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Many theories beyond the standard model (BSM) contain new CP-odd and CP-even neutral scalars
ϕ ¼ fA;Hg, and new vectorlike fermions (ψVL). The couplings of the CP-odd scalar A to two standard
model (SM) gauge bosons cannot occur from renormalizable operators in a CP-conserving sector, but can
be induced at the quantum loop level. We compute these effective couplings at the 1-loop level induced by
the SM fermions and vectorlike fermions, present analytical expressions for them, and plot them
numerically. Using the 8 TeV Large Hadron Collider (LHC) γγ, τþτ− and tt̄ channel data, we derive
constraints on the effective couplings of the ϕ to standard model gauge bosons and fermions. We present
the gluon-fusion channel cross sections of the ϕ at the 8 and 14 TeV LHC, and its branching ratios into SM
fermion and gauge-boson pairs. We first present our results in a model independent manner, and then we
provide results for some simple models containing ϕ and ψVL in the singlet and doublet representations of
SUð2Þ. In the doublet case, we focus on the two-Higgs-doublet (2HDM) Type-II and Type-X models in the
alignment limit.
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I. INTRODUCTION

A long series of experiments culminating in the Large
Hadron Collider (LHC) discovery of the Higgs boson at a
mass of about 125 GeV has firmly established the standard
model (SM) as the correct description of nature up to an
energy scale of a few hundred GeV. With this discovery, the
theoretical puzzle as to why the Higgs boson remains
this light when quantum effects should correct it to the
highest scales present in the theory (such as the Planck
scale) comes to the fore. This problem of the stability of the
electroweak (EW) scale is the well-known hierarchy
problem of the SM. This could be a clue that some new
physics beyond the standard model (BSM) is present near
the EW scale which renders it stable against quantum
corrections, making it natural. Many theoretical proposals
have been made for this new physics (for reviews see
Ref. [1]), and they usually contain new particles at the TeV
energy scale. We are poised at a very interesting time when
the LHC is probing this energy scale and can tell us if one
of these proposals is realized in nature.
Among the possibilities of BSM physics that makes the

EW scale natural are models in which the Higgs doublet of
the SM is a pseudo-Nambu-Goldstone boson (PNGB).
Concrete realizations of this idea, for example, are in
models of little Higgs, composite Higgs and extra dimen-
sions (for reviews see Refs. [2–4] respectively). In such
models, in addition to the CP-even Higgs boson, there
could be new CP-odd scalar (A) and CP-even scalar (H),
which we denote collectively as ϕ ¼ fA;Hg, that are also

PNGBs due to which their mass is much lower than the
cutoff scale. Also, new heavy vectorlike fermions (VLFs,
denoted as ψVL) are usually required, that along with the
SM fermions (SMFs) complete some representation of a
bigger group containing SUð2Þ ⊗ Uð1Þ. The new vector-
like fermions can include vectorlike quarks (VLQs) and
vectorlike leptons (VLLs) and may be present in addition to
the usual SM quarks (SMQs) and leptons (SMLs). By
vectorlike fermions we mean that fermions in a represen-
tation of the SM gauge group and in its conjugate
representation both appear in the theory (for more details
see for example Ref. [5]). Some supersymmetric models
also include vectorlike matter, and thus have ϕ and ψVL
both present, along with many superpartners.
The phenomenology of a CP-odd scalar at the LHC can

be quite distinct as compared to a CP-even scalar (such as
the SM Higgs boson), and one focus of this work is to
elucidate this aspect. If CP invariance is not spontaneously
broken by an A vacuum expectation value (VEV), i.e. if
hAi ¼ 0, as we assume here, AWþW−, AZZ (collectively
called AVV couplings), and also Aγγ and AZγ couplings
cannot arise from renormalizable operators. The latter two
also do not arise from renormalizable operators because of
unbroken electromagnetic (EM) gauge invariance, the same
reason why hγγ and hγZ are zero at the renormalizable
level. These can then only result from higher-dimensional
operators generated at loop level. In contrast, for the CP-
even SMHiggs boson (denoted as h), the hWþW− and hZZ
couplings are generated at tree level from dimension-four
operators after electroweak symmetry breaking (EWSB),
i.e. with hhi ¼ v=

ffiffiffi
2

p
. Therefore, generically speaking, the

AWþW− and AZZ effective couplings, generated at loop
level, are much smaller in magnitude compared to the
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tree-level hWþW− and hZZ couplings; the Aγγ and hγγ
effective couplings are both loop suppressed and small, and
similarly the AγZ and hγZ are also both loop suppressed.
Thus, similar to the h, the gg → A “gluon-fusion” channel
is important at the LHC, while compared to the h, the
vector-boson fusion channel of A is much suppressed. The
alternate possibility of hAi ≠ 0 is not discussed here but is
considered for instance in Refs. [6].
Turning next to ϕ ¼ fA;Hg couplings to fermions, we

include ϕ couplings to new vectorlike fermions at the tree
level. Furthermore, if ϕ is part of a doublet, it couples also
to SM fermions at the tree level (similar to h). We consider
the case when ϕ couples significantly only to third-gen-
eration SM fermions, a situation common in many BSM
extensions. Thus, the relevant couplings to SM fermions are
ϕbb̄,ϕτþτ− andϕtt̄. If theϕbb̄ coupling is sizable, bb̄ → ϕ,
bg → bϕ and gg → bb̄ϕ can be important production
channels of the ϕ. However, we do not include these
production channels in this work, but restrict ourselves only
to the gluon-fusion channel.
We mostly restrict ourselves to the situation when mϕ <

2MVL so that ϕ cannot decay to a pair of VLFs. If the ψVL
is light enough they can also be studied directly at the LHC,
as discussed for instance in Ref. [5] and references therein.
However, if they are too heavy to be directly produced at
the LHC, but the ϕ (or h as studied in Ref. [7]) can be
directly produced and its couplings measured, the VLF
contributions to the ϕ effective couplings we derive here
can be useful in probing the ψVL indirectly.
We identify the lighter CP-even state (h) to be the

125 GeV state discovered, and whose properties measured,
at the LHC. The h couplings measured at the LHC so far
largely agree with the SM, at least to about a few tens of
percent, and the magnitude of the hVV coupling (with
V ¼ fW�

μ ; Zμg) is constrained to be close to the SM
coupling at the few tens of percent level. This will be
realized in the so-called “decoupling limit” [8], or more
generally in the “alignment limit” [9]. In order to capture
many different BSM models, we perform a model-
independent effective theory analysis of the ϕ coupled to
SM fields. We present the constraints from the recent 8 TeV
LHC run using the γγ, τþτ− and tt̄ channels, and present the
signal cross section (CS, σ) at the LHC as a function of
the effective couplings of the ϕ (denoted by κ) and the
branching ratio (BR) into these modes. We do not focus
much on the ZZ andWþW− decay channels of the ϕ as the
branching ratios into these modes are much smaller than the
other modes due to AVV coupling being generated only at
the loop level, and the HVV coupling being zero in the
alignment limit. We also present many simple models
containing A and ψVL in SU(2) singlet and doublet
representations. For A in a doublet, we restrict ourselves
to the two-Higgs-doublet model (2HDM) Type II and Type
X. We present the 1-loop analytical expressions for the
fAgg; Aγγ; AγZg effective couplings induced by SMFs and

VLFs in each of these models; as a function of the model
parameters, we plot numerically these effective couplings
and the BR into the γγ, γZ and fermion final states. These
are some of the main results of this work.
In previous studies, one of us has considered the

implications of models with VLQs and VLLs coupled to
the lighter CP-even Higgs boson h in Ref. [7], and the
direct LHC signatures of VLQs in Refs. [5]; this work
provides a complement by considering aspects of heavier
neutral CP-odd and CP-even scalars A, H. In Ref. [10] we
study many aspects dealt with in this paper but in a
specific little-Higgs model, the SUð6Þ=Spð6Þ model by
Low, Skiba and Smith [11]. We also list there many little-
Higgs models that contain a 2HDM structure. The results of
this paper are useful in deriving constraints and prospects of
such models.
From the vast literature, we give a sampling below of

