½106=s�
Al-27 13 22.79 0.633 0.7054
Si-28 14 24.37 0.621 0.8712
Ti-48 22 35.85 0.504 2.59
Au-197 79 75.86 0.180 13.07
Pb-208 82 75.44 0.151 13.45

11Note that a slightly worse sensitivity of BRðμ−Al →
e−AlÞ < 6 × 10−17 is announced by Mu2e [68].
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contributions into account. Figure 5 summarizes all the
information we have collected so far, and it also illustrates
how strongly the doubly charged scalar mass can be
constrained. We have displayed the particle physics parts
of the amplitude as functions of the doubly charged scalar
massMS, i.e., the photonic/long-range contribution Ξparticle

from Eq. (23). The next step is to compare the predictions
to the experimental bounds. As already indicated, we
have collected several current (SINDRUM II [63–65])
and future (DeeMe [66], COMET [67], Mu2e [68], and
PRISM/PRIME [69]) limits on the branching ratio of
μ− − e− conversion. However, due to both nuclear physics
uncertainties and experiments on different isotopes poten-
tially pushing one and the same particle physics observable,
we have decided to display a range of bounds in Fig. 5. The
nominally best limits are thereby represented by the bold
horizontal lines, and the variation among the different
isotopes and/or experiments is indicated by the lightly
colored rectangles that absorb all uncertainties as long as
the particle physics part of the amplitude can be extracted.
Moreover, we have included the sensitivity expected to
be reached in phase I of COMET. The corresponding bound

of ΞAl
particle ¼ 3.87 × 10−15 on the particle physics observ-

able is represented by the dashed green line and stems from
the single event sensitivity of BRðμ−Al → e−AlÞ ¼ 3.1 ×
10−15 reported in Ref. [70]. Note that we have not indicated
the variation with nuclear physics uncertainties, because we
have not found any reliable up-to-date information. It is,
however, evident how to include information on this point,
so that it is easy to update our plot once this information is
available.
Looking at the numbers, it is evident that we can in fact

obtain very strong bounds on the doubly charged scalar
mass from not having observed μ-e conversion. In Table III,
we have displayed both the current limits and the future
sensitivities as well as the sensitivity that will be reached
within COMET’s phase I. The ranges displayed in Table III
are obtained by taking both the most optimistic (i.e., the
bold horizontal lines in Fig. 5) and the most pessimistic
(i.e., the upper edges of the lightly colored rectangles in

FIG. 4. Discovery potential and future sensitivities/current limits on Ξparticle for different isotopes under consideration for μ-e
conversion.

TABLE II. Upper part: Couplings for the three scenarios
discussed in the text. Lower part: Combinations of couplings
entering the μ-e conversion amplitude. Bold figures indicate the
dominant contributions.

Red Purple Blue

fee 10−16 10−15 10−1

feμ 10−2 10−3 10−4

feτ 10−19 10−2 10−2

fμμ 10−4 10−3 10−3

fμτ 10−5 10−4 10−4

f�eefeμ 10−18 10−18 10−5

f�eμfμμ 10−6 10−6 10−7

f�eτfμτ 10−24 10−6 10−6
FIG. 5. Bounds on the particle physics contribution Ξparticle
arising from the photonic (long-range) contributions only.
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Fig. 5) bounds at face value. This accounts for the possible
variations among the different experiments. However, we
stress once more that further variations due to nuclear
physics uncertainties may well be possible. While these are
not expected to dramatically change our results, they may
be able to at least change the last few digits in the figures
quoted in Table III. Nevertheless, it is evident that even
the most pessimistic limits are in fact quite impressive,
revealing that, for doubly charged scalars, μ-e conversion
may be able to lead to bounds stronger than those obtained
by colliders [34].
The question to answer is why the bounds from μ-e

conversion seem to be significantly stronger than those for
μ → eγ obtained in Ref. [33]. This is particularly surprising
when disregarding the short-range contributions, as we do,
since then at first sight μ-e conversion looks just like a
μ → eγ diagram attached to a nucleus, cf. Fig. 1. However,
the result can be understood by carefully comparing
the amplitudes for both processes. The branching ratio
of μ → eþ γ depends on an amplitude of the form

A ∝ jf�eefeμ þ f�eμfμμ þ f�eτfτμj · C; ð25Þ

where C is a flavor-independent constant incorporating
all non-Yukawa couplings. As explained, the benchmark
points in Ref. [33] were chosen such that all experimental
bounds are fulfilled. In particular, for the purple and blue
points, cancellations appear in Eq. (25), which allow one to
evade the (quite strong) bound from μ → eγ. On the other
hand, glancing at Eq. (23), the amplitude for μ-e conversion
is of the form

A ∝ jCef�eefeμ þ Cμf�eμfμμ þ Cτf�eτfτμj; ð26Þ

where now the constant C from Eq. (25) has gained a flavor
dependence, C → Ce;μ;τ. Thus, one cannot simply extract
this factor from the amplitude in Eq. (26) and, in particular,
the cancellations at work to evade the μ → eγ bound will
not work for μ-e conversion anymore. Instead, compara-
tively large values of the Yukawa couplings are strongly
constrained by the experimental limits. This is perfectly
consistent with the figures quoted in the lower part of
Table II, where the sizes of the combinations
ðf�eefeμ; f�eμfμμ; f�eτfτμÞ appearing in Eq. (26) are estimated

for the three scenarios. The largest such combination
appears for the blue scenario, jf�eefeμj ∼ 10−5, while the
red and purple scenarios instead seem to yield a very
similar size. Indeed this tendency is perfectly visible in both
Fig. 5 and Table III, where the bounds on the blue scenario
indeed turn out to be stronger than those on the red and
purple scenarios, which are quite similar.
Summing up, we have shown that already the photonic

(long-range) contributions to μ-e conversion lead to com-
paratively strong lower bounds on the scalar mass MS.

III. SHORT-RANGE (NONPHOTONIC)
CONTRIBUTIONS

The next step is to include the nonphotonic (short-range)
contributions to μ-e conversion.

