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We complete the study of a class of string-motivated effective supergravity theories in which modulus-
induced soft supersymmetry breaking is sufficiently suppressed in the observable sector so as to be
competitive with anomaly-mediated supersymmetry breaking. Here we consider deflected “mirage
mediation” (DMM), where contributions from gauge mediation are added to those arising from gravity
mediation and anomaly mediation. We update previous work that surveyed the rich parameter space of such
theories, in light of data from the CERN Large Hadron Collider (LHC) and recent dark matter detection
experiments. Constraints arising from LHC superpartner searches at

ffiffiffi
s

p ¼ 8 TeV are considered, and
discovery prospects at

ffiffiffi
s

p ¼ 14 TeV are evaluated. We find that deflected mirage mediation generally
allows for SUð3Þ-charged superpartners of significantly lower mass (given current knowledge of the Higgs
mass and neutralino relic density) than was found for the “pure” mirage mediation models of Kachru et al.
[Phys. Rev. D 68, 046005 (2003)]. Consequently, discovery prospects are enhanced for many combinations
of matter multiplet modular weights. We examine the experimental challenges that will arise due to the
prospect of highly compressed spectra in DMM, and the correlation between accessibility at the LHC and
discovery prospects at large-scale liquid xenon dark matter detectors.
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I. INTRODUCTION

With the resumption of data taking at the CERN Large
Hadron Collider (LHC), time is running short for the
theoretical community to examine the impact that searches
for superpartners has had on well-motivated models of
supersymmetry breaking. Of the models with some theo-
retical support, one of the most well studied is the so-called
mirage model [1,2]. In this scenario, the dynamical super-
symmetry breaking triggered by strong coupling in a hidden
sector is connected to the observable sector in a manner that
is suppressed, thus allowing loop-induced Weyl anomaly
contributions to soft supersymmetry breaking to be of
comparable size to tree-level contributions. Surprisingly,
this is a common outcome of many well-motivated string
constructions [3–5]. The phenomenology of these models,
in terms of LHC observables, has been recently described in
[6] for heterotic models, and in [7] for type IIB orientifold
models. In this paper we generalize these results to the
case of “deflectedmiragemediation” [8,9]. In this paradigm,
a direct connection between a hidden sector, in which
supersymmetry is broken, and the observable minimal
supersymmetric “Standard” Model (MSSM) sector is con-
templated, in which gauge-mediated contributions to soft
supersymmetry breaking are of the samemagnitude as those
from gravity-induced terms. As such, deflected mirage
mediation (DMM) is a natural generalization of the simple
mirage models, and produces a theory space with the
greatest possible richness for exploring current and future
LHC supersymmetry searches.
The

ffiffiffi
s

p ¼ 7 TeV and
ffiffiffi
s

p ¼ 8 TeV runs of the LHC
resulted in the triumphant discovery of the Higgs boson.

However, as the LHC paused to upgrade to higher energies
and luminosities, the various searches for TeV-scale super-
symmetry have thus far been fruitless. Previous research in
the area of mirage models has suggested the following
broad observations. Kähler-stabilized heterotic models
involvevery few free parameters, and thus robust predictions
are possible. If the hidden sector gaugino condensate
involves E6 or smaller-rank gauge groups, then the gluino
is generally well below 3 TeV in mass. As such, much of the
parameter space that remains after the

ffiffiffi
s

p ¼ 8 TeV searches
will be quickly probed in the first year or two after the LHC
resumes operations [6]. In contrast, the type IIB orientifold
models, of the type contemplated first by Kachru et al.
(KKLT) [10] have a much more constrained parameter
space. Achieving the observed charge-parity- (CP-)even
Higgs mass of mh ≃ 126 GeV tends to require far more
massive gluinos and squarks. As such, much of the nomi-
nally allowed parameter space resides in areas in which no
superpartners are accessible at the early runs at the LHC—
and in many cases it is doubtful that superpartners would
ever be accessible at the LHC [7].
Given the above statements, it is of interest to ask

whether the inclusion of some amount of gauge mediation
can affect these conclusions. Gross properties of the DMM
model were studied in [11,12], with LHC implications and
dark matter detection studied in [13] and [14], respectively.
All of these studies, however, were performed prior to the
supersymmetry searches at the LHC at

ffiffiffi
s

p ¼ 8 TeV and
dark matter searches at the Oð100 kgÞ target level. At that
time, the primary conclusion was that the LSP is likely to
be heavy [Oð1 TeVÞ] and that gluinos were likely to be
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much lighter than that predicted in the KKLT model
without gauge mediation. It is of singular importance to
revisit these early conclusions in light of the Higgs mass
determination, and refine the predictions for the next run of
the LHC, and larger dark matter detection experiments.
We begin our discussion in Sec. II with an overview of the

theoretical structure that supports both mirage mediation
and its deflected variant. We then exhibit the soft super-
symmetry-breaking terms, and identify the parameter space
that defines the DMM model, in Sec. III. This parameter
space is quite a bit larger than that of the mirage/KKLT
model, and we proceed to identify general features of this
space, and correlationswith physical observables, in Sec. IV.
This will allow us to identify representative benchmark
examples to study in greater detail in Sec. V, wherewe focus
on supersymmetry searches at the LHC. This is followed by
a discussion of dark matter direct detection at current and
future experiments in Sec. VI. We will find that the DMM
paradigm spans cases that resemble the so-called “simplified
models”, as well as compressed-spectrum models often
motivated from appeals to “naturalness” [15]. We estimate
the reach of the LHCat both

ffiffiffi
s

p ¼ 8 and 14 TeVand suggest
cases in which the current search strategies can be approved
to address the specific challenges of the DMM model
framework.

II. THEORETICAL FRAMEWORK

A. KKLT and Kähler modulus stabilization

In what follows we review Kähler modulus stabilization
in minimal N ¼ 1 supergravity, where we have in mind
type IIB string theory compactified on a Calabi-Yau (CY)
manifold in the presence of background fluxes. At the level
of effective field theory, the precise origin of the various
components of the effective Lagrangian is often irrelevant,
so we will work in a simplified limit considered in [10], in
which a single Kähler modulus T parametrizes the overall
size of the compact space. It will be the nonvanishing
vacuum expectation value hFTi that will set the scale of soft
supersymmetry breaking in the absence of gauge media-
tion. The Kähler potential for the modulus T is taken to be
KðT; T̄Þ ¼ −3 lnðT þ T̄Þ. For gauge theories with group
Ga, living on D7-branes which wrap four-cycles in the CY
manifold, the gauge coupling is determined by the Kähler
modulus T via the (universal) gauge kinetic function
fa ¼ T. Note that, with these assumptions,

hReti ¼ 1=g2STR; ð1Þ
where t ¼ Tjθ¼0 is the lowest component of the superfield
T, and gSTR is the universal gauge coupling at the
string scale.
In the effective supergravity theory just below the string

compactification scale, the presence of the three-form
fluxes is represented by a constant w0 in the effective
superpotential. It is presumed that these fluxes fix the value

of the dilaton and the complex structure moduli, leaving
only the Kähler moduli in the low-energy four-dimensional
effective theory [16]. Combined with the effect of gaugino
condensation in the hidden sector the total effective super-
potential is then

W0 ¼ w0 þ Ae−aT; ð2Þ

where there is a single gaugino condensate, for simplicity,
and the constant a is related to the beta-function coefficient
of the hidden sector gauge group, with a normalization such
that a ¼ 8π2=N for the group SUðNÞ.
In N ¼ 1 supergravity theories the scalar potential is

determined by the auxiliary fields FN , associated with the
chiral supermultiplet ZN , and the auxiliary field M of the
supergravity multiplet. The equations of motion for these
auxiliary fields are given by

FM ¼ −eK=2KMN̄ðW̄N̄ þ KN̄W̄Þ; M̄ ¼ −3eK=2W̄
ð3Þ

withWN̄ ¼ ∂W=∂Z̄N̄ , KN̄ ¼ ∂K=∂Z̄N̄ , and KMN̄ being the
inverse of the Kähler metric KMN̄ ¼ ∂2K=∂ZM∂Z̄N̄ . Note
that the gravitino mass is determined via the vacuum
relation

hMi ¼ −3heK=2Wi ¼ −3m3=2: ð4Þ

Restoring the explicit Planck mass MP, the scalar potential
is then given by

V ¼ KMN̄F
MF̄N̄ − 3m2

3=2M
2
P; ð5Þ

where repeated indices are summed.
Minimizing the resulting scalar potential Vðt; t̄Þ gener-

ates a nonvanishing value for htþ t̄i at which the auxiliary
field FT vanishes and the vacuum has an energy density
given by hVi ¼ −3m2

3=2M
2
P. The size of the vacuum

expectation value (VEV) for Ret, as well as the size of
the gravitino mass m3=2, are determined by the size of the
constant term w0 in (2), which must be tuned to a value
w0 ∼Oð10−13Þ in Planck units to obtain an acceptable
phenomenology. In particular one has [1]

haReti≃ lnðA=w0Þ;
m3=2 ≃MP

w0

ð2hRetiÞ3=2 : ð6Þ

Combining these relations in (6) produces

haReti≃ lnðMP=m3=2Þ: ð7Þ

Much of the phenomenology that has come to be known as
the “mirage mediation” is dependent only on the emergence
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of the parameteric relation in (7), and not on the particulars
of any constants that may appear in the nonperturbative
stabilizing superpotential, such as the one in (2).
To discuss supersymmetry breaking, it is necessary to

first address the vacuum energy problem, by adding some
additional “uplift” sector which generates supersymmetry
breaking in the observable sector while producing a
Minkowski vacuum. Many such suggestions exist in the
literature [17–21], and the precise choice will not affect our
results provided that (a) the Kähler modulus dependence of
the added terms in the Lagrangian is dictated solely by
consistency of supergravity under Kähler Uð1Þ transfor-
mations, and (b) the vacuum expectation value hReti is not
perturbed greatly by the addition of the uplift sector [22]. If
these conditions are satisfied, then the auxiliary field for the
Kähler modulus no longer vanishes in the “lifted” vacuum,
but instead satisfies the approximate solution

M0 ≡
�

FT

tþ t̄

�
≃ 2m3=2

ahtþ t̄i : ð8Þ

This quantity M0 then serves as an order parameter of
supersymmetry breaking in the observable sector.
The derivation of these soft supersymmetry terms is

made considerably more transparent if one employs the
chiral compensator technique for generating anomaly-
mediated contributions to supersymmetry breaking. If C
represents the conformal compensator of the supergravity
multiplet, and FC is its corresponding auxiliary component,
then hFC=Ci≃m3=2 and there is

�
FT

tþ t̄

�
≃

�
1

aRet
FC

C

�
: ð9Þ

When working out soft terms, it is convenient to write the
above expression as an equality by introducing the param-
eter αm [22] via

αm ≡ m3=2

M0 ln ðMP=m3=2Þ
; ð10Þ

and thus

�
FC

C

�
¼ αm ln

�
MP

m3=2

��
FT

T þ T̄

�
; ð11Þ

where we have used the vacuum condition in (7).

B. The additional singlets

In many string-motivated models, additional pairs of
fields Ψ, Ψ̄ with SM gauge quantum number are not
uncommon. Such vectorlike pairs often have superpotential
interactions with one or more SM singlets (here denoted by
X) which can potentially serve as supersymmetric mass
terms. Here the KKLT formalism is extended to include

these fields acting as messengers, and show that they
couple to a moduli field that gets a VEV at the right scale
to produce potentially large gauge mediationlike deflection.
The superpotential is assumed to be of the form

W ¼ W0 þW1ðXÞ þ λXΨΨ̄þWMSSMðΦÞ; ð12Þ

in whichW0 is given by (2),W1ðXÞ denotes the singlet self-
interaction superpotential terms, and WMSSMðΦÞ is the
standard MSSM superpotential involving the observable
sector fields Φi. The fields Ψi and Ψ̄i are hereafter taken to
be one or more pairs of SUð5Þ 5 and 5̄ multiplets. Different
forms of the singlet self-interaction W1ðXÞ correspond to
different ways of stabilizing the modulus X. The Kähler
potential will be taken to be

K ¼ −3 lnðT þ T̄Þ þ ZXðT; T̄ÞXX̄ þ ZiðT; T̄ÞΦiΦ̄i

þOððjΦj4; jXj4ÞÞ; ð13Þ

in which ZX and Zi are the Kähler metrics of X and Φi,
respectively. The Kähler metric for the messenger states Ψi

and Ψ̄i will not be relevant for our discussion, but can be
taken to be of the same form as the observable sector states.
The Kähler metrics ZXðT; T̄Þ and ZiðT; T̄Þ will be assumed
to be of the standard form

ZX ¼ 1

ðT þ T̄ÞnX ; Zi ¼
1

ðT þ T̄Þni ; ð14Þ

in which nX and ni are the modular weights of X and Φi,
respectively.
Successful gauge mediation will require the dynamical

generation of a VEV for both the lowest component
hXi ≠ 0 and the highest component hFXi ≠ 0 of the singlet
chiral superfield. The simplest case is to have W1ðXÞ ¼ 0

and assume that the coupling between X and Ψ; Ψ̄ gen-
erates hXi ≠ 0 at low energies, as in the electroweak sector
of the Standard Model. In this case an F-term VEV of
approximately the right size is automatically generated [23]

FX ≃ −eK0=2KXX̄DX̄W ≃ −eK0=2KXX̄KX̄W0 ≃ −m3=2X;

ð15Þ

such that

FX

X
¼ −

FC

C
≈ −m3=2: ð16Þ

Alternatively, one can consider a very simple form for
W1 in Eq. (12), such as

W1 ¼ λn
Xn

Λn−3 ; ð17Þ

in whichΛ is some cutoff scale. In principle, the exponent n
can have positive or negative values; a negative exponent
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would indicate that this term originates from nonperturba-
tive dynamics. In the case where n > 3 (stabilization by
higher order terms), and the case where n < 0 (stabilization
by nonperturbative dynamics), the resulting nonvanishing
F-term VEV is of the form [9]

FX

X
¼ −

2

n − 1

FC

C
: ð18Þ

Since the modulus and anomaly contributions are
already comparable, this result indicates that all three
contributions should be roughly equal for a very general
class of superpotentials.1

III. SOFT SUPERSYMMETRY BREAKING

To derive the observable sector soft terms, it is conven-
ient to use the spurion technique, in which the couplings
of the effective supergravity Lagrangian are regarded as
functions in superspace, with the θ-dependent parts of these
couplings generated by the F-term VEVs of the theory
(for a review, see [25]). The MSSM soft supersymmetry-
breaking Lagrangian includes terms of the form

Lsoft ¼ −m2
i jΦij2 −

�
1

2
Maλ

aλa þ AijkyijkΦiΦjΦk þ H:c:

�
;

ð19Þ

in which m2
i are the soft scalar mass-squared parameters,

Ma are the gaugino masses, and Aijk are trilinear scalar
interaction parameters. These terms are defined in the field
basis in which the kinetic terms are canonically normalized.
The expressions for the soft supersymmetry-breaking terms
take the standard supergravity form

Ma ¼ FA∂A logðRefaÞ; ð20Þ

Aijk ¼ −FA∂A log

�
y0ijk

YiYjYk

�
;

m2
i ¼ −FAF̄B̄∂A∂B̄ logYi; ð21Þ

where fa is the field-dependent, gauge kinetic function for
the gauge group Ga, y0ijk is the bare Yukawa coupling
appearing in the superpotential, and the function Yi is
defined by