studies that deal with extra BSM neutral scalars, have
overlap with our work, and that take into account the recent
LHC 8 TeV constraints. We also mention how our work
complements them. There exist several studies which
present σðpp → AÞ (see for example Refs. [12,13]) in the
context of 2HDM,minimal supersymmetric standard model
(MSSM) and next-to-MSSM. We highlight the effects of
VLFs on σðgg → AÞ in various SM extensions including the
2HDM-II and 2HDM-X. References [14,15] consider the
possibility that the observed 125 GeV state at the LHC is a
CP-odd scalar, and the former shows that this possibility is
disfavored by the LHC data. References [16,17] analyze
2HDMTypes I and II taking into account the 125 GeV LHC
data, all pre-LHC constraints and results of the heavy-Higgs
searches in various channels. Reference [18] performs a
global fit of general 2HDMs using ATLAS, CMS and
Tevatron results. References [19–23] shows the allowed
parameter space of the 2HDM-II, applying theoretical
(perturbativity, unitarity and vacuum stability) and exper-
imental (LEP, Tevatron and LHC 125 GeV Higgs data,
precision observables and B-physics and electric dipole
moment measurements) constraints. Reference [24] also
includes the heavy Higgs exclusion limits to constrain the
2HDM. LHC 8 TeV constraints on the 2HDM parameter
space are also discussed in Refs. [25–29]. The heavy neutral
scalars of the 2HDM, namely A and H, are studied in
Ref. [30], where the LHC 8 TeVexclusion and 14 TeV reach
from the processes gg → H → AZ and gg → A → HZ are
presented. Reference [31] constructed an SOð5Þ symmetric
2HDMwhich naturally realizes the alignment limit and puts
constraints on its parameter space from the 8 TeVLHC data.
Reference [32] puts limits on the triple Higgs couplings and
presents a set of benchmark points for probing SM-Higgs
pair production and the search of heavy Higgs bosons
through nonstandard decay channels (i.e decays of A, H
that involve at least one Higgs boson in the final state).
Reference [33] calculates the loop factors for the AVV
couplings in the MSSM and the 2HDM with a heavy chiral
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fourth generation. Reference [34] studies A → WW, ZZ
decays and compares this with the corresponding CP-even
scalar decays in the 2HDM-II, and also with a chiral fourth
generation or additional heavy VLQs added. In addition to
these, here we also include the effects of VLFs on A → γγ,
Zγ decays. An effective Lagrangian analysis of new heavy
scalar particles is presented in Ref. [35]. Various VLF
models and related phenomenological issues are also stud-
ied in Refs. [36]. Many of these studies are done with
specificmodels inmindwhilewe present the LHC limits and
signal CS in a model-independent manner, and, using these,
derive results for the models we introduce and also for some
of the models above.
The paper is organized as follows: In Sec. II we present a

model-independent analysis of the CP-odd and CP-even
neutral scalars ϕ, present constraints on its effective
couplings from the 8 TeV LHC run, the LHC gluon-fusion
CS, and BR into SM fermion and gauge boson decay
modes. In Sec. III we present many simple models
containing ϕ and ψVL as SUð2Þ singlets or doublets. For
each of these models, we work out the 1-loop effective
couplings of the ϕ and present its BR into two-body decay
modes. One can read out the current constraints and gluon-
fusion CS of the ϕ at the LHC for each of these models in
conjunction with the results in Sec. II. The models
considered include ϕ as an SUð2Þ singlet, or as contained
in the 2HDM, with correspondingly the ψVL also in singlet
or doublet representations. We offer our conclusions in
Sec. IV. For the various models we discuss, we compile
expressions for the mass eigenvalues and mixing angles in
Appendix A, and the 1-loop effective couplings in
Appendix B.

II. MODEL-INDEPENDENT ANALYSIS

In this section, we define an effective Lagrangian with
couplings of the neutral scalars, CP-odd A and CP-even h,
H to SM gauge bosons and fermions. We denote the neutral
scalars collectively as ϕ. In models that contain two CP-
even scalars, we identify the lighter one (h) as the 125 GeV
scalar observed at the LHC. For the heavier states ðA;HÞ,
we show the constraints from the 8 TeV LHC, signal
CS σ × BR into various SM two-body final states at the 8
and 14 TeV LHC, as a function of the effective couplings
and mϕ. For any given new physics model, one can obtain
this effective Lagrangian by integrating out heavier fields,
following which the results of this section can then be used
to obtain the LHC limits and gluon-fusion cross section in
that model.
CP invariance requires the CP-odd scalar A coupling to

SM gauge bosons to be only via higher-dimensional
operators. The CP-even scalars can couple to the massive
gauge bosons at tree level. Showing only the new
physics terms, the effective Lagrangian for any neutral
scalar ϕ is

Leff¼
1

2
∂μϕ∂μϕ−

1

2
m2

ϕϕ
2−yϕfifiϕf̄iXfiþyϕWWϕWμWμ

þyϕZZϕZμZμ−
1

64π2M
κϕγγϕYμνστFστFμν

−
1

32π2M
κϕγZϕYμνστFστZμν−

1

64π2M
κϕggϕYμνστGστGμν

−
1

64π2M
κϕZZϕYμνστZστZμν

−
1

32π2M
κϕWWϕYμνστWστWμν; ð1Þ

where X ¼ γ5, Yμνστ ¼ ϵμνστ for the CP-odd scalar, while
X ¼ I (identity matrix), Yμνστ ¼ gμσgντ for the CP-even
scalar. Here κϕijs contain other fermion and gauge boson
loop contributions. Tree-level scalar gauge boson couplings
yϕZZ, yϕWW are zero for the A. We have defined the
dimensionless effective couplings κ by pulling out a new
physics mass-scale M in the effective ϕVV terms. For the
numerical results we show, we setM ¼ 1 TeV from now on
and show only κ; for other values of M, the κ can easily be
rescaled.Althoughwe havedefined the effective couplings κ
by extracting a heavy new physics mass-scale M, SM
fermion contributions are to be included when present.
Equation (1) is an effective Lagrangian at a scale just above
mϕ. Heavy BSM fermion and the SM fermion contributions
are to be included in κ before comparing with the plots we
show in this section. For various simple SM extensions
detailed in Sec. III we compute the κ’s and present them in
Appendix A. If SM fermions contribute and can go on shell,
the κ are complex. In this case, the κϕVV that appear in our
plots in this section should be read as jκϕVV j. We assume
yϕfifi to be real in this work.
The CP-odd scalar can decay to SM gauge bosons or

fermions. In terms of the κ’s and y’s defined above, the
decay rates to different final states are

Γðϕ → ZγÞ ¼ 1

32π

�
κϕZγ

16π2M

�
2

m3
ϕð1 − rZÞ3;

Γðϕ → ggÞ ¼ 1

8π

�
κϕgg

16π2M

�
2

m3
ϕ;

Γðϕ → ffÞ ¼ Nc

8π
y2ϕffmϕð1 − 4rfÞn=2;

Γðϕ → γγÞ ¼ 1

64π

�
κϕγγ

16π2M

�
2

m3
ϕ; ð2Þ

where n ¼ 3 and n ¼ 1 for CP-even and CP-odd scalars
respectively, rf ¼ m2

f=m
2
ϕ, rZ ¼ m2

Z=m
2
ϕ with Nc ¼ 3 for

quarks and Nc ¼ 1 for leptons. Here we have defined
Γðϕ → ggÞ to have an extra factor of 8 compared to Γðϕ →
γγÞ anticipating a color factor. It turns out, however, that for
a quark in the loop, the color factor in the Γðϕ → ggÞ is
actually 2. This will get compensated for in κϕgg [see for
example Eq. (B1)]. Using these expressions, one can work
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out the BR of the ϕ into these final states in any new
physics model.
We turn next to discussing limits from the 8 TeV LHC

and the gluon-fusion cross section at 14 TeV. To obtain the
limits on the effective couplings κ and y, we use upper
limits (ULs) from recent LHC analysis on σðpp → ϕÞ ×
BR (ϕ → XX), and the currently relevant constraints are
XX ¼ fγγ; τþτ−; tt̄g. We take the limits on the γγ channel
from the CMS analysis Ref. [37] which has an upper limit
up toMϕ of 850 GeV, on the τþτ− channel from the ATLAS
analysis Ref. [38] up to Mϕ of 1000 GeV, and from the
ATLAS analysis Ref. [39] for the tt̄ channel. Using these
we constrain the effective couplings of Eq. (1).
At the LHC, the ϕ can be produced by gg → ϕ (called the

gluon-fusion channel), which starts at the 1-loop level when
ϕ couples to colored fermions. In addition to the above
production channel, if ϕ couples to b-quarks, there are
additional production channels, namely bb̄ → ϕ (called bb̄-
fusion), bg → bϕ and gg → bb̄ϕ (called b-quark associated
production) channels; how these compare with the gluon-
fusion channel depends on how large the bb̄ϕ coupling is in
a given model. For instance, for ybϕ ¼ 0.5, we find that the
production rate via bb̄-fusion and b-quark associated pro-
duction channels becomes comparable to the gluon-fusion
channel with κϕgg ≈ 20. We include only the gluon-fusion
channel in this study, but in models with a large bb̄ϕ
coupling, the bb̄-fusion and b-quark associated production
channels may have to be included, which we do not do here.
For a study involving the b-quark associated production
channels of the h including gg → bb̄h, see Ref. [40]. One
can separately study the b-quark associated production
channels by tagging on the final state b-jet as discussed
in Ref. [38]. Reference [41] has recently studied bb̄-fusion
and b-quark associated production channels for a light
CP-odd scalar. Although there are some LHC limits using
b-tagged events towhich thebb̄ decaymode and theb-quark
associated production channels contribute, we do not
include them in our analysis here. So far these results have
been presented for mϕ < 350 GeV (see Refs. [42–44]).
Rather than compute the A,H production rate at the LHC

ourselves, we relate it to the SM Higgs production rate at
the same mass, and make use of the vast literature on the h
production rate. Since σðgg → ϕÞ ∝ Γðϕ → ggÞ, we can
write the σ � BR for ϕ production followed by decay into
the final-state XX as