A. Computing the form factors

The nonphotonic contributions to the μ-e conversion
amplitude are commonly subsumed into four fermion
interactions, i.e., we are considering pointlike (short-range)
operators coupling one μ and one e to two quarks. It is
a priori not clear whether these contributions could modify
the μ-e conversion rate significantly. Quite generally,
including these terms spoils the factorization of the
branching ratio into nuclear physics and particle physics
parts, such that Eq. (3) is not applicable anymore. In
general, the effect on the particle physics amplitude will be
to now turn into a combined amplitude incorporating both
photonic (long-range) and nonphotonic (short-range) con-
tributions, the latter being dependent on Z and N,

Ξparticle → ΞcombinedðZ;NÞ ¼ Ξphotonic þ ΞnonphotonicðZ;NÞ:

However, as we will see, in our case the short-range
contributions turn out to be completely subdominant.
Thus, although Eq. (3) is in general not correct, applying
it would introduce only a very small error, and we can thus
approximate Ξparticle ≃ Ξphotonic to a very good precision.
We in the following illustrate how to explicitly compute the
short-range contributions to μ-e conversion.
Considering effective operators up to dimension 6, a

general interaction of an electron and a muon with two
quarks is described by [36]

TABLE III. Lower limits on the mass MS resulting from μ-e conversion, displaying the range from the most
pessimistic to the most optimistic values. Figures are deliberately shown with a too-good precision, in order to ease
the comparison with Table IV.

Current limit (GeV) Future sensitivity (GeV) COMET I (Al-27) (GeV)

Black curve MS > 708.6 − 2390.2 MS > 5500.0 − 70369.3 MS > 10401.9
Blue curve MS > 131.9 − 447.1 MS > 1031.5 − 13271.3 MS > 1954.1
Purple curve MS > 42.5 − 152.3 MS > 360.7 − 4885.2 MS > 694.5
Red curve MS > 33.9 − 118.1 MS > 276.3 − 3656.1 MS > 528.0
Gray curve MS > 4.1 − 15.9 MS > 38.7 − 548.7 MS > 75.7
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Lnonphotonic ¼ −
GFffiffiffi
2

p
X

q¼u;d;s;���

�
ðgLSðqÞeLμR þ gRSðqÞeRμLÞq̄qþ ðgLPðqÞeLμR þ gRPðqÞeRμLÞq̄γ5q

þ ðgLVðqÞeLγνμL þ gRVðqÞeRγνμRÞq̄γνqþ ðgLAðqÞeLγνμL þ gRAðqÞeRγνμRÞq̄γνγ5q

þ 1

2
ðgLTðqÞeLσνρμR þ gRTðqÞeRσνρμLÞq̄σνρqþ H:c:

�
: ð27Þ

The effective four fermion couplings given above origi-
nate from integrating out all particles that could possibly
be exchanged between two quarks and two charged
leptons. In our setup, the dominant nonphotonic contri-
bution arises from the Z-boson exchange between two
quarks in the nucleus and the particle physics loop,
depicted in diagrams I–IV in Fig. 1. The terms involving
neutrinos in the loops are again GIM suppressed [17],
which is the case for both categories, penguin diagrams
(diagrams V–VIII) and box diagrams (diagrams IX–X).
The diagrams based on Higgs exchange are suppressed
even further, a back-of-the-envelope estimate resulting in
a suppression of Oð10−3Þ compared to the other short-
range contributions, which are already suppressed them-
selves. We thus completely disregard the diagrams based
on Higgs exchange. Note that, in order to consistently
obtain the form factors gXKðqÞ (X ¼ R, L and K ¼ S, P,

V, A, T), we match the relevant set of diagrams to the
four fermion operators using a generic μ-e-Z interaction
Γν; see Fig. 6.
The Feynman rules tell us

iM ¼ ueðpeÞΓνuμðpμÞ ·
−i

q02 −M2
Z

�
gνρ −

q0νq0ρ

M2
Z

�

· q̄
ig

4 cos θW
γρ½1þ kqsin2θW þ sqγ5�q; ð28Þ

for the “full theory” diagram on the left. Here, the
coefficients kq and sq depend on the quark being up or
down type: kd;s;b ¼ 4=3, sd;s;b ¼ 1, ku;c;t ¼ −8=3, and
su;c;t ¼ −1. By contracting the bosonic propagator, i.e.
taking the limit M2

Z ≫ q02, the matrix element takes
the form

iM ¼ ūeðpeÞΓνuμðpμÞ
i

M2
Z
gνρq̄

ig
4 cos θW

γρ½1þ kqsin2θW þ sqγ5�q

¼ −
g

4M2
Z cos θW

ūeðpeÞΓνuμðpμÞ
�
ð1þ kqsin2θWÞ q̄γνq|ffl{zffl}

vector coupling

þ sq q̄γνγ5q|fflfflffl{zfflfflffl}
axial vector coupling

�
. ð29Þ

Apparently, only the vector and axial vector structures are realized. Since we consider coherent μ-e conversion, however,
only the vector coupling will ultimately contribute to the branching ratio. Taking into account gauge invariance, the most
general form for the generic coupling Γν can be written as [39]

Γν ¼ γνPLALðq02Þ þ
iσνρq0ρ

mμ þme
PLBLðq02Þ þ 2

q0ν
mμ þme

PLCLðq02Þ þ γνPRARðq02Þ

þ iσνρq0ρ

mμ þme
PRBRðq02Þ þ 2

q0ν
mμ þme

PRCLðq02Þ: ð30Þ

FIG. 6. Integrating out the Z-boson results into a short-range contribution.
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However, as mentioned earlier, we only take into
account effective operators with mass dimension up to
six. Since the combined mass dimension of four spin-1=2
fields and the momentum q0 already exceeds dimension 6,
we can consistently drop such terms. Moreover, the doubly
charged scalar solely couples to right-handed leptons. Since
we assume the electron to be massless, all form factors gLK
vanish identically. Thus, the dominant contribution to the
short-range part of coherent μ-e conversion emerges from
just one single term. After rewriting the couplings in
Eq. (29) such that they match those in Eq. (27), the
relevant effective Lagrangian is given by

Lnonphotonic

¼ −
GFffiffiffi
2

p 2ð1þ kqsin2θWÞ cos θW
g

ARðq02Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼gRVðqÞ

eR γνμRq̄γνq:

ð31Þ
However, this Lagrangian still operates at quark level, while
what we are interested in is the analogous vertex coupling the
muonand theelectron tonucleons.Converting theLagrangian

in Eq. (31) to nucleon level, the new coupling constants gð0ÞXK

and gð1ÞXK can be reexpressed in terms of the nucleon form

factors Gðq;pÞ
K and Gðq;nÞ

K , see Ref. [36] for details,

gð0ÞXK ¼ 1

2

X
q¼u;d;s

gXKðqÞðGðq;pÞ
K þ Gðq;nÞ

K Þ;

gð1ÞXK ¼ 1

2

X
q¼u;d;s

gXKðqÞðGðq;pÞ
K −Gðq;nÞ

K Þ: ð32Þ

Taking the limit of isospin invariance, we can relate

the proton and neutron form factors [27]: Gðu;pÞ
K ¼

Gðd;nÞ
K , Gðu;nÞ

K ¼ Gðd;pÞ
K , and Gðs;pÞ

K ¼ Gðs;nÞ
K . Furthermore,

it is Gðu;pÞ
V ¼ 2, Gðu;nÞ

V ¼ 1, and Gðs;pÞ
V ¼ 0 for the vector

current. Again employing the nonrelativistic approxi-
mation for the muon wave function, the branching
ratio of coherent μ-e conversion takes the general
form [36],

BRðμ−N → e−NÞ ¼ j~pejEem3
μG2

Fα
3Z4

effF
2
p

8π2ZΓcapt

× ½jðZ þ NÞðgð0ÞLS þ gð0ÞLVÞ
þ ðZ − NÞðgð1ÞLS þ gð1ÞLVÞj2

þ jðZ þ NÞðgð0ÞRS þ gð0ÞRVÞ
þ ðZ − NÞðgð1ÞRS þ gð1ÞRVÞj2�; ð33Þ

under the assumptions of equal proton and neutron
densities as well as a quasiconstant muon wave
function within the nucleus. Here, GF is Fermi’s
constant and α ¼ e2=ð4πÞ ¼ g2 sin2 θW=ð4πÞ. All other
quantities are defined as in Eq. (3).
Within our framework there are neither scalar contribu-

tions, i.e., gð0;1ÞLS ¼ gð0;1ÞRS ¼ 0, nor contributions that include

left-handed electrons, i.e., gð0;1ÞLV ¼ 0. Moreover, we take the
electron to be massless, which leads to Ee ¼ j~pej≃mμ. In
combination with Eqs. (31)–(32), the branching ratio hence
simplifies to

BRðμ−N → e−NÞ ¼ 8α5mμZ4
effZF

2
p

Γcapt

m4
μcos2θW

128παZ2M4
Wsin

2θW
jð3ðZ þ NÞ − 4Zsin2θWÞARð−m2

μÞÞj2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≡Ξ2

nonphotonic

; ð34Þ

where we have used GF ¼ απffiffi
2

p
M2

W sin2 θW
. Here, we have

rewritten the nonphotonic branching ratio such that we
can extract a Ξnonphotonic in analogy to the photonic
contributions. However, in contrast to the photonic part
Ξphotonic, one cannot factorize the particle and nuclear
physics contributions, in the sense that Ξnonphotonic depends
on the nuclear characteristics ðZ;NÞ: Ξnonphotonic ¼
ΞnonphotonicðZ;NÞ. While this looks as if it made the
distinction between particle physics and nuclear physics

parts impossible, it turns out that the dependence on ðZ;NÞ
is in reality so weak that it can be dropped without changing
the results. This is again a reflection of the short-range
contribution being subdominant by far.
In order to determine the form factor ARðq02Þ, we

proceed in a way similar to what we did for the photonic
form factors, meaning that we consider the process μ → eZ
for an off-shell gauge boson. From diagram I in Fig. 1(a),
we obtain the matrix element,

iMI ¼ −8f�eafaμg0 sin θWZνðq0ÞūeðpeÞ
Z

ddk
ð2πÞd

PLkð2pμ − 2kþ q0Þν
½k2 −m2

a�½ðpμ − kþ q0Þ2 −M2
S�½ðpμ − kÞ2 −M2

S�
uμðpμÞ; ð35Þ
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where we have dropped the þiϵ terms for brevity. For diagram II, see Fig. 1(b), the matrix element is given by

iMII ¼ −f�eafaμ
g

cos θW
Zνðq0ÞūeðpeÞ

Z
ddk
ð2πÞd

PLðkþ q0 þmaÞγνð1 − 4sin2θW þ γ5ÞðkþmaÞPR

½k2 −m2
a�½ðpμ − kÞ2 −M2

S�½ðkþ q0Þ2 −m2
a�

uμðpμÞ: ð36Þ

From Fig. 1(c), we extract

iMIII ¼ −f�eafaμ
g

cos θW
Zνðq0ÞūeðpeÞ

Z
ddk
ð2πÞd

γνð−1þ 4 sin2 θW þ γ5ÞpμkPR

p2
μ½k2 −m2

a�½ðpμ − kÞ2 −M2
S�

uμðpμÞ: ð37Þ

And, finally, from Fig. 1(d),

iMIV ¼ −f�eafaμ
g

cos θW
Zνðq0ÞūeðpeÞ

Z
ddk
ð2πÞd

PLkðpe þmμÞγνð−1þ 4sin2θW þ γ5Þ
−m2

μ½k2 −m2
a�½ðpe − kÞ2 −M2

S�
uμðpμÞ: ð38Þ

Again using Package-X, we compute each diagram’s contribution to AR, and combine them using g0 ¼ g tan θW . Because of
the absence of a tree-level three-point vertex connecting muon, electron, and Z-boson, the form factor AR has to be UV
finite. Similarly to the photonic case, the UV divergences occurring in the individual diagrams I–IV cancel each other, thus
leaving AR finite. As before, we can simplify the form factor by exploiting the mass hierarchy MS ≫ me;μ;τ to obtain