Yi ¼
1

ðT þ T̄Þni−1 : ð22Þ

From here, one merely needs to specify the dependence of
the relevant quantities on the fields X and T, as well as the

spurious conformal compensator, C. The latter follows
standard computations familiar from the study of anomaly
mediation [24,26–28]. For the gauge kinetic function
we take

faðMGÞ ¼ Tla ð23Þ

where MG is the boundary condition scale [taken as the
energy scale at which g21ðMGÞ ¼ g22ðMGÞ], and la ¼ 0, 1
depending on the type of D-branes from which the gauge
groups originate. Since wewish to maintain gauge coupling
unification at the grand unified theory (GUT) scale, we
assume that la ¼ 1 for each of the SM gauge group factors.
For the unnormalized Yukawa couplings y0ijk, there is no
C dependence due to the supersymmetric nonrenormaliza-
tion theorem. Since y0ijk is also assumed to be independent
of T and X, the expression for trilinear terms (21) can be
reduced to

Aijk ¼ Ai þ Aj þ Ak; ð24Þ

in which

Ai ¼ FA∂A logYi; ð25Þ

and Yi is given by (22).
Let Mmess be the mass of the messenger fields, with

Mmess ≡ λhXi. Recalling that above the mass scale of the
messengers the beta functions depend on not only the
MSSM fields, but also on the messenger pairs, the soft
terms at the GUT scale MG and the messenger threshold
effects at Mmess are as follows:
Gaugino masses. The gaugino mass parameters are

given by

Maðμ ¼ MGÞ ¼
FT

T þ T̄
þ g20
16π2

b0a
FC

C
; ð26Þ

Maðμ ¼ M−
messÞ ¼ Maðμ ¼ Mþ

messÞ þ ΔMa; ð27Þ

in which the threshold corrections are

ΔMa ¼ −N
g2aðMmessÞ

16π2

�
FC

C
þ FX

X

�
: ð28Þ

Here g0 is the unified gauge coupling at MG, M�
mess

represents an energy scale just above (just below) the
messenger mass scale, and the beta functions b0a are
related to their MSSM counterparts by b0a ¼ ba þ N, with
ðb3; b2; b1Þ ¼ ð−3; 1; 33

5
Þ (in our conventions, ba < 0 for

asymptotically free theories), and N the number of mes-
senger fields Ψi, Ψ̄i, where i ¼ 1;…; N.
Trilinear terms. The trilinear terms are Aijk ¼ Ai þ Aj þ

Ak, with

1This result is the same as that obtained in the case of deflected
anomaly mediation [24]. Further details of the calculation and the
case of renormalizable W1ðXÞ can be found in [9].
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Aiðμ ¼ MGÞ ¼ ð1 − niÞ
FT

T þ T̄
−

γi
16π2

FC

C
; ð29Þ

where γi is the anomalous dimension of Φi.
Soft scalar masses. The scalar mass-squared parameters

are given by

m2
i ðμ ¼ MGÞ ¼ ð1 − niÞ

				 FT

T þ T̄

				
2

−
θ0i

32π2

�
FT

T þ T̄
FC̄

C̄
þ H:c:

�

−
_γ0i

ð16π2Þ2
				F

C

C

				
2

;

m2
i ðμ ¼ M−

messÞ ¼ m2
i ðμ ¼ Mþ

messÞ þ Δm2
i ; ð30Þ

where the threshold corrections are

Δm2
i ¼

X
a

2caN
g4aðMmessÞ
ð16π2Þ2

×

�				F
X

X

				
2

þ
				F

C

C

				
2

þ FX

X
FC̄

C̄
þ H:c:

�
: ð31Þ

In the above, ca is the quadratic Casimir, and γi, _γi, θi (γi0,
_γi
0, θi0) are listed in the Appendix.
We now replace the F terms with the parametrization

given in [8,9], as follows:

FC

C
¼ αm ln

MP

m3=2

FT

T þ T̄
¼ αm ln

MP

m3=2
M0; ð32Þ

FX

X
¼ αg

FC

C
¼ αgαm ln

MP

m3=2
M0; ð33Þ

in whichM0 ≡ FT=ðT þ T̄Þ sets the overall scale of the soft
terms. The dimensionless parameter αm is the α parameter of
mirage mediation: it denotes the relative importance of
anomaly mediation with respect to gravity mediation. In the
specific scenario considered by KKLT, αm ¼ 1. The dimen-
sionless parameter αg denotes the relative importance of the
gauge-mediated termswith respect to the anomaly-mediated
terms. The values of αg depend on the details of the
stabilization of X, as described in Sec. II B.
With the parametrization given in Eqs. (32) and (33), the

soft terms at MG take the form

Maðμ ¼ MGÞ ¼ M0

�
1þ g20

16π2
b0aαm ln

MP

m3=2

�
; ð34Þ

Aiðμ ¼ MGÞ ¼ M0

�
ð1 − niÞ −

γi
16π2

αm ln
MP

m3=2

�
; ð35Þ

m2
i ðμ ¼ MGÞ ¼ M2

0

�
ð1 − niÞ −

θ0i
16π2

αm ln
MP

m3=2

−
_γ0i

ð16π2Þ2
�
αm ln

MP

m3=2

�
2
�
; ð36Þ

where the anomalous dimensions are given in the
Appendix, and the threshold terms are given by

ΔMaðμ ¼ MmessÞ ¼ −M0N
g2aðMmessÞ

16π2
αmð1þ αgÞ ln

MP

m3=2
;

ð37Þ

Δm2
i ðμ ¼ MmessÞ ¼ M2

0

X
a

2caN
g4aðMmessÞ
ð16π2Þ2

×

�
αmð1þ αgÞ ln

MP

m3=2

�
2

: ð38Þ

The parameters of the model are the mass scales M0 and
Mmess, as well as the dimensionless quantities αm, αg, the
number of SUð5Þ messenger pairs N, the modular weights
ni, tan β, and signμ (the model-dependent μ and Bμ
parameters are replaced as usual by the Z boson mass,
tan β, and the sign of μ).
In the mirage mediation scenario, one of the most

distinctive features of the soft terms is the unification of
the gaugino masses at the mirage unification scale Mmirage:

Mmirage ¼ MG

�
m3=2

MP

�αm
2

: ð39Þ

In deflected mirage mediation, one finds a similar mirage
unification phenomenon for the gaugino masses. From the
form of the soft terms of Eqs. (34) and (37), the new mirage
unification scale for the gauginos (see also [8]) is

Mmirage ¼ MG

�
m3=2

MP

�αmρ
2

; ð40Þ

in which ρ is given by

ρ ¼
1þ 2Ng2

0

16π2
ln MG

Mmess

1 − αmαgNg2
0

16π2
ln MP

m3=2

: ð41Þ

The mirage unification scale of the gauginos is thus
deflected from the mirage mediation result. The size of
the deflection is dependent on αg, N, and Mmess, which
govern the size of the messenger thresholds.
For the A terms and the soft scalar mass squares, the

mirage unification behavior no longer happens in general in
the presence of the messengers. The exception is when the
messenger scale is below the scale of mirage unification
which would occur in the absence of the messenger
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thresholds, since the theory is then effectively the same as
mirage mediation below Mmess. In Eqs. (40) and (41), the
mirage mediation result of Eq. (39) is obtained only if
N ¼ 0. This demonstrates that the mirage mediation limit is
not reached when gauge mediation is switched off
(αg → 0); it only occurs when the messengers are removed
from the theory at all scales (N ¼ 0). The reason is that the
messengers affect the MSSM beta functions above the
messenger scale, which in turn affects the boundary
conditions for the anomaly-mediated terms.

IV. CONSTRAINTS ON DMMPARAMETER SPACE

In deflected mirage mediation there are two distinct
contributions to soft supersymmetry breaking, a KKLT-like
contribution at the GUT or string scale, followed by a
deflection at some messenger scale Mmess. For the first
contribution, there are two independent mass scales given
by the (normalized) gravitino mass m3=2 and the modulus
contributionM0. Alternatively, one can work with either of
the mass scales and the derived parameter αm. We use the
latter, and will use M0 as the independent mass scale. The
value of m3=2 is computed by fitting to the expression in
(10), and the calculated value will then be input into the
high-scale soft term expressions in (34)–(36).
In addition, one must specify the modular weights for the

chiral supermultiplets that make up the MSSM field
content. In this work we will allow only a limited amount
of nonuniversality in assigning these weights. In particular,
we will always assume that all matter multiplets arise from
the same sector of the theory, so that they carry a universal
modular weight nM, while the two Higgs doublets may
carry an independent modular weight which we will denote
nH. We let both take half-integer values between zero and
1. Under these assumptions there are then nine possible
combinations of modular weights to consider, which we
can represent by the pair of weights ðnM; nHÞ. A theory
defined solely by the choice of modular weights, tan β, αm,
and M0, represents a general mirage mediation model.
Nevertheless, we will often refer to it (somewhat inap-
propriately) as a “KKLT model,” to distinguish it more
clearly from a deflected mirage mediation model.
InDMM, there is an additionalmass scaleMmess, whereN

SUð5Þ 5 5̄messengers integrate out with a strength given by
a derived parameter αg. The quantities αg, N, and the KKLT
parameters are input to the deflected contributions given by
(37) and (38), which may be sizeable. Thus, the parameter
space we will consider consists of a discrete choice of
modular weights and three continuous parameters:M0, αm,
and tan β. These quantities define a KKLT-like “base point.”
The deflection from this base point will be characterized
by the three parameters αg, Mmess, and N. These DMM
parameters can be set by considering an explicit model, but
here we choose to let them vary continuously.

To fully explore the entirety of this parameter space
would require a scan over the five continuous parameters
M0, Mmess, αm, αg, and tan β and the three discrete
parameters nM, nH, and N. A comprehensive scan would
quickly become unrealistically computationally expensive,
as the parameter space is large. Because the DMM
framework is an extension of the KKLT framework, we
approach our scan in the same fashion. For each set of
modular weights we will randomly select the three con-
tinuous parameters of the KKLT framework in the ranges
M0 ∈ ½1; 5� TeV, tan β ∈ ½5; 50�, and αm ∈ ½0; 2�. We then
build a three-dimensional scan in the DMM parameter
space around each base point, scanning αg ∈ ½−1; 1� in
steps of 0.05, log10 ½Mmess=GeV� ∈ ½5; 14� in unit steps, and
N ∈ ½1; 5� in unit steps.
The range in αg is chosen as in [13] to reflect a range of

possible moduli stabilization mechanisms. The UV cutoff
on the range in the messenger scale is chosen to avoid
possible GUT threshold contributions, while the lower
bound is meant to avoid large contributions to flavor-
changing neutral current processes. The number of mes-
sengers N is chosen between 0 (where the model is
identical to KKLT), and 5, which is the maximum number
of messengers before couplings tend to run to nonpertur-
bative values with an OðTeVÞ messenger scale. We note
that for the N ¼ 3 case, the strong coupling does not run
between the GUT and messenger scales at one-loop order.
For each choice of KKLT input parameters

ðnM; nH;M0;αm; tan βÞ, the soft terms are computed from
(34)–(36). The renormalization group (RG) equations are
solved from the boundary condition scale to the electro-
weak scale using aversion of the package SOFTSUSY 3.3.9[29]
that has been modified to account for the gauge mediation
contributions [8,9]. The modification introduces an inter-
mediate messenger scale where the threshold corrections
(37) and (38) determined by the DMM parameters
ðN;αg;MmessÞ are added to the running masses. The soft-
ware uses a modified set of renormalization group equations
to include the effect of messengers above the scale deter-
mined by Mmess, at the two-loop level.
At the electroweak scale, a combination of input param-

eters will be excluded from the data set if the soft
supersymmetry-breaking scalar mass-squared parameter
is negative for one or more of the matter fields. At this
stage, the radiatively corrected Higgs potential is mini-
mized and physical masses are calculated. We again
eliminate a combination of input parameters if no solution
to the conditions for electroweak symmetry breaking can be
found, or if the solution fails to converge adequately.
Finally, we then ask that the lightest supersymmetric
particle (LSP) for each model point be a neutralino, though
stau, gluino, and stop LSPs are all possible in various
regions of parameter space. In total, 6.1 million points were
generated from 2700 KKLT base points, evenly distributed
across the nine modular weight combinations. After
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application of all phenomenological constraints, slightly
less than 390,000 DMM points survive, originating from
just over 2500 KKLT base points.
Having passed the minimal phenomenological require-

ments, the electroweak scale spectrum is then passed to
MicrOMEGAS 2.2[30] where the thermal relic abundance
Ωχh2 is computed for the stable neutralino. In addressing
the issue of cold dark matter, we take a conservative
approach and impose only an upper bound on the neu-
tralino relic density. We use a cut on a 3sigma upper bound
on the calculation from MicrOMEGAS of Ωχh2 ≤ 0.128
taken from [31]. We further require the mass of the lightest
chargino to exceed the LEP bound (mχ�

1
≥ 103.5 GeV) and

that the value of BrðBs → μþμ−Þ to be within 3σ of the
LHCb measurement [32,33]. Finally, we take into account
the recent measurements of the Higgs scalar mass [34–36]
by requiring 123 GeV ≤ mh ≤ 127 GeV, which represents
a rather generous mass range for this parameter, given
ongoing efforts to improve the reliability of Higgs mass
calculations [37–39].
We display the results of our scan in two subsections. In

the first subsection,we comment on somegeneric features of
theDMMparameter space, using all of the data generated by
our scan. In the following subsection, we focus on specific
KKLT base points with reasonable low-energy phenom-
enology, and discuss modifications to the spectra arising
from the introduction of gauge-charged messenger fields.

A. Generic properties

In Fig. 1, we see the effect of our constraints on the
parameter space. The left panel represents the distributions
in the gluino mass, while the right panel gives the distribu-
tions in the LSP mass. In both panels, the blue histogram

represents all points with an acceptable minimum and a
neutralino LSP. Points in the green histogram also have an
acceptable Higgs mass and neutralino relic density. The red
and orange outlines are the equivalent distributions for the
KKLT base points. Although statistics are low for both
KKLT distributions, we can see that the gluinomasses of the
base points are shifted to the right in relation to the solid
DMM distributions. For the base points the minimum mass
is roughly 1.5 TeV, with a peak roughly around 3 TeV,
whereas for DMM, we have a peak closer to 2 TeV, with the
possibility of very low-mass gluinos. Many, but not all, of
these low-mass points would have given a detectable signal
at the past LHC run at

ffiffiffi
s

p ¼ 8 TeV. The overall shift in
these distributions means that more of the parameter space
for DMM will be probed in the current LHC run, but there
remains a long tail that extends beyond the expected reach of
theLHC, even after 3000 fb−1 of data taking. For themass of
the lightest neutralino, the distribution of KKLT base points
and DMM points is not significantly different. When the
current limits on the neutralino relic density and Higgs mass
are taken into account, we expect that the entirety of the
neutralino and gluino mass ranges should be accessible at a
future 100 TeV collider [40,41].
Figure 2 breaks down the allowed region (green histo-

gram) in the left panel of Fig. 1 bymodularweight. In the left
(right) panel, data are aggregated over various nH (nM)
values, for particular nM (nH) values held constant. The
typical value of the gluino mass correlates strongly with the
matter modular weight, with the distribution moving to
larger values with increasing nM. The origin of this behavior
lies in the high-scale boundary condition for the soft masses
of the matter fields (36), which decreases with increasing
nM. The relatively large Higgs mass mh ≃ 125 GeV
requires a relatively heavy stop mass, and thus larger values

FIG. 1. Distribution of gluino masses (left) and LSP masses (right), in units of GeV, for all modular weights in DMM and for the
KKLT base points. The blue histogram represents all DMM points with an acceptable minimum and a neutralino LSP. Points in the
green histogram also have an acceptable Higgs mass and neutralino relic density taken from the blue. The red and orange outlines
represent the distributions for the KKLT base points where the red has an acceptable minimum and a neutralino LSP, and the orange has
an acceptable Higgs mass and relic density, with the scale on the right side.
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of nM require a larger value of M0 to compensate. The
effect is enhanced by the fact that largermodular weights nM
reduce the size of the trilinearA terms (35), thereby reducing
the left-right mixing in the stop sector. Conversely, as the
values of nH only affect the boundary conditions of
the Higgs scalar masses, we do not expect the overall mass
scale to be dependent on this parameter, and indeed the
three distributions in the right panel of Fig. 2 are qualita-
tively similar. A desire for a lighter, and hopefully LHC
accessible, spectrum motivates model-building efforts in
whichMSSM fields are localized on stacks ofD7-branes for
which ni ¼ 0.
Figure 3 further studies the influence of the messenger

sector on the predicted gluino mass. The left panel of Fig. 3
breaks down the distribution by number of messengers,
while the right panel addresses the messenger scale. Points
with lighter gluino masses tend to have two or more

messengers and low messenger scales. For these points,
the deflection contribution is comparable in size to the
running mass itself, allowing for a cancellation to occur,
while the small messenger scale prevents large corrections
from RG effects. In contrast, for large gluino masses, the
messenger scale tends to be on the high end, with αg ∼ −1,
so that the gluino experiences the largest possible mass
increase through RG evolution.
In the right half of Fig. 1, we see that the majority of

possible LSP masses areOð1 TeVÞ and likely accessible at
the LHC. The sharp cutoff at 100 GeV is the result of the
LEP limit on the chargino mass. The KKLT distributions
for the LSP mass mirror those for DMM. Figure 4 breaks
this plot down by modular weight combination, similar to
Fig. 2. There is a weak dependence on nH, with smaller nH
preferring smaller values of the LSP mass, but a strong
dependence on nM. Larger values of nM push us towards

FIG. 2. Distribution of gluino mass (in GeV) broken down by modular weight combinations. The left plot is broken down by nM and
the right is by nH. All points have an acceptable electroweak (EW) vacuum, Higgs mass, and neutralino relic density.