σðgg → ϕÞ ¼ Γðϕ → ggÞ
Γðh → ggÞ × σðgg → hÞ: ð3Þ

We compute Γðϕ → ggÞ and BRðϕ → XXÞ as a function of
theeffective couplingsandapply theULfrom the8TeVLHC
quoted above using Eq. (3). For our numerical work, we take
σðgg → hÞ from Ref. [45]. We assume here that
the dependence on the parton distribution function and the

acceptance at the LHC for A,H and h are not very different,
which should be reasonable assumptions. For the decay
A → XX, the final statesXXweconsiderareγγ,τþτ− and tt̄as
these are currently the significant ones. We compute the
BRðA → XXÞ using Eq. (2). If A,H are fairly close in mass,
i.e. closer than the experimental resolution to separate them
(say 30% of mϕ), and no kinematic variables can separate
them, we should include all of them into the σ × BR above.
In Fig. 1 we show σðgg → ϕÞ at the 8 TeV LHC (left

plot) and 14 TeV LHC (right plot) as a function of κϕgg.
σðgg → ϕÞ is obtained using Eq. (3) and the σðgg → hÞ
from Ref. [45] as mentioned earlier. In a given new physics
model, one can compute κϕgg and then use these plots to
obtain the σðgg → ϕÞ. Using the σðgg → ϕÞ, we obtain
constraints from the 8 TeV LHC data as a function of the
BR into a particular mode. We show this in Fig. 2 obtained
from the γγ, τþτ− and tt̄ channels. The regions to the top
and right of the curves are excluded at the 95% C.L. level.
In the γγ channel, the bound is strongest formϕ ¼ 200 GeV
since the experimental exclusion is tightest at that mass. We
see that there is no constraint from this channel for BRðϕ →
γγÞ ≲ 10−4 for the range of κϕgg shown. From the τþτ−

channel, we find the strongest limit formϕ of about 500GeV
since the experimental exclusion is tightest at that mass. We
show in Fig. 3 the total σðgg → ϕÞ × BRðϕ → XXÞ con-
tours (in pb) for XX ¼ fγγ; τþτ−; tt̄g at the 14 TeV LHC,
making use of the fact that the total σðgg → ϕ → XXÞ ∝
κ2ϕgg × BRðϕ → XXÞ, omitting kinematic factors indepen-
dent of couplings. Thus, each mode XX can be considered
and presented independently of the others aswe do here. The
95% C.L. LHC exclusion discussed above is also shown
labeled as “8 TeV.” If the ϕbb coupling is large, i.e. bigger
than about 0.5, inclusion of the b-fusion and b-associated
production channels (along with the ϕgg channel that we
have included here) could result in a stronger exclusion than
we obtain here.
As already mentioned, the model-independent results

presented in this section can be used to obtain the LHC
constraints and gluon-fusion CS in any particular model by
computingfirst theeffectivecouplings in thatmodel.Wenext
compute the effective couplings in many simple models.

III. MODELS

In this section we consider some specific models for the
neutral CP-odd and CP-even scalars A, H and study their
LHC production and decays into two-body final states. We
compute the decay rates assuming a sharp turn-on at
threshold of the two-body final state. The goal is to capture
in simple models many of the features present in realistic
BSM models as far as the LHC phenomenology of A, H is
concerned. As before, we collectively denote A,H as ϕ. We
mostly focus on the situation whenmϕ < 2MVL and do not
focus on the phenomenology due to the ϕ decaying to a pair
of on-shell VLF. We first consider the models where ϕ is an
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SUð2Þ singlet and couples to SUð2Þ singlet VLF [singlet A
with a vectorlike up-type singlet (SVU model), or with a
down-type singlet (SVD model)] and SUð2Þ doublet VLF
[singlet A with minimal vectorlike quark doublet (SVQ
model)]. We next consider effective models with ϕ in an
SUð2Þ doublet, with the two SU(2) doublet scalars Φ1 and
Φ2 both having hypercharge þ1=2. The 2HDMs we con-
sider are either Type-II-like or Type-X-like. We notate the
Type-II-like models, for example, as MVQD for minimal
vectorlike extension with VLQ doublet Q and down-type
VLQ singletD, andMVQU for a similar model with an up-
type VLQ singlet U, and a similar model with the 2HDM
Type-X structure instead as MVQDX. We include sub-
scripts depending on which Higgs doublets the fermions
couple to, i.e. MVQDij will mean that the model has one
VL-quark doublet ψ , and one down-type VL-quark singlet
χ, with the couplings ψ̄LχRΦi and ψ̄RχLΦj turned on.
Among our example models are some that mimic BSM
models that have ϕ Yukawa couplings with an SMQ and a
VLQ, for example, the third-generation SMQ with an up-
type singlet VLQ to give the MVU model.
Many of the effects we present are similar for the CP-

odd and CP-even scalars A, H. One important difference
between the A and H is that at tree level, the AVV (with

V ¼ fW;Zg) couplings are zero and are only generated by
SM and BSM fermions at the loop level, while the HVV
couplings could be nonzero at tree level. However, in the
alignment limit we consider (discussed later) the HVV
couplings are zero. Thus in the alignment limit the A andH
have very similar phenomenology. Therefore we will
mostly present the phenomenology of the CP-odd scalar
A, and, where relevant, we will also contrast it with the
situation for the H. Since the tree-level HVV coupling is
zero in the alignment limit, in the Appendix we only give
the expressions for the fermion contributions to the κϕVV .
For the SM Higgs we must include theW loop contribution
to κhγγ and κhZγ which we do not present here.

A. Model with an SUð2Þ singlet A with VLQ-VLQ
Yukawa couplings

We start by considering some models with an SUð2Þ
singlet A coupled to SUð2Þ singlet or doublet VLFs. For an
SU(2) singlet ϕ one cannot write Yukawa couplings with
chiral SMFs, and thus ggϕ and γγϕ couplings can only be
induced by VLFs, if they are present, as we explicitly show
here. Thus, LHC signals of a BSM singlet ϕ becomes
possible if colored VLFs are coupled to it.

FIG. 1. σðgg → ϕÞ (in pb) at the 8 TeV LHC (left) and 14 TeV LHC (right) for mϕ ¼ 200 GeV (red), 500 GeV (blue), 800 GeV
(green) and 1000 GeV (yellow).

FIG. 2. 8 TeV LHC constraints from the γγ channel (left), τþτ− channel (middle) and tt̄ channel (right), for mϕ ¼ 200 GeV (red),
500 GeV (green), 800 GeV (blue) and 1000 GeV (yellow). The regions to the top and right of the curves are excluded at the
95% C.L. level.
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1. SVU model

We study a model, which we call the SVU model, with
an SUð2Þ singlet CP-odd scalar A, coupled to an SUð2Þ
singlet, SUð3Þ triplet VLQ (ψ ) with hypercharge Yψ .

1

Clearly, the electromagnetic charge Q ¼ Yψ . To the SM
Lagrangian we add

L ⊃
1

2
∂μA∂μA −

1

2
m2

AA
2 þ ψ̄i∂ψ þ eQAμψ̄γ

μψ

− gQ
s2W
cW

Zμψ̄γ
μψ þ ψ̄iDψ − iyAAψ̄γ5ψ

−mψ ψ̄ψ −
λA
6
A2H†H: ð4Þ

The SM Higgs doublet is written as H here. Here we have
not considered possible terms coupling the A to a SM
fermion and a VLF for Yψ ¼ 2=3, −1=3 such as ψ̄LAuR,
ψ̄LAdR, q̄HψR. We study this possibility of off-diagonal

FIG. 3. Contours of the 14TeVLHC σ × BR (in pb) in the γγ channel (upper row) and the τþτþ channel (middle row) formϕ ¼ 200 GeV
(left), 500 GeV (middle), 800 GeV (right), and in the tt̄ channel (bottom row) for mA ¼ 500 GeV (left), 800 GeV (middle), 1000 GeV
(right). The region to the right of the contour labeled “8 TeV” is excluded at the 95% C.L. level from 8 TeV LHC result.