ARð−m2
μÞ ¼

−ig
24π2 cos θWM2

Smμ
f�eafaμ

 
mμm2

að−3þ 8sin2θWÞ þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

a þm2
μ

q
ð2m2

μsin2θW

þm2
að3 − 4sin2θWÞÞArctanh

"
mμffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4m2
a þm2

μ

q
#
þ ð3m2

amμ þ 2m3
μsin2θWÞ ln

�
m2

a

M2
S

�!
; ð39Þ

where the sum over a ¼ e, μ, τ is implied. So, the somewhat artificial (because in reality not dominating) nonphotonic
particle physics factor Ξnonphotonic can be deduced to be

Ξ2
nonphotonic ¼

m2
μj3ðZ þ NÞ − 4Zsin2θW j2
18432π4Z2M4

WM
4
Ssin

4θW

����� X
a¼e;μ;τ

f�eafaμ

 
mμm2

að−3þ 8sin2θWÞ þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

a þm2
μ

q
ð2m2

μsin2θW

þm2
að3 − 4sin2θWÞÞArctanh

"
mμffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4m2
a þm2

μ

q
#
þ ð3m2

amμ þ 2m3
μsin2θWÞ ln

�
m2

a

M2
S

�!�����
2

; ð40Þ

at leading order.

B. The total branching ratio

In general, both the photonic and nonphotonic proc-
esses contribute to μ-e conversion. Kinematics dictate
that q02 ¼ −m2

μ, which in combination with the non-
relativistic approximation of the muon wave function
implies that the photonic (long-range) contribution can

effectively be treated as an addition Δgð0;1ÞRV to the

vectorial coupling constants gð0;1ÞRV ; see Eq. (141) of
Ref. [36]. We thus obtain

gð0;1ÞRV → gð0;1ÞRV þ Δgð0;1ÞRV ; where

Δgð0;1ÞRV ¼ 4
ffiffiffi
2

p
απ

GFm2
μ
ðF2ð−m2

μÞ − F1ð−m2
μÞÞ; ð41Þ

with the form factors F1 and F2 explicitly given in
Eqs. (18) and (19), respectively. We can now understand
why the nonphotonic (short-range) contributions are
subdominant: while both jF2ð−m2

μÞ − F1ð−m2
μÞj and

jARð−m2
μÞj are of Oðm2

a=M2
SÞ, we can see from

Eq. (41) that the photonic (long-range) contributions
are considerably less suppressed, receiving a relative
enhancement factor that should naively be of the order
of α=ðGFm2

μÞ ∼M2
W=m

2
μ ∼ 105.

Replacing the purely nonphotonic couplings in favor of
the ones given above in Eq. (41), we can derive the general
branching ratio in analogy to the derivation of Eq. (34). The
combined branching ratio, incorporating both photonic
(long-range) and nonphotonic (short-range) contributions,
takes the form
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BRðμ−N → e−NÞ ¼ 8α5mμZ4
effZF

2
p

Γcapt
Ξ2
combinedðZ;NÞ;

with Ξ2
combined ¼

m4
μ

8192π4Z2M4
Wsin

4θW

����� X
a¼e;μ;τ

f�eafaμ

 
−
2ð3ðZ þ NÞ − 4Zsin2θWÞ

3mμM2
S

 
mμm2

að−3þ 8sin2θWÞ

þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

a þm2
μ

q
ð2m2

μsin2θW þm2
að3 − 4sin2θWÞÞArctanh

"
mμffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4m2
a þm2

μ

q
#

þ ð3m2
amμ þ 2m3

μsin2θWÞ ln
�
m2

a

M2
S

�!
þ 16

3

M2
WZsin

2θW
m3

μM2
S

 
4m2

amμ −m3
μ

þ 2ð−2m2
a þm2

μÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

a þm2
μ

q
Arctanh

"
mμffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4m2
a þm2

μ

q
#
þm3

μ ln

�
m2

a

M2
S

�!!�����
2

; ð42Þ

at leading order in the small ratios m2
a=M2

S.
As already pointed out and as is now clearly visible from

Eq. (42), Ξcombined is not a pure particle physics quantity, in
the sense that it also depends on the nuclear characteristics
Z and N. However, we can nevertheless use it to compare
the impact of a certain bound on the new physics param-
eters, as long as we take into account the variation with Z
and N. Thus, when plotting Ξcombined as a function of the
scalar massMS, one would not only obtain a simple line but
a band, the width arising from varying Z and N. However,
as we see, numerically this variation is very mild, since it
only affects the subdominant contribution to the decay—in
a logarithmic plot, the width of the band would not even be
visible. Thus, in practice, we can disregard the variation
with Z and N whenever we present a bound just for
illustrative purposes.
We are now ready to present our final results for μ−-e−

conversion, which are displayed in Fig. 7. In contrast to

Fig. 5, we present both the total contribution [Ξcombined,
cf. Eq. (42)] and the nonphotonic/short-range contribution
[Ξnonphotonic, cf. Eq. (34)]. Note that the latter quantity is in
fact not physical, as explained, in the sense that in reality it
does not occur in isolation, i.e. without the long-range
contributions. However, artificially separating them makes
it evident that the short-range contributions are indeed very
subdominant, by several orders of magnitude for each of
the benchmark scenarios displayed. Thus, it is an excellent
approximation to take Ξcombined ≃ Ξphotonic and to com-
pletely disregard the short-range part, effectively going
back to our intermediate result from Eqs. (23) and (3).
Furthermore, as explained above, the lines representing the
nonphotonic contributions for the different scenarios are in
fact bands with finite widths, due to their dependence on
the isotope under consideration. However, the widths are so
small that they would hardly be visible in the logarithmic
plot presented in Fig. 7.
Furthermore, we extract the bounds on the scalar mass

MS obtained from the combination of photonic and
nonphotonic contributions in analogy to Sec. II C. The
resulting ranges of lower limits displayed in Table IV
differ from the values for the purely photonic contribu-
tions only at the per mille level, cf. Table III. While this
confirms that we can render the nonphotonic contribu-
tions negligible, it is also visible that—depending on the
combinations of couplings—the naive estimate of the
effect of the nonphotonic contributions may under-
estimate them by several orders of magnitude. Thus, it
is in fact not a priori clear that the short-range diagrams
are always negligible, contrary to what was claimed
earlier in Ref. [32].
Although we can neglect the nonphotonic contributions

due to their smallness, there are two interesting observa-
tions related to them, which we briefly discuss. First, we
cannot distinguish the blue from the purple nonphotonic
contributions, while they differ by about an order of