FIG. 3. Distribution of gluino mass (in GeV) broken down by N (left) and log10ðMmess=GeVÞ (right). All points have an acceptable
EW vacuum, Higgs mass, and neutralino relic density.
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smaller LSP masses, where the neutralino is almost exclu-
sively Higgsino-like. For nM ¼ 1, the up-type Higgs soft
mass is generally large at the GUT scale, and it must run to a
negative value to achieve proper electroweak symmetry
breaking; in this parameter range, m2

Hu
achieves a small

negative value, and the μ term needs to be small enough to
satisfy the Z-mass constraint. For nM ¼ 0 or 1

2
there are

points where the LSP has a bino- or winolikewave function.
The winolike points tend to come from the negative gauge
contribution (37) pushing the value ofM2 below zero, where
jM2j < jM1j, jμj. We will come back to these winolike
points in subsequent sections.
The distribution of relic density as a function of LSP

mass, Fig. 5, shows that winolike LSPs generally fail to

saturate the Planck-preferred value of Ωχh2 ≃ 0.12, with a
proper relic density coming from Higgsino and binolike
points. The distribution of LSP masses, in the right panel of
Fig. 5, shows that the majority of possible LSPs are
Higgsino-like with an average mass of approximately
800 GeV. Higgsino annihilation in the early Universe
becomes too inefficient to achieve Ωχh2 ≲ 0.12 when the
mass exceeds about 1 TeV, as is clear from the sharp cutoff
in the distribution. Meanwhile, most binolike points with
an acceptable relic density arise from coannihilation,
primarily with stops, but also occasionally with gluinos.
Low-mass winolike cases involve coannihilation with other
low-mass gauginos [42,43], while higher-mass winos
involve standard thermal freeze-out. Compared to KKLT,

FIG. 4. Distribution of the LSP mass (in GeV) broken down by modular weights. The left plot is broken down by nM and the right is by
nH . All points have an acceptable EW vacuum, Higgs mass, and neutralino relic density.

FIG. 5. Distribution of the neutralino relic density Ωχh2, left panel, and LSP mass (in GeV), right panel, aggregated for all modular
weights. Both histograms are broken down by wave-function composition of the LSP. All points have an acceptable EW vacuum, Higgs
mass, and neutralino relic density.
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there is a relative paucity, about 5% of the sample, of
binolike LSPs in Fig. 5. As messengers are introduced, the
values of the GUT-scale coupling and beta-function coef-
ficients increase, leading to heavier Majorana masses at the
GUT scale. At the messenger scale, the bino will experi-
ence the smallest deflection, so a point with a binolike LSP
needs some sort of conspiracy in the RG flow to get the
bino lighter than the wino and Higgsino.
Thewinolike points, though relatively few in number, are

worth exploring further as such an outcomedoes not occur in
the KKLT scenario [7]. Winolike points tend to have large
values for the parameter αg, which controls the size of the
correction in (37). When αg ≃ 1, the wino mass M2 is
pushed to values which are below that forM1 andM3. There
is some correlation with the modular weights as well. These
winolike points are common at small nM, admitting the
entire range in αg, and vanish when nM ¼ 1, as the one-loop
Higgs mass corrections are not large enough. These points
tend to have larger values of nH, though this is a weaker
effect, likely the result of needing a lighterHiggs softmass to
get electroweak symmetry breaking to occur properly. There
are points that yield an acceptable low-energy spectrum for
the entire range inMmess, and forαm > 0.5. This relative lack
of points for small αm is seen globally in the DMM
parameter space, because small or vanishingαm corresponds
to the limit where themodel looks likeminimal supergravity
with a single mass parameter.
Finally, Fig. 6 gives the distribution in the mirage scale,

Mmirage, from Eq. (40), broken down by the value of the

matter field modular weight nM. Though the mirage scale is
not itself directly measurable, it can be inferred from a
successful extraction of the gaugino mass hierarchy via
measurements at the LHC [44], followed by RG evolution
to discover the scale of unification [45,46]. It is intriguing
to note that such an exercise provides some information on
the matter modulus weight; for instance, points with large
mirage scales are more often points with nM ¼ 1. If instead
one were to find that gaugino masses would unify at scales
below a TeV, then the matter modular weight is more likely
nM ¼ 0 or nM ¼ 1=2.

B. DMM perturbations on KKLT base points

The previous subsection identified one particular quali-
tative difference between the pure mirage mediation/KKLT
framework, and the allowed possibilities for deflected
mirage mediation: the possibility of winolike dark matter.
In this section we will pursue other qualitative distinctions
that arise from the addition of gauge-charged messenger
fields. Previous work [7] performed an exhaustive search in
the KKLT framework, from which we will make our
departures from KKLT into DMM. This work scanned
M0, αm, and tan β for each combination of modular weights
ðnM; nHÞ. From these results, we can choose a small
number of benchmarks of the most phenomenologically
relevant points in this framework. The benchmark points
chosen are listed in Table I, and are representative of the
most phenomenologically interesting points within the
KKLT framework across a span of modular weight combi-
nations. We can then use these particular combinations of
M0, αm, tan β, and the modular weights, then scan over αg,
Mmess, and N.
For a given KKLT point, deflection can lead to large

changes in the spectrum. Table I gives the values for our
benchmark KKLT points, and Table II shows the effect of
scanning over the DMM extension of the parameter
3space for these points. That is, Table II gives the
maximum and minimum value of each quantity, over the
three-dimensional scan in ðN; αg;MmessÞ described above.
Consider, for example, point 1 in Table I. The KKLT
parameter set predicts a 1400 GeV LSP neutralino.
However, the range of lightest neutralino masses for point
1 in Table II indicates that the deflection can reduce the
neutralino mass down to ∼250 GeV, or (alternatively) push
other superpartner masses to very low values. For all ten
benchmarks the minimum LSP mass found is generally
quite lower than that predicted by the KKLT base point.
The LSP for KKLT base point 1 is 99.8% binolike. The

neutralino relic density is acceptable as the result of
coannihilation between this binolike state and the nearly
degenerate stop. From Table II we see that over the range of
DMM variants of this point, there is a transition from
binolike to winolike and Higgsino-like LSPs. This is
evidenced by the minimum values obtained in the mass
differences m~χ0

2
−m~χ0

1
and m~χ�

1
−m~χ0

1
. As a consequence,

FIG. 6. Distribution of the mirage scale Mmirage defined by
Eq. (40). All points have an acceptable EW vacuum, Higgs mass,
and neutralino relic density. The red distribution represents all
cases with nM ¼ 1, the green those cases with nM ¼ 1=2, and the
blue those cases with nM ¼ 0. Not shown is a long tail of cases
with nM ¼ 0, 1=2, extending to very small mirage scales
(Mmirage ∼ 10−30 GeV). Note that these histograms overlap, with
the darker shaded green and red colors indicating the presence of
cases with nM ¼ 0 and nM ¼ 1=2, respectively.
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coannihilation with light gauginos can produce a greatly
reduced neutralino relic density. The LSP for KKLT base
point 2 is 99.7% Higgsino-like, and again very close in
mass to the lightest top squark. Much of the DMM
parameter space based on this point also yields a
Higgsino-like LSP, but the possibility of getting large
m~χ0

2
−m~χ0

1
for certain N and αg combinations suggests that

winolike LSPs are also possible. In such cases, the stop
mass can be quite a bit larger than for the KKLT point.
Similar behavior is seen with base point 5 in Tables I and II.
We can visualize the content of these two tables by

looking at Fig. 7, which depicts the minimum and maxi-
mum values of Table II for point 1 (left panel), and point 2
(right panel), both involving the modular weight set
ðnM; nHÞ ¼ ð0; 0Þ. The heavy dot represents the KKLT
base point from Table I. The magnitude of the DMM
corrections (37) and (38) increase as αg moves from
negative to positive values. In both cases we see the
striking effects that the gauge messenger fields can have
on the resulting low-energy spectrum. Notable is the great
reduction in gluino mass that is possible, relative to the

KKLT base point. This typically comes in conjunction with
a great compression of the spectrum, with the mass
difference m~g −m~χ0

1
often approaching zero in the extreme

DMM limit.
As a general rule, addition of deflected mirage mediation

results in a more compressed superpartner spectrum,
though there are variations depending on the KKLT base
point. Figure 8 depicts the minimum and maximum values
of Table II for point 5 (left panel), and point 8 (right panel).
Consider first the DMM ensemble based on point 5. Here
we see a degenerate system of electroweak gauginos which
is not significantly affected by the DMM deformation. For
the base point in Table I, the other superpartners (particu-
larly those carrying color) are not close to the LSP in mass.
The addition of gauge messengers, for positive αg, has the
potential to drive these masses down significantly, poten-
tially yielding a rich diversity of particles at, or just around,
the TeV scale. Similar behavior is seen with the DMM
ensemble based on points 3, 4, and 7. Yet for base point 8,
the KKLT point is already near the low end of the ranges for
gluino and stop masses. The DMM addition can only

TABLE I. KKLT benchmark points. These cases with N ¼ 0 will serve as reference points for our exploration of the much richer
DMM parameter space.

KKLT parameters Key masses (GeV)

Point nM nH M0 αM tan β mh m~χ0
1

m~χ0
2

m~χ�
1

mA m~τ1 m~g m~t1 Ωχh2

1 0 0 1900 1.05 9 125.1 1406 1715 1715 2966 1910 2873 1434 0.062
2 0 0 2900 1.80 9 123.8 1547 1553 1550 3224 2821 3084 1554 0.077
3 0 0.5 1950 1.65 27 125.2 1415 1429 1420 1647 1749 2264 1500 0.124
4 0 1 1350 0.63 29 123.5 837 1177 1177 1680 1217 2417 1685 0.114
5 0.5 0 2000 1.25 28 125.5 676 683 679 1825 1219 2727 1461 0.055
6 0.5 0.5 1800 0.70 9 123.3 1150 1554 1554 2327 1360 3055 1978 0.069
7 0.5 0.5 3200 1.45 7 123.9 974 978 976 2628 2286 3924 2478 0.106
8 0.5 1 4100 1.85 9 123.4 1090 1093 1092 855 2806 4072 2878 0.124
9 1 0 4000 0.65 6 124.1 667 669 668 4596 1181 6517 3683 0.048
10 1 0.5 3600 0.80 20 125.1 763 766 765 2987 891 5578 3473 0.063

TABLE II. Ranges for the superpartner masses in DMM for the KKLT benchmark points presented in Table I. The minimum and
maximum values give the observed range in each quantity over the three-dimensional scan in ðN; αg;MmessÞ.

Ranges (GeV)

m~χ0
1

m~χ0
2
−m~χ0

1
m~χ�

1
−m~χ0

1
m~g m~τ1 m~t1 Ωh2

Point Min Max Min Max Min Max Min Max Min Max Min Max Min Max

1 234 1485 4.8 442 0.2 358 526 3162 1400 1910 514 1844 0.001 0.122
2 116 1638 4.6 1241 0.2 2.9 439 4094 1830 2824 982 4859 0.001 0.127
3 968 1422 7.9 33 3.3 5.9 1074 2672 1217 1753 989 1661 0.014 0.123
4 437 839 3.0 340 0.2 340 448 2421 1157 1217 1074 1687 0.006 0.128
5 64 1101 5.2 100 1.6 4.8 440 3398 879 1241 668 2387 0.001 0.127
6 654 1272 4.8 498 0.7 498 713 3560 1154 1385 1098 2334 0.019 0.128
7 74 1453 3.0 7.9 1.6 2.7 1228 4956 1640 2313 1366 3126 0.001 0.128
8 318 1111 2.5 1876 0.2 1.4 3767 5642 1779 2806 2700 7035 0.003 0.128
9 86 1083 2.7 6.3 1.4 2.7 3029 6843 898 1214 2537 3929 0.001 0.127
10 79 885 2.9 5.5 1.6 2.6 2169 5682 543 895 2707 3549 0.001 0.116

MIRAGE MODELS …. III. DEFLECTED MIRAGE … PHYSICAL REVIEW D 93, 055031 (2016)

055031-11



increase these masses (and decrease the LSP mass), mean-
ing that here the gauge messengers generally reduce the
compression in the spectrum. Naturally, these effects have
profound implications for superpartner searches at the LHC
[47,48], which will be our focus in Sec. V.
Before proceeding to the LHC implications of deflected

mirage mediation, it is instructive to consider how the
inclusion of gauge messengers can affect the space of
viable KKLT base points themselves. We focus here on the
particular case of base point 2 from Table I. Figure 9 shows
the effect of adding N ¼ 3 messenger multiplets, over all
messenger mass scales, to this point. In the left panel, αm is
allowed to vary away from the original value of αm ¼ 1.8,
while keeping M0 ¼ 2900 GeV fixed. In the right panel,
M0 is allowed to vary while αm is held fixed. Our KKLT
base point is clearly part of the αg ¼ 0 line in the left panel,
but the inclusion of αg ≠ 0 allows other αm values,
including the possibility of very light gluinos for αg → 1

near the KKLT limit of αm ¼ 1.

In the left panel of Fig. 9 we see three distinct regions,
two points where αm ∼ 0.5 and αg ∼ −1, an area with αm ∼
1.8 and αg < −0.5, and finally a large region with αm > 1

and αg > −0.5. The first region comes about due to points
with a binolike LSP and an intermediate messenger scale
Mmess ∼ 109 GeV, driving the gluino mass down and
softening the running of the stop so that the Higgs mass
for these points is boosted by a highly mixed, and light,
stop. The other region, below αg < −0.5, represents points
with light Higgsino LSPs and mixed stops as well. The gap
around αg ≃ −0.5 consists of points where the stop is either
very light or the LSP. Here the anomaly-mediated con-
tributions are large, leading to a light stop mass in the UV,
while the messenger-scale corrections are too small to drive
the neutralino mass below that of the stop. The upper region
consists of points with either a wino LSP or Higgsino LSP
and heavy stops. As αg decreases, αm needs to increase to
compensate to make the stop heavy and thereby obtain the
correct Higgs mass.

FIG. 7. Low-energy mass ranges for point 1 (left) and point 2 (right) for the quantities in Table II. The dots represent the values for the
corresponding KKLT base point with zero messengers, from Table I.