1A model with only a vectorlike lepton singlet is uninteresting
for A phenomenology since no LHC production channels are
significant (note that the Abb̄ coupling is also not possible in
this case).
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couplings between the third-generation SMQ and a VLQ in
the context of the SU(2) doublet Φ in Sec. III B 3.
We restrict ourselves to mA < 2MVL, so that A cannot

decay to a VLF pair. The possible decay modes of A are to
gg, γγ, Zγ and ZZ through a VLF loop, but no decay to
WþW−. A cannot decay to a pair of SM fermions since
such couplings are forbidden by gauge invariance. The
effective AVμVν couplings induced by VLFs are given in
Appendix B. From these we compute the partial widths
and the BR into the above modes. In Fig. 4 we plot
BRðA → γγÞ, BRðA → ZγÞ and BRðA → ZZÞ where we
chose Yψ ¼ 2=3 as an example. BRðA → ggÞ is almost
constant at around 0.999.
In Fig. 5 we plot κAgg=y2A as a function of mA. From this,

one can read off the σðgg → AÞ at the 8 and 14 TeV LHC
from Fig. 1 in Sec. II. The peaks in Fig. 5 are due to the
VLFs going on shell, although as mentioned earlier, we do
not explore its consequences in this work. In this model, the
gluon-fusion CS of A is induced only through loops of the
heavy VLFs due to which the 8 TeV LHC exclusion limits

on σ × BR into the ZZ channel (see Ref. [46]) or the γγ
channel (see Ref. [37]) are rather weak, unless yA becomes
so large that perturbativity is lost.
If mA < mh=2 (where h is the 125 GeV Higgs), then

h → AA becomes kinematically allowed and becomes a
means of producing A in addition to the gluon-fusion
channel discussed above. In Fig. 6 we plot BRðh → AAÞ
for λA ¼ 0.1, 0.05 and 0.001. When this decay is allowed, it
will contribute to the Higgs total width thereby modifying
the BRs into the other channels. In particular, it will modify
the signal strength μγγ ¼ Γðh → γγÞ=ΓSMðh → γγÞ, which
is measured to about 10% precision (see for example
Ref. [47]). We plot μγγ in Fig. 6. We thus see that the
constraint on λA from the 8 TeV LHC is of the order of 0.01
if mA < mh=2.

2. SVQ model

We consider a BSM extension, which we call the SVQ
model, with an SUð2Þ singlet A, and one SUð2Þ doublet
vectorlike fermion ψ ¼ ψL;R ¼ ðψ1L;R;ψ2L;RÞT with
hypercharge Yψ . To the SM Lagrangian we add

L ⊃
1

2
∂μA∂μA −

1

2
m2

AA
2 þ ψ̄iDψ − iyAAψ̄γ5ψ

−mψ ψ̄ψ −
λ1
4!
A4 −

λA
6
A2H†H; ð5Þ

where the gauge interactions of the ψ are understood and
are not explicitly shown. For Yψ ¼ 1=6 one can add the
terms y0uψ̄L

~HuR þ y0dψ̄LHdR þ iy2AAq̄LψR þ H:c:,2 which
we will not consider here but will address in Sec. III B 3.
As in the SVU model, there are no decays to a pair of SM
fermions, but unlike there, in this model A → WþW− decay
is also possible through the VLF loop, in addition to gg, γγ,
Zγ and ZZ modes. The expressions for the effective
couplings of the A to two SM gauge bosons are given in
Appendix B. We take Yψ ¼ 1=6 as an example.
In Fig. 4 we plot the BR of A into γγ, Zγ, ZZ andWþW−

modes. As in SVU model, the BR into gg remains
almost constant at around 0.99 for mA ≳ 300 GeV. As
the ψ1ψ2W coupling (g) is greater than the ψ iψ iZ couplings
ðg=cWÞðT3 −Qs2WÞ, the BR into WW is larger than into
ZZ. Again, for the same reasons explained in the SVU
model, the exclusion limits from the 8 TeV LHC in the γγ,
ZZ, WW channels are rather weak in this model also.
The σðgg → AÞ in this model is twice of what was

obtained in the SVU model because there are two degen-
erate VLFs in the loop. The VLFs are degenerate because
no Yukawa terms involving the SM Higgs can be written
down that can split the masses after EWSB. Since no
couplings to a pair of SM fermions exist, there are no
b-quark initiated production processes possible.

FIG. 5. κAgg=y2A as a function of mA for mψ ¼ 800 GeV (red)
and 1200 GeV (blue) for the SVU model.

FIG. 6. BRðh → AAÞ (left) and μγγ (right) as a function of mA
for the SVU model.

FIG. 4. BRðA → γγÞ (black), BRðA → γZÞ (blue), BRðA →
ZZÞ (red), BRðA → WWÞ (cyan) as a function of mA with
yA ¼ 0.1 and mψ ¼ 1000 GeV for the SVU (left) and SVQ
(right) models.

2We use the notation ~H ¼ iσ2H�.
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B. Models with A, H in SU(2) doublets (2HDM)

In the 2HDM we have two scalar doublets, Φ1 and Φ2,
which we take to have hypercharge þ1=2. The physical
neutral states are two CP-even scalars (h and H) and a CP-
odd scalar (A). The Higgs Lagrangian is given by

L ⊃ jDμΦ1j2 þ jDμΦ2j2 − VðΦÞ; ð6Þ

where

VðΦ1;Φ2Þ¼m2
11Φ

†
1Φ1þm2

22Φ
†
2Φ2−m2

12ðΦ†
1Φ2þH:c:Þ

þ λ1ðΦ†
1Φ1Þ2þλ2ðΦ†

2Φ2Þ2þλ3ðΦ†
1Φ1ÞðΦ†

2Φ2Þ

þ λ4ðΦ†
1Φ2ÞðΦ†

2Φ1Þþ
λ5
2
½ðΦ†

1Φ2Þ2þH:c:�:
ð7Þ

In the limit whenm2
12 ¼ 0, the Lagrangian has a discrete Z2

symmetry under which Φ1 → −Φ1, dR → −dR (with all
other fields unchanged), if the down-type right-handed
fermions couple only to theΦ1 and the up-type right-handed
fermions only couple to theΦ2 so that there are no tree-level
flavor changing neutral currents (see for example Ref. [48]).
Nonzero m2

12 softly breaks this Z2 symmetry. We will not
consider the hard Z2 breaking terms (Φ†

1Φ1Φ
†
1Φ2þ

Φ†
2Φ2Φ

†
2Φ1 þ H:c:).3 There are eight free parameters in

V. After we fix the minimum of the potential at hΦ1i¼
ð0;v1=

ffiffiffi
2

p ÞT and hΦ2i¼ ð0;v2=
ffiffiffi
2

p ÞT , with the constraint
v21 þ v22 ¼ v2 ¼ ð246 GeVÞ2, the number of free parame-
ters reduces to seven which we take to be mA, mh,
mH, mH� , tan β, α and m2

12, in a notation that is common
in the literature (see Ref. [49]). We parametrize the scalar
doublets as

Φi ¼
0
@ ϕþ

i
1ffiffi
2

p ðvi þ ρi þ iηiÞ

1
A; ð8Þ

with v1 ¼ v cos β, v2 ¼ v sin β and tan β ¼ v2=v1. The
physical mass eigenstates are a heavy CP-even scalar
H¼ρ1cosαþρ2sinα, a lightCP-even scalarh ¼ −ρ1 sin αþ
ρ2 cos α, a CP-odd scalar A ¼ −η1 sin β þ η2 cos β and
charged scalars H� ¼ −ϕ�

1 sin β þ ϕ�
2 cos β. All the effec-

tive couplings, relevant BRs and the cross sections in
the 2HDM can be found in Refs. [49,50]. The expressions
of α, β in terms of the model parameters can be found,
for example, in Ref. [19,49]. It is these neutral scalars A, H
that we are studying in this work.
In some regions of parameter space, mA ≈mH, i.e. their

masses are within the experimental resolution to distinguish
them. If so, we must add the contributions from both A and
H to any given channel; their sum is incoherent due to the
different CP quantum numbers. For instance, the exper-
imental invariant-mass resolution in the τþτ− channel is
about 30% (see for instance Ref. [51]). Therefore, we
consider two cases, one when mA and mH are within 30%
and we add the contributions from the “degenerate” A and
H, and another when they are split by more than 30% and
we treat them separately. When they are degenerate, for the
τþτ− channel for instance, we have BRðA → τþτ−Þ ≈
BRðH → τþτ−Þ in the so-called alignment limit (as will
be defined precisely later), and we can use the constraints
obtained in Sec. II if we interpret κϕgg shown there asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2Aggþκ2Hgg

q
and BRðϕ→ττÞ as BRðA → τþτ−Þ þ

BRðH → τþτ−Þ. For the nondegenerate case, again one
can make use of our results in Sec. II to obtain constraints
either for the H or A.
We are interested in the case where the lighter CP-even

scalar (h) is the observed 125 GeV Higgs boson. For this,
the cosðβ − αÞ ≈ 0 is the most favored region (see Fig. 18
of Ref. [17]). Only a small range of other values of (β − α)
are allowed where the sign of the down-type coupling of the
Higgs is reversed. For the 2HDM with exact Z2 symmetry
(i.e. m2

12 ¼ 0), tan β has an upper limit of 7 from the
perturbativity constraint (see Ref. [24]). We will work with

FIG. 7. BRðA → τþτ−; bb̄Þ (left, middle) for tan β ¼ 1, 5, 10, 15, 30 and BRðA → tt̄Þ (right) for tan β ¼ 1, 5, 10, 15 in the 2HDM
Type-II model. The loop-level BRðA → VVÞ in the Type-II 2HDM model are shown in Fig. 16 by the dashed black curves.

