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Many theories beyond the standard model (BSM) contain new CP-odd and CP-even neutral scalars
¢ = {A, H}, and new vectorlike fermions (). The couplings of the CP-odd scalar A to two standard
model (SM) gauge bosons cannot occur from renormalizable operators in a CP-conserving sector, but can
be induced at the quantum loop level. We compute these effective couplings at the 1-loop level induced by
the SM fermions and vectorlike fermions, present analytical expressions for them, and plot them
numerically. Using the 8 TeV Large Hadron Collider (LHC) yy, 77z~ and 7 channel data, we derive
constraints on the effective couplings of the ¢ to standard model gauge bosons and fermions. We present
the gluon-fusion channel cross sections of the ¢ at the 8 and 14 TeV LHC, and its branching ratios into SM
fermion and gauge-boson pairs. We first present our results in a model independent manner, and then we
provide results for some simple models containing ¢ and y; in the singlet and doublet representations of
SU(2). In the doublet case, we focus on the two-Higgs-doublet (2HDM) Type-II and Type-X models in the

alignment limit.
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I. INTRODUCTION

A long series of experiments culminating in the Large
Hadron Collider (LHC) discovery of the Higgs boson at a
mass of about 125 GeV has firmly established the standard
model (SM) as the correct description of nature up to an
energy scale of a few hundred GeV. With this discovery, the
theoretical puzzle as to why the Higgs boson remains
this light when quantum effects should correct it to the
highest scales present in the theory (such as the Planck
scale) comes to the fore. This problem of the stability of the
electroweak (EW) scale is the well-known hierarchy
problem of the SM. This could be a clue that some new
physics beyond the standard model (BSM) is present near
the EW scale which renders it stable against quantum
corrections, making it natural. Many theoretical proposals
have been made for this new physics (for reviews see
Ref. [1]), and they usually contain new particles at the TeV
energy scale. We are poised at a very interesting time when
the LHC is probing this energy scale and can tell us if one
of these proposals is realized in nature.

Among the possibilities of BSM physics that makes the
EW scale natural are models in which the Higgs doublet of
the SM is a pseudo-Nambu-Goldstone boson (PNGB).
Concrete realizations of this idea, for example, are in
models of little Higgs, composite Higgs and extra dimen-
sions (for reviews see Refs. [2—4] respectively). In such
models, in addition to the CP-even Higgs boson, there
could be new CP-odd scalar (A) and CP-even scalar (H),
which we denote collectively as ¢ = {A, H}, that are also
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PNGBs due to which their mass is much lower than the
cutoff scale. Also, new heavy vectorlike fermions (VLFs,
denoted as ;) are usually required, that along with the
SM fermions (SMFs) complete some representation of a
bigger group containing SU(2) ® U(1). The new vector-
like fermions can include vectorlike quarks (VLQs) and
vectorlike leptons (VLLs) and may be present in addition to
the usual SM quarks (SMQs) and leptons (SMLs). By
vectorlike fermions we mean that fermions in a represen-
tation of the SM gauge group and in its conjugate
representation both appear in the theory (for more details
see for example Ref. [5]). Some supersymmetric models
also include vectorlike matter, and thus have ¢ and y
both present, along with many superpartners.

The phenomenology of a CP-odd scalar at the LHC can
be quite distinct as compared to a CP-even scalar (such as
the SM Higgs boson), and one focus of this work is to
elucidate this aspect. If CP invariance is not spontaneously
broken by an A vacuum expectation value (VEV), i.e. if
(A) =0, as we assume here, AWTW~, AZZ (collectively
called AVV couplings), and also Ayy and AZy couplings
cannot arise from renormalizable operators. The latter two
also do not arise from renormalizable operators because of
unbroken electromagnetic (EM) gauge invariance, the same
reason why hyy and hyZ are zero at the renormalizable
level. These can then only result from higher-dimensional
operators generated at loop level. In contrast, for the CP-
even SM Higgs boson (denoted as &), the AW W~ and hZZ
couplings are generated at tree level from dimension-four
operators after electroweak symmetry breaking (EWSB),
i.e. with (h) = v/+/2. Therefore, generically speaking, the
AWTW~ and AZZ effective couplings, generated at loop
level, are much smaller in magnitude compared to the
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tree-level AWTW~ and hZZ couplings; the Ayy and hyy
effective couplings are both loop suppressed and small, and
similarly the AyZ and hyZ are also both loop suppressed.
Thus, similar to the 4, the gg — A “gluon-fusion” channel
is important at the LHC, while compared to the h, the
vector-boson fusion channel of A is much suppressed. The
alternate possibility of (A) # 0 is not discussed here but is
considered for instance in Refs. [6].

Turning next to ¢ = {A, H} couplings to fermions, we
include ¢ couplings to new vectorlike fermions at the tree
level. Furthermore, if ¢ is part of a doublet, it couples also
to SM fermions at the tree level (similar to /). We consider
the case when ¢ couples significantly only to third-gen-
eration SM fermions, a situation common in many BSM
extensions. Thus, the relevant couplings to SM fermions are
@dbb, g7~ and ¢1t. If the pbb coupling is sizable, bb — ¢,
bg — b¢ and gg — bb¢p can be important production
channels of the ¢. However, we do not include these
production channels in this work, but restrict ourselves only
to the gluon-fusion channel.

We mostly restrict ourselves to the situation when m; <
2My,; so that ¢p cannot decay to a pair of VLFs. If the yy,
is light enough they can also be studied directly at the LHC,
as discussed for instance in Ref. [5] and references therein.
However, if they are too heavy to be directly produced at
the LHC, but the ¢ (or & as studied in Ref. [7]) can be
directly produced and its couplings measured, the VLF
contributions to the ¢ effective couplings we derive here
can be useful in probing the yy; indirectly.

We identify the lighter CP-even state (h) to be the
125 GeV state discovered, and whose properties measured,
at the LHC. The & couplings measured at the LHC so far
largely agree with the SM, at least to about a few tens of
percent, and the magnitude of the ZVV coupling (with
V ={W;.Z,}) is constrained to be close to the SM
coupling at the few tens of percent level. This will be
realized in the so-called “decoupling limit” [8], or more
generally in the “alignment limit” [9]. In order to capture
many different BSM models, we perform a model-
independent effective theory analysis of the ¢ coupled to
SM fields. We present the constraints from the recent 8 TeV
LHC run using the yy, 777~ and 77 channels, and present the
signal cross section (CS, o) at the LHC as a function of
the effective couplings of the ¢ (denoted by «) and the
branching ratio (BR) into these modes. We do not focus
much on the ZZ and W W~ decay channels of the ¢ as the
branching ratios into these modes are much smaller than the
other modes due to AVV coupling being generated only at
the loop level, and the HVV coupling being zero in the
alignment limit. We also present many simple models
containing A and wy; in SU(2) singlet and doublet
representations. For A in a doublet, we restrict ourselves
to the two-Higgs-doublet model (2HDM) Type II and Type
X. We present the 1-loop analytical expressions for the
{Agg, Ayy, AyZ} effective couplings induced by SMFs and
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VLFs in each of these models; as a function of the model
parameters, we plot numerically these effective couplings
and the BR into the yy, yZ and fermion final states. These
are some of the main results of this work.

In previous studies, one of us has considered the
implications of models with VLQs and VLLs coupled to
the lighter CP-even Higgs boson 4 in Ref. [7], and the
direct LHC signatures of VLQs in Refs. [5]; this work
provides a complement by considering aspects of heavier
neutral CP-odd and CP-even scalars A, H. In Ref. [10] we
study many aspects dealt with in this paper but in a
specific little-Higgs model, the SU(6)/Sp(6) model by
Low, Skiba and Smith [11]. We also list there many little-
Higgs models that contain a 2HDM structure. The results of
this paper are useful in deriving constraints and prospects of
such models.

From the vast literature, we give a sampling below of
studies that deal with extra BSM neutral scalars, have
overlap with our work, and that take into account the recent
LHC 8 TeV constraints. We also mention how our work
complements them. There exist several studies which
present o(pp — A) (see for example Refs. [12,13]) in the
context of 2HDM, minimal supersymmetric standard model
(MSSM) and next-to-MSSM. We highlight the effects of
VLFson (g9 — A) in various SM extensions including the
2HDM-II and 2HDM-X. References [14,15] consider the
possibility that the observed 125 GeV state at the LHC is a
CP-odd scalar, and the former shows that this possibility is
disfavored by the LHC data. References [16,17] analyze
2HDM Types I and II taking into account the 125 GeV LHC
data, all pre-LHC constraints and results of the heavy-Higgs
searches in various channels. Reference [18] performs a
global fit of general 2HDMs using ATLAS, CMS and
Tevatron results. References [19-23] shows the allowed
parameter space of the 2HDM-II, applying theoretical
(perturbativity, unitarity and vacuum stability) and exper-
imental (LEP, Tevatron and LHC 125 GeV Higgs data,
precision observables and B-physics and electric dipole
moment measurements) constraints. Reference [24] also
includes the heavy Higgs exclusion limits to constrain the
2HDM. LHC 8 TeV constraints on the 2HDM parameter
space are also discussed in Refs. [25-29]. The heavy neutral
scalars of the 2HDM, namely A and H, are studied in
Ref. [30], where the LHC 8 TeV exclusion and 14 TeV reach
from the processes gg —» H — AZ and gg — A — HZ are
presented. Reference [31] constructed an SO(5) symmetric
2HDM which naturally realizes the alignment limit and puts
constraints on its parameter space from the 8§ TeV LHC data.
Reference [32] puts limits on the triple Higgs couplings and
presents a set of benchmark points for probing SM-Higgs
pair production and the search of heavy Higgs bosons
through nonstandard decay channels (i.e decays of A, H
that involve at least one Higgs boson in the final state).
Reference [33] calculates the loop factors for the AVV
couplings in the MSSM and the 2HDM with a heavy chiral
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fourth generation. Reference [34] studies A - WW, ZZ
decays and compares this with the corresponding CP-even
scalar decays in the 2HDM-II, and also with a chiral fourth
generation or additional heavy VLQs added. In addition to
these, here we also include the effects of VLFs on A — yy,
Zy decays. An effective Lagrangian analysis of new heavy
scalar particles is presented in Ref. [35]. Various VLF
models and related phenomenological issues are also stud-
ied in Refs. [36]. Many of these studies are done with
specific models in mind while we present the LHC limits and
signal CS in a model-independent manner, and, using these,
derive results for the models we introduce and also for some
of the models above.