FIG. 8. Low-energy mass ranges for point 5 (left) and point 8 (right) for the quantities in Table II. The dots represent the values for the
corresponding KKLT base point with zero messengers, from Table I.
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In the right panel of Fig. 9, we see that varying αg
allows for a large range of overall mass scales
1 TeV ≤ M0 ≤ 5 TeV. However, the resulting mass of the
superpartners is not simply correlated with this quantity, once
the phenomenological constraints are imposed on the param-
eter space. This is evidenced by the color in the right panel of
Fig. 9, which gives the LSP mass in GeV. Larger values of
M0 tend to require a smaller value of the messenger scale,
and larger values of αg, to get the correct Higgs mass. Thus,
for a fixed value of αg, the points in the figure at differentM0

values tend to have differing messenger mass scales. For
positive αg, the largest messenger scales are at the far right of
the plot (large M0). For negative αg this relationship is
inverted. Above αg ¼ 0.5, the LSP is exclusively winolike,
as the deflection is now large enough to push the wino mass
to small values. This is significant, as winolike LSPs were
not found in the pure KKLT scenario studied in [6].

V. LHC IMPLICATIONS OF DEFLECTED
MIRAGE MEDIATION

The discovery of the Higgs boson at the LHC in 2012
and ever-improving bounds on the dark matter relic density
from the Planck experiment have placed considerable
constraints on the form that any new model of physics
might take. As the LHC begins running at 13 TeV, and later
14 TeV, these constraints are expected to further tighten.
As we enter into this new era, we are particularly interested
in how DMM will fare in the coming years. For pure
mirage mediation embedded in the KKLT framework for
type IIB string theory, previous work [7] demonstrated that
the heavy mass spectra left KKLT undiscoverable atffiffiffi
s

p ¼ 8 TeV, with rather dim discovery prospects atffiffiffi
s

p ¼ 14 TeV. Further, direct detection of dark matter

was left nearly impossible. However, with DMM we have
seen that the addition of a small, fixed number of vectorlike
messengers can affect the running of these masses at some
scale between the electroweak and the Planck. As was
shown in the previous section, this ultimately results in
lighter superpartners which could be within the reach of the
LHC for detection in the near future. In the following
section we will determine those portions of the parameter
space which have been ruled out by direct searches atffiffiffi
s

p ¼ 8 TeV, and evaluate the extent to which DMM
modifications can enhance accessibility at

ffiffiffi
s

p ¼ 14 TeV.

A. Benchmark points

The DMM framework leaves us with a large number of
possible input parameters consistent with the constraints we
have placed. While we are interested in the detection
prospects of the entirety of the remaining parameter space,
we can gain a sense of the reach that an experiment would
have by considering the extrema of the parameter space,
and using these benchmarks to evaluate whether or not a
given subsection of the parameter space would be acces-
sible for a given experiment. In [7] it was found that for the
KKLT framework, roughly a dozen benchmark points
could be chosen to give a sense of the discoverability of
the parameter space at large. Here too we will consider a
small number of benchmark points that are representative
of the DMM framework.
We will consider each of the benchmark points discussed

in Table I, around which we performed a scan in the DMM
parameter space. For each grid of DMM points, we
consider the following: the point with the lightest LSP,
the point with the lightest gluino, and the point with the
lightest stop ~t1. We further isolate only the points where
N ¼ 3, and again choose the same trio of points. We do not

FIG. 9. Allowed parameter space for DMM perturbations on point 2 of Table I. In both cases we assume ðnM; nHÞ ¼ ð0; 0Þ, tan β ¼ 9,
and fix either M0 ¼ 2900 GeV (left panel) or αm ¼ 1.8 (right panel), as is the case for the KKLT base point 2 in Table I. The allowed
region in the ðαm; αgÞ plane (left) and ðM0; αgÞ planes are displayed for N ¼ 3.
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impose a lower bound on the gluino mass in this exercise,
and will often find cases with gluino masses below the
often-quoted bound of about 1200 GeV. In fact, as we shall
see below, many of these cases would indeed have been
discovered at the previous LHC run, while still others
would have escaped detection due to compression between
the gluino mass and that of the LSP.
The points that we have chosen to present in detail

represent a subset of the entirety of the DMM parameter
space, and are collected in Table III. We choose this set to
gain a fuller understanding of the amount of DMM param-
eter space that the LHC can probe, while exhibiting a large
range in the input parameters, LSP type, mass spectra, and
mass scales we consider. For example, point 1.1 in Table III
represents a case described in the previous section, near the
lower range of the vertical bars in the left panel of Fig. 7. The
KKLT base point (1.0) has a primarily binolike LSP, while
the DMM perturbation produces a primarily winolike LSP,
with a significantly smaller mass. All superpartner masses
are reduced by the gauge mediation in this case, with a
highly compressed spectrum emerging.
The four perturbations on KKLT base point 2.0 all

involve a relatively small and positive αg, and at least three
messenger fields, thus reducing the masses of the gauginos
(the LSP mass and gluino mass are given explicitly in
Table III). Yet the effect on the stop mass depends crucially
on the messenger mass scale, Mmess. Larger messenger
scales mean fewer decades in energy for the messenger-
corrected renormalization group equations to operate, and
consequently lighter stops. This is the complement to the
discussion in the previous section regarding the right panel
of Fig. 9. As we will see in the following section, the
discovery prospects for points 2.1–2.4 are quite different,
despite the roughly similar key masses.
The two perturbations on KKLT base point 3.0 show two

very different types of compressed spectra that can emerge
at opposite ends of the αg parameter space. Cases with large
numbers of messengers, positive αg, and high messenger

scale tend to exhibit the largest amount of compression,
while negative αg has less impact on the gluino mass, while
still compressing the stop and LSP masses. The stop mass
m~t1 and LSP mass m~χ0

1
are roughly similar for points 3.1

and 3.2, yet we will see that the former point will be
discovered within the first 40 fb−1 at

ffiffiffi
s

p ¼ 14 TeV, while
the latter will require as much as 240 fb−1 for discovery.
We round out our benchmarkswith a perturbation each on

KKLT base points 5.0 and 7.0, and two for base point 6.0.
This latter case is particularly interesting, in that the KKLT
base point is in the region identified in [7] as giving purely
binolike LSP neutralinos. Indeed, case 6.2 is such a point,
with roughly the correct thermal relic density. But the
perturbation in 6.1, with only slightly larger αg, and identical
Mmess and Nmess, gives a mixed wave-function LSP and
much lighter gluino. As we will discuss in the next section,
both points 6.1 and 6.2 would have escaped detection at the
previous LHC run, but both are prime candidates for
discovery in the first 5 fb−1 in the upcoming run.

B. Relevant LHC searches

In addressing, more specifically, the issue of detection at
the LHC, we hope to identify some commonalities among
these points, and the larger set of 60 benchmarks from
which they are chosen, that will guide our search strategies.
In order to simulate the LHC signature for each of these
benchmark points, we take the electroweak-scale SUSY
Les Houches Accord file generated by SoftSUSY (as
discussed previously), then generate the full decay table
with SUSY-HIT [49]. For several of the benchmark points,
the mass spectrum features a next-to-lightest supersym-
metric particle with a stop neutralino LSP only slightly
heavier. For these points, the decay ~t1 → t~χ01 is highly
suppressed, as is the decay ~t1 → bW ~χ01, which are the
dominant decay channels when Δmð~t1; ~χ01Þ > mt and
Δmð~t1; ~χ01Þ > mW þmb, respectively. With such a small
mass gap, the only decay processes allowed are ~t1 → c~χ01

TABLE III. Benchmarks for LHC study of DMM parameter space. A subset of the KKLT base points in Table I is here reproduced,
together with one or more perturbations that involve gauge-charged messengers. The collection represents a variety of input parameters,
LSP type, thermal relic densities, and mass scales. These example parameter points will be the focus of our detailed study of LHC
phenomenology to follow.

Point 1 Point 2 Point 3 Point 5 Point 6 Point 7
Quantity 1.0 1.1 2.0 2.1 2.2 2.3 2.4 3.0 3.1 3.2 5.0 5.1 6.0 6.1 6.2 7.0 7.1

ðnM; nHÞ (0,0) (0,0) (0,0.5) (0.5,0) (0.5,0.5) (0.5,0.5)
M0 1900 2900 1950 2000 1800 3200
αm 1.05 1.80 1.65 1.25 0.7 1.45
tan β 9 9 27 28 9 7
αg 0 0.55 0 0.35 0.10 0.2 0.1 0 0.15 −0.90 0 0.2 0 0.3 0.1 0 −0.35
Mmess � � � 105 � � � 1014 105 106 1012 � � � 1014 106 � � � 109 � � � 105 105 � � � 105

N 0 2 0 3 3 3 4 0 5 3 0 3 0 3 3 0 3
m~g 2873 1002 3084 1448 1061 1010 1065 2264 1074 1901 2727 1013 3055 713 902 3924 1228
m~t1 1434 1265 1554 1061 2582 2536 1008 1500 1062 1109 1461 668 1978 1227 1171 2478 1630
m~χ0

1
1406 986 1547 836 147 942 727 1415 1042 1101 676 661 1150 654 696 974 1067

B% 99.8% 0.4% 0.1% 0.1% 0.0% 0.1% 0.1% 0.9% 0.5% 0.3% 0.1% 0.4% 99.6% 5.6% 98.7% 0.0% 0.1%
H% 0.2% 0.4% 99.7% 99.5% 99.7% 97.6% 99.7% 97.3% 96.5% 98.8% 99.6% 98.2% 0.38% 72.6% 0.3% 99.9% 99.3%
Ωh2 0.062 0.028 0.077 0.070 0.003 0.091 0.057 0.124 0.044 0.041 0.055 0.018 0.069 0.019 0.113 0.106 0.107
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and ~t1 → bff̄ ~χ01. These processes require additional
calculations separate from the main SUSY-HIT routines
[50]. Once these decay tables are generated, we use
MadGraph5_aMC@NLO 2.2.2 [51] to simulate production
of all pp → ~X ~X processes, where ~X represents any super-
symmetric particle. We then use MadEvent to generate
10,000 events for each parameter point, followed by
PYTHIA 6.4 to perform the showering and hadronization.
Detector simulation is performed in Delphes3.1.2 using the
default ATLAS detector card [52]. In total, we generated
events for 60 parameter points, including those of Table III.
When considering the LHC implications of DMM, we

consider the results published by the ATLAS and CMS
collaborations. Both have conducted many searches for
possible SUSY signatures in the

ffiffiffi
s

p ¼ 8 TeV data they
have collected. To date, however, no signal above back-
ground expectations has been found by either of the two
collaborations. For the sake of simplicity, we will consider
only the ATLAS search results; the searches conducted by
ATLAS tend to utilize geometric cuts in their signal region
definitions, which are better suited to simple computer
simulation. To date, ATLAS has published 32 searches
using the full

ffiffiffi
s

p ¼ 8 TeV data set, as well as a number of
summary documents. By considering the properties of the
60 DMM points generated, we can focus on a small number
of these searches to target the event topologies most likely
to be produced.
For example, of the 60 benchmark points for which we

performed simulations at
ffiffiffi
s

p ¼ 8 TeV, we find that lepton
production is generally rare for the DMM points, though it
can be substantial for the associated KKLT base points.
Before considering lepton pT and angular distribution, we
find that across the benchmarks, events with leptons
generally make up less than 10% of the total number of
events; events with two leptons or more are even rarer,
typically making up no more than 5% of the total number of
events. Conversely, 51 of the 60 benchmark points have
zero reconstructed leptons for at least 80% of the events. Atffiffiffi
s

p ¼ 14 TeV, this property persists. Only in two cases do
signatures with leptons become the predominant topology,
and in only two others does it surpass 33% of the total event
count. At

ffiffiffi
s

p ¼ 14 TeV, these points have a total SUSY
production cross section of Oð10−4Þ and Oð10−2Þ fb,
respectively. These cross sections are sufficiently low that,
despite their high lepton production rates, they will not
result in a significant number of leptons produced at the
LHC during the 14 TeV run. With this in mind, we can
safely consider only searches that contain a lepton veto.
Jet multiplicities tend to be relatively low for these 60

benchmarks, with two-thirds of the cases studied having a
peak jet multiplicity of Njet ≤ 5. A small subset of the
remainder has a broad distribution of jet multiplicities,
peaking at Njet ¼ 7–8, with long tails that extend to very
large multiplicities. But the vast majority of our cases will
be visible first in the low jet-multiplicity channels. As most

of the cases that are accessible at the 8 TeV run involve light
stops, it is not surprising that a large fraction of the events
we simulated have one or more b-tagged jets. Across the 60
cases studied, just under 40% of events contain at least one
b-tagged jet, with several of the benchmarks exhibiting
twice that fraction of events with b-tagged jets.
We summarize the gross LHC phenomenology of some

of our benchmark points in Table IV, which includes all ten
KKLT base points from Table I, as well as the perturbations
listed in Table III. Displayed are the overall SUSY produc-
tion cross sections at both

ffiffiffi
s

p ¼ 8 TeV and
ffiffiffi
s

p ¼ 14 TeV,
the percentage of events containing at least one high-pT
lepton, the peak in the jet multiplicity distribution, and
the percentage of events containing at least one b-tagged jet.
Given the broad features of the benchmarks, we have chosen
to pursue the general-purpose ATLAS SUSY searches
which involve low jet and lepton multiplicity. More spe-
cifically, we will consider the general (low-multiplicity)
jets plus missing transverse energy (ET) search [53], the
so-called “monojet” signatures of the stop search [54] for
small Δmð~t1; ~χ01Þ, and the dedicated stop searches of
[55, 56], which require b-tagged jets, for large Δmð~t1; ~χ01Þ.

TABLE IV. This table contains the SUSY production cross
sections at

ffiffiffi
s

p ¼ 8 TeV and
ffiffiffi
s

p ¼ 14 TeV, as well as the
percentage of events containing at least one high-pT lepton,
the peak in the jet-multiplicity distribution, and the percentage of
events containing at least one b-tagged jet. Note that this is simply
the number of jets whose pT>20GeV, and does not include other
quality requirements placed on jets. Note that the highest lepton
multiplicities occur for the KKLT base points, whose cross
sections are well below the femptobarn scale.

Benchmark
σ8TeV
(fb)

σ14TeV
(fb)

%
lepton

Peak
Njets

% b
jets

1.0 5.1×10−3 0.67 3.6% 3 27.8%
1.1 10.1 2.6×102 0% 3 4.6%
2.0 1.8×10−3 0.31 0% 2 23.0%
2.1 0.3 22.9 21.1% 8 85.3%
2.2 6.0 1.7×102 21.9% 8 87.5%
2.3 9.9 2.4×102 0.3% 4 5.1%
2.4 5.6 1.8×102 10.5% 6 53.6%
3.0 1.3×10−2 3.9 18.6% 6 54.5%
3.1 7.7 2.8×102 0.4% 4 6.2%
3.2 0.7 35.8 6.7% 4 31.7%
4.0 3.8×10−3 2.1 14.9% 5 43.1%
5.0 6.7×10−3 1.8 27.0% 5 42.5%
5.1 20.0 4.6×102 0% 6 57.7%
6.0 1.2×10−4 0.32 12.8% 4 32.1%
6.1 2.0×102 2.6×103 0% 4 19.1%
6.2 26.9 5.9×102 4.1% 5 36.3%
7.0 7.7×10−7 3.1×10−2 41.3% 4 30.6%
7.1 1.4 86.1 0.1% 4 7.9%
8.0 3.5×10−6 7.8×10−2 0.1% 3 9.7%
9.0 7.5×10−15 4.9×10−6 26.6% 4 58.0%
10.0 2.4×10−12 1.9×10−4 76.7% 4 17.2%
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Though we expect leptonic signatures to be subdominant,
we nevertheless also simulate the signatures of the one-
lepton search of [55], which requires at least three b-tagged
jets in the final state, as well as the single hard lepton plus
multijets searches of [56].
Each of the search strategies utilized by ATLAS divides

the search into two parts: object reconstruction and event
selection. The object reconstruction sets requirements for
each object in an event, typically the jets, leptons, photons,
and missing energy. For the ATLAS searches conducted at
8 TeV, jets are reconstructed using the anti-kT algorithm
with a radius parameter of 0.4. Jets are required to be
isolated from leptons by calculating ΔR≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δη2 þ Δϕ2
p

,
and demanding ΔR > 0.2. If ΔR < 0.2 between any jet
candidate and any electron, the jet is discarded. For any
surviving jet candidates, if ΔR < 0.4 between a jet candi-
date and any leptons, the lepton is discarded. For remaining
jet and lepton candidates, further requirements are placed
on jηj and pT that vary from one search to another. Further
isolation requirements are placed on each of the jet and
lepton candidates. Finally, the missing transverse energy
ET is calculated to be the negative of the vector sum of the
pT of all reconstructed objects with jηj < 4.9, not belong-
ing to other reconstructed objects.