3This is a natural choice since if these terms are zero to start
with they will not be induced at the loop level even if the soft
breaking terms are present.
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a nonzero m2
12 which allows for larger values of tan β (see

Ref. [20]). We also assume that the alignment limit
(β − α ¼ π=2) holds sufficiently accurately so that the h
couplings are SM-like to match with the properties of the
observed 125 GeV state at the LHC as discussed in
Ref. [16]. In this limit, the H → WW and H → ZZ decays
do not give any significant constraints on the parameter
space (see for example Ref. [46]).
Depending on how the fermions couple to Φ1 and Φ2,

various types of 2HDM have been defined in the literature,
some of which we discuss next. We start by discussing a
2HDMwith only the SM fermions present, and follow it up
with many examples of different ways of adding vectorlike
fermions.

1. Type-II 2HDM

In the Type-II 2HDM the SM Yukawa couplings are
replaced by

L ⊃ −ydq̄LΦ1dR − yuq̄L ~Φ2uR þ H:c:; ð9Þ

where ~Φi ¼ iσ2Φ�
i . The Yukawa couplings of h, A to the

SM fermions are given as

L ⊃ −
1ffiffiffi
2

p ðyuhcαūLuR − ydhsαd̄LdR − yucβiAūLuR

− ydsβiAd̄LdR þ H:c:Þ: ð10Þ

The H-Yukawa couplings can be obtained from the h-
Yukawa couplings by the replacements sα → −cα and
cα → sα. We find the allowed regions of parameter space
from the exclusion limit on σðgg → ϕÞ × BRðϕ → τþτ−Þ
presented by ATLAS [38,51]. We focus on the τþτ−
channel as currently this is the most constraining one.
We do this first in the 2HDM Type-II (2HDM-II) without
the addition of any VLFs.
In Fig. 7 we show the tree-level decays of A to SM

fermions BRðA → bb̄; τþτ−; tt̄Þ as a function of mA for
various tan β for the Type-II 2HDM. The loop-level
BRðA → γγ; ZγÞ in the Type-II 2HDM are shown in
Fig. 16 by the dashed black curves, and our results match
with those of the Ref. [50]. We see that the BRs into γγ and
Zγ are smaller compared to those of the corresponding
loop-induced SMHiggs branching ratios even for tan β ¼ 1
when the couplings of A to the SM fermions are equal to
the Higgs Yukawa couplings. This is because the partial
width Γðh → γγ; γZÞ, being dominated by the W loop, is
larger than the partial width ΓðA → γγ; γZÞ in which only
the fermions contribute (see for example Fig. 2.10 of
Ref. [50]). For larger tan β the branching ratios are
even smaller because of the increased ΓðA → bb̄Þ and
ΓðA → τþτ−Þ (recall that the Abb̄ and Aτþτ− couplings are
proportional to tan β). The discontinuity atmA ¼ 2mt in the
BRs in Fig. 16 for tan β ¼ 1 is because of the onset of

A → tt̄ on-shell decay. For larger tan β, the discontinuity is
smaller since the Att̄ coupling becomes smaller. The h →
AA decay, possible for mA < mh=2, is studied in Ref. [17]
and we will not discuss it here.
In Fig. 8, we plot contours of κAgg and κHgg in the Type-II

2HDM. Using this, one can read off the σðgg → ϕÞ at the 8
and 14 TeV LHC from Fig. 1 in Sec. II. Using the τþτ−
channel constraints shown in Fig. 2 of Sec. II we obtain
constraints on this model. In Fig. 9 we plot the 95% con-
fidence level constraints on the mA- tan β plane, when only
A is present (left), and for mA ¼ mH when both contribute
(right). Reference [51] has presented similar constraints in
the mA- tan β plane, but for the MSSM.

2. Type-X 2HDM

In the Type-X 2HDM (2HDM-X) (see Refs. [28,49] for a
description of this model) all the SM quarks couple to Φ2

and all the leptons couple to Φ1. The Lagrangian for the
model 2HDM-X is given by

L ⊃ −ðydq̄LΦ2dR þ yuq̄L ~Φ2uR þ yel̄LΦ1eR þ H:c:Þ
þ jDμΦ1j2 þ jDμΦ2j2 − VðΦÞ: ð11Þ

As a result, A coupling to the quarks and leptons are
proportional to cot β and tan β respectively. In the Type-X
model, since all SM quarks couple very weakly to A
for large tan β, σðgg → AÞ becomes very small for large
tan β. As a consequence there are no constraints from

FIG. 8. Contours of κAgg (left) and κHgg (right) in the Type-II
2HDM.

FIG. 9. For the Type-II 2HDM, regions of the mA- tan β
parameter space (blue region) which are excluded at the 95% con-
fidence level from ϕ → τþτ− decay when only A is present (left)
and when mA and mH are degenerate (right).
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σðpp → AÞ × BRðA → τþτ−Þ. The SM quark contribution
to κAVV for the 2HDM-X can obtained from that of the
2HDM-II (see Ref. [50]) by replacing tan β with cot β in
the Abb̄ coupling. In Fig. 10 we show the tree-level
BRðA → τþτ−; bb̄; tt̄Þ. The BRðA → VVÞ for the Type-X
2HDM is shown in Fig. 27 as the dashed black curve.
In Fig. 11 we plot contours of κAgg and κHgg. From this

one can read off σðgg → ϕÞ for 8 TeV and 14 TeV LHC
from Fig. 1 in Sec. II. The results for κϕgg in the 2HDM-X
are also applicable for the Type-I 2HDM as the SM
quarks couple to H, A in an identical fashion as in the
Type-X 2HDM.
Next, we add various combinations of SUð2Þ singlet and

doublet VLFs to the Type-II 2HDM first, and to the Type-X
2HDM following that. Our goal is to study how VLFs affect
the LHC production rate and decay BRs of the ϕ. There are
eight different ways in which the Φ1 and the Φ2 can
couple to the VLFs consistent with the symmetries of the
2HDM-II, namely Φ1 → −Φ1 and dR → −dR (with all
other fields unchanged). Among these eight models we
will discuss only three representative ones that also capture
the effects in the others.

3. Type-II 2HDM with VLQ-SMQ Yukawa couplings

Many models that address the hierarchy problem, such as
for example the composite-Higgs and the little-Higgs
models, have as an important ingredient off-diagonal

couplings between a VLF and third-generation SM fer-
mions. We discuss this possibility in a model-independent
way by introducing, one at a time, SU(2)-singlet VLFs with
EM charge 2=3 and −1=3. As an example, we show how
the results obtained here apply to a little-Higgs model.
MVU model.—In what we call the MVU model, we

introduce an SU(2)-singlet VLF pair ðψ ;ψcÞ, denoted by
the 4-spinor ψ, with EM charge 2=3, and add to the 2HDM
Type-II Lagrangian the following terms:

L ⊃ Mψ ψ̄ψ − ðy1q̄L ~Φ1ψR þ H:c:Þ: ð12Þ
After EWSB the mass terms for the EM charge 2=3
fermions can be written as

Lmass ¼ −
1ffiffiffi
2

p ðyuv2t̄LtR þ y1v1t̄LψR þ H:c:Þ þMψ ψ̄ψ :

ð13Þ
We define the mass eigenstates t0L;R and t2L;R, for the EM
charge-2=3 quarks as

tL;R ¼ cos θUL;Rt
0
L;R − sin θUL;Rt2L;R;

ψL;R ¼ sin θUL;Rt
0
L;R þ cos θUL;Rt2L;R: ð14Þ

The mixing angles and the mass eigenvalues can be
found in Appendix A 1. For notational brevity we call
t0 simply as t, which we will identify with the SM top
quark. Constraints on the mixing from electroweak pre-
cision tests and a vectorlike top decaying toWb, Zt, Ht are
studied in Refs. [5,7,52,53]. Constraints from flavor
observables are studied in Ref. [52].