The paper is organized as follows: In Sec. II we present a
model-independent analysis of the CP-odd and CP-even
neutral scalars ¢, present constraints on its effective
couplings from the 8 TeV LHC run, the LHC gluon-fusion
CS, and BR into SM fermion and gauge boson decay
modes. In Sec. IIl we present many simple models
containing ¢ and yy; as SU(2) singlets or doublets. For
each of these models, we work out the 1-loop effective
couplings of the ¢ and present its BR into two-body decay
modes. One can read out the current constraints and gluon-
fusion CS of the ¢ at the LHC for each of these models in
conjunction with the results in Sec. II. The models
considered include ¢ as an SU(2) singlet, or as contained
in the 2HDM, with correspondingly the yy; also in singlet
or doublet representations. We offer our conclusions in
Sec. IV. For the various models we discuss, we compile
expressions for the mass eigenvalues and mixing angles in
Appendix A, and the 1-loop effective couplings in
Appendix B

II. MODEL-INDEPENDENT ANALYSIS

In this section, we define an effective Lagrangian with
couplings of the neutral scalars, CP-odd A and CP-even h,
H to SM gauge bosons and fermions. We denote the neutral
scalars collectively as ¢p. In models that contain two CP-
even scalars, we identify the lighter one (%) as the 125 GeV
scalar observed at the LHC. For the heavier states (A, H),
we show the constraints from the 8 TeV LHC, signal
CS o x BR into various SM two-body final states at the 8
and 14 TeV LHC, as a function of the effective couplings
and my,. For any given new physics model, one can obtain
this effective Lagrangian by integrating out heavier fields,
following which the results of this section can then be used
to obtain the LHC limits and gluon-fusion cross section in
that model.

CP invariance requires the CP-odd scalar A coupling to
SM gauge bosons to be only via higher-dimensional
operators. The CP-even scalars can couple to the massive
gauge bosons at tree level. Showing only the new
physics terms, the effective Lagrangian for any neutral
scalar ¢ is
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where X = ys, Y,5: = €6, fOr the CP-0dd scalar, while
X =1 (identity matrix), Y,,,; = g9, for the CP-even
scalar. Here k,,;s contain other fermion and gauge boson
loop contributions. Tree-level scalar gauge boson couplings
Ypzzs Ypww are zero for the A. We have defined the
dimensionless effective couplings « by pulling out a new
physics mass-scale M in the effective ¢pV'V terms. For the
numerical results we show, we set M = 1 TeV from now on
and show only «; for other values of M, the k can easily be
rescaled. Although we have defined the effective couplings «
by extracting a heavy new physics mass-scale M, SM
fermion contributions are to be included when present.
Equation (1) is an effective Lagrangian at a scale just above
my. Heavy BSM fermion and the SM fermion contributions
are to be included in « before comparing with the plots we
show in this section. For various simple SM extensions
detailed in Sec. III we compute the x’s and present them in
Appendix A. If SM fermions contribute and can go on shell,
the k are complex. In this case, the k,yy that appear in our
plots in this section should be read as |k,yy|. We assume
Yor.s, to be real in this work.

The CP-odd scalar can decay to SM gauge bosons or
fermions. In terms of the x’s and y’s defined above, the
decay rates to different final states are

1 K 2
(0 21) = 57 (752 ) w301 = 7o)

1 Kpgg \* 3
[(¢—99) = 871 (16752M> Mo

(¢ - ff) = y¢ffm¢(1 _4’7)"/2,
1 Kor \? 3
2

Mo =~ =g (167z2M> " )

where n = 3 and n = 1 for CP-even and CP-odd scalars
respectively, r, = mj/mj, r; = m3/mj with N, = 3 for
quarks and N, =1 for leptons. Here we have defined
I'(¢ - gg) to have an extra factor of 8 compared to I'(¢p —
yy) anticipating a color factor. It turns out, however, that for
a quark in the loop, the color factor in the I'(¢p — gg) is
actually 2. This will get compensated for in xy,, [see for
example Eq. (B1)]. Using these expressions, one can work
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out the BR of the ¢ into these final states in any new
physics model.

We turn next to discussing limits from the 8 TeV LHC
and the gluon-fusion cross section at 14 TeV. To obtain the
limits on the effective couplings « and y, we use upper
limits (ULs) from recent LHC analysis on o(pp — ¢) X
BR (¢ — XX), and the currently relevant constraints are
XX = {yy, 777", t1}. We take the limits on the yy channel
from the CMS analysis Ref. [37] which has an upper limit
up to M, P of 850 GeV, on the 777~ channel from the ATLAS
analysis Ref. [38] up to M, of 1000 GeV, and from the
ATLAS analysis Ref. [39] for the /7 channel. Using these
we constrain the effective couplings of Eq. (1).

Atthe LHC, the ¢ can be produced by gg — ¢ (called the
gluon-fusion channel), which starts at the 1-loop level when
¢ couples to colored fermions. In addition to the above
production channel, if ¢ couples to b-quarks, there are
additional production channels, namely bb — ¢ (called bb-
fusion), bg — b¢p and gg — bb¢ (called b-quark associated
production) channels; how these compare with the gluon-
fusion channel depends on how large the bb¢ coupling is in
a given model. For instance, for y,, = 0.5, we find that the
production rate via bb-fusion and b-quark associated pro-
duction channels becomes comparable to the gluon-fusion
channel with «,,, ~ 20. We include only the gluon-fusion
channel in this study, but in models with a large bE(,b
coupling, the bb-fusion and b-quark associated production
channels may have to be included, which we do not do here.
For a study involving the b-quark associated production
channels of the 4 including gg — bbh, see Ref. [40]. One
can separately study the b-quark associated production
channels by tagging on the final state b-jet as discussed
in Ref. [38]. Reference [41] has recently studied hb-fusion
and b-quark associated production channels for a light
CP-odd scalar. Although there are some LHC limits using
b-tagged events to which the bb decay mode and the b-quark
associated production channels contribute, we do not
include them in our analysis here. So far these results have
been presented for m, < 350 GeV (see Refs. [42-44]).

Rather than compute the A, H production rate at the LHC
ourselves, we relate it to the SM Higgs production rate at
the same mass, and make use of the vast literature on the &
production rate. Since 6(g9 — ¢) xI'(¢p — gg), we can
write the ¢ * BR for ¢ production followed by decay into
the final-state XX as

I'(¢ = g9)
I'(h = gg)

We compute I'(¢p — gg) and BR(¢p — XX) as a function of
the effective couplings and apply the UL from the 8§ TeV LHC
quoted above using Eq. (3). For our numerical work, we take
(g9 — h) from Ref. [45]. We assume here that
the dependence on the parton distribution function and the

olgg— @) = x o(gg — h). (3)
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acceptance at the LHC for A, H and & are not very different,
which should be reasonable assumptions. For the decay
A — XX, thefinal states XX we considerareyy, "t~ and 7 as
these are currently the significant ones. We compute the
BR(A — XX) using Eq. (2). If A, H are fairly close in mass,
i.e. closer than the experimental resolution to separate them
(say 30% of my), and no kinematic variables can separate
them, we should include all of them into the 6 x BR above.

In Fig. 1 we show 6(gg — ¢) at the 8 TeV LHC (left
plot) and 14 TeV LHC (right plot) as a function of k.
o(gg — ¢) is obtained using Eq. (3) and the o(gg — h)
from Ref. [45] as mentioned earlier. In a given new physics
model, one can compute k,,, and then use these plots to
obtain the (g9 — ¢). Using the 6(gg — ¢), we obtain
constraints from the 8 TeV LHC data as a function of the
BR into a particular mode. We show this in Fig. 2 obtained
from the yy, 777~ and 7 channels. The regions to the top
and right of the curves are excluded at the 95% C.L. level.
In the yy channel, the bound is strongest for m = 200 GeV
since the experimental exclusion is tightest at that mass. We
see that there is no constraint from this channel for BR(¢ —
yy) S 107 for the range of «,,, shown. From the 777~
channel, we find the strongest limit for m,, of about 500 GeV
since the experimental exclusion is tightest at that mass. We
show in Fig. 3 the total 6(g9 — ¢) x BR(¢p — XX) con-
tours (in pb) for XX = {yy,t"z7, 17} at the 14 TeV LHC,
making use of the fact that the total 6(gg — ¢ - XX)
Ké 40 < BR(¢ = XX), omitting kinematic factors indepen-

dent of couplings. Thus, each mode XX can be considered
and presented independently of the others as we do here. The
95% C.L. LHC exclusion discussed above is also shown
labeled as “8 TeV.” If the ¢pbb coupling is large, i.e. bigger
than about 0.5, inclusion of the b-fusion and b-associated
production channels (along with the ¢gg channel that we
have included here) could result in a stronger exclusion than
we obtain here.

As already mentioned, the model-independent results
presented in this section can be used to obtain the LHC
constraints and gluon-fusion CS in any particular model by
computing first the effective couplings in that model. We next
compute the effective couplings in many simple models.