1. Low-multiplicity jets plus missing transverse energy

The ATLAS low-multiplicity jets plus missing transverse
energy search contains a number of signal regions, each
requiring between two and six jets. This is typical in events
with production of ~q ~q, ~q ~g, and ~g ~g, where the decay ~g →
qq̄~χ01 produces two jets, and the decay ~q → q~χ01 produces a
single jet. It thus represents a very general search that fits
the gross phenomenology of a wide range of SUSYmodels.
The most recent iteration of this search was published in

May of 2014 [53], and extends the reach of possible SUSY
production beyond previous searches. This search defines
15 signal regions, 13 of which were studied in this
work and are defined in Table V.2 For each signal region,

ET > 150 GeV is required, as is at least one jet with
pT > 130 GeV. A lepton veto is placed on all events
containing a single electron or muon with pT > 10 GeV.
Between two and six jets are required for these signal
regions, with each additional jet requiring pT > 60 GeV.
The first three jets are required to be separated from the
reconstructed ET direction with a minimum ΔϕðJet; ETÞ >
0.4, while any additional jets must be separated by
ΔϕðJet; ETÞ > 0.2. Signal regions are then defined using
the ratio ET=

ffiffiffiffiffiffiffi
HT

p
, ET=meffðNÞ, and ET=meffðincl:Þ where

HT is the sum of the pT of all jets with pT > 40 GeV,
meffðNÞ the scalar sum of ET , and the N hardest jets,
and meffðincl:Þ is the scalar sum of ET and all jets
with pT > 40 GeV. The signal regions are named by
the number of jets, and a criterion “loose,” “medium,” or
“tight” depending on the values of each of these
discriminants.

2. Monojet signatures for light stops

For some SUSY spectra, particularly those with small
mass gaps between SUð3Þ-charged superpartners and the
LSP, production in association with a single hard jet is of
particular interest. The most recent relevant search for such
“monojet” topologies was published by ATLAS in July of
2014 [54] with an integrated luminosity of 20.3 fb−1. This
search was designed to target direct stop production via the
two-body decay ~t → c~χ01, as well as the four-body decay

TABLE V. Signal region definitions, observed number of events, and Sobs95 for the low-multiplicity jets plus ET search of [53]. The
numbers in the first three rows represent the minimum value for the kinematic quantity in the first column. Further description of the
signal characteristics is given in the text. All data correspond to 20.3 fb−1 of integrated luminosity.

Signal region

Requirement 2jl 2jm 2jt 3j 4jl- 4jl 4jm 4jt 5j 6jl 6jm 6jt 6jtþ
ET=

ffiffiffiffiffiffiffi
HT

p
(GeV1=2) 8 15 � � � 10 � � �

ET=meffðNÞ � � � 0.3 � � � 0.4 0.25 0.2 0.25 0.15
meffðincl:Þ (TeV) 0.8 1.2 1.6 2.2 0.7 1.0 1.3 2.2 1.2 0.9 1.2 1.5 1.7
Observed events 12315 715 33 7 2169 608 24 0 121 121 39 5 6
Sobs95

1200 90 38 8.2 270 91 10 3.1 35 39 25 6.6 7.9

TABLE VI. Signal region definitions, observed number of
events, and Sobs95 for the three monojetlike searches of [54].
The numbers in the first three rows represent the minimum value
for the kinematic quantity in the first column. Further description
of the signal characteristics is given in the text. All data
correspond to 20.3 fb−1 of integrated luminosity.

Signal region

Requirement M1 M2 M3

pTðJet; 1Þ (GeV) 280 340 450
ET (GeV) 220 340 450
Observed events 33054 8606 1776
Sobs95

1951 575 195

2Two of the signal regions involved attempting to identify
hadronically decaying W bosons via a particular jet-pairing
algorithm, and will not be included in our study.
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~t → bff̄ ~χ01 for compressed spectra.3 This is of particular
interest for points which feature a heavy LSP, a stop NSLP,
and the remaining superpartners sufficiently heavy as to
be effectively integrated out. Each event is required to
have a reconstructed primary vertex with at least five
associated tracks. Further, each event is required to have
ET > 150 GeV, and at least one jet with pT > 150 GeV
and jηj < 2.8. To eliminate multiple jets, a maximum of
two additional jets are permitted with pT > 30 GeV; events
with additional hard jets are rejected. Each of these jets
must have a minimum ΔΦðJet; ETÞ > 0.4. Events with
reconstructed electrons or muons are also rejected. Three
signal regions are then defined by additional requirements
on the pT of the hardest jet and theET . Signal M1 is defined
to have pTðJet; 1Þ > 280 GeV and ET > 220 GeV, M2 is
defined to have pTðJet; 1Þ > 340 GeV and ET > 340 GeV,
and M3 is defined to have pTðJet; 1Þ > 450 GeV and
ET > 450 GeV. The number of observed events for each
signal region is listed in Table VI.

3. B-tagged jets and missing transverse energy
with a lepton veto

In this category we will discuss two separate ATLAS
publications, each representing a stop search via b-tagged
jets. The first analysis focuses on stop production where the
stop decays via ~t1 → t~χ01 or ~t1 → b~χ�1 → bWð�Þ ~χ01, where
theW is assumed to decay hadronically [57]. In either case,
the result will be a LSP, a b-tagged jet, and two non-b-tagged
jets per ~t produced. For all signal regions, a minimum of
ET > 150 GeV is required, a minimum of six jets, two of
which must be b tagged, and no reconstructed leptons
(electrons or muons). The two highest pT jets must have
an energy of at least 80 GeV, with remaining jets satisfying

pT > 35 GeV, and the three highest pT jets must be
separated from the missing energy by at least Δϕ > π=5.
A further requirement is placed on the b-tagged jet closest in
angle to the missing energy. The transverse mass defined as

mb;min
T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pb

TET ½1 − cosΔϕðpb
T; ETÞ�

q
ð42Þ

must have a minimum of mb;min
T > 175 GeV.

The search is then divided into three subsections. Wewill
consider only the first (SRA) and third (SRC). For the first
(SRA), the two jets with the highest b-tag weight are
selected, then of the remaining jets, the two closest in the
η − ϕ plane are combined to form a W candidate, which is
then combined with the first b-tagged jet to form a top
candidate with mass m0

bjj. A second W candidate is formed
by repeating the procedure with the remaining jets. Lastly,
the value min½mTðJeti; ETÞ� is calculated as the minimum
mT of each of the signal jets and the missing energy. With
all of these quantities, the signal regions are defined as in
the first four columns of Table VII.
The second subsection that we consider (SRC) focuses

on the specific case when one of the stops decays via
~t1 → b~χ�1 ; ~χ

�
1 → Wð�Þ ~χ01. Only five jets are now required,

and a minimum of Δϕ > 0.2π between the two hardest b-
tagged jets is required. The mT is further constrained: for
SRC1, mb;min

T > 185 GeV while for SRC2 and SRC3,
mb;min

T > 200 GeV. A further quantity mb;max
T is computed

similarly to mb;min
T in (42), but now with the b-tagged jet

being that with the largest Δϕ from ET . For SRC1,
mb;max

T > 205 GeV, for SRC2, mb;max
T > 290 GeV, and

for SRC3, mb;max
T > 325 GeV. These values are collected

in the final three columns of Table VII.
The second analysis we include is a more general search

that targets third generation squark production and/or
gluino production. Like the previous analysis, it relies
heavily on the presence of b-tagged jets and requires large

TABLE VII. Signal region definitions, observed number of events, and Sobs95 for the two classes of b-tagged jets plus ET searches of
[57]. The numbers in the first six rows represent the minimum, maximum, or allowed range of values for the kinematic quantity in the
first column. Further description of the signal characteristics is given in the text. All data correspond to 20.1 fb−1 of integrated
luminosity.

Signal region

Requirement SRA1 SRA2 SRA3 SRA4 SRC1 SRC2 SRC3

m0
bjj (GeV) < 225 [50, 250] � � � � � � � � �

m1
bjj (GeV) < 225 [50, 400] � � � � � � � � �

min½mTðJeti; ETÞ� (GeV) � � � > 50 � � � � � � � � �
mb;min

T (GeV) > 175 > 185 > 200

mb;max
T (GeV) � � � > 205 > 290 > 325

ET (GeV) > 150 > 250 > 300 > 350 > 160 > 210
Observed events 11 4 5 4 59 30 15
Sobs95

6.6 5.7 6.7 6.5 15.7 12.4 8.0

3Additionally, there are two signal regions that require charm-
tagged jets; we will not be considering these, as Delphes does not
incorporate charm tagging.
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ET . For this study we will focus on the channels which
impose a veto on electrons with pT > 20 GeV and muons
with pT > 10 GeV. Events are separated into two catego-
ries. The first category (4jA,B,C) requires at least four
jets, all four of which having a minimum jet pT > 50 GeV.
The second category (7jA,B,C) requires at least seven
jets, all seven of which having a minimum jet pT > 30GeV.
All channels require the leading jet to satisfy pTðJet; 1Þ ≥
90 GeV, and require the presence of at least three b-tagged
jets, all with pT > 30 GeV.
Additional global cuts for all signal regions are given in

terms of H4j
T defined as the scalar sum of the pT of the four

hardest jets in the eventm4j
eff defined as the scalar sum of ET

and the pT of the four hardest jets in the event Δϕ4j
min

defined as the minimum azimuthal separation between any
of the four leading jets and the direction of the missing
transverse energy, and mincl

eff defined as the scalar sum of ET
and the sum of the pT of all jets in the event with
pT > 30 GeV. These cuts are given in Table VIII, along
with the observed number of events, and Sobs95 for the six
signal regions.

C. Results and case studies

We begin this section by considering the reach of the
already completed searches at

ffiffiffi
s

p ¼ 8 TeV, described in
the previous subsection, on the parameter space of the
DMM framework. We then investigate a number of case
studies motivated by the points in Table III, which are
representative of the LHC phenomenology of the model
space as a whole.
As stated previously, none of the parameter combina-

tions in Tables III and IV would have given a significant
excess over background at the previous LHC run. This is
despite some relatively large cross sections at

ffiffiffi
s

p ¼ 8 TeV
(see Table IV). In general, we can determine the likelihood
that a given parameter point would have produced a
detectable signal above background by comparing the

simulated number of signal events at
ffiffiffi
s

p ¼ 8 TeV versus
the reported Sobs95 value, which gives the 95% confidence-
level upper bound on the number of signal events com-
patible with the ATLAS observations. Thus, for example,
our simulation of point 6.1 (the benchmark point with the
largest production cross section) suggests an overall pro-
duction of 4060 events in all channels after 20.3 fb−1 of
data taking, but the compression between the gluino mass
and LSP mass translates into only 282 events in the 2jl
channel, 34 events in the 2jt channel, and 39 events in the
4jl channel, all of which are below the reported Sobs95 values
of 1200, 38, and 91 events, respectively (see Table V). We
estimate the greatest excess would have been in the 2jt
channel, but the signal significance would be only 0.7σ in
this channel.
We find that while none of the KKLT base points would

have been discovered thus far, a fair fraction of the DMM
parameter space involving stop or gluinos with masses at or
below 1 TeV would now be ruled out. In general, we find
the best channels at

ffiffiffi
s

p ¼ 8 TeV are in the low-multiplicity
jets plus ET search, with a reach of m~g ≲ 600 GeV for
small mass gaps between the gluino and the LSP
Δmð~g; ~χ01Þ≲ 50 GeV, and m~g ≲ 900 GeV for mass gaps
of greater than 50–100 GeV. We find the reach in the
lightest stop mass to be about 100 GeV less for the two
different mass gaps between the stop and the LSP.
However, DMM corrections tend to move the masses of
SUð3Þ-charged objects in a correlated way, tending to
compress both the gluino and the stop toward the lightest
neutralino mass. In extreme cases, a nearly degenerate trio
of masses ðm~χ0

1
; m~t1 ; m~gÞ would have escaped detection,

even at a mass scale of 500–600 GeV. Such outcomes are
rare in the DMM landscape, but not impossible (see point
3.1 of Table III, to be discussed in more detail below). In
terms of theoretical parameters, the modular weight com-
binations most likely to produce spectra detectable at

ffiffiffi
s

p ¼
8 TeV are the ðnM; nHÞ ¼ ð0; 0Þ, (0,0.5), and (0.5,0) cases,
with low messenger scale and αg > 0.

TABLE VIII. Signal region definitions, observed number of events, and Sobs95 for the two classes of b-tagged jets plus ET searches of
[55]. The numbers in the first six rows represent the minimum value for the kinematic quantity in the first column. Further description of
the signal characteristics is given in the text. All data correspond to 20.1 fb−1 of integrated luminosity.

Signal region

Requirement SR-4jA SR-4jB SR-4jC SR-7jA SR-7jB SR-7jC

Δϕ4j
min

0.5

ET=m
4j
eff

0.2

m4j
eff (GeV) 1300 1100 1000 � � � � � � � � �

ET=
ffiffiffiffiffiffiffiffi
H4j

T

q
(GeV1=2)

� � � � � � 16 � � � � � � � � �
mincl

eff (GeV) � � � � � � � � � 1000 1000 1500
ET (GeV) 250 350 400 200 350 250
Observed events 2 3 1 21 3 1
Sobs95

5.2 6.5 3.9 13.9 6.1 4.2
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To discuss detection in the near future, we will use the
signal definitions at

ffiffiffi
s

p ¼ 8 TeV described above as a first
approximation to what will be done at 14 TeV. Signal
significance is estimated by calculating the background
counts using the pregenerated Snowmass 2013 published
backgrounds at

ffiffiffi
s

p ¼ 14 TeV [58], which were generated
in a manner identical to that in which our signal files were
produced. In general, we find that the loosest possible cuts
tend to preferentially populate the signal relative to back-
ground, as most of the parameter space within reach at the
LHC will feature a compressed spectrum allowing less
phase space for hard jets and leptons. We thus do not
attempt to optimize beyond the

ffiffiffi
s

p ¼ 8 TeV criteria by
tightening the requirements on various distributions,
though we will consider a modified monojet, or “lopsided”
jet, signature in what follows.
A summary of the results of our simulations at

ffiffiffi
s

p ¼
14 TeV is given in Table IX for the DMM perturbations
shown in Table III. We show results for the quantity Lmin
defined as the minimum amount of integrated luminosity
needed to achieve a 5σ (S=

ffiffiffiffi
B

p ¼ 5) signal significance in
that particular channel. The most effective discovery
channels are uniformly found to be from the low-
multiplicity jets plus ET search. The first two columns give
the best signal region from Table V with the corresponding
Lmin value. The next two columns give the corresponding
Lmin from the best signal region of the monojet search in
Table VI, as well as a monojet-oriented perturbation on the
2jl channel introduced in [59] and to be discussed below.
Finally, the last three columns indicate theLmin value for the
best signal regions involving multiple b-tagged jets. If a 5σ
excess is not expected within 3000 fb−1 the entry is left
empty. Note that none of the KKLT base points (X.0) will
yield a 5σ excess after 3000 fb−1 of integrated luminosity.