FIG. 10. For the Type-X 2HDM, BRðA → τþτ−; tt̄Þ (left, right) for tan β ¼ 1, 5, 10, 15, 30, and BRðA → bb̄Þ (middle) for tan β ¼ 1,
5. The BRðA → γγ; ZγÞ for the Type-X 2HDM is shown in Fig. 27 as the dashed black curve.

FIG. 11. For the Type-X 2HDM, contours of κAgg (left) and
κHgg (right).

FIG. 12. For theMVUmodel, contours of κhtt for tan β ¼ 1 (left)
and tan β ¼ 5 (right) with yu chosen such that mt ¼ 163 GeV.
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The A couplings to the EM charge-2=3 fermions in terms
of the mass eigenstates are given by

L ¼ iffiffiffi
2

p AðyAttt̄LtR þ yAt2t2 t̄2Lt2R þ yAt2tt̄2LtR þ yAtt2 t̄Lt2RÞ

þ H:c:Þ; ð15Þ

where yAtt ⊃ ðyucULcUR cos β − y1cULs
U
R sin βÞ, yAt2t2¼

ðyusUL sUR cosβþy1sULc
U
R sinβÞ, yAt2t ¼ −ðyusULcUR cos β −

y1cULs
U
R sin βÞ, and yAtt2¼−ðyucULsUR cosβþy1cULc

U
R sinβÞ.

The h couplings to the EM charge-2=3 fermions are given by

L ⊃
1ffiffiffi
2

p hðyhttt̄LtR þ yht2t2 t̄2Lt2R þ yht2tt̄2LtR þ yhtt2 t̄Lt2RÞ

þ H:c:; ð16Þ
where yhtt ¼ ð−yucULcUR cos α þ y1cULs

U
R sin αÞ, yht2t2 ¼

ð−yusUL sUR cos α − y1sULc
U
R sin αÞ,yht2t ¼ðyusULcUR cosα−

y1cULs
U
R sinαÞ, and yhtt2 ¼ ðyucULsUR cos αþ y1cULc

U
R sin αÞ.

We fixmM̄S
t ¼ 163 GeV [54] by choosing yu appropriately,

and show in Fig. 12 the contours of κhtt ≡ yhtt=ySMhtt in
the y1-Mψ plane. In the region to the left of the 0.99
contours, κhtt approaches 1. The experimental constraint on
κhtt is 0.63 < κhtt < 1.2 [55]. In Fig. 13 we show contours
of κVLFAgg =y

2
1 in the mA-Mψ plane for ftan β; yug ¼ f1; 1.4g

and f5; 1g, and also show κVLFAgg as a function of y1 for
mA ¼ 1000 GeV, Mψ ¼ 1250 GeV and tan β ¼ 0.1, 1, 5,
10, 15. For large tan β, the mixing angles become small,
which makes κVLFAgg small. For Fig. 13, we fix yu ¼ 1.4 so
thatmt is close to its experimental value, and once a specific
choice of y1 is made,mt can be fixed exactly by choosing yu
slightly differently; the resulting change in κVLFAgg due to
such differences in yu is insignificant.
The fermionic decay BR for mA < ðMt2 þmtÞ will be

largely unchanged from the Type-II 2HDM plots shown in
Fig. 7. However, if mA > ðMt2 þmtÞ the A → t2t decay

becomes kinematically allowed. In Fig. 14 we plot
BRðA→ttÞ, BRðA→bbÞ, BRðA → ggÞ and BRðA → t2tÞ,
for Mψ ¼ 1 TeV, y1 ¼ 1 and tan β ¼ f1; 5g with yu fixed
such that mt is at the physical value. BRðA → γγ; ZγÞ do
not change by much from the 2HDM-II case.
As an example, we apply these results to a concretemodel

that stabilizes the electroweak scale, has a 2HDM structure,
and has vectorlike fermions, namely the SUð6Þ=Spð6Þ little-
Higgsmodel byLow, Skiba and Smith (LSS) [11], whichwe
analyze in detail in Ref. [10]. Among the various sample
points that are listed in Appendix B in Ref. [10] that satisfy
all constraints including the precision electroweak con-
straints, we consider here the sample points 1 and 2. For
the sample point 1, the two lightest VLFs are the t2 with a
mass of 1218 GeV, the b2 with a mass of 1315 GeV, and we
have tanβ¼ 1.36, mA ¼ 1671 GeV, y1¼ 1.7, yu ¼ 1.2 and
mt≈164GeV.4 Keeping only the lighter t2 since the t3 is

FIG. 13. Contours of kVLFAgg =y
2
1 for ftan β; yug ¼ f1; 1.4g (left) and f5; 1g (middle) for the MVU model. kVLFAgg as a function of y1, for

mA ¼ 1000 GeV, Mψ ¼ 1250 GeV and tan β ¼ 0.1, 1, 5, 10, 15 is plotted on the right.

FIG. 14. Contours of BRðA → ttÞ (black), BRðA → bbÞ (blue),
BRðA → t2tÞ (red), BRðA → ggÞ (green) with Mψ ¼ 1000 GeV,
y1 ¼ 1 for tan β ¼ 1 (left) and 5 (right), for theMVU model, with
yu chosen such that mt ¼ 163 GeV.

4From Ref. [10] we list below a few details for the LSS model.
There, we had tan β ¼ v1=v2 while in this paper we have
tan β ¼ v2=v1; therefore tan β here is related to that of Ref. [10]
via tan β ¼ ð1= tan βLSSÞ. y1 is given by y1 ¼ yLSS1 c23; for point 1,
since y1 ≫ y4, to a very good approximation s14 ≈ 1 and c14 ≈ 0.
Also, mt ≈ c23y2v2=

ffiffiffi
2

p
in the limit where t3 is decoupled away,

i.e. yu ¼ y2c23, and c23 ≈ 0.9. The b2 is an SU(2) singlet since it
does not mix with the other states of charge −1=3.
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somewhat heavier, a good approximation is obtained by
considering the addition of only a singlet EM charge þ2=3
state ψ as introduced in Eq. (12). Ignoring the smaller b2
contribution, the κVLAgg due to the t2 can be read off from the
tan β ¼ 1 curve of the rightmost panel of Fig. 13 to be
approximately 0.4. This is about 10% of the SM-fermion
contribution.
MVD model.—In the MVD model, we introduce an SU

(2)-singlet VLF pair ðχ; χcÞ, denoted by the 4-spinor χ, with
EM charge −1=3, and add to the 2HDM Type-II
Lagrangian the following terms:

LA ¼ Mχ χ̄χ − ðy2q̄LΦ1χR þ H:c:Þ: ð17Þ
The mass eigenstates, b0L;R and b2L;R for the fermions of
EM charge −1=3 are defined in the same way as in Eq. (14)
with the mixing angles θDL;R. The mixing angles and the
mass eigenvalues can be found in Appendix A 1. The A
couplings to the fermions of EM charge −1=3 are obtained
in a similar way as in Eq. (15), with the replacements
yu cos β → yd sin β, y1 → y2. Similarly, the h couplings to
the fermions of EM charge −1=3 are obtained from
Eq. (16), with the replacements yu cos α → −yd sin α and
y1 → y2. As in the case of charge-2=3 fermions, we choose
yd such that mM̄S

b ¼ 4.2 GeV [56]; yhbb stays close to its
SM value. In Fig. 15 we plot contours of κVLFAgg =y

2
2 in the

mA −Mχ plane for ftan β; ydg ¼ f1; 0.03g, and f5; 0.12g
and κVLFAgg as a function of y2 for mA ¼ 1500 GeV, Mχ ¼
1000 GeV for tan β ¼ 1, 5, 10, 15.
As an example we consider again the LSS model, but

now the sample point 2 in Appendix B of Ref. [10],
with the lightest VLF being the b2 with a mass of
947.5 GeV. The b2 is an SU(2) singlet state and does
not mix with the other states of charge −1=3. For this point,
mA ¼ 1671 GeV, tan β ¼ 1.36, y2 ¼ 1.422, c23 ¼ 1.15.
κAgg can be read off from the tan β ¼ 1 curve of the
rightmost panel of Fig. 15 to be approximately 0.3.