III. MODELS

In this section we consider some specific models for the
neutral CP-odd and CP-even scalars A, H and study their
LHC production and decays into two-body final states. We
compute the decay rates assuming a sharp turn-on at
threshold of the two-body final state. The goal is to capture
in simple models many of the features present in realistic
BSM models as far as the LHC phenomenology of A, H is
concerned. As before, we collectively denote A, H as ¢p. We
mostly focus on the situation when m, < 2My,; and do not
focus on the phenomenology due to the ¢ decaying to a pair
of on-shell VLE. We first consider the models where ¢ is an
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FIG. 1.
(green) and 1000 GeV (yellow).

SU(2) singlet and couples to SU(2) singlet VLF [singlet A
with a vectorlike up-type singlet (SVU model), or with a
down-type singlet (SVD model)] and SU(2) doublet VLF
[singlet A with minimal vectorlike quark doublet (SVQ
model)]. We next consider effective models with ¢ in an
SU(2) doublet, with the two SU(2) doublet scalars &, and
®, both having hypercharge +1/2. The 2HDMs we con-
sider are either Type-II-like or Type-X-like. We notate the
Type-1I-like models, for example, as MV QD for minimal
vectorlike extension with VLQ doublet Q and down-type
VLQ singlet D, and MV QU for a similar model with an up-
type VLQ singlet U, and a similar model with the 2HDM
Type-X structure instead as MVQDX. We include sub-
scripts depending on which Higgs doublets the fermions
couple to, i.e. MVOD;; will mean that the model has one
VL-quark doublet y, and one down-type VL-quark singlet
x> with the couplings @ yp®; and wpry,®; turned on.
Among our example models are some that mimic BSM
models that have ¢ Yukawa couplings with an SMQ and a
VLQ, for example, the third-generation SMQ with an up-
type singlet VLQ to give the MV U model.

Many of the effects we present are similar for the CP-
odd and CP-even scalars A, H. One important difference
between the A and H is that at tree level, the AVV (with
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o(gg — ¢) (in pb) at the 8 TeV LHC (left) and 14 TeV LHC (right) for m, = 200 GeV (red), 500 GeV (blue), 800 GeV

V = {W, Z}) couplings are zero and are only generated by
SM and BSM fermions at the loop level, while the HVV
couplings could be nonzero at tree level. However, in the
alignment limit we consider (discussed later) the HVV
couplings are zero. Thus in the alignment limit the A and H
have very similar phenomenology. Therefore we will
mostly present the phenomenology of the CP-odd scalar
A, and, where relevant, we will also contrast it with the
situation for the H. Since the tree-level HVV coupling is
zero in the alignment limit, in the Appendix we only give
the expressions for the fermion contributions to the x,yy.
For the SM Higgs we must include the W loop contribution
to ky,, and k;z, which we do not present here.

A. Model with an SU(2) singlet A with VLQ-VLQ
Yukawa couplings

We start by considering some models with an SU(2)
singlet A coupled to SU(2) singlet or doublet VLFs. For an
SU(2) singlet ¢ one cannot write Yukawa couplings with
chiral SMFs, and thus gg¢ and yy¢ couplings can only be
induced by VLFs, if they are present, as we explicitly show
here. Thus, LHC signals of a BSM singlet ¢ becomes
possible if colored VLFs are coupled to it.

0.0010 10 10
8 TeV LHC 8 TeV LHC 8TeV LHC
¥y channel +7 channel tt channel
0.0008 0.8 0.8
; 0.0006 % 0.6 ?1:? 0.6
g s s
~ & (4 2 4
% 0.0004 204 &R 04
0.0002 0.2 0.2
0.0000 0.0 0.0
0 10 20 30 40 0 5 10 15 20 0 10 20 30 40
Kpgg Kogg Kpgg
FIG. 2. 8 TeV LHC constraints from the yy channel (left), 7"z~ channel (middle) and 7 channel (right), for my = 200 GeV (red),

500 GeV (green), 800 GeV (blue) and 1000 GeV (yellow). The regions to the top and right of the curves are excluded at the

95% C.L. level.
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FIG. 3.

20 30 40
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Contours of the 14 TeV LHC ¢ x BR (in pb) in the yy channel (upper row) and the 77z channel (middle row) for my = 200 GeV

(left), 500 GeV (middle), 800 GeV (right), and in the 77 channel (bottom row) for m, = 500 GeV (left), 800 GeV (middle), 1000 GeV
(right). The region to the right of the contour labeled “8 TeV” is excluded at the 95% C.L. level from 8 TeV LHC result.

1. SVU model

We study a model, which we call the SVU model, with
an SU(2) singlet CP-odd scalar A, coupled to an SU(2)
singlet, SU(3) triplet VLQ (w) with hypercharge YV,.1
Clearly, the electromagnetic charge Q =Y,,. To the SM
Lagrangian we add

'A model with only a vectorlike lepton singlet is uninteresting
for A phenomenology since no LHC production channels are
significant (note that the Abb coupling is also not possible in
this case).

1 1 _. _
LD EﬁﬂAaﬂA - 5’”124142 + Fidy + eQA y'y
2
sy . o
=90 2,y y + Wiy — iy Aprsy
w
D T
—my,y/y/—gA H'H. (4)

The SM Higgs doublet is written as H here. Here we have
not considered possible terms coupling the A to a SM
fermion and a VLF for Y, =2/3, —1/3 such as y; Au,
w1 Adg, gHyyr. We study this possibility of off-diagonal
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FIG. 4. BR(A — yy) (black), BR(A — yZ) (blue), BR(A —
ZZ) (red), BR(A -» WW) (cyan) as a function of m, with
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W

couplings between the third-generation SMQ and a VLQ in
the context of the SU(2) doublet ® in Sec. III B 3.

We restrict ourselves to my < 2My;, so that A cannot
decay to a VLF pair. The possible decay modes of A are to
q9, vy, Zy and ZZ through a VLF loop, but no decay to
WTW~. A cannot decay to a pair of SM fermions since
such couplings are forbidden by gauge invariance. The
effective AV#V¥ couplings induced by VLFs are given in
Appendix B. From these we compute the partial widths
and the BR into the above modes. In Fig. 4 we plot
BR(A — yy), BR(A - Zy) and BR(A — ZZ) where we
chose Y, =2/3 as an example. BR(A — gg) is almost
constant at around 0.999.

In Fig. 5 we plot k,,/ y3 as a function of m,. From this,
one can read off the 6(gg — A) at the 8 and 14 TeV LHC
from Fig. 1 in Sec. II. The peaks in Fig. 5 are due to the
VLFs going on shell, although as mentioned earlier, we do
not explore its consequences in this work. In this model, the
gluon-fusion CS of A is induced only through loops of the
heavy VLFs due to which the 8 TeV LHC exclusion limits
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FIG. 5. K44/ yi as a function of m, for m, = 800 GeV (red)

and 1200 GeV (blue) for the SVU model.
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FIG. 6. BR(h — AA) (left) and y,, (right) as a function of m,
for the SVU model.
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on ¢ X BR into the ZZ channel (see Ref. [46]) or the yy
channel (see Ref. [37]) are rather weak, unless y, becomes
so large that perturbativity is lost.

If my < m;,/2 (where h is the 125 GeV Higgs), then
h — AA becomes kinematically allowed and becomes a
means of producing A in addition to the gluon-fusion
channel discussed above. In Fig. 6 we plot BR(h — AA)
for A4, = 0.1, 0.05 and 0.001. When this decay is allowed, it
will contribute to the Higgs total width thereby modifying
the BRs into the other channels. In particular, it will modify
the signal strength p,, = I'(h — yy)/T'sm(h = yy), which
is measured to about 10% precision (see for example
Ref. [47]). We plot u,, in Fig. 6. We thus see that the
constraint on 4,4 from the 8 TeV LHC is of the order of 0.01
if my < my/2.

2. SVQ model

We consider a BSM extension, which we call the SVQ
model, with an SU(2) singlet A, and one SU(2) doublet

vectorlike fermion y =w; r = (Y1 z Worr)! With
hypercharge Y,,. To the SM Lagrangian we add
1 LS, . L
E ) EaﬂAﬁ"A - EmAA + l//lbl// - lyAAl//ySl//
A A
— my,py — 4—1|A4 - EAAzHJrH, (5)

where the gauge interactions of the y are understood and
are not explicitly shown. For ¥, =1 /6 one can add the
terms y;l/_/LIN{MR —+ yillZ/LHdR —+ iyZAAqu//R —+ H.C.,2 which
we will not consider here but will address in Sec. III B 3.
As in the SVU model, there are no decays to a pair of SM
fermions, but unlike there, in this model A — W+ W~ decay
is also possible through the VLF loop, in addition to gg, yy,
Zy and ZZ modes. The expressions for the effective
couplings of the A to two SM gauge bosons are given in
Appendix B. We take Y, = 1/6 as an example.

In Fig. 4 we plot the BR of A into yy, Zy, ZZ and W W~
modes. As in SVU model, the BR into gg remains
almost constant at around 0.99 for m, = 300 GeV. As
the yy, W coupling (g) is greater than the y;y;Z couplings
(g9/cw)(T3 — Qs%,), the BR into WW is larger than into
ZZ. Again, for the same reasons explained in the SVU
model, the exclusion limits from the 8§ TeV LHC in the yy,
Z7Z, WW channels are rather weak in this model also.

The o(gg — A) in this model is twice of what was
obtained in the SVU model because there are two degen-
erate VLFs in the loop. The VLFs are degenerate because
no Yukawa terms involving the SM Higgs can be written
down that can split the masses after EWSB. Since no
couplings to a pair of SM fermions exist, there are no
b-quark initiated production processes possible.