Wewill now discuss the details behindmany of the numbers
in Table IX via a sequence of case studies.

1. Case study 1: Signatures involving b-tagged jets;
points 2.2, 6.1, and 6.2

Let us begin our study of comparative LHC signatures of
DMM parameter points by considering the case of point 2.2
versus 6.1. These two points share common gauge media-
tion parameters: N ¼ 3, Λmess ¼ 105 GeV, and αg positive,
but relatively small. Point 2.2 has a relatively large mirage
parameter, αm ¼ 1.8, while that of point 6.1 has αm ¼ 0.7.
Both involve universal scalar masses (to leading order) at
the unification scale, with modular weights ðnm; nHÞ equal
to (0,0) and ð1=2; 1=2Þ, respectively.
Point 2.2, with vanishing modular weights, produces a

heavier stop mass than that of point 6.1 as indicated in
Table III: m~t1 ¼ 2582 GeV versus 1227 GeV. More rel-
evant to LHC phenomenology is the differences in the
gaugino sector. Point 2.2 has a gluino mass of m~g ¼
1061 GeV and LSP mass of m~χ0

1
¼ 147 GeV, while point

6.1 has a gluino mass of 713 GeV and LSP mass of
654 GeV. As a consequence, at

ffiffiffi
s

p ¼ 14 TeV, the cross
section for overall superpartner production for point 6.1 is
2.6 pb, versus 169 fb for point 2.2. The difference is
entirely accounted for by the gluino mass, as gluino pair
production represents over 94% of the total production
cross section in both cases. Despite the huge disparity in
total production cross sections, the two points have nearly
identical values of the overall Lmin value needed for
discovery (just under 2 fb−1).
It is not difficult to understand why this is. Despite the

light gluino, point 6.1 has a mass difference between the
gluino and the LSP of roughly 60 GeV, while point 2.2 has

TABLE IX. Minimum integrated luminosity Lmin (in fb−1) to achieve a 5σ signal significance in a given channel, at
ffiffiffi
s

p ¼ 14 TeV. In
all cases, the strongest signal will be in the low-multiplicity jets plus ET search. The overall Lmin therefore reflects the strongest of the 13
channels in Table V, given in the third column. The value of Lmin to achieve the same signal significance in certain subdominant channels
is also given, for reference. Columns 4 and 5 represent monojetlike channels, while the final three columns represent various signatures
that involve b-tagged jets. Signal region descriptions are given in the text. Note that none of the KKLT base points (X.0) will yield a 5σ
excess after 3000 fb−1 of integrated luminosity.

Monojet Lmin B-tagged jet Lmin

Benchmark Overall Lmin Best channel 2jl (opt) Monojet M2 B-tag SRA2 B-tag 4jB B-tag 7jC

1.1 80 2jt 159 303 � � � � � � � � �
2.1 94 6jtþ � � � � � � � � � 249 133
2.2 1.9 6jtþ 64 � � � 123 4 2
2.3 141 2jl 185 2909 � � � � � � � � �
2.4 22 5j 46 � � � 216 97 100
3.1 22 2jm 29 96 � � � � � � � � �
3.2 240 2jt 574 � � � � � � � � � � � �
5.1 2.9 5j 11 2466 55 5 7
6.1 1.7 3j 2.3 32 90 � � � 929
6.2 4.6 4jl 12 � � � 69 70 53
7.1 65 4jl 168 � � � � � � � � � � � �

MIRAGE MODELS …. III. DEFLECTED MIRAGE … PHYSICAL REVIEW D 93, 055031 (2016)

055031-19



a spectrum not dramatically different from the so-called
“simplified” models that are often used as benchmarks in
the interpretation of LHC search results. Indeed, in the left
panel of Fig. 10 we see the effective mass distribution atffiffiffi
s

p ¼ 14 TeV. Despite the much larger signal size for point
6.1 (note that distributions for point 2.2 are multiplied by a
factor of 10 for readability), the small mass gap between the
gluino and the LSP translates into an effective mass
distribution heavily weighted towards those bins below
the cut value of 700–800 GeV which defines the 2jl and 4jl
signal regions. Table IX indicates that within the first 2 fb−1

at
ffiffiffi
s

p ¼ 14 TeV both models would be “discovered” at the
LHC, in the six-jet channel for point 2.2, and in the three-jet
channel for point 6.1. The large mass gap between the
gluino and LSP in the case of point 2.2 allows more phase
space to generate jets with pT > 40 GeV, as indicated by
the jet-multiplicity distributions shown in the right panel
of Fig. 10.
It is instructive to consider subdominant channels, as

these signals will provide corroboration of new physics and
a powerful discriminant between potential models of this
new physics. In the case of points 2.2 and 6.1 all of the
signal regions in the general class of jets plus missing
transverse energy will show signals in the first 30−40 fb−1.
Thus we consider those signal regions that are defined as
having one or more b-tagged jets. Here we find the
corroborating signals will arise nearly immediately for
point 2.2, while requiring approximately 100 fb−1 for
point 6.1, despite the much larger overall production cross
section. The precise values of Lmin for the particular
signatures SRA2 of Table VII, and 4jB and 7jC of
Table VIII, are given in the last three columns of Table IX.
As mentioned previously, both points are dominated by

gluino pair production. For point 2.2, the gluino decays to

~χ01;2tt̄ 40% of the time, and ~χ�1 bt 54% of the time, thus
assuring at least four genuine b jets in the vast majority of
signal events, with up to four leptons possible from theW�
bosons produced in the top decays. The high probability of
b-tagged jets and leptons in the final state is reflected in
Table IV. The smaller mass gap in the case of point 6.1
eliminates the possibility of top pairs from the gluino decay,
all but eliminating the prospect of high-pT leptons in the
final state.4 Furthermore, the gluino decays into ~χ01;2bb̄ only
14% of the time, decaying to lighter flavors for the vast
majority of events. Thus we expect, on average, fewer b-
tagged jets per event for point 6.1, which is only partially
mitigated by the much higher cross section for this point
relative to point 2.2. This is displayed in the left panel of
Fig. 11, where the multiplicity of b-tagged jets is given for
both points. Of the b-jet searches in Table VII, the signal
region SRA2 tends to be the most promising of the cases
that require only two b-tagged jets. Here we find compa-
rable values of Lmin ≃Oð100 fb−1Þ in this channel, despite
the great disparity in production cross sections.
This outcome is somewhat disappointing, given that

point 6.1 still produces ample events with at least one b-
tagged jet. The signatures of Table VII have the advantage
of only requiring two b jets, but they simultaneously require
a minimum of six jets overall, a property satisfied by less
than a quarter of the event sample for point 6.1. Given the
low overall jet multiplicity, we might have hoped that
the four-jet channels of Table VII would be particularly
effective, but note that the signal region definition calls for
pTðJet; 4Þ ≥ 50 GeV, while the small mass difference

FIG. 10. Effective mass and total jet multiplicity for points 2.2 and 6.1. Left panel gives the effective mass distribution meff for points
2.2 and 6.1, while the right panel gives the total jet multiplicity Njets for the same two points. Both plots are normalized to 20 fb−1 atffiffiffi
s

p ¼ 14 TeV, but with the distributions for point 2.2 multiplied by a factor of 10 to allow for greater readability.

4Thus we expect no signal in the most promising single-
lepton channel for point 6.1, even after 3000 fb−1 of integrated
luminosity.
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Δmð~g; ~χ01Þ implies that such subleading jets will generally
have very low pT, often only slightly above the threshold
pT to be classified as a jet in the initial event reconstruction
(see the right panel of Fig. 11). Furthermore, only a
negligible fraction of the events for point 6.1 have three
b-tagged jets—a fraction roughly consistent with the
mistagging rate for assigning a b tag to a light quark jet
in Delphes. By contrast, point 2.2, with its substantial mass
differences between the gluino and the light electroweak
gauginos, seems ideally suited to these general-purpose b-
jet searches, and should produce signals in the 4j and 7j
channels of Table VIII roughly simultaneous with the initial
discovery in the 6jtþ channel.
Let us now extend this discussion to include point 6.2

from Table III. Point 6.2 shares all KKLT base point
parameters with point 6.1, and differs in the gauge
mediation sector only in the value of αg, which is slightly
smaller. The spectrum of point 6.2 therefore is, not
surprisingly, rather similar to that of point 6.1, though
the gaugino sector is slightly different. Note that the LSP of
point 6.2 is almost entirely binolike, with a thermal relic
density consistent with WMAP/Planck, while that of point
6.1 is a mixed state that is mostly Higgsino-like with a relic
density that is smaller by an order of magnitude. The gluino
mass for point 6.2 is m~g ¼ 902 GeV, and the cross section
for superpartner production is therefore intermediate
between points 2.5 and 6.1 (though now gluino pair
production constitutes only 84% of the total production
cross section, with associated production of a gluino with a
light-flavor squark representing 15% of the total). Gluinos
decay via various three-body decays involving top and
bottom quarks, suggesting relatively high jet multiplicity
with many b-tagged jets in the final state.

We might, therefore, expect that this point would have an
Lmin in the low-multiplicity jets plus ET channel that is
similar to the other two points. And indeed, Table IX shows
that the best discovery channel is 4jl for this point, with
Lmin ¼ 4.6 fb−1. It is noteworthy that this point has the
lowest Lmin of the trio in the subdominant b-jet channel
SRA2 and the monojet channel M2. The branching
fractions of the gluino and lightest stop are nearly identical
for points 6.1 and 6.2, but the increased signal in the three
b-jet channels of Table IX is entirely due to the large mass
gaps between the gluino and the light electroweak gaugi-
nos. We note that all b-jet channels studied are equally
effective in this case.

2. Case study 2: “Optimized” monojet signatures;
points 3.1, 3.2, and 5.1

Of the previous trio of points, we might note a curious
fact about the data presented in Table IX: point 6.1 is the
only one of the three that yields a 5σ excess in the most
advantageous “monojet” channel, signal region M2 from
Table VI. In fact, it yields a signal in this channel well before
the corroborating b-jet channels studied in the previous
subsection. This is particularly odd, in that gluino pair
production dominates the signal, with gluinos decaying
universally via three-body decays involving two quarks and
an electroweak gaugino. In short, there is no reason to
anticipate this particular model would be a natural candidate
for a monojet signal at all. Clearly, then, these signatures are
not adequately addressing the topologies theywere designed
to attack (at least within ourmodel framework). This begs an
obvious question—just how “monojetlike” are the events
captured by the so-called monojet signature M2? As it
happens, this signal region is not really a monojet search at

FIG. 11. Multiplicity of b-tagged jets and fourth jet pT for points 2.2 and 6.1. Left panel gives the number of events with one or more
b-tagged jets. The right panel gives the pTðJet; 4Þ of the fourth hardest jet in the event, a key discriminant in the b-tagged searches
described in Table VIII. Both distributions are generated prior to the imposition of any other signal region cuts, and are normalized to
20 fb−1 of data. The signal distribution for point 2.2 is multiplied by a factor of 10 to allow for greater readability.
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all, but rather a skewed two- and three-jet search in which
stringent demands are placed on the leading jet; see the
conditions outlined in Table VI. Thus, point 6.1 produces a
signal in this channel primarily because it produces no
leptons, has a long tail in the pT distribution of the hardest
jet, and (crucially) has a jet multiplicity skewed towards
small numbers of jets. In other words, the monojet channel
here simply captures the same sorts of events that appear in
the two- and three-jet channels of Table V.
To get a clearer picture of this phenomenon, let us now

consider points 3.1, 3.2, and 5.1 from Table III. Point 3.1 is
the most compressed model in Table III. The heaviest
squarks in this case have masses of roughly 1760 GeV,
while the gluino and lightest stop are nearly degenerate
with the LSP at just above 1 TeV. Thus, the entire spectrum
is compressed and all cascade decays will involve soft
outgoing particles. We might therefore expect this point to
be one for which the monojet like search strategies would
be most effective.
Production is roughly evenly split between gluino pair

production and (light-flavored) squark production in asso-
ciation with a gluino. These light-flavored squarks decay
back to a light quark and a gluino 95%–99% of the time,
while the gluino decays 100% of the time to a gluon and a
LSP. So we can expect a small number of very soft jets,
with the potential that one jet will have larger pT from the
decay of a light squark (or from initial state radiation).
Indeed, the peak in the jet-multiplicity distribution for point
3.1 is at four jets (see Fig. 12), with less than 1% of all events
containing a high-pT , isolated lepton. But the best discovery
channel for this point is the two-jet channel with relatively

mild kinematic requirements (2jm), with an associated Lmin

of 22 fb−1. In contrast, the best monojet-based search isM2,
with a comparatively large Lmin ¼ 96 fb−1. The failure of
themonojet signal to be competitive ismostly due to theveto
placed on events with a fourth jet satisfying
pTðJet; 4Þ > 30 GeV, which effectively vetoes all events
with Njets > 3. This is a sizeable fraction of the total event
sample, as Fig. 12 indicates.
It would seem, therefore, that there is potential for

improvement in the choice of cuts for monojet like
signatures, just as there were for b-jet searches in the
previous case study. Here we consider an “optimized”
two-jet signature, originally introduced in the recent work
by the authors [59] in the context of searching for light stops
in minimal supergravity models. This signature is a simple
modification of the 2jl signature of Table V, in which the
separation cuts between the direction of the ET and that of
the two hardest jets are significantly increased from
ΔϕðJet;ETÞ>0.4 toΔϕðJet1;ETÞ>π=2 andΔϕðJet2;ETÞ>
1 for the hardest and second-hardest jet, respectively.
This preferentially selects signal events with a highly
lopsided nature, more in keeping with the notion of soft
cascade decay products recoiling against a single hard jet
from initial state radiation. For point 3.1 we find that this
optimized 2jl signature far outperforms the traditional
monojet signature M2, becoming comparable in effective-
ness to the discovery channel itself. A comparison of the
distribution for pTðJet; 1Þ with that of the ET for this point
(Fig. 13) shows that a large portion of events will indeed be
characterized bypTðJet; 1Þ≃ ET, but that these events are in
the lowest pT bins, often below the cutoff of 340 GeV
imposed on both quantities by signature M2.
These sorts of gains in Lmin depend on the details of the

SUSY model, so generalizations are difficult to state
unequivocally. For example, consider point 3.2, which
might appear to be an ideal candidate for the optimized,
or lopsided, two-jet signature. The work in [59] was
motivated by the decay ~t1 → ~χ01c, and in the case of point
3.2 we have only an 8 GeV mass difference between the
lightest stop and the LSP. Here the gluino mass is heavier
(m~g ¼ 1901 GeV) and thus gluino pair production
accounts for a minuscule fraction of the total signal, which
is instead composed primarily of light-flavored squark pairs
(51%) and (light-flavored) squark production in association
with a gluino (32%). Stop pairs account for only 9% of
the total SUSY production cross section. Thus, the 2jl-
optimized search is, in fact, optimal for only a small
subcomponent of the total production cross section. The
Lmin value of 574 fb−1 for 2jl(opt) is actually slightly worse
than the original 2jl signature, for which Lmin ¼ 500 fb−1.
Again, this is because 91% of the events for point 3.2 are
not monojetlike in nature at all. This is despite the fact that
a large proportion of these events has pTðJet; 1Þ≃ ET , as
can be seen from the distributions in Fig. 13. We note that

FIG. 12. Total jet multiplicity for points 3.1, 3.2, and 5.1.
Distributions give the total number of reconstructed jets, prior to
any event selection cuts, normalized to 20 fb−1 of data. Red
(dotted) distribution is for point 3.1, green (solid) distribution is
for point 3.2, and blue (dot-dashed) distribution is for point 5.1.
The signal distribution for point 3.2 is multiplied by a factor of 10
to allow for greater readability.
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these tend to be the events in the lowest pT bins, where the
cuts of 340 GeV on both quantities from signature M2
would eliminate most of the monojetlike subcomponent of
the signal.
The improvement from “standard” monojet to “optimal”

monojet is most dramatic for point 5.1, where the Lmin for
the monojet signal reduces by 2 orders of magnitude,
making this channel extremely competitive with the
five-jet “discovery” channel. Again, the Njet ≤ 3 require-
ment effectively eliminates the standard monojet signal,
even though a high proportion of these events really
do have a lopsided kinematic profile. Conversely, the
requirements on inclusive effective mass and ET listed
in Table V are relatively easy to satisfy (see the distribu-
tions in Fig. 13). The greatest impact is on the more
restrictive separation requirements, ΔϕðJet1; ETÞ > π=2
and ΔϕðJet2; ETÞ > 1, which greatly enhance signal to
background. We plot these quantities for point 5.1 in
Fig. 14, where the concentration of events near
ΔϕðJet1; ETÞ → π is apparent.
Table IX summarizes the effectiveness of the traditional

monojet channel M2 as well as the lopsided two-jet channel
we call 2jl(opt). The lopsided two-jet channel is always
superior in these cases, mostly due to the relaxation of the
strict Njet ≤ 3 requirement, and (to a lesser extent) the
replacement of specific requirements on pTðJet; 1Þ with a
strict requirement on ΔϕðJet1; ETÞ and ΔϕðJet2; ETÞ. In
cases where the spectrum is indeed highly compressed,
where the hardest jet arises from a prompt decay of a squark
on one side of the event, or from ISR, the 2jl(opt) signature
outperforms other two-jet signatures from Table V. When
the model in question is not particularly monojetlike in the

first case, this signature is slightly less effective than those
in Table V.