FIG. 7. Bounds on the full particle physics contribution
Ξcombined.
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magnitude in the photonic case. This can again be under-
stood by having a close look at the amplitudes for both
processes. The amplitude that enters the nonphotonic
Ξnonphotonic takes the form

A ∝ jf�eefeμDðmeÞ þ f�eμfμμDðmμÞ þ f�eτfτμDðmτÞj;

where the function DðmaÞ, which is proportional to the
form factor AR for a fixed ma, strongly varies with ma. The
dominant term (without including the couplings f�eafaμ)
stems from the τ propagating in the loop, i.e., DðmτÞ. It
exceeds the μ and e contributions by about three to four
orders of magnitude. Furthermore, neither the combination
f�eefeμ nor f�eμfμμ, see Table II, can bypass this difference in
the blue and purple scenarios. Thus, the equality of the
nonphotonic contribution of blue and purple scenarios is
traced back to the identical combination of f�eτfτμ in both
scenarios.
The second observation is that—in contrast to the

photonic case where the red scenario consistently attains
values more than an order of magnitude higher—the red
and gray scenarios are comparable in the nonphotonic case.
Following the argument given above, the gray scenario
should dominate, due to f�eτfτμ ¼ 10−8 (gray) in compari-
son to f�eτfτμ ¼ 10−24 (red), which seems to contradict the
observations from the plot. However, for the red scenario,
f�eτfτμ is smaller than the combinations f�eefeμ and f�eμfμμ
by at least six orders of magnitude; see Table II. It hence
overcompensates the dominance of DðmτÞ such that
f�eμfμμDðmμÞ is the relevant contribution in the red sce-
nario. The latter yields the same order of magnitude results
as the f�eτfτμDðmτÞ contribution of the gray scenario.
Summing up, we have presented a detailed computation

of μ-e conversion mediated by a doubly charged SUð2Þ
singlet scalar coupling to pairs of right-handed charged
leptons. The formulas obtained are general; however, for
illustration the numerical results focus on the scenarios
obtained in Ref. [33]. In all cases, the current/future lower
bounds on the doubly charged scalar mass MS resulting
from the nonobservation of μ-e conversion turn out to be
very strong, which illustrates the value of new measure-
ments of μ-e conversion.

IV. CONCLUSIONS AND OUTLOOK

In this paper, we have presented the first detailed
computation of μ-e conversion, i.e., a reaction turning a
muon bound to a nucleus into an electron, for the case of
the process being mediated by a doubly charged singlet
scalar particle. After having identified the decisive
Feynman diagrams, we have computed the resulting
amplitude for the conversion and we have mapped it to
the known most general amplitude for the process. We
have taken into account both the long-range and short-
range contributions, the latter of which are however
subdominant and can be neglected in practice. Our results
are fully general and hold for any doubly charged singlet
scalar coupling to pairs of right-handed charged leptons,
thereby closing a big gap in our current knowledge on μ-e
conversion. Even for doubly charged scalars that are not
singlets under SUð2Þ, such as the doubly charged com-
ponent of a Higgs triplet field, most of the computation
presented practically stays the same—a generalization of
our results is both possible and doable with moderate
effort.
In addition, we have investigated how strongly the

parameters related to the doubly charged scalar can be
constrained by future experimental limits on the process,
which are expected to dramatically improve within the
coming years. For illustrative purposes, we have also
included an explicit example of a model that generates a
valid light neutrino mass at two-loop level and that
contains our general setting as a subset. As we have
seen, despite intrinsic nuclear physics uncertainties, the
limits to be expected strongly constrain the mass of the
doubly charged scalar, so much so that future indirect
limits from μ-e conversion are even likely to be more
stringent than the direct limits that will be obtained by
the LHC. Thus, realistically, experiments on lepton
flavor violation can serve as a valuable addition to
collider studies in the hunt for new physics beyond
the SM.
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Note added.—Recently, a related paper [71] appeared,
which focuses more on the muon (g − 2) computation,
but also treats low-energy LFV, in particular μ-e conver-
sion, and collider phenomenology. Our paper, however,
gives much more detail on the computation of μ-e con-
version, and, in particular, it allows one to reproduce our
results and to adopt them in similar cases. Thus, Ref. [71]
and the present paper complement each other.

APPENDIX A: FEYNMAN RULES

In order to obtain the decisive matrix elements in
Secs. II B and III A, we make use of the Feynman rules
given in Figs. 8–12. Here, PL;R are the left-/right-handed

projectors, the indices α, β are Dirac spinor indices,
and a; b ¼ e; μ; τ denote the lepton flavor. The doubly
charged scalar’s interactions are described by means of the
covariant derivativeDμ ¼ ∂μ þ ig0YBμ. The hypercharge is
given by Y ¼ Q − I3 (¼ �2 for S��), such that the
covariant derivative takes the form Dμ ¼ ∂μ � 2ieAμ∓
2ig0 sin θWZμ. Note that, since there are LNV vertices in
our theory, we naturally encounter vertices with clashing
arrows. For a consistent treatment using the Feynman rule
language, we choose a fixed orientation of the “fermion
flow” for each diagram, i.e., the order in which each
fermionic chain is written down, and adjust the Feynman
rules [72]. For example, when reversing the fermion flow
from Fig. 10(a) to the opposite direction as displayed in
Fig. 10(b), we instead work with the antifield lca ¼ Cla

T

and alter the Feynman rules accordingly. In Figs. 8–12, the
red arrow indicates the orientation of the fermion flow, i.e.,
of lepton number.

FIG. 8. Two-lepton and S−− interactions with fð�Þab ¼ fð�Þba .

FIG. 9. S−− and its interaction with neutral gauge bosons.
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APPENDIX B: THE SCALAR THREE-POINT FUNCTION

The kinematical configuration corresponding to the scalar three-point function given in Eq. (21) is displayed in Fig. 13.

FIG. 10. Electromagnetic vertex.