*We use the notation H = ic>H*.
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FIG. 7. BR(A — 7777, bb) (left, middle) for tan = 1, 5, 10, 15, 30 and BR(A — 17) (right) for tan 8 = 1, 5, 10, 15 in the 2HDM
Type-II model. The loop-level BR(A — VV) in the Type-Il 2HDM model are shown in Fig. 16 by the dashed black curves.

B. Models with A, H in SU(2) doublets 2HDM)

In the 2HDM we have two scalar doublets, ®; and ®,,
which we take to have hypercharge +1/2. The physical
neutral states are two CP-even scalars (2 and H) and a CP-
odd scalar (A). The Higgs Lagrangian is given by

L5 D, +|D,®,* - V(@) (6)

where

V(@1 @) = m} @[ ®; +m3, @30, —miy (8], + Hee.)
4 (B]D1)2 + Ao (D] D,)% + 15 (D] D)) (D] D,)

Au(@]) (@5) + 2 [(@]0,)2 4 He).
7)

In the limit when m?2, = 0, the Lagrangian has a discrete Z,
symmetry under which ®; —» —®, dp — —dy (with all
other fields unchanged), if the down-type right-handed
fermions couple only to the ®; and the up-type right-handed
fermions only couple to the ®, so that there are no tree-level
flavor changing neutral currents (see for example Ref. [48]).
Nonzero m3, softly breaks this Z, symmetry. We will not
consider the hard Z, breaking terms (CDT(I>1<I>§¢'2+
0, D], +H.c.).” There are eight free parameters in
V. After we fix the minimum of the potential at (®,)=
(0,v,/v/2)" and (®,) = (0,v,/+/2)7, with the constraint
v? +v3 = v? = (246 GeV)?, the number of free parame-
ters reduces to seven which we take to be my, my,
mpy, my+, tan B, @ and m%2, in a notation that is common
in the literature (see Ref. [49]). We parametrize the scalar
doublets as

3This is a natural choice since if these terms are zero to start
with they will not be induced at the loop level even if the soft
breaking terms are present.

b7

(Pi - 1 .
75 (vi +pi + in;)

(8)

with v; =wcosfl, v, = wvsinf and tanf = v,/v;. The
physical mass eigenstates are a heavy CP-even scalar
H=p;cosa+p,sina, alight CP-evenscalar h = —p; sina+
prcosa, a CP-odd scalar A = —#n; sinf + 1, cos 8 and
charged scalars H* = —¢{ sin f + ¢h5 cos . All the effec-
tive couplings, relevant BRs and the cross sections in
the 2HDM can be found in Refs. [49,50]. The expressions
of a, f in terms of the model parameters can be found,
for example, in Ref. [19,49]. It is these neutral scalars A, H
that we are studying in this work.

In some regions of parameter space, my ~ my, i.e. their
masses are within the experimental resolution to distinguish
them. If so, we must add the contributions from both A and
H to any given channel; their sum is incoherent due to the
different CP quantum numbers. For instance, the exper-
imental invariant-mass resolution in the 7z~ channel is
about 30% (see for instance Ref. [51]). Therefore, we
consider two cases, one when m, and my are within 30%
and we add the contributions from the “degenerate” A and
H, and another when they are split by more than 30% and
we treat them separately. When they are degenerate, for the
777~ channel for instance, we have BR(A — 7777) ~
BR(H — 7777) in the so-called alignment limit (as will
be defined precisely later), and we can use the constraints
obtained in Sec. II if we interpret k,,, shown there as

\/m and BR(¢p—77) as BR(A—7777)+

BR(H — 7*77). For the nondegenerate case, again one
can make use of our results in Sec. II to obtain constraints
either for the H or A.

We are interested in the case where the lighter CP-even
scalar (k) is the observed 125 GeV Higgs boson. For this,
the cos(ff — a) ~ 0 is the most favored region (see Fig. 18
of Ref. [17]). Only a small range of other values of (f — a)
are allowed where the sign of the down-type coupling of the
Higgs is reversed. For the 2HDM with exact Z, symmetry
(i.e. m%z =0), tanf# has an upper limit of 7 from the
perturbativity constraint (see Ref. [24]). We will work with
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a nonzero m3, which allows for larger values of tan 3 (see
Ref. [20]). We also assume that the alignment limit
(f —a = =/2) holds sufficiently accurately so that the &
couplings are SM-like to match with the properties of the
observed 125 GeV state at the LHC as discussed in
Ref. [16]. In this limit, the H - WW and H — ZZ decays
do not give any significant constraints on the parameter
space (see for example Ref. [46]).

Depending on how the fermions couple to ®; and ,,
various types of 2HDM have been defined in the literature,
some of which we discuss next. We start by discussing a
2HDM with only the SM fermions present, and follow it up
with many examples of different ways of adding vectorlike
fermions.

1. Type-I1 2HDM

In the Type-II 2HDM the SM Yukawa couplings are
replaced by

L2 ~y4G,9dg — .4, Prug + He., )

where &),» = ic>®?. The Yukawa couplings of &, A to the
SM fermions are given as

1 _
LD ——=heaitpug = yghsedpdg — y,cpiAii ug

V2
— yasgiAdpdg +H.c.). (10)

The H-Yukawa couplings can be obtained from the A-
Yukawa couplings by the replacements s, - —c, and
¢, — So We find the allowed regions of parameter space
from the exclusion limit on 6(gg — ¢) x BR(¢p » 7777)
presented by ATLAS [38,51]. We focus on the 7z~
channel as currently this is the most constraining one.
We do this first in the 2HDM Type-11 (2HDM-II) without
the addition of any VLFs.

In Fig. 7 we show the tree-level decays of A to SM
fermions BR(A — bl_),f“r‘,tf) as a function of m, for
various tanf for the Type-II 2HDM. The loop-level
BR(A — yy,Zy) in the Type-Il 2HDM are shown in
Fig. 16 by the dashed black curves, and our results match
with those of the Ref. [50]. We see that the BRs into yy and
Zy are smaller compared to those of the corresponding
loop-induced SM Higgs branching ratios even for tan f = 1
when the couplings of A to the SM fermions are equal to
the Higgs Yukawa couplings. This is because the partial
width I'(h — yy,yZ), being dominated by the W loop, is
larger than the partial width T'(A — yy,yZ) in which only
the fermions contribute (see for example Fig. 2.10 of
Ref. [50]). For larger tanf the branching ratios are
even smaller because of the increased I'(A — bb) and
['(A - 7777) (recall that the Abb and Az*z~ couplings are
proportional to tan /). The discontinuity at m, = 2m, in the
BRs in Fig. 16 for tanf = 1 is because of the onset of

PHYSICAL REVIEW D 93, 055004 (2016)
Kagg(2HDM-I1) Krigg( 2HDM-1I)

2.0 2.0
- NW /// /
15 / 157 15
25 3
1.0 50 / L 1.0 /
A \

° %\ e
-1.0 -1.0

0 15 20 25 30 .

Log,o[tang]
o
o

Log,o[tang]

Log,o[m4] Log,olmal
FIG. 8. Contours of k4, (left) and ky,, (right) in the Type-II
2HDM.

60 70
50 60
50
0 S 10
@ 30 £ 30
20 20
10 10
0 0

150 200 250 300 350 400 450 500 200 300 400 500 600

my(GeV) my (GeV)

FIG. 9. For the Type-Il 2HDM, regions of the my-tanp
parameter space (blue region) which are excluded at the 95% con-
fidence level from ¢p — 777~ decay when only A is present (left)
and when my, and my are degenerate (right).

A — 11 on-shell decay. For larger tan f, the discontinuity is
smaller since the Aff coupling becomes smaller. The & —
AA decay, possible for m, < my; /2, is studied in Ref. [17]
and we will not discuss it here.

In Fig. 8, we plot contours of k4, and k, in the Type-II
2HDM. Using this, one can read off the 6(gg — ¢) at the 8
and 14 TeV LHC from Fig. 1 in Sec. II. Using the 7z~
channel constraints shown in Fig. 2 of Sec. II we obtain
constraints on this model. In Fig. 9 we plot the 95% con-
fidence level constraints on the m,- tan # plane, when only
A is present (left), and for m, = my when both contribute
(right). Reference [51] has presented similar constraints in
the m,-tan B plane, but for the MSSM.

2. Type-X 2HDM

In the Type-X 2HDM (2HDM-X) (see Refs. [28,49] for a
description of this model) all the SM quarks couple to ®,
and all the leptons couple to ®,. The Lagrangian for the
model 2HDM-X is given by

LD —(y4q,Prdg + YuGy Potig + v, 1 Preg + H.c.)
+ |D,®|* + |D, P, > — V(D). (11)

As a result, A coupling to the quarks and leptons are
proportional to cot f and tan f respectively. In the Type-X
model, since all SM quarks couple very weakly to A
for large tanf, o(gg — A) becomes very small for large
tan . As a consequence there are no constraints from
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o(pp — A) x BR(A - 7777). The SM quark contribution
to x,yy for the 2HDM-X can obtained from that of the
2HDM-II (see Ref. [50]) by replacing tan  with cotf in
the Abb coupling. In Fig. 10 we show the tree-level
BR(A — 777, bb, ti). The BR(A — VV) for the Type-X
2HDM is shown in Fig. 27 as the dashed black curve.

In Fig. 11 we plot contours of x4, and k.. From this
one can read off 6(gg — ¢) for 8 TeV and 14 TeV LHC
from Fig. 1 in Sec. II. The results for k,, in the 2HDM-X
are also applicable for the Type-I 2HDM as the SM
quarks couple to H, A in an identical fashion as in the
Type-X 2HDM.