3. Case study 3: Stop-gluino orderings; 2.1 vs 7.1

Our final case study is a comparison of points 2.1 and
7.1, in which we will study the impact of the gluino-stop
mass hierarchy on detection prospects at the upcoming run
of the LHC. Both points involve a certain degree of

FIG. 14. Separation in azimuthal angle between leading jets
and ET for point 5.1. The separation ΔΦ between the hardest
jet (red, dotted), and second-hardest jet (green, solid), in all
events is shown. Both distributions are generated prior to the
imposition of any other signal region cuts, and are normalized to
20 fb−1 of data.

FIG. 13. Transverse momentum of leading jet (left) and missing transverse energy (right) for points 3.1, 3.2, and 5.1. Distributions are
constructed prior to any event selection cuts and normalized to 20 fb−1 of data. Red (dotted) distributions are for point 3.1, green (solid)
distributions are for point 3.2, and blue (dot-dashed) distributions are for point 5.1. The signal distributions for point 3.2 are multiplied
by a factor of 10 to allow for greater readability.
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universality among the scalar masses, with point 2.1 having
modular weights ðnM; nHÞ ¼ ð0; 0Þ and M0 ¼ 3200 GeV,
while point 7.1 has modular weights ðnM; nHÞ ¼
ð1=2; 1=2Þ and M0 ¼ 2900 GeV. The values of αm are
1.45 and 1.85, respectively. In pure mirage mediation, these
values would imply a smaller mass gap between the gluino
and neutralino LSP for point 7.1, but the introduction of
gauge messengers inverts this. Both points involve three
generations of messenger fields, with equal and opposite
values of αg (αg ¼ 0.35 for point 2.1, and αg ¼ −0.35 for
point 7.1). Consequently, point 2.1 features the mass
hierarchy m~t1 < m~g, with Δmð~t1; m~χ0

1
Þ ¼ 225 GeV, while

point 7.1 exhibits m~g < m~t1 with mass separation
Δmð~g;m~χ0

1
Þ ¼ 161 GeV.

Despite the different mass orderings of the lightest
SUð3Þ-charged states, the overall mass scales between
the two points are roughly the same. This allows us to
address questions like the ultimate “reach” of the LHC atffiffiffi
s

p ¼ 14 TeV for this class of models. The overall pro-
duction cross section for supersymmetry is correlated to the
gluino mass, and thus we find σ2.1SUSY ¼ 22.9 fb while
σ7.1SUSY ¼ 86.1 fb, despite the heavier LSP and stop. For
both points, approximately 55% of the total cross section
for superpartners is gluino pair production. For point 7.1 an
additional 40% of the total production cross section
involves associated production of a gluino with a light-
flavored squark, while the light stop of point 2.1 reduces
gluino/light squark production to 26% of total events, with
17% associated with stop pair production.
For point 2.1, with the more massive gluino, there is a

universal decay ~g → ~t1t, with the subsequent decay of the
stop to ~χ�1 b 62% of the time, and ~χ01;2t for the remainder. As
the three states ~χ�1 and ~χ01;2 are highly degenerate, all three
effectively represent missing transverse energy. For these
gluino pair-production events, we therefore expect four
bona fide b jets and as many as four leptons in the final state
from leptonic decays of W bosons. Alternatively, we can
expect up to four b-tagged jets and up to eight additional
jets. If, instead, we consider associated production of a
gluino and a light squark, the fact that the light-flavored
squarks decay universally into a corresponding light quark
and a gluino means the above analysis applies in this
production channel as well, with perhaps one additional
high-pT jet in the final state. Indeed, Table IV confirms this
reasoning, with the percentage of events with at least one
lepton for point 2.1 being 21.1%, the percentage with at
least one b-tagged jet being 85.3%, and the peak in the jet-
multiplicity distribution being Njet ¼ 8. It is therefore not
surprising that the most effective discovery channel for this
point is the six-jet (6jtþ) channel, with an eventual
confirmation in the single-lepton channel occurring much
later in the lifetime of the LHC. Specifically, we find that
the first leptonic signal will arise in the six-jets plus muon
channel of [56] after 1100 fb−1 of integrated luminosity.

Point 2.1 would appear to be a prime candidate for
searches involving b-tagged jets. Given the high overall jet
multiplicity for this point, it is not surprising that the
strongest signal (or lowest Lmin) occurs for the seven-jet
channels of Table VIII, as demonstrated in Table IX. What
is, perhaps, surprising is that there is no signal expected,
even after 3000 fb−1, for signature SRA2 involving at least
six jets, two of which carry b tags. Here is a case of
signatures that are very effectively tailored to certain
exclusive event categories—that is to say, signatures that
do their respective jobs very well. The b-jet-based signa-
tures of Table VIII are based on gluino pair production,
which is the dominant component of the production cross
section for point 2.1. The SRA signatures of Table VII
target stop pair production, followed by the decay ~t1 → t~χ01.
Stop pair production is only 17% of the total, and the
lightest stop decays to t~χ01 only 38% of the time, decaying
to b~χ�1 the remaining 62% of the time. Thus signature
SRA2 captures only about 2.5% of the total events. We note
that the SRC channels on Table VII, which are designed to
target the b~χ�1 decays of the stop, do give a signal
significance roughly twice that for the SRA channels, with
SRC3 providing a five-sigma excess in Lmin ¼ 1650 fb−1

of integrated luminosity.
The situation for point 7.1 is nearly identical with regard

to light squark decays, only now gluinos decay overwhelm-
ingly into a gluon and one of the two lightest neutralinos,
which are highly degenerate in mass. As ~g ~g and ~g ~q
processes represent 94% of the total SUSY production
cross section, we now expect zero leptons or b-tagged jets
in the events, and at most three high-pT jets, with others
arising from soft decay products of ~χ02 and/or initial and
final state radiation. This is borne out by Table IV where we
find zero events with a high-pT , isolated lepton and very
few with a b-tagged jet (consistent with the mistagging rate
built into the Delphes detector simulator). We find that the
strongest signal for this point is in the four-jet (4jl) channel,
with an Lmin of 65 fb−1, though the dijet channel (2jt) is
competitivewith anLmin of 88 fb−1. In this case, the generic
two-jet search performs much better than our monojet-
motivated “unbalanced” two-jet signature (2jl-opt), which
requires almost twice asmuch integrated luminosity to reach
a five-sigma excess. While these two signatures are very
similar, the relative efficacy can be understood in terms of
competing cuts on meff versus the jet separation variable
ΔϕðJet1; ETÞ, and their comparative effects on the signal
versus the background sample. To improve signal to back-
ground, the 2jt signal makes a cut on the inclusive effective
mass of meff > 1600 GeV, versus 800 GeV for the unbal-
anced two-jet signature (2jl-opt). Alternatively, the latter
makes a cut on ΔϕðJet1; ETÞ > π=2, versus 0.4 for the
signatures in Table VI. These two quantities are plotted
in the left and right panels, respectively, of Fig. 15. The
signal distribution (red, solid line) is shown prior to any
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event selection cuts, while the background distribution
(blue, dashed line) has a precut of ET > 150 GeV
applied. Background distributions represent the square
root of the total counts in each bin, with the total data set
normalized to 20 fb−1. The signal has been augmented by
a factor of 10 for the left panel, and a factor of 100 for
the right panel, to allow for an easier comparison of the
relative shapes of the distributions. Clearly, both the meff
cut and the Δϕ cut prefer the signal distribution, but the
stringent effective mass cut does so much more power-
fully than the angular separation cut—at least when
considered in isolation. Thus, when the superpartner
spectrum provides enough phase space to use large
meff and/or ET cuts to reduce the background, the classic
multijet channels will be preferred. The angular separa-
tion cut can be a useful tool for those cases in which
aggregate quantities such as meff are low, as in cases with
a compressed superpartner spectrum.
Many pairs such as points 2.1 and 7.1 were generated

in the course of our analysis, in which the relative masses
of the gluino and light squarks are inverted, but with the
overall superpartner scale roughly the same. The aggre-
gation of such pairs allows us to make a very crude
estimate of the reach (in the sense of a five-sigma excess
of signal over background in at least one search channel)
in terms of the gluino mass and general squark mass
for a broad array of DMM parameter sets. For the case
m~g > m~t1 we estimate a reach to be approximately m~g ≲
1800 GeV in 100 fb−1 of data, while for the case m~t1 >
m~g we estimate the reach to be m~t1 ≲ 1270 GeV in
100 fb−1 of data.

VI. DARK MATTER DETECTION IN DEFLECTED
MIRAGE MEDIATION

Even with the discovery of the Higgs, and increasingly
stringent measurements of the dark matter relic density,
model points with binolike, winolike, and/or Higgsino-like
LSPs remain from every combination of modular weights.
One may now ask if any of these points, not yet excluded
by searches for superpartners at the LHC, could be detected
in the near future in dark matter direct detection experi-
ments. We focus on direct detection here, as indirect
detection signals (gamma rays, positrons, antiprotons,
neutrino fluxes, etc.) tend to be well below estimated
astrophysical backgrounds once the signal is scaled by
the predicted thermal relic density. That is, winolike and
Higgsino-like LSPs in the DMM scenario tend to have
thermal relic densities below that preferred by measure-
ments of the CMB. Once any nonthermal mechanism for
populating these LSPs is posited, the constraints from
indirect detection become highly constraining [60–63].
To date, discovery prospects for neutralino dark matter

(100 GeV ≤ mχ ≤ 1000 GeV) have been dominated by the
liquid xenon direct detection experiments: the Xenon100
Dark Matter Project in Gran Sasso, Italy [64], and the South
Dakota-based LUX experiment [65]. The former released
data in 2012 for 224.6 live days of exposure on a 34 kg
target [66]. In 2013, the LUX experiment released a
preliminary result from 85.3 live days of exposure on a
118 kg target [67]. In the near future, LUX will release data
from approximately 300 days of exposure, while the
extension of Xenon100 to the one ton level, Xenon1T,
will follow soon thereafter [68]. We can therefore discuss

FIG. 15. Inclusive effective mass (left) and ΔϕðJet1; ETÞ distribution (right) for point 7.1 versus combined Standard Model
background. Distributions are for the signal (red, solid) prior to any event selection cuts, while the background distributions (blue,
dashed) have a precut of ET > 150 GeV applied. Background distributions represent the square root of the total counts in each bin, with
the total data set normalized to 20 fb−1. The signal has been augmented by a factor of 10 for the left panel, and a factor of 100 for the
right panel, to allow for an easier comparison of the relative shapes of the distributions.
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the discovery prospects for dark matter in two stages. First
we determine what, if any, parameter space is already in
conflict with existing results from Xenon100 and LUX. We
then project what part of the parameter space might yield a
signal in future results from LUX, Xenon1T, or LZ, the
next generation of the LUX experiment [69].5 In what
follows we will consider a subset of 258,225 DMM points,
all of which satisfy m~g ≥ 1 TeV, which can reasonably be
expected to have passed the LHC supersymmetry searches
at

ffiffiffi
s

p ¼ 8 TeV.

A. Binolike LSPs

A nearly binolike LSP can be found for nearly all
modular weight combinations. For the purposes of discus-
sing dark matter phenomenology, it is convenient to
aggregate these modular weight combinations and consider
the bulk properties of all binolike neutralino cases as
one phenomenologically similar region. For this combined
region, the LSP is heavy, ranging from 590 to 2570 GeV.
The left plot in Fig. 16 shows the familiar neutralino-
nucleon cross section versus LSP mass for all of the
targeted scan regions with binolike LSPs. The lines

represent the results from various dark matter direct
detection experiments under the assumption that the relic
density constraints are saturated. The color scheme in the
left panel gives the predicted thermal relic density for each
point. Clearly, many of these points would need to rely on
some nonthermal production mechanism for this figure to
be valid.
More realistic, perhaps, is the right panel in Fig. 16,

which gives the number of expected events for an exposure
of 300 days for 1000 kg of liquid xenon (i.e. one ton-year),
within the recoil energy range of 5–25 keV. In this case, we
have renormalized the count rate to the expectation for
the predicted relic density. That is, we have scaled the
prediction by the ratio ðΩh2Þpred=0.12. In this panel, current
limits from Xenon100 and current/future limits from LUX
are represented as straight lines where ten events would be
observed.
The 2013 LUX data for LSPs in the appropriate mass

range corresponding to a fiducial volume of 118 kg and an
exposure of 85 days [67] have already begun to cut into the
binolike parameter space, but only marginally so. While
there is a handful of points with very large cross sections,
the bulk of the binolike parameter space in the DMM
scenario is currently outside the reach of these experiments.
The 2015 run of LUX, Xenon1T, and LZ expect to improve
the limiting cross section on weakly-interacting massive
particle (WIMP)-nucleon scattering by orders of magni-
tude. For many of these points, more than Oð1Þ events per
ton-year are expected, which could lead to significant
signals in future direct detection experiments. Note that

FIG. 16. The left plot shows the distribution in neutralino-nucleon scattering cross sections versus neutralino mass for the binolike
segment of the DMM parameter space. The lines represents the current and future limits set by the recent results from Xenon100 and
LUX, and future limits from LUX, Xenon1T, and LZ under the assumption that the relic density is saturated. The predicted thermal relic
density is indicated by the color code. The right plot gives the rate of nuclear recoils rescaled by the relic density, and integrated over the
recoil energy range of 5–25 keV, after one ton-year of exposure. Current limits from Xenon100 and current/future limits from LUX are
represented as straight lines where ten events would be observed. The color in the right figure indicates the gluino mass in GeV. Both
plots aggregate all the cases with a binolike LSP for all modular weight combinations.

5We focus exclusively on those experiments which are
sensitive to the spin-independent part of the scattering cross
section, as our investigations indicate that experiments sensitive
to spin-dependent cross sections, such as the PICO-2L experi-
ment [70], and its future upgrades, are always less sensitive to any
given parameter point than the large-scale spin-independent
measurements.