FIG. 11. Z-boson vertex.

FIG. 12. (Anti-) leptonic propagator and its alteration with the fermion flow.

FIG. 13. Kinematic setup corresponding to the scalar three-point function Eq. (21).

CONVERSIONS OF BOUND MUONS: LEPTON FLAVOR … PHYSICAL REVIEW D 93, 055039 (2016)

055039-19



[1] T. P. Gorringe and D.W. Hertzog, Prog. Part. Nucl. Phys.
84, 73 (2015).

[2] R. Barbieri and G. F. Giudice, Nucl. Phys. B306, 63 (1988).
[3] R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38, 1440

(1977).
[4] G. Bertone, D. Hooper, and J. Silk, Phys. Rep. 405, 279

(2005).
[5] R. N. Mohapatra et al., Rep. Prog. Phys. 70, 1757 (2007).
[6] Y. Fukuda et al. (Super-Kamiokande), Phys. Rev. Lett. 81,

1562 (1998).
[7] Q. R. Ahmad et al. (SNO), Phys. Rev. Lett. 89, 011301

(2002).
[8] T. Araki et al. (KamLAND), Phys. Rev. Lett. 94, 081801

(2005).
[9] D. G. Michael et al. (MINOS), Phys. Rev. Lett. 97, 191801

(2006).
[10] F. P. An et al. (Daya Bay), Phys. Rev. Lett. 108, 171803

(2012).
[11] J. K. Ahn et al. (RENO), Phys. Rev. Lett. 108, 191802

(2012).
[12] K. Abe et al. (T2K), Phys. Rev. Lett. 107, 041801 (2011).
[13] Y. Abe et al. (Double Chooz), Phys. Rev. Lett. 108, 131801

(2012).
[14] J. Adam et al. (MEG), Phys. Rev. Lett. 110, 201801 (2013).
[15] B. Aubert et al. (BABAR), Phys. Rev. Lett. 104, 021802

(2010).
[16] T. P. Cheng and L. F. Li, Gauge Theory of Elementary

Particle Physics (Oxford Science Publications, Oxford,
1984).

[17] S. L. Glashow, J. Iliopoulos, and L. Maiani, Phys. Rev. D 2,
1285 (1970).

[18] T. P. Cheng and L.-F. Li, Phys. Rev. Lett. 45, 1908 (1980).
[19] T. P. Cheng and L.-F. Li, Phys. Rev. D 22, 2860 (1980).
[20] A. Blum and A. Merle, Phys. Rev. D 77, 076005 (2008).
[21] U. Bellgardt et al. (SINDRUM), Nucl. Phys. B299, 1

(1988).
[22] K. Hayasaka et al., Phys. Lett. B 687, 139 (2010).
[23] M. Raidal et al., Eur. Phys. J. C 57, 13 (2008).
[24] S. Weinberg and G. Feinberg, Phys. Rev. Lett. 3, 111

(1959).
[25] W. J. Marciano and A. I. Sanda, Phys. Rev. Lett. 38, 1512

(1977).
[26] D. N. Dinh, A. Ibarra, E. Molinaro, and S. T. Petcov, J. High

Energy Phys. 08 (2012) 125; D. N. Dinh, A. Ibarra, E.
Molinaro, and S. T. Petcov, J. High Energy Phys. 09 (2013)
023.

[27] J. Bernabeu, E. Nardi, and D. Tommasini, Nucl. Phys.
B409, 69 (1993).

[28] A. Crivellin, M. Hoferichter, and M. Procura, Phys. Rev. D
89, 093024 (2014).

[29] M. Frank, Eur. Phys. J. C 17, 501 (2000).
[30] E. Arganda, M. J. Herrero, and A. M. Teixeira, J. High

Energy Phys. 10 (2007) 104.
[31] H.-B. Zhang, T.-F. Feng, G.-H. Luo, Z.-F. Ge, and S.-M.

Zhao, J. High Energy Phys. 07 (2013) 069; 10 (2013) 173.
[32] M. Raidal and A. Santamaria, Phys. Lett. B 421, 250 (1998).
[33] S. F. King, A. Merle, and L. Panizzi, J. High Energy Phys.

11 (2014) 124.
[34] T. Geib, S. F. King, A. Merle, J. M. No, and L. Panizzi,

arXiv:1512.04391.

[35] T. Geib, A. Merle, and K. Zuber, μ−-eþ conversion in
COMET (to be published).

[36] Y. Kuno and Y. Okada, Rev. Mod. Phys. 73, 151 (2001).
[37] R. Kitano, M. Koike, and Y. Okada, Phys. Rev. D 66,

096002 (2002).
[38] L. Lavoura, Eur. Phys. J. C 29, 191 (2003).
[39] H. H. Patel, Comput. Phys. Commun. 197, 276 (2015).
[40] V. Berestetsky, E. Lifshitz, and L. Pitaevsky, Quantum

Electrodynamics (Pergamon Press, Oxford, 1982).
[41] H. C. Chiang, E. Oset, T. S. Kosmas, A. Faessler, and J. D.

Vergados, Nucl. Phys. A559, 526 (1993).
[42] O. U. Shanker, Phys. Rev. D 20, 1608 (1979).
[43] R. Alonso, M. Dhen, M. B. Gavela, and T. Hambye, J. High

Energy Phys. 01 (2013) 118.
[44] G. Passarino and M. J. G. Veltman, Nucl. Phys. B160, 151

(1979).
[45] G. ’t Hooft and M. J. G. Veltman, Nucl. Phys. B153, 365

(1979).
[46] D. Y. Bardin and G. Passarino, The Standard Model in the

Making: Precision Study of the Electroweak Interactions
(Clarendon Press, Oxford, 1999).

[47] H. De Vries, C. W. De Jager, and C. De Vries, At. Data
Nucl. Data Tables 36, 495 (1987).

[48] G. Fricke, C. Bernhardt, K. Heilig, L. A. Schaller, L.
Schellenberg, E. B. Shera, and C.W. de Jager, At. Data
Nucl. Data Tables 60, 177 (1995).

[49] A. Brody, D. Day, B. Lewis, and S. Washington, The
nuclear charge density archive, http://faculty.virginia.edu/
ncd/index.html.