Next, we add various combinations of SU(2) singlet and
doublet VLFs to the Type-I1 2HDM first, and to the Type-X
2HDM following that. Our goal is to study how VLFs affect
the LHC production rate and decay BRs of the ¢. There are
eight different ways in which the ®; and the ®, can
couple to the VLFs consistent with the symmetries of the
2HDM-II, namely ®; - —®; and dp — —dp (with all
other fields unchanged). Among these eight models we
will discuss only three representative ones that also capture
the effects in the others.

3. Type-1I 2HDM with VLQ-SMQ Yukawa couplings

Many models that address the hierarchy problem, such as
for example the composite-Higgs and the little-Higgs
models, have as an important ingredient off-diagonal

couplings between a VLF and third-generation SM fer-
mions. We discuss this possibility in a model-independent
way by introducing, one at a time, SU(2)-singlet VLFs with
EM charge 2/3 and —1/3. As an example, we show how
the results obtained here apply to a little-Higgs model.

MVU model—In what we call the MVU model, we
introduce an SU(2)-singlet VLF pair (y,w°), denoted by
the 4-spinor y, with EM charge 2/3, and add to the 2HDM
Type-1I Lagrangian the following terms:

ﬁDMWWV/—(quL(i’1V/R+H-C-)- (12)

After EWSB the mass terms for the EM charge 2/3
fermions can be written as

[Lmass — _

V2

(Yuvalptg + 101t yg + Hee.) + M, gy,

(13)

We define the mass eigenstates ) , and f; g, for the EM
charge-2/3 quarks as

_ U 0 U
tLg = COSOL pt] p—SINOf ooy g,

e 0 U
Wi g = SINOF g1} o+ cosOF 1oy g. (14)

The mixing angles and the mass eigenvalues can be
found in Appendix A 1. For notational brevity we call
° simply as ¢, which we will identify with the SM top
quark. Constraints on the mixing from electroweak pre-
cision tests and a vectorlike top decaying to Wb, Zt, Ht are
studied in Refs. [5,7,52,53]. Constraints from flavor
observables are studied in Ref. [52].
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FIG. 12. Forthe MV U model, contours of k,,, for tan f = 1 (left)
and tan f = 5 (right) with y, chosen such that m, = 163 GeV.
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my = 1000 GeV, M,, = 1250 GeV and tan$ = 0.1, 1, 5, 10, 15 is plotted on the right.

The A couplings to the EM charge-2/3 fermions in terms
of the mass eigenstates are given by

i _ _ _ -
L= ﬁA()’An[LfR + Yannbrtr + Yaniortr + YamtLtr)

+H.c.), (15)

where vy, D (vuepck cos f = yicysg sinB),  Yan,=
(yuSLUqucosﬁ—f—ylSgchinﬂ)v yAtzt = _(yusgclle/ Cos ﬂ -
yicysg sin f), and ya,, =—(y,cfsgcosp+y ey cysing).
The & couplings to the EM charge-2/3 fermions are given by

1 _ _ _ _
L£> \/—Eh()’hnthR + Ynoynlartor + Yiobar tr + Yhu, I t2r)
+ H.c., (16)

where yj,,, = (—y,cfcf cos a + yicf sy sin @), yu,.,

(=yusf sy cos a — yysfcy sin a),yp,, = (y,s] cf cosa—
yic sgsina), and y,,, = (y,cfsg cosa+ yjcfcf sina).
We fix ml,vIs = 163 GeV [54] by choosing y, appropriately,
and show in Fig. 12 the contours of &, =y, /yiM in
the y;-M,, plane. In the region to the left of the 0.99
contours, xy,; approaches 1. The experimental constraint on
Kpi 18 0.63 < K, < 1.2 [55]. In Fig. 13 we show contours
of kyi-¥/yi in the my-M,, plane for {tanf,y,} = {1,1.4}

and {5,1}, and also show k)" as a function of y; for

my, = 1000 GeV, M, = 1250 GeV and tanff = 0.1, 1, 5,
10, 15. For large tan 8, the mixing angles become small,

which makes )" small. For Fig. 13, we fix y, = 1.4 so

that m, is close to its experimental value, and once a specific
choice of y; is made, m, can be fixed exactly by choosing y,
slightly differently; the resulting change in )7/ due to
such differences in y, is insignificant.

The fermionic decay BR for m, < (M,, + m,) will be
largely unchanged from the Type-II 2HDM plots shown in

Fig. 7. However, if my > (M, + m,) the A — t,¢ decay

080\ ] _os8
& |bb = 06 tt——— Bt
1 0.6 T Y
< <
E 0.4 E 0.4 bb

02/ g e 0.2

0.0 = 0.0 88,

500 1000 1500 2000 500 1000 1500 2000
mu(GeV) mu(GeV)

FIG. 14. Contours of BR(A — #r) (black), BR(A — bb) (blue),
BR(A — 1,1) (red), BR(A — gg) (green) with M, = 1000 GeV,
y1 = 1 fortan = 1 (left) and 5 (right), for the MV U model, with
v, chosen such that m, = 163 GeV.

becomes kinematically allowed. In Fig. 14 we plot
BR(A—1t), BR(A—>bb), BR(A — gg) and BR(A — 1,1),
for M, = 1 TeV, y; = 1 and tanf = {1,5} with y, fixed
such that m, is at the physical value. BR(A — yy, Zy) do
not change by much from the 2HDM-II case.

As an example, we apply these results to a concrete model
that stabilizes the electroweak scale, has a 2HDM structure,
and has vectorlike fermions, namely the SU(6)/Sp(6) little-
Higgs model by Low, Skiba and Smith (LSS) [11], which we
analyze in detail in Ref. [10]. Among the various sample
points that are listed in Appendix B in Ref. [10] that satisfy
all constraints including the precision electroweak con-
straints, we consider here the sample points 1 and 2. For
the sample point 1, the two lightest VLFs are the #, with a
mass of 1218 GeV, the b, with a mass of 1315 GeV, and we
have tanff=1.36, my = 1671 GeV,y;=1.7,y,=1.2 and
m,~ 164 GeV.* Keeping only the lighter f, since the f;3 is

*From Ref. [10] we list below a few details for the LSS model.
There, we had tanf = v,/v, while in this paper we have
tan f = v,/v;; therefore tan f here is related to that of Ref. [10]
viatan = (1/tan f59). y, is given by y; = y{55¢y3; for point 1,
since y; > y,, to a very good approximation s, ~ 1 and ¢4 = 0.
Also, m, X ¢y3y,0,/+/2 in the limit where #; is decoupled away,
i.e. y, = ¥2¢23, and o3 = 0.9. The b, is an SU(2) singlet since it
does not mix with the other states of charge —1/3.
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somewhat heavier, a good approximation is obtained by
considering the addition of only a singlet EM charge +2/3
state y as introduced in Eq. (12). Ignoring the smaller b,
contribution, the k.. due to the 7, can be read off from the
tanf# = 1 curve of the rightmost panel of Fig. 13 to be
approximately 0.4. This is about 10% of the SM-fermion
contribution.

MYV D model.—In the MV D model, we introduce an SU
(2)-singlet VLF pair (y, y¢), denoted by the 4-spinor y, with
EM charge —1/3, and add to the 2HDM Type-II
Lagrangian the following terms:

Ly =My~ (y2q.P1xr +Huc.). (17)
The mass eigenstates, b(L’,R and by p for the fermions of
EM charge —1/3 are defined in the same way as in Eq. (14)
with the mixing angles 62 ;. The mixing angles and the
mass eigenvalues can be found in Appendix A 1. The A
couplings to the fermions of EM charge —1/3 are obtained
in a similar way as in Eq. (15), with the replacements
Yy, €08 — ygsinf, y; — y,. Similarly, the /& couplings to
the fermions of EM charge —1/3 are obtained from
Eq. (16), with the replacements y, cosa — —y,;sina and
y1 = ¥,. Asin the case of charge-2/3 fermions, we choose

y4 such that mg’ls = 4.2 GeV [56]; yu;, stays close to its

SM value. In Fig. 15 we plot contours of k}i~/y3 in the

my — M, plane for {tanf,y,} = {1,0.03}, and {5,0.12}

and «)L-" as a function of y, for m, = 1500 GeV, M, =

1000 GeV for tanp =1, 5, 10, 15.

As an example we consider again the LSS model, but
now the sample point 2 in Appendix B of Ref. [10],
with the lightest VLF being the b, with a mass of
947.5 GeV. The b, is an SU(2) singlet state and does
not mix with the other states of charge —1/3. For this point,
my = 1671 GeV, tanf = 1.36, y, = 1.422, cy3 = 1.15.
Kagy Can be read off from the tanff =1 curve of the
rightmost panel of Fig. 15 to be approximately 0.3.

MYV Q model.—For the MV Q model, we add an SU(2)
doublet VLF pair (Q’, Q’°) denoted by the 4-spinor Q’, and
add to the Type-II 2HDM Lagrangian the terms

L2 MpoQ'Q + (MG, 0% — 5’1Q’L‘i>2fR

— 5,0, ®1b + He.). (18)
In the following we show only the top sector since this is
usually the dominant piece in BSM models, and we
therefore suppress the bottom sector. At the outset, we
diagonalize the VLF masses by redefining the Q and Q’
fields by an orthogonal rotation to get an equivalent
Lagrangian given by

L2 MGH0'0 + (=i a, Dyte — 5510} Byt + Hee),
(19)

where we show the 2HDM top Yukawa coupling also since

. . . . . eff .
its effective coupling is now changed, with Mp, =

(MZQQ + M;Q)’ yiffz(yuMQQ_i)quQ)/MlefQ’ y?ff =
(yuMqQ +)~)1MQQ)/MlefQ’ which lmply nyf: (yu_j}quQ/
Moo)/\J1+(Myo/Moo)® and 55T = 35TM 0/ Moo+

F1y/1+ (Mgo/Mog)

The «,,, due to the 7, b’ in the MVQ model are
qualitatively similar to the MV U case presented earlier.
As an example, let us consider again the LSS model sample
point 1 in Appendix B of Ref. [10], for which we have
y1 =0,y ~ 1.3 and 35" ~ 0.5, which gives k,,, ~ 0.03.
The doublet-VLQ contribution in this case is thus very
small compared to the SMQ contribution.