EVERETT, GARON, KAUFMAN, and NELSON PHYSICAL REVIEW D 93, 055031 (2016)

055031-26



upcoming LUX data should begin to eliminate models with
characteristic gluino masses up toOð3 TeVÞ (see color key
in right panel of Fig. 16).
However, for binolike LSPs in the DMM paradigm, that

improvement is likely to leave a significant portion of the
parameter space unexplored, including many of the points
with a Planck-preferred relic density of Ωχh2 ≃ 0.12. This
data set also includes points below the cross section for
coherent neutrino scattering [71], the blue line on Fig. 16.
For all of the points below the neutrino floor, the LSP is
nearly degenerate with either the stop or the gluino giving
us significant coannihilation effect in the early Universe.
Many of these points should still be accessible at the LHC
or a future 100 TeV collider.

B. Winolike and Higgsino-like LSPs

In contrast to pure mirage mediation, as in KKLT, a
winolike LSP can be found for many modular weight
combinations in DMM. As was done in the previous
subsection, we combine our analysis for all modular
weights. The left plot in Fig. 17 shows the neutralino-
nucleon cross section versus LSP mass for all of the
targeted scan regions with winolike LSPs, analogous to
Fig. 16. The lines again represent the results from various
dark matter direct detection experiments under the
assumption that the relic density constraints are saturated.
The right panel gives the number of expected events for an
exposure of 300 days for 1000 kg of liquid xenon (i.e. one
ton-year), within the recoil energy range of 5–25 keV,
scaled by the ratio ðΩh2Þpred=0.12. The winolike region
extends from roughly the LEP chargino limit of 103.5 GeV,

to 2.5 TeV, spanning much of the region from 10−44 to
10−48 cm2. Note that the predicted thermal relic density is a
strong function of the LSP mass saturating the Planck limit
at approximately 2 TeV.
In the alternative case for which the neutralino is almost

purely Higgsino-like, we again aggregate all eight combi-
nations of modular weights that admit a Higgsino-like LSP
into a single region. For this combination, the LSP can be as
heavy as 2.4 TeV, which is slightly lighter than the
maximum value in the bino- or winolike case. However,
LSPs as light as 100 GeV are also present. The neutralino-
nucleon scattering cross section is similarly spread over a
wide range of values. The entirety of the parameter space
has a cross section of between 10−46 and 10−43 cm2.
As with the previous two figures, the left plot in Fig. 18

shows the neutralino-nucleon cross section versus LSP
mass for all of the targeted scan regions with Higgsino-like
LSPs, analogous to Fig. 16. The lines again represent the
results from various dark matter direct detection experi-
ments under the assumption that the relic density con-
straints are saturated. The right panel gives the number of
expected events for an exposure of 300 days for 1000 kg of
liquid xenon (i.e. one ton-year), within the recoil energy
range of 5–25 keV, scaled by the ratio ðΩh2Þpred=0.12.
While more of the winolike and Higgsino-like parameter

space is being constrained by current experiments than in
the binolike case, the bulk of the viable points lie outside
the reach of Xenon100 and LUX (see the right panels of
Figs. 17 and 18). The anticipated release of new LUX data
will begin to probe models with relatively light gluinos in
the Higgsino-like LSP regime, thus largely overlapping
with anticipated early LHC results. In the more limited

FIG. 17. The left plot shows the distribution in neutralino-nucleon scattering cross sections versus neutralino mass for the winolike
segment of the DMM parameter space. The lines represent the current and future limits set by the recent results from Xenon100 and
LUX, and future limits from LUX, Xenon1T, and LZ under the assumption that the relic density is saturated. The predicted thermal relic
density is indicated by the color code. The right plot gives the rate of nuclear recoils rescaled by the relic density, and integrated over the
recoil energy range of 5–25 keV, after one ton-year of exposure. The color in the right figure indicates the gluino mass in GeV. Both plots
aggregate all the cases with a winolike LSP for all modular weight combinations.
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winolike regime, however, some model points within reach
of LUX correspond to gluino masses of 3–4 TeV, likely
outside of the LHC reach even after 3000 fb−1. LUX claims
a future background expectation of approximately one
event per ton-year at these recoil energies [65]. It is
therefore plausible to expect an even larger fraction of
spectra with a Higgsino-like LSP may be within reach in
the near future. Note that all of the DMM parameter space
with a winolike or Higgsino-like LSP should give signals
well above the background signal from coherent neutrino
scattering. In fact, it is conceivable that the entire parameter
space with Higgsino-like LSPs in the DMM model will be
definitely probed by the LZ experiment in future years.

VII. CONCLUSIONS

If there is any single paradigm for supersymmetry break-
ing that could claim to be considered a consensus within
the string phenomenology community, as of this writing, it
would undoubtedly be the mirage mediation scenario popu-
larized in the period following the celebrated paper detailing
moduli stabilization in certain type IIB flux compactifica-
tions byKKLT in 2003 [10]. The pattern of soft terms, which
was soon referred to as mixed modulus-anomaly mediation
[22], or more simply “mirage mediation” [72], is not unique
to type IIB constructions. In fact, the so-calledmirage pattern
of gaugino masses was first identified in heterotic string
constructions that achieved acceptable moduli phenomenol-
ogy using the technique of Kähler stabilization [28,73–75].
In the years following the KKLT publication, ever more
manifestations of the mirage pattern of gauginomasses were

motivated, culminating in the original papers describing
deflected [8,9].
Given the ubiquity of the mirage mediation paradigm,

and its general acceptance as a realistic outcome of moduli
stabilization and supersymmetry breaking in a variety of
string theoretic contexts, it is absolutely natural to begin an
in-depth study of the implications of LHC data on string-
motivated models on this subset of theories. The first two
papers on this series were conducted in the heterotic [6] and
original type IIB contexts [7], so a natural completion to
this study is the present work.
Deflected mirage mediation models offer the broadest

possible paradigm for investigating supersymmetry break-
ing of any ultraviolet-complete theory, in that they allow
for similar-sized contributions from gravity mediation,
anomaly mediation, and gauge mediation. The present
work expands upon earlier treatments of the parameter
space of DMMmodels [12–14] by updating the constraints
implied by collider-based superpartner searches, dark
matter search constraints, and, critically, the measurement
of the Higgs boson mass. The latter has profound impli-
cations for all supersymmetric theories, and this is par-
ticularly acute for the models of the KKLT/fluxed type IIB
paradigm.
In the previous work [7], which studied the simplest

“mirage mediation” models motivated by flux compactifi-
cations of type IIB string theory, it was found that the
relatively large CP-even Higgs mass of mh ≃ 125 GeV
puts very strong constraints on the allowed parameter
space. Some combinations of modular weights for the
matter and Higgs sectors are very hard to reconcile with all
current experimental constraints, while others can persist

FIG. 18. The left plot shows the distribution in neutralino-nucleon scattering cross sections versus neutralino mass for the Higgsino-
like segment of the DMM parameter space. The lines represent the current and future limits set by the recent results from Xenon100 and
LUX, and future limits from LUX, Xenon1T, and LZ under the assumption that the relic density is saturated. The predicted thermal relic
density is indicated by the color code. The right plot gives the rate of nuclear recoils rescaled by the relic density, and integrated over the
recoil energy range of 5–25 keV, after one ton-year of exposure. The color in the right figure indicates the gluino mass in GeV. Both plots
aggregate all the cases with a Higgsino-like LSP for all modular weight combinations.
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only for very special ranges of parameters like αm,M0, and
tan β. Overall, points in the parameter space that would give
a sufficient Higgs boson mass would tend to imply super-
partners that are so massive as to avoid detection at the
LHC, even after 3000 fb−1 of integrated luminosity. This is
also evident in the current work, in the form of the KKLT
“base points” of Table I, none of which are estimated to
generate a discovery at the LHC.
Yet the inclusion of a sector which mediates supersym-

metry breaking via gauge interactions radically alters this
prediction, allowing for much lower superpartner masses—
particularly for the gluinos and quarks—while still satisfy-
ing the requirement that mh ≃ 125 GeV. In fact, it is
possible to achieve gluino and squark masses so low that
a discovery would have been made in the previous LHC
runs at

ffiffiffi
s

p ¼ 8 TeV. Roughly speaking, we find a reach
of m~g ≲ 600 GeV for Δmð~g; ~χ01Þ ≲ 50 GeV, and m~g ≲
900 GeV for more sizeable mass gaps. Moreover, DMM
corrections tend to alter the masses of SUð3Þ-charged
objects in a correlated way, tending to compress both
the gluino and the stop toward the lightest neutralino mass.
The modular weight combinations most likely to produce
spectra detectable at

ffiffiffi
s

p ¼ 8 TeV are the ðnM; nHÞ ¼
ð0; 0Þ, (0, 0.5), and (0.5, 0) cases, with low messenger
scale and αg > 0—precisely the most interesting cases
from the point of view of string model building. This gives
hope that the next round of LHC data taking will probe
deeply into this rich parameter space.
At the end of 2015, ATLAS released a handful of studies

searching for supersymmetry in 3.2 fb−1 of data at center-of-
mass energies of

ffiffiffi
s

p ¼ 13 TeV [76–82]. Of these searches,
the cases with low-multiplicity jets plus missing transverse
energy, both with a lepton veto [76] and with a single lepton
[79], are the most sensitive to low-mass points such as those
presented in Table IX. Based on the reported limits translated
into the m~g −m~χ0

1
plane, we estimate that point 2.2 from

Table IX would have been discovered in both of these
channels. Other potential early discovery cases, such as
points 5.1, 6.1, and 6.2, would lie within the one-sigma band
about the reported observed limit. As our simulations
suppose a center-of-mass energy at 14 TeV, a direct
comparison with the reported observations is not possible.
We have estimated the reach of the LHC at

ffiffiffi
s

p ¼
14 TeV center-of-mass energies within the DMM param-
eter space by sampling parameter combinations that give
the lowest possible values of key superpartner masses. For
the case m~g > m~t1 we have estimated a reach to be
approximately m~g ≲ 1800 GeV in 100 fb−1 of data, while
for the case m~t1 > m~g we have estimated the reach to be
m~t1 ≲ 1270 GeV in 100 fb−1 of data. Much of the αg > 0

parameter space will be probed, including those regions
around the theoretically motivated area of αm ≃ 1. The
most likely discovery channel will be in the low-
multiplicity jets plus missing transverse energy channel,

with lepton vetoes, but corroborating signals should be
expected in various channels utilizing b-tagged jets, or
those channels which emphasize a lopsided two- or three-
jet event, which will resemble the classic “monojet”
signature. In fact, the presence of these corroborating
signals will be precisely the indication that a compressed
spectrum is present.
The search strategies we have employed were defined for

applicability at
ffiffiffi
s

p ¼ 8 TeV. Surely, the kinematic cuts can
be adjusted to more fully optimize the signal to back-
ground. Some suggestions have been identified in the
course of discussing the strengths and weakness of various
b-jet-based signatures, and various monojetlike signatures,
through various case studies involving the DMM points of
Table III. One can undoubtedly do even better, and we
encourage our experimental and theoretical colleagues to
consider such top-down-motivated models for honing
signal definitions in the forthcoming LHC run. There
has been much interest of late in two opposite extremes:
the study of so-called simplified models, which posit a very
simple superpartner spectrum with large mass gaps gen-
erating energetic decay products, and compressed-
spectrum models which are motivated from the bottom
up in terms of some abstract sense of “naturalness.” The
former are popular with the experimental community, while
the latter seem to be enjoying popularity with model
builders. The DMM paradigm allows a unified, ultraviolet-
complete, and string-motivated framework that spans both
extremes. We therefore hope that studies such as this
one will serve as motivation to continue to refine search
strategies to maximize the impact of the coming LHC data.
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APPENDIX: ANOMALOUS DIMENSIONS

At one loop, the anomalous dimensions are given by

γi ¼ 2
X
a

g2acaðΦiÞ −
1

2

X
lm

jyilmj2; ðA1Þ

in which ca is the quadratic Casimir, and yilm are the
normalized Yukawa couplings. Here we will consider only
the Yukawa couplings of the third generation yt, yb, and yτ.
For the MSSM fields Q, Uc, Dc, L, Ec, Hu, and Hd, the
anomalous dimensions are
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γQ;i ¼
8

3
g23 þ

3

2
g22 þ

1

30
g21 − ðy2t þ y2bÞδi3;

γU;i ¼
8

3
g23 þ

8

15
g21 − 2y2t δi3; γD;i ¼

8

3
g23 þ

2

15
g21 − 2y2bδi3;

γL;i ¼
3

2
g22 þ

3

10
g21 − y2τ δi3; γE;i ¼

6

5
g21 − 2y2τ δi3;

γHu
¼ 3

2
g22 þ

3

10
g21 − 3y2t ; γHd

¼ 3

2
g22 þ

3

10
g21 − 3y2b − y2τ ; ðA2Þ

respectively. Above Mmess, the beta function of the gauge couplings changes because of the messenger fields. However, γi
does not change according to Eq. (A1), and hence γ0i ¼ γi. The _γi’s are given by the expression

_γi ¼ 2
X
a

g4abacaðΦiÞ −
X
lm

jyilmj2byilm ; ðA3Þ

in which byilm is the beta function for the Yukawa coupling yilm. The _γi’s are given by

_γQ;i ¼
8

3
b3g43 þ

3

2
b2g42 þ

1

30
b1g41 − ðy2t bt þ y2bbbÞδi3;

_γU;i ¼
8

3
b3g43 þ

8

15
b1g41 − 2y2t btδi3; _γD;i ¼

8

3
b3g43 þ

2

15
b1g41 − 2y2bbbδi3;

_γL;i ¼
3

2
b2g42 þ

3

10
b1g41 − y2τbτδi3; _γE;i ¼

6

5
b1g41 − 2y2τbτδi3;

_γHu
¼ 3

2
b2g42 þ

3

10
b1g41 − 3y2t bt; _γHd

¼ 3

2
b2g42 þ

3

10
b1g41 − 3y2bbb − y2τbτ; ðA4Þ

where bt ¼ 6y2t þ y2b −
16
3
g23 − 3g22 − 13

15
g21, bb ¼ y2t þ 6y2b þ y2τ − 16

3
g23 − 3g22 − 7

15
g21, and bτ ¼ 3y2b þ 4y2τ − 3g22 − 9

5
g21. _γ

0
i is

obtained by replacing ba with b0a ¼ ba þ N in Eq. (A4).
Finally, θi, which appears in the mixed modulus-anomaly term in the soft scalar mass-squared parameters, is given by

θi ¼ 4
X
a

g2acaðQiÞ −
X
i;j;k

jyijkj2ð3 − ni − nj − nkÞ: ðA5Þ

For the MSSM fields, they take the form

θQ;i ¼
16

3
g23 þ 3g22 þ

1

15
g21 − 2ðy2t ð3 − nHu

− nQ − nUÞ þ y2bð3 − nHd
− nQ − nDÞÞδi3;

θU;i ¼
16

3
g23 þ

16

15
g21 − 4y2t ð3 − nHu

− nQ − nUÞδi3;

θD;i ¼
16

3
g23 þ

4

15
g21 − 4y2bð3 − nHd

− nQ − nDÞδi3;

θL;i ¼ 3g22 þ
3

5
g21 − 2y2τð3 − nHd

− nL − nEÞδi3;

θE;i ¼
12

5
g21 − 4y2τð3 − nHd

− nL − nEÞδi3;

θHu
¼ 3g22 þ

3

5
g21 − 6y2t ð3 − nHu

− nQ − nUÞ;

θHd
¼ 3g22 þ

3

5
g21 − 6y2bð3 − nHd

− nQ − nDÞ − 2y2τð3 − nHd
− nL − nEÞ: ðA6Þ

As in the case of γi, θ0i is the same as θi.
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