[50] M. Gonzalez, T. Gutsche, J. C. Helo, S. Kovalenko, V. E.
Lyubovitskij, and I. Schmidt, Phys. Rev. D 87, 096020
(2013).

[51] A. Faessler, T. Gutsche, S. Kovalenko, V. E. Lyubovitskij,
and I. Schmidt, Phys. Rev. D 72, 075006 (2005).

[52] A. Faessler, T. Gutsche, S. Kovalenko, V. E. Lyubovitskij,
I. Schmidt, and F. Simkovic, Phys. Rev. D 70, 055008
(2004).

[53] A. Faessler, T. Gutsche, S. Kovalenko, V. E. Lyubovitskij, I.
Schmidt, and F. Simkovic, Phys. Lett. B 590, 57 (2004).

[54] T. S. Kosmas, A. Faessler, F. Simkovic, and J. D. Vergados,
Phys. Rev. C 56, 526 (1997).

[55] A. Faessler, V. Rodin, and F. Simkovic, J. Phys. G 39,
124006 (2012).

[56] J. Barea, J. Kotila, and F. Iachello, Phys. Rev. C 91, 034304
(2015).

[57] J. Hyvärinen and J. Suhonen, Phys. Rev. C 91, 024613
(2015).

[58] J. Engel, J. Phys. G 42, 034017 (2015).
[59] F. Simkovic, V. Rodin, A. Faessler, and P. Vogel, Phys. Rev.

C 87, 045501 (2013).
[60] J. Barea, J. Kotila, and F. Iachello, Phys. Rev. C 87, 014315

(2013).
[61] J. Suhonen and O. Civitarese, J. Phys. G 39, 124005 (2012).
[62] J. Suhonen and O. Civitarese, J. Phys. G 39, 085105 (2012).
[63] C. Dohmen et al. (SINDRUM II), Phys. Lett. B 317, 631

(1993).
[64] W. H. Bertl et al. (SINDRUM II), Eur. Phys. J. C 47, 337

(2006).
[65] W. Honecker et al. (SINDRUM II), Phys. Rev. Lett. 76, 200

(1996).

TANJA GEIB and ALEXANDER MERLE PHYSICAL REVIEW D 93, 055039 (2016)

055039-20

http://dx.doi.org/10.1016/j.ppnp.2015.06.001
http://dx.doi.org/10.1016/j.ppnp.2015.06.001
http://dx.doi.org/10.1016/0550-3213(88)90171-X
http://dx.doi.org/10.1103/PhysRevLett.38.1440
http://dx.doi.org/10.1103/PhysRevLett.38.1440
http://dx.doi.org/10.1016/j.physrep.2004.08.031
http://dx.doi.org/10.1016/j.physrep.2004.08.031
http://dx.doi.org/10.1088/0034-4885/70/11/R02
http://dx.doi.org/10.1103/PhysRevLett.81.1562
http://dx.doi.org/10.1103/PhysRevLett.81.1562
http://dx.doi.org/10.1103/PhysRevLett.89.011301
http://dx.doi.org/10.1103/PhysRevLett.89.011301
http://dx.doi.org/10.1103/PhysRevLett.94.081801
http://dx.doi.org/10.1103/PhysRevLett.94.081801
http://dx.doi.org/10.1103/PhysRevLett.97.191801
http://dx.doi.org/10.1103/PhysRevLett.97.191801
http://dx.doi.org/10.1103/PhysRevLett.108.171803
http://dx.doi.org/10.1103/PhysRevLett.108.171803
http://dx.doi.org/10.1103/PhysRevLett.108.191802
http://dx.doi.org/10.1103/PhysRevLett.108.191802
http://dx.doi.org/10.1103/PhysRevLett.107.041801
http://dx.doi.org/10.1103/PhysRevLett.108.131801
http://dx.doi.org/10.1103/PhysRevLett.108.131801
http://dx.doi.org/10.1103/PhysRevLett.110.201801
http://dx.doi.org/10.1103/PhysRevLett.104.021802
http://dx.doi.org/10.1103/PhysRevLett.104.021802
http://dx.doi.org/10.1103/PhysRevD.2.1285
http://dx.doi.org/10.1103/PhysRevD.2.1285
http://dx.doi.org/10.1103/PhysRevLett.45.1908
http://dx.doi.org/10.1103/PhysRevD.22.2860
http://dx.doi.org/10.1103/PhysRevD.77.076005
http://dx.doi.org/10.1016/0550-3213(88)90462-2
http://dx.doi.org/10.1016/0550-3213(88)90462-2
http://dx.doi.org/10.1016/j.physletb.2010.03.037
http://dx.doi.org/10.1140/epjc/s10052-008-0715-2
http://dx.doi.org/10.1103/PhysRevLett.3.111
http://dx.doi.org/10.1103/PhysRevLett.3.111
http://dx.doi.org/10.1103/PhysRevLett.38.1512
http://dx.doi.org/10.1103/PhysRevLett.38.1512
http://dx.doi.org/10.1007/JHEP08(2012)125
http://dx.doi.org/10.1007/JHEP08(2012)125
http://dx.doi.org/10.1007/JHEP09(2013)023
http://dx.doi.org/10.1007/JHEP09(2013)023
http://dx.doi.org/10.1016/0550-3213(93)90446-V
http://dx.doi.org/10.1016/0550-3213(93)90446-V
http://dx.doi.org/10.1103/PhysRevD.89.093024
http://dx.doi.org/10.1103/PhysRevD.89.093024
http://dx.doi.org/10.1007/s100520000482
http://dx.doi.org/10.1088/1126-6708/2007/10/104
http://dx.doi.org/10.1088/1126-6708/2007/10/104
http://dx.doi.org/10.1007/JHEP07(2013)069
http://dx.doi.org/10.1007/JHEP10(2013)173
http://dx.doi.org/10.1016/S0370-2693(98)00020-3
http://dx.doi.org/10.1007/JHEP11(2014)124
http://dx.doi.org/10.1007/JHEP11(2014)124
http://arXiv.org/abs/1512.04391
http://dx.doi.org/10.1103/RevModPhys.73.151
http://dx.doi.org/10.1103/PhysRevD.66.096002
http://dx.doi.org/10.1103/PhysRevD.66.096002
http://dx.doi.org/10.1140/epjc/s2003-01212-7
http://dx.doi.org/10.1016/j.cpc.2015.08.017
http://dx.doi.org/10.1016/0375-9474(93)90259-Z
http://dx.doi.org/10.1103/PhysRevD.20.1608
http://dx.doi.org/10.1007/JHEP01(2013)118
http://dx.doi.org/10.1007/JHEP01(2013)118
http://dx.doi.org/10.1016/0550-3213(79)90234-7
http://dx.doi.org/10.1016/0550-3213(79)90234-7
http://dx.doi.org/10.1016/0550-3213(79)90605-9
http://dx.doi.org/10.1016/0550-3213(79)90605-9
http://dx.doi.org/10.1016/0092-640X(87)90013-1
http://dx.doi.org/10.1016/0092-640X(87)90013-1
http://dx.doi.org/10.1006/adnd.1995.1007
http://dx.doi.org/10.1006/adnd.1995.1007
http://faculty.virginia.edu/ncd/index.html
http://faculty.virginia.edu/ncd/index.html
http://faculty.virginia.edu/ncd/index.html
http://faculty.virginia.edu/ncd/index.html
http://faculty.virginia.edu/ncd/index.html
http://dx.doi.org/10.1103/PhysRevD.87.096020
http://dx.doi.org/10.1103/PhysRevD.87.096020
http://dx.doi.org/10.1103/PhysRevD.72.075006
http://dx.doi.org/10.1103/PhysRevD.70.055008
http://dx.doi.org/10.1103/PhysRevD.70.055008
http://dx.doi.org/10.1016/j.physletb.2004.03.068
http://dx.doi.org/10.1103/PhysRevC.56.526
http://dx.doi.org/10.1088/0954-3899/39/12/124006
http://dx.doi.org/10.1088/0954-3899/39/12/124006
http://dx.doi.org/10.1103/PhysRevC.91.034304
http://dx.doi.org/10.1103/PhysRevC.91.034304
http://dx.doi.org/10.1103/PhysRevC.91.024613
http://dx.doi.org/10.1103/PhysRevC.91.024613
http://dx.doi.org/10.1088/0954-3899/42/3/034017
http://dx.doi.org/10.1103/PhysRevC.87.045501
http://dx.doi.org/10.1103/PhysRevC.87.045501
http://dx.doi.org/10.1103/PhysRevC.87.014315
http://dx.doi.org/10.1103/PhysRevC.87.014315
http://dx.doi.org/10.1088/0954-3899/39/12/124005
http://dx.doi.org/10.1088/0954-3899/39/8/085105
http://dx.doi.org/10.1016/0370-2693(93)91383-X
http://dx.doi.org/10.1016/0370-2693(93)91383-X
http://dx.doi.org/10.1140/epjc/s2006-02582-x
http://dx.doi.org/10.1140/epjc/s2006-02582-x
http://dx.doi.org/10.1103/PhysRevLett.76.200
http://dx.doi.org/10.1103/PhysRevLett.76.200