4. Type-1I 2HDM with VLQ-VLQ Yukawa couplings

Here, we add SU(2) doublet and singlet VLFs with SM-
like hypercharge assignments, and write Yukawa couplings

055004-12
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FIG. 16. BR(A — yy) (top panel) and BR(A — Zy) (bottom panel) with M,, = M, = 1000 (GeV), tan # = 1 (left) and 30 (right) in
the MVQD;, model (solid black) and in the 2HDM Type-II (dashed black). BR(A — ff) in the Type-Il 2HDM are as shown in Fig. 7.

between them both involving the ®,,. Although there
could be Yukawa couplings between a VLF and a SMF also
present, we do not write them here for simplicity; their
effects are investigated separately in Sec. III B 3.

MV QD,, model—To the Type-II 2HDM we introduce
one doublet VLQ, y = (y. ), with hypercharge ¥,, and
one singlet VLQ (y) with hypercharge (Y,, —1/2) so that
VLF couplings with &, are allowed. The additional
Lagrangian terms to the 2HDM-II are

LD giDy + 7iDy — (y1y.®1yg + 510x Py, + Hee.)
- M.,/l/_/ll' - M)()_()( (20)

We can also write the terms y; ®,yr and wr®,y;, which
we do not add here but will consider them subsequently as
another model. These terms are forbidden if y — —y under
the Z, symmetry of 2HDM-II. The terms involving 4, A
and VLFs after EWSB are

_ _ 1 PR -
LD =M,y —Mjy+ \ﬁA sin B(iy1Warxr + iV1WarL

v _ ~ _
+H.c.) - %Cosﬁ(yIWZLZR + y1Warxr +Hee.)

1
4+ —hsina(y,yw + Yy +H.c.
7 nWarxr + 312k )
1 _ -~ _
_EHCOSG()’IWZLZR + V1Warxr + Hee.). (21)

Gauge interactions of the VLFs are present and not
shown explicitly. y, and y mix after EWSB, while y; is

055004-13

itself a mass eigenstate. We define the mass eigenstates ¢
and ¢, as

YoLR = CIL,R costp g — CzL,R sin HL,R’ (22)

YR = CiprSiNOp g+ Cop gCOSOL R, (23)

where the mixing angles 6; and 0 are defined in
Appendix A2. In terms of these mass eigenstates, the
Lagrangian in Eq. (21) can be written as

LD —yg'(iAEiLCjR +H.c.) = M$i& = My,
+x;; 2,876 + eQiA Ly i

— Vi (hEiplir +Hee) = y(HE L +Hee)),  (24)
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FIG. 18. For the MVQD;; model, y{, (red), y’fl (blue) as a function of tan # (left); k4, as a function of tan g for m, = 300 GeV
(middle) and 600 GeV (right), with y; = 0.5, ; = 1 and M,, = 800 GeV (blue), 1000 GeV (green).

where i, j =1, 2 and y;j’s are given in Appendix A 2. We
take the y; and y; to be real, enforcing CP invariance in the
BSM sector. The relative sign between y; and y; in Eq. (20)
is physical for the following reason. If we want to get rid of
this relative sign we need to make the transformations y; —
—y. and yr — yg, or y; — yp and yr — —yg. In either
case, the M, changes its sign and is therefore a physical
effect. For chiral fermions, the sign of the mass term is not
physical since one can rotate it away by the above
transformations.

Instead of the y [with hypercharge (Y, —1/2)], if we
consider a VLF (say &) of hypercharge (Y,, + 1/2), we geta

different model where the £ couples to the <i>1 instead of the
®,. This model will have similar phenomenology as the
MV QD;; model, which we discuss later.

The effective couplings for this model are given in
Appendix B. When y; = y, in addition to CP invariance,
the Lagrangian in Eq. (21) is also invariant under P and C

individually, with A transforming as ALA, AS — A. This
implies that the VLF contribution to x4yy is zero since
AVWV’“’ is not P invariant (although it is CP invariant).
Also, the VLF contributions are maximum for M,, = M,
when the mixing between the VLFs (y, and y) is
maximum. We will take M,, and M, to be equal from
now on.

In Fig. 16, we plot BR(A — VV) for Y, = 1/6 as an
example, which is the SM quark-doublet hypercharge
assignment. The tree level decays to SM fermions BR(A —
bb,t*1, tf) are unchanged from what is shown in Fig. 7
for the Type-1I 2HDM. We see that for small values of tan
the VLF contribution to BR(A — VV) is small compared to
the 2HDM-II. This is because y;;’s are proportional to sin /3.
For large tan $8 and for large m,, the VLF contributions to
the BR(A — yy) become significant.

In Fig. 17, we plot contours of k4, for M,, = 800 GeV,
1700 GeV. For comparison we have also plotted the
corresponding contours in the 2HDM-II. Using this, one
can read off the 6(gg — A) at the 8 and 14 TeV LHC from
Fig. 1 in Sec. II. For comparison, the corresponding
contours in the Type-II 2HDM (without the VLFs) are

Kiigg(1=0.5, 7,=1, M,=800) Kiigg(1=0.5, §,=1, M,=1700)

Log,[tans]
= = g
> w o
Log,[tans]

0s /
A
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FIG. 19. Contours of ky,, for y, =0.5, y, =1, for M, =
M, =800 GeV (left), 1700 GeV (right) for the MV QD model.
The corresponding contours in the Type-II 2HDM are shown in
Fig. 8.

shown in Fig. 8. In Fig. 18 (left) we plot y/, and y,
[defined in Eq. (24)] in the alignment limit (f — a = 7/2),
which shows that the / couplings to the VLFs become very
small as tanf increases. Thus, the VLFs can modify
o6(g9 — A) and T'(A — VV) significantly, while the &
remains SM-like as required by the LHC measurements
of the 125 GeV state. We find that the VLF contributions
partially cancel the SM fermion contributions for a range of
low tan f# values and for some ranges of m4, while for larger
tan  the effective couplings always increase compared to
the 2HDM-II. To illustrate this point more explicitly, we
plot x4, as a function of tanp in Fig. 18 for my =
300 GeV and 600 GeV. The constraint on the 2HDM
was nontrivial only for large tan 8 (see Fig. 9). Therefore,
for large tanp, since the k,,, is bigger for this model
compared to the 2HDM (see Fig. 18), and the tree-level
7t7= BR from which the tightest constraint appears is
almost unchanged, the constraint on this model will be
tighter. In Fig. 19, we plot contours of k, for m, = my, in
the alignment limit. Corresponding contours in the Type-II
2HDM are shown in Fig. 8. From this, one can also obtain
o(g9 — H) from Fig. 1.

MVQU,, model—We introduce one doublet VLQ (y)
with hypercharge Y, and one singlet VLQ () with
hypercharge Y,, + 1/2, which couples only to ®,. We
add the following terms to the 2HDM-II Lagrangian:
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FIG. 20. Contours of x4y, for y, =05, y, =1, for M,, =
M, = 800 GeV (left), 1700 GeV (right) for the MV QU,», model.
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FIG. 21. Contours of kg, for y, =0.5, y, =1, for M,, =

M, =800 GeV (left), 1700 GeV (right) for the MV QU», model.

LD Gy + EiDE — yyiir @r6x — 5o ot

+ H.c. — M,y — M EE. (25)

Here we do not include the terms z/"/LCi)ISR and l/"/R(i)léL as
their effects have been considered in the MV QD;; model.
As the BR(A — VV)s do not change much compared to the
2HDM-II case, we do not show them here. Instead of the &
[with hypercharge (Y,, + 1/2)] if we consider a VLF (say
x) of hypercharge (Y, —1/2) we get a different model
where the y couples to the ®, instead of the &,. This will
give similar effects to what we consider here.

Similar to the MV QD;; model, we diagonalize the mass
matrix by an orthogonal rotation and define the couplings

yf; The mass eigenvalues, mixing angles and y;;’s for this
model can be found in Appendix A 2. The effective
couplings for this model are given in Appendix B. As in
the MV QD,; model, the x4y becomes zero when y, = y,.
In Fig. 20 we plot contours of k4, in m,-tan § plane. In the
MVQU,, model the VLF contributions to k., are very
small for y; = 0.5 and y; = 1, and therefore we do not
show it explicitly. This is particularly so for large tanf
because the y;;’s are proportional to cos 3, which become
small as tan # increases. Similar conclusions hold for k.
In Fig. 21 we plot kp,, using which one can read off the
o(g9g — H) from Fig. 1 by reading the x4, there as i, as

mentioned earlier. Since k4, and k,, do not change much

PHYSICAL REVIEW D 93, 055004 (2016)
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FIG. 22. BR(A — yy) (left) and BR(A — Zy) (right) with
M, =M, =1000 GeV for tanp =30 for MVQU,, model
(solid black), and the corresponding variation in the Type-II
2HDM (dashed black). The BR for tanf = 1 and the BR(A —
7z, bb, tt) are not explicitly shown here as they are identical to
those in Figs. 16 and 7 respectively.

compared to the 2HDM-II, constraints on the my-tan f3
plane will almost remain the same as in the 2HDM-II case.
Thus, VLFs, if realized as in the MV QU,, model, have
little impact on the observables we consider here.
MVQU,, model—We introduce one doublet VLQ (y)
with hypercharge Y, and one singlet VLQ (&) with
hypercharge (Y,, + 1/2). We consider the case where &g

couples only to ®; and &; couples only to ®,. To the
2HDM-II Lagrangian, we add

LD iy + EDE — (3, ®1Ex + 510k P&, + Hee.)