MVQ model.—For the MVQ model, we add an SU(2)
doublet VLF pair ðQ0; Q0cÞ denoted by the 4-spinor Q0, and
add to the Type-II 2HDM Lagrangian the terms

L ⊃ MQQQ̄0Q0 þ ðMqQq̄LQ0
R − ~y1Q̄0

L
~Φ2tR

− ~y2Q̄0
LΦ1bR þ H:c:Þ: ð18Þ

In the following we show only the top sector since this is
usually the dominant piece in BSM models, and we
therefore suppress the bottom sector. At the outset, we
diagonalize the VLF masses by redefining the Q and Q0
fields by an orthogonal rotation to get an equivalent
Lagrangian given by

L ⊃ Meff
QQQ̄

0Q0 þ ð−yeffu q̄L ~Φ2tR − ~yeff1 Q̄0
L
~Φ2tR þ H:c:Þ;

ð19Þ
where we show the 2HDM top Yukawa coupling also since
its effective coupling is now changed, with Meff

QQ ≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

QQ þM2
qQÞ

q
, yeffu ≡ðyuMQQ− ~y1MqQÞ=Meff

QQ, ~yeff1 ≡
ðyuMqQþ ~y1MQQÞ=Meff

QQ, which imply yeffu ¼ðyu− ~y1MqQ=

MQQÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðMqQ=MQQÞ2

q
and ~yeff1 ¼ yeffu MqQ=MQQþ

~y1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðMqQ=MQQÞ2

q
.

The κϕgg due to the t0, b0 in the MVQ model are
qualitatively similar to the MVU case presented earlier.
As an example, let us consider again the LSS model sample
point 1 in Appendix B of Ref. [10], for which we have
~y1 ¼ 0, yeffu ≈ 1.3 and ~yeff1 ≈ 0.5, which gives κAgg ≈ 0.03.
The doublet-VLQ contribution in this case is thus very
small compared to the SMQ contribution.

4. Type-II 2HDM with VLQ-VLQ Yukawa couplings

Here, we add SU(2) doublet and singlet VLFs with SM-
like hypercharge assignments, and write Yukawa couplings

FIG. 15. Contours of kVLFAgg =y
2
2 for ftan β; ydg ¼ f1; 0.03g (left) and f5; 0.12g (middle) for the MVD model. kVLFAgg with y2 for

mA ¼ 1500 GeV, Mχ ¼ 1000 GeV and tan β ¼ 1, 5, 10, 15 is plotted on the right.
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between them both involving the Φ1;2. Although there
could be Yukawa couplings between a VLF and a SMF also
present, we do not write them here for simplicity; their
effects are investigated separately in Sec. III B 3.
MVQD11 model.—To the Type-II 2HDM we introduce

one doublet VLQ, ψ ¼ ðψ1;ψ2Þ, with hypercharge Yψ and
one singlet VLQ (χ) with hypercharge (Yψ − 1=2) so that
VLF couplings with Φ1 are allowed. The additional
Lagrangian terms to the 2HDM-II are

L ⊃ ψ̄iDψ þ χ̄iDχ − ðy1ψ̄LΦ1χR þ ~y1ψ̄RΦ1χL þ H:c:Þ
−Mψ ψ̄ψ −Mχ χ̄χ: ð20Þ

We can also write the terms ψ̄LΦ2χR and ψ̄RΦ2χL, which
we do not add here but will consider them subsequently as
another model. These terms are forbidden if χ → −χ under
the Z2 symmetry of 2HDM-II. The terms involving h, A
and VLFs after EWSB are

L ⊃ −Mψ ψ̄ψ −Mχ χ̄χ þ
1ffiffiffi
2

p A sin βðiy1ψ̄2LχR þ i~y1ψ̄2RχL

þ H:c:Þ − vffiffiffi
2

p cos βðy1ψ̄2LχR þ ~y1ψ̄2RχL þ H:c:Þ

þ 1ffiffiffi
2

p h sin αðy1ψ̄2LχR þ ~y1ψ̄2RχL þ H:c:Þ

−
1ffiffiffi
2

p H cos αðy1ψ̄2LχR þ ~y1ψ̄2RχL þ H:c:Þ: ð21Þ

Gauge interactions of the VLFs are present and not
shown explicitly. ψ2 and χ mix after EWSB, while ψ1 is

itself a mass eigenstate. We define the mass eigenstates ζ1
and ζ2 as

ψ2L;R ¼ ζ1L;R cos θL;R − ζ2L;R sin θL;R; ð22Þ

χL;R ¼ ζ1L;R sin θL;R þ ζ2L;R cos θL;R; ð23Þ

where the mixing angles θL and θR are defined in
Appendix A 2. In terms of these mass eigenstates, the
Lagrangian in Eq. (21) can be written as

L ⊃ −yAijðiAζ̄iLζjR þ H:c:Þ −Miζ̄iζi −Mψ ψ̄1ψ1

þ κijZμζ̄iγμζj þ eQiAμζ̄iγμζi

− yhijðhζ̄iLζjR þ H:c:Þ − yHijðHζ̄iLζjR þ H:c:Þ; ð24Þ

FIG. 16. BRðA → γγÞ (top panel) and BRðA → ZγÞ (bottom panel) with Mψ ¼ Mχ ¼ 1000 (GeV), tan β ¼ 1 (left) and 30 (right) in
theMVQD11 model (solid black) and in the 2HDM Type-II (dashed black). BRðA → ff̄Þ in the Type-II 2HDM are as shown in Fig. 7.

FIG. 17. Contours of κAgg for Mψ ¼ Mχ ¼ 800 GeV (left),
1700 GeV (right), y1 ¼ 0.5, ~y1 ¼ 1 for the MVQD11 model.
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where i, j ¼ 1, 2 and yϕij’s are given in Appendix A 2. We
take the y1 and ~y1 to be real, enforcing CP invariance in the
BSM sector. The relative sign between y1 and ~y1 in Eq. (20)
is physical for the following reason. If we want to get rid of
this relative sign we need to make the transformations χL →
−χL and χR → χR, or χL → χL and χR → −χR. In either
case, the Mχ changes its sign and is therefore a physical
effect. For chiral fermions, the sign of the mass term is not
physical since one can rotate it away by the above
transformations.
Instead of the χ [with hypercharge (Yψ − 1=2)], if we

consider a VLF (say ξ) of hypercharge (Yψ þ 1=2), we get a

different model where the ξ couples to the ~Φ1 instead of the
Φ1. This model will have similar phenomenology as the
MVQD11 model, which we discuss later.
The effective couplings for this model are given in

Appendix B. When y1 ¼ ~y1, in addition to CP invariance,
the Lagrangian in Eq. (21) is also invariant under P and C

individually, with A transforming as A!P A, A!C − A. This
implies that the VLF contribution to κAVV is zero since
AVμν

~Vμν is not P invariant (although it is CP invariant).
Also, the VLF contributions are maximum for Mψ ¼ Mχ

when the mixing between the VLFs (ψ2 and χ) is
maximum. We will take Mψ and Mχ to be equal from
now on.
In Fig. 16, we plot BRðA → VVÞ for Yψ ¼ 1=6 as an

example, which is the SM quark-doublet hypercharge
assignment. The tree level decays to SM fermions BRðA →
bb̄; τþτ−; tt̄Þ are unchanged from what is shown in Fig. 7
for the Type-II 2HDM. We see that for small values of tan β
the VLF contribution to BRðA → VVÞ is small compared to
the 2HDM-II. This is because yij’s are proportional to sin β.
For large tan β and for large mA, the VLF contributions to
the BRðA → γγÞ become significant.
In Fig. 17, we plot contours of κAgg for Mψ ¼ 800 GeV,

1700 GeV. For comparison we have also plotted the
corresponding contours in the 2HDM-II. Using this, one
can read off the σðgg → AÞ at the 8 and 14 TeV LHC from
Fig. 1 in Sec. II. For comparison, the corresponding
contours in the Type-II 2HDM (without the VLFs) are

shown in Fig. 8. In Fig. 18 (left) we plot yh11 and yA11
[defined in Eq. (24)] in the alignment limit (β − α ¼ π=2),
which shows that the h couplings to the VLFs become very
small as tan β increases. Thus, the VLFs can modify
σðgg → AÞ and ΓðA → VVÞ significantly, while the h
remains SM-like as required by the LHC measurements
of the 125 GeV state. We find that the VLF contributions
partially cancel the SM fermion contributions for a range of
low tan β values and for some ranges ofmA, while for larger
tan β the effective couplings always increase compared to
the 2HDM-II. To illustrate this point more explicitly, we
plot κAgg as a function of tan β in Fig. 18 for mA ¼
300 GeV and 600 GeV. The constraint on the 2HDM
was nontrivial only for large tan β (see Fig. 9). Therefore,
for large tan β, since the κAgg is bigger for this model
compared to the 2HDM (see Fig. 18), and the tree-level
τþτ− BR from which the tightest constraint appears is
almost unchanged, the constraint on this model will be
tighter. In Fig. 19, we plot contours of κHgg formA ¼ mH, in
the alignment limit. Corresponding contours in the Type-II
2HDM are shown in Fig. 8. From this, one can also obtain
σðgg → HÞ from Fig. 1.
MVQU22 model.—We introduce one doublet VLQ ðψÞ

with hypercharge Yψ and one singlet VLQ (ξ) with
hypercharge Yψ þ 1=2, which couples only to Φ2. We
add the following terms to the 2HDM-II Lagrangian:

FIG. 18. For the MVQD11 model, yA11 (red), yh11 (blue) as a function of tan β (left); κAgg as a function of tan β for mA ¼ 300 GeV
(middle) and 600 GeV (right), with y1 ¼ 0.5, ~y1 ¼ 1 and Mψ ¼ 800 GeV (blue), 1000 GeV (green).