[66] M. Aoki (DeeMe), Proc. Sci., ICHEP2010 (2010) 279.
[67] Y. G. Ciu et al., Report No. J-PARC P21, 2009, http://comet

.phys.sci.osaka‑u.ac.jp:8080/comet/internal/publications/
comet‑cdr‑v1.0.pdf/view.

[68] R. K. Kutschke, arXiv:1112.0242.
[69] R. J. Barlow, Nucl. Phys. B, Proc. Suppl. 218, 44

(2011).

[70] R. Akhmetshin et al. (COMET), Report No. TDR-2014,
2014, http://comet.kek.jp/Documents_files/IPNS‑Review‑
2014.pdf.

[71] J. Chakrabortty, P. Ghosh, S. Mondal, and T. Srivastava,
arXiv:1512.03581.

[72] A. Denner, H. Eck, O. Hahn, and J. Kublbeck, Nucl. Phys.
B387, 467 (1992).

CONVERSIONS OF BOUND MUONS: LEPTON FLAVOR … PHYSICAL REVIEW D 93, 055039 (2016)

055039-21

http://comet.phys.sci.osaka-u.ac.jp:8080/comet/internal/publications/comet-cdr-v1.0.pdf/view
http://comet.phys.sci.osaka-u.ac.jp:8080/comet/internal/publications/comet-cdr-v1.0.pdf/view
http://comet.phys.sci.osaka-u.ac.jp:8080/comet/internal/publications/comet-cdr-v1.0.pdf/view
http://comet.phys.sci.osaka-u.ac.jp:8080/comet/internal/publications/comet-cdr-v1.0.pdf/view
http://comet.phys.sci.osaka-u.ac.jp:8080/comet/internal/publications/comet-cdr-v1.0.pdf/view
http://comet.phys.sci.osaka-u.ac.jp:8080/comet/internal/publications/comet-cdr-v1.0.pdf/view
http://comet.phys.sci.osaka-u.ac.jp:8080/comet/internal/publications/comet-cdr-v1.0.pdf/view
http://comet.phys.sci.osaka-u.ac.jp:8080/comet/internal/publications/comet-cdr-v1.0.pdf/view
http://comet.phys.sci.osaka-u.ac.jp:8080/comet/internal/publications/comet-cdr-v1.0.pdf/view
http://arXiv.org/abs/1112.0242
http://dx.doi.org/10.1016/j.nuclphysbps.2011.06.009
http://dx.doi.org/10.1016/j.nuclphysbps.2011.06.009
http://comet.kek.jp/Documents_files/IPNS-Review-2014.pdf
http://comet.kek.jp/Documents_files/IPNS-Review-2014.pdf
http://comet.kek.jp/Documents_files/IPNS-Review-2014.pdf
http://comet.kek.jp/Documents_files/IPNS-Review-2014.pdf
http://comet.kek.jp/Documents_files/IPNS-Review-2014.pdf
http://arXiv.org/abs/1512.03581
http://dx.doi.org/10.1016/0550-3213(92)90169-C
http://dx.doi.org/10.1016/0550-3213(92)90169-C