— M,y — M, EE. (26)
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FIG. 23.  Contours of k4,4, for y, = 1,y, =1, for M, = M, =
800 GeV (left) and 1700 GeV (right) for the MV QU,, model.
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(dashed-black).
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We get different models if instead of the couplings above,

the y; couples to <i>1 and y; couples to <i>2, or, if instead of
¢ we introduce a VLF singlet (say y) with hypercharge
(Y,, — 1/2) with couplings to ®, and ®,. All these models
have a similar phenomenology as the MV QU 12 model.
The mass eigenvalues, mixing angles and y;.’s for this
model can be found in Appendix A 3. The effective
couplings for this model are given in Appendix B. In this
model, the effective couplings do not reduce to zero for
y; = ¥;, unlike in the MV QD,; and MV QU,, models, as
there are no additional P and C symmetries in the VLF
sector. In Fig. 22, we plot the BR(A — VV), BR(A —
bb,t"7",17) for an example choice of Y, =1/6. The
BR(A — yy,Zy) for tanp =1, y; = 0.5, y; = 1 and the
tree-level BR(A — 77, bb, tt) are not explicitly shown in
Fig. 22 as they are identical to those shown for the
MVQD;; model in Fig. 16 and the Type-II 2HDM in
Fig. 7. In Fig. 23 we plot contours of k,,, for y; = y; =1
and M, = M; = 800 GeV and 1700 GeV. From this, one
can obtain 6(gg — A) at the 8 and 14 TeV LHC from Fig. 1
in Sec. II. For low values of tan f the effective coupling
increases compared to the 2HDM-II case, while for larger
values of tan f the effective coupling decreases compared to
the 2HDM-IL. To show this more explicitly, we plot k4,
with tan f in Fig. 24. The decreased coupling is due to a
destructive interference between the contributions from SM
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Kgg(1=1, 7,=1, My=800)
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FIG. 25. Contours of kpy, fory, = 1,3, = 1,for M, =M, =

800 GeV (left), 1700 GeV (right) for the MV QU , model.
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FIG. 26. For the MVQU,, model, regions of the my-tanf
parameter space excluded at the 95% C.L. from ¢p — 777~ decay
when only A is present (left), and when A and H are degenerate
and both present (right), with y, =y, =1, M, =M, =
800 GeV (dark blue region), 1000 GeV (light blue and dark
blue regions). All shaded regions are excluded in the 2HDM-IL.

PHYSICAL REVIEW D 93, 055004 (2016)

fermions and the VLFs. If we reverse the sign of y; or y,
we get the opposite effect; for low values of tanf the
effective coupling decreases compared to the 2HDM-II
while for larger values of tanf the effective coupling
increases compared to the 2HDM-II. In Fig. 25 we plot
contours of k,, in the alignment limit. From this, one can
also obtain 6(gg — H) from Fig. 1 by reading x,, there as
KHgg» s mentioned earlier.

In Fig. 26 we plot the region of the m,- tan f parameter
space which is excluded at the 95% confidence level for
two cases: when only A is present, and when A and H are
degenerate and both present. For comparison, we have also
plotted the corresponding limit for the 2HDM-II case. We
see that the constraints are loosened compared to the
2HDM-II due to the presence of VLFs. This happens
because of the reduction of kg, (kp,,) compared to the
2HDM-II.

Next, we add VLFs to the Type-X 2HDM and study the
phenomenology of the neutral scalars.

5. Type-X 2HDM with VLQ-VLQ Yukawa couplings

MVQDX,; model—To the 2HDM Type-X model in
Eq. (11), we introduce VLFs in a similar fashion as in the
MVQD;; model, as a representative case, and call it
MVQDX,; model. The other ways of coupling VLFs
similar to the MVQU,, or MVQU;, model will be
qualitatively similar to our results here. We introduce a
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FIG. 27. BR(A — yy,Zy) with M,, = M, = 1000 GeV (solid
black) for tan f = 30 for the MV QDX;; model, and the corre-
sponding variation in the 2HDM-X (dashed black).
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FIG. 28. Contours of x4y, for y; =0.5, y, =1, for M, =

M, =800 GeV (left), 1700 GeV (right) for the MVQDX,,
model. The corresponding contours in the Type-X 2HDM is
shown in Fig. 11.
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doublet VLQ w = (y.y,) with hypercharge Y,,, and a
singlet VLQ (y) with hypercharge (Y, —1/2) which
couples only to ®,. To the 2HDM-X Lagrangian we add

LD giDy + 7iDy — (y1f,®1yg + 510r Py + He.)
- My/l;_m// - M)()_()( (27)

The effective couplings of A with VLFs are same as in the
MV QD;; model and can be read off from Appendix B. In
Fig. 27 we show BR(A — VV) including the VLF con-
tributions for the MV QDX ,; model; the tree-level BR(A —
7417, bb, 7) is unchanged from what are shown in Fig. 10.
BR(A — yy,Zy) fortanf = 1, y; = 0.5, y; = 1 are almost
identical to the 2HDM values shown in Fig. 16 and are
therefore not shown explicitly in Fig. 27. For tan f = 30,
BR(A — yy,Zy) is increased compared to 2HDM-II,
because for large tan 3, T'(A — bb) becomes much smaller
in 2HDM-X.

In Fig. 28 we plot contours of k4. The k,,, contours in
2HDM-X (without VLFs) are shown in Fig. 11. Using
these plots, one can read off o(gg - A) for 8 TeV and
14 TeV LHC from Fig. 1 in Sec. II. As expected, for large
tan 3, K, is significantly larger in this model compared to
2HDM-X since the VLFs contribute substantially while the
SM quark contributions alone are very small. In order to
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FIG. 29. K4, with tan g for m, = 300 GeV (left) and 600 GeV

(right) with y, =05, y;, =1 and M, =800 GeV (blue),
1000 GeV (green) for the MVQDX;, model and the 2HDM-
X (dashed black).
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M, =800 GeV (left), 1700 GeV (right) for the MVQODX;,
model. The corresponding contours in the Type-X 2HDM is
shown in Fig. 11.
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FIG. 31. BR(A — yy) with M, = M, = 500 GeV, y, = 0.5,
yi =1 for tanf =1 (left) and tanp =30 (right) for the
MV LE,; model.

show explicitly how large the change is, we plot k4, as a
function of tang for my, = 300 GeV and 600 GeV in
Fig. 29. In Fig. 30 we plot contours of kz,, in the m,-tan
plane in the alignment limit. From this, one can also obtain
o(gg — H) from Fig. 1.

6. Type-11 2HDM with VLL-VLL Yukawa couplings

MVLE,; model.—Vectorlike leptons do not contribute
in gg — A, but can contribute in A — yy, Zy. We show the
effect of VLLs in a simple model similar to the MV QD
model, but with VLLs instead of VLQs. We introduce one
doublet VLL (y) with hypercharge Y, and one singlet VLL
(¢) with hypercharge (Y, —1/2). The Lagrangian we
consider is exactly the same as in Eq. (20), except here
the VLLs y and y do not couple to gluons. The effective
couplings are the same as for the MV QD;; model except
for color factors. As an example, we choose Y, = —1 /2
and plot BR(A — yy) as a function of m, in Fig. 31, with
M, =M, =500 GeV, for tan = 1 and 30. We see that
the effect of VLLs is qualitatively similar to vectorlike
quarks; for low tan f the effect of VLLs is negligible while
for large tanf and large m, VLL contributions are
significant. Near m, = 1000 GeV, the VLL contribution
is quite large due to them going on shell for our choice of
VLL mass of 500 GeV. BR(A — Zy) will show the same
behavior.

IV. CONCLUSIONS

Many theories beyond the standard model contain new
CP-odd and CP-even neutral scalars ¢p = {A, H} and new
vectorlike fermions (yy;). We study the LHC phenom-
enology of ¢ taking into account yy,; contributions to ¢gg,
¢yy and ¢pZy couplings at the 1-loop level.

In Sec. II we write an effective Lagrangian with ¢
coupled to SM gauge bosons and fermions. We focus only
on ¢ Yukawa couplings to third-generation SM fermions,
namely ¢, b, 7, since these are usually the bigger couplings
in most BSM extensions. The couplings of the A to
standard model W, Z gauge bosons (i.e. AVV couplings)
cannot occur from renormalizable operators in a CP-
conserving sector, but can be induced as loop-generated
nonrenormalizable operators. These operators are induced
by SM fermions and also the heavy yy;. In Sec. Il we
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present model-independent results that are useful whatever
the origin of these effective couplings. In Fig. 1 we present
the 8 TeV and 14 TeV LHC gg — ¢ (gluon-fusion channel)
cross sections as a function of the effective couplings. We
also obtain limits on the effective couplings from the 8 TeV
LHC data on the yy, t77~ and #f modes. We do not include
the bb decay mode and the b-quark associated production
channels in this work.

We define some simple models in Sec. III that are
representative of BSM constructions as far as the phenom-
enology of ¢ is concerned. These models include ¢ and
wy. in the singlet and doublet representations of SU(2). In
the doublet case, we focus on the 2HDM Type-II and Type-
X models. We compute the ¢gg, ¢yy and ¢pZy effective
couplings induced by the SM fermions and vectorlike
fermions at the 1-loop level and present analytical expres-
sions for them in Appendix A. For the various models we
define, we present the effective couplings k49, Kgyy» Kpzys
and BR(A — yy, Zy) and BR(A — ff) for f = {z,b,t} as
a function of the model parameters. From the x,, and the
BR into one of these modes, one can see if a point in
parameter space in a given model is allowed by the 8§ TeV
data from our plots in Sec. II. One can also read off the
gluon-fusion cross section at the 8 TeV and 14 TeV LHC
from Fig 1. Interestingly, for some of the 2HDM cases we
studied, we find that the addition of vectorlike fermions
loosens the constraint compared to the 2HDM alone, and
allows more of the parameter space. This can be seen for
instance in Fig. 26. The 14 TeV LHC gluon-fusion CS of
the ¢ and its BRs in the different models we present should
be useful in identifying allowed regions of parameter space
and promising discovery channels of the ¢. In this context,
it is interesting to explore the possibility of the ¢ being the
state responsible for the recent 750 GeV excess of diphoton
events at the 13 TeV LHC [57,58]; this is the subject of a
separate work.
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APPENDIX A: COUPLINGS, MASSES AND
MIXING ANGLES IN VARIOUS MODELS

Here we provide the explicit expressions for the mixing
angles and the mass eigenvalues in the different models we
have defined in Sec. III. We also provide expressions for the
k;;’s, y;;’s defined in Eq. (24). Sec. A 1 contains the mixing
angles and the mass eigenvalues for the MVU, MV D and
MV Q models. Sec. A2 contains explicit expressions for
yij’s and k;;’s for the MVQOD;, MVQUy», and MVQDX ,
models. Sec. A 3 contains explicit expressions for y;;’s and
k;;’s for the MV QU,, model. In what follows we will use
the notations ¢, z = cos O g, sy g = Sin6 g, cy = cosp
and s = sinf.

1. MVU, MVD, MVQ models

In this section we give the mixing angles and the mass
eigenvalues for the MVU, MVD and MV Q models. The
mixing angles GL z» for MVU model are given by

2\/§yllel//
5720 + 307

tan20U — 2v2y1y,01v2
an g = 22—2M2—y%v%'
%

tan 20Y =

(A1)

The mass eigenvalues for the EM charge-2/3 fermions in
MVU model are given by

1 Yu Yo, Yu 2V,
= M -1 -M -1
my,, > \/(\/ivz-f- > + v] F \/ivz w ] T > vy

(A2)

The mixing angle and mass eigenvalues for the MV D model are obtained from Eq. (A1) and Eq. (A2) by the replacements
Vi = Y2, YuU2 = yqv; and M, - M,,. The mixing angles HL x» for the MV Q model are given by

2\/_)~)eff,v Meff
~ AP+ G

tan 260Y = 208

2\/-5)eff eff 2

(5?03

U _
020 = S0 - O - G

The mass eigenvalues for the EM charge-2/3 fermions in the MV Q model are given by

|

eff
_Mlef> +()’1 ) 1)%

1 yeff ‘ ( yeff )
_ u M 1
mz,t2 D) \/ ( \/§ Uy + 0 > + 3 )
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2. MVQD,y, MVQU,, models

In this section we give the expressions for the y;;’s and
k;;’s for the MV QD ;, MV QU,, models. The couplings «;;
defined in Eq. (24) for the MV QD,;, MV QU,, models and
also for the MV QDX |, model are given by x;;=(g/cw)X
[(T°/2)(c; +cR)=0syy),  Kknn=(g/cw)(T°/2)(s +s%)~
Osiyls k1o = —(g/cw)(T?/2)(spcp + sgeg). The mass
eigenvalues M, [in Eq. (24)] for the MV QD;; model
are given by

—_

1 -
M,, = 3 \/(My/ + M) 45 (v = 51)?

o

1 -

+ \/(MW_M;()2+§U2C/2}()71 +y1)2 (A3)
and the mixing angles 6,z for MVQD;; model are
given by

Zﬁvcﬂ(ylMZ +y1M,,)
2(My, = M7) = (5 = ¥7)

2\/§UCﬁ(ylM;( +yM,,)
2(My, — M) + v’ cj(377 = i)

tan20; =

tan20p =

(A4)

The mass eigenvalues and the mixing angles for MV QU,,
model can be obtained from Egs. (A3) and (A4) by the
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replacements y; — y; and ¢z — 5. The couplings y;}’s [in
Eq. (24)] for the MVQD;, model are given by y{, =
(1/\/2)5/3(—)’1CLSR + Y15LCr)s ygz = (l/ﬂ)sﬁ(ylsLCR -
Viersg)s vh = —(1/V2)sp(vicrcr + Fisisw)s 5=
(l/ﬁ)sﬁ(ylsLsR—F)N/chcR). The yi’s in the MVQUx
model can be obtained from the yj’s in the MVQDy;
model by the replacements y; — y, and sz — c4. The
couplings y}; [in Eq. (24)] are given by y{, = —(1/ V2)5,%
(vicsg +3150¢r)s ¥aa = (1/V2)sa(yisper + JicLsr),
y}llz:_(1/\/E)sa(ychcR_)N’lchR)’ y’211 = —(]/\/E)S{IX
(=y15L5g + Jicpcg). The yi’s in the MVQU,, model
can be obtained from yf’j’s in the MV QD,; model by the
replacements y; — y, and s, — —c,. The couplings y{j [in
Eq. (24)] can be obtained from the y;;’s in the MV QD

model by the replacements s, - —c, in case of MV QDy,
and s, —» —s, for the MV QU,, model.

3. MVQU,, model
In this section we give the expressions for the y;;’s and
k;;’s for the MVQU,, model. The couplings «;; for the

MV QU , model are same as in the MV QD;; model. The
mass eigenvalues are given by

1 1 - 1 -
M,, = 5\/(My/ + M) +§U2()’1Cﬂ —Jisp)* £ \/(Mw - M;)? +§712(YICﬂ + J18p)*.

and the mixing angles 6; p are given by

2\5”()’10131‘45 +y15;M,,)
2(My, — M3) = v*(Fis; — yics)

tan20; =

(AS)

2\/§U(y1CﬁM§ +5]1S/}Ml//)
2(My, = M3) + v*(31sj — vicp)

tan 20, = (A6)

The couplings )’f} are given by )’?1:(1/\/5)()’1%01_% + Yicp5LCR), yéz:_<1/\/§><y1SﬂSLCR+5’1CﬂCLSR)’
y?zz(l/ﬂ)(ylsﬂCLcR_ylcﬂsLsR)? y[z‘1:—(1/\@)()’13/351_%—5’1CﬂCLCR)- The couplings )’?j are given by

¥ = (1/V2)(=yiscisk + Ficasper), Yo = (1/V2)(018aspcr = Ficacrsg)s Y = —(1/V2)(yiseCrer + F1€aS15R)s
yé’] = (l/ﬂ)(ylsasLsR + yicqcrcr). The yij’s can be obtained from yij’'s by the replacements s, - —c,

and ¢, — S,

APPENDIX B: THE Kjgg 7y pzy aww.azz EFFECTIVE
COUPLINGS IN VARIOUS MODELS

In this section we give the expressions for the
K{pgg.drrdzy.azz.awwy 10 the various models we considered
in Sec. IIL

L. Kpggs Kipyy
The 1-loop expressions for the ¢gg and ¢yy

amplitudes  ky,, and kg,  respectively,  with

¢ ={h,H,A}, are given here. These amplitudes
are induced by quarks whose effective Lagrangian can
be written as E; D mf]_”f—i—y,pffd)ff. Defining r; =
m7/mg and with f running over all colored fermion
species with mass m; and Yukawa couplings y,s,
and with the electric charge of the fermion (f)
denoted by @y, the general expressions for kg, and
Kgyy, are given as
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: M
Kgyr = ZeQZNJ; Q]2”y¢f'f'm_Fl/2(rf)’
f f
Kpgg = 95 Zyrﬁff Fi)y(rp).  with

Fi (ry) =4 7 g Iy) Bl
Fih(ry) f</ / o) e
and g(x,y) = (1 —4xy) for the CP-even scalars (h, H)
and 1 for the CP-odd scalar (A). Here M is a mass scale
defined in Eq. (1), which we set to 1 TeV for numerical
results. Compared to Kgyys Kag has an extra factor of 1/2
which compensates for our definition of I'(¢p — gg) in
Eq. (2) with a relative factor of 8 compared to I'(¢p — yy)
while the actual color factor is really 2. The expressions for
F il/)2 in Eq. (B1) match with the closed form expressions
given in Ref. [59].

2. KAZ}'

Here we give the general expressions for k7, [defined in
Eq. (1)] for the different models we have considered. For
the SVU and SV Q models,

M
KAZ,,—Ze ZN Qi(Ti—Qis¥)y mFEZ/)Z(r,,rZ)

with

(2 -y 1
F , d d .
1/2 (risrz)= / y/ x +(rz=1)xy+rz(x*—x)
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For the SVU model, only one VLF contributes to «,z,. For
the MVQDH, MVQUzz, MVQU12 and MVQDX;; mod-
els, kxz, = KAZ], + K'AZY + K'AZY + K‘AZ},, where

M
KAZy - 26NCQ1 KiiYii— F(l/)z(rw rZ)
m;

1- y
KAZ, = 2eN.Qik;yij (/ dy/

AM (L~ (2~ 1)) ) |

r,-(l —x)+rpx+ (rz = 1)xy + rz(x* — x)

The couplings ;;, y;; for each of the four cases are given in
Appendix A. The expression for F (12/>2 is a generalization to

vectorlike fermions of the expression given in Ref. [59].

3. Kazzs Kaww

Here we provide the expressions for k4, and x4y for
the SVU and SV Q models. For the SVU and SV Q models,

M 3
KAzz—2< )ZN’ (T5=Q;siy)?y m'FE/)z(’"nrz)’

where
3) . /1 /l_y r;
Fyo(riry)=4 [ dy dx .
N A G
For the SVQ model, kayw=2(7 )N YA 1/2(”1”’W)

For the SVU model, k4w is zero.
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