FIG. 19. Contours of κHgg for y1 ¼ 0.5, ~y1 ¼ 1, for Mψ ¼
Mχ ¼ 800 GeV (left), 1700 GeV (right) for theMVQD11 model.
The corresponding contours in the Type-II 2HDM are shown in
Fig. 8.
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L ⊃ ψ̄iDψ þ ξ̄iDξ − y2ψ̄L
~Φ2ξR − ~y2ψ̄R

~Φ2ξL

þ H:c: −Mψ ψ̄ψ −Mξξ̄ξ: ð25Þ

Here we do not include the terms ψ̄L
~Φ1ξR and ψ̄R

~Φ1ξL as
their effects have been considered in the MVQD11 model.
As the BRðA → VVÞs do not change much compared to the
2HDM-II case, we do not show them here. Instead of the ξ
[with hypercharge (Yψ þ 1=2)] if we consider a VLF (say
χ) of hypercharge (Yψ − 1=2) we get a different model

where the χ couples to the Φ2 instead of the ~Φ2. This will
give similar effects to what we consider here.
Similar to theMVQD11 model, we diagonalize the mass

matrix by an orthogonal rotation and define the couplings
yϕij. The mass eigenvalues, mixing angles and yϕij’s for this
model can be found in Appendix A 2. The effective
couplings for this model are given in Appendix B. As in
theMVQD11 model, the κAVV becomes zero when y2 ¼ ~y2.
In Fig. 20 we plot contours of κAgg inmA- tan β plane. In the
MVQU22 model the VLF contributions to κAgg are very
small for y1 ¼ 0.5 and ~y1 ¼ 1, and therefore we do not
show it explicitly. This is particularly so for large tan β
because the yij’s are proportional to cos β, which become
small as tan β increases. Similar conclusions hold for κHgg.
In Fig. 21 we plot κHgg using which one can read off the
σðgg → HÞ from Fig. 1 by reading the κAgg there as κHgg, as
mentioned earlier. Since κAgg and κHgg do not change much

compared to the 2HDM-II, constraints on the mA- tan β
plane will almost remain the same as in the 2HDM-II case.
Thus, VLFs, if realized as in the MVQU22 model, have
little impact on the observables we consider here.
MVQU12 model.—We introduce one doublet VLQ ðψÞ

with hypercharge Yψ and one singlet VLQ (ξ) with
hypercharge (Yψ þ 1=2). We consider the case where ξR
couples only to Φ1 and ξL couples only to Φ2. To the
2HDM-II Lagrangian, we add

L ⊃ ψ̄iDψ þ ξ̄iDξ − ðy1ψ̄L
~Φ1ξR þ ~y1ψ̄R

~Φ2ξL þ H:c:Þ
−Mψ ψ̄ψ −Mχ ξ̄ξ: ð26Þ

FIG. 22. BRðA → γγÞ (left) and BRðA → ZγÞ (right) with
Mψ ¼ Mχ ¼ 1000 GeV for tan β ¼ 30 for MVQU12 model
(solid black), and the corresponding variation in the Type-II
2HDM (dashed black). The BR for tan β ¼ 1 and the BRðA →
ττ; bb; ttÞ are not explicitly shown here as they are identical to
those in Figs. 16 and 7 respectively.

FIG. 20. Contours of κAgg for y2 ¼ 0.5, ~y2 ¼ 1, for Mψ ¼
Mχ ¼ 800 GeV (left), 1700 GeV (right) for theMVQU22 model.

FIG. 21. Contours of κHgg for y2 ¼ 0.5, ~y2 ¼ 1, for Mψ ¼
Mχ ¼ 800 GeV (left), 1700 GeV (right) for theMVQU22 model.

FIG. 24. κAgg with tan β for mA ¼ 300 GeV (left) and 600 GeV
(right) with y1 ¼ 1, ~y1 ¼ 1 and Mψ ¼ 800 GeV (blue),
1000 GeV (green) for the MVQU12 model and 2HDM-II
(dashed-black).

FIG. 23. Contours of κAgg for y1 ¼ 1, ~y1 ¼ 1, for Mψ ¼ Mχ ¼
800 GeV (left) and 1700 GeV (right) for the MVQU12 model.
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We get different models if instead of the couplings above,
the ψR couples to ~Φ1 and ψL couples to ~Φ2, or, if instead of
ξ we introduce a VLF singlet (say χ) with hypercharge
(Yψ − 1=2) with couplings to Φ1 and Φ2. All these models
have a similar phenomenology as the MVQU12 model.
The mass eigenvalues, mixing angles and yϕij’s for this

model can be found in Appendix A 3. The effective
couplings for this model are given in Appendix B. In this
model, the effective couplings do not reduce to zero for
y1 ¼ ~y1, unlike in the MVQD11 and MVQU22 models, as
there are no additional P and C symmetries in the VLF
sector. In Fig. 22, we plot the BRðA → VVÞ, BRðA →
bb̄; τþτ−; tt̄Þ for an example choice of Yψ ¼ 1=6. The
BRðA → γγ; ZγÞ for tan β ¼ 1, y1 ¼ 0.5, ~y1 ¼ 1 and the
tree-level BRðA → ττ; bb; ttÞ are not explicitly shown in
Fig. 22 as they are identical to those shown for the
MVQD11 model in Fig. 16 and the Type-II 2HDM in
Fig. 7. In Fig. 23 we plot contours of κAgg for y1 ¼ ~y1 ¼ 1

and Mψ ¼ Mξ ¼ 800 GeV and 1700 GeV. From this, one
can obtain σðgg → AÞ at the 8 and 14 TeV LHC from Fig. 1
in Sec. II. For low values of tan β the effective coupling
increases compared to the 2HDM-II case, while for larger
values of tan β the effective coupling decreases compared to
the 2HDM-II. To show this more explicitly, we plot κAgg
with tan β in Fig. 24. The decreased coupling is due to a
destructive interference between the contributions from SM

fermions and the VLFs. If we reverse the sign of y1 or ~y1,
we get the opposite effect; for low values of tan β the
effective coupling decreases compared to the 2HDM-II
while for larger values of tan β the effective coupling
increases compared to the 2HDM-II. In Fig. 25 we plot
contours of κHgg in the alignment limit. From this, one can
also obtain σðgg → HÞ from Fig. 1 by reading κAgg there as
κHgg, as mentioned earlier.
In Fig. 26 we plot the region of the mA- tan β parameter

space which is excluded at the 95% confidence level for
two cases: when only A is present, and when A and H are
degenerate and both present. For comparison, we have also
plotted the corresponding limit for the 2HDM-II case. We
see that the constraints are loosened compared to the
2HDM-II due to the presence of VLFs. This happens
because of the reduction of κAgg (κHgg) compared to the
2HDM-II.
Next, we add VLFs to the Type-X 2HDM and study the

phenomenology of the neutral scalars.

5. Type-X 2HDM with VLQ-VLQ Yukawa couplings

MVQDX11 model.—To the 2HDM Type-X model in
Eq. (11), we introduce VLFs in a similar fashion as in the
MVQD11 model, as a representative case, and call it
MVQDX11 model. The other ways of coupling VLFs
similar to the MVQU22 or MVQU12 model will be
qualitatively similar to our results here. We introduce a

FIG. 26. For the MVQU12 model, regions of the mA- tan β
parameter space excluded at the 95% C.L. from ϕ → τþτ− decay
when only A is present (left), and when A and H are degenerate
and both present (right), with y1 ¼ ~y1 ¼ 1, Mψ ¼ Mχ ¼
800 GeV (dark blue region), 1000 GeV (light blue and dark
blue regions). All shaded regions are excluded in the 2HDM-II.

FIG. 27. BRðA → γγ; ZγÞ with Mψ ¼ Mχ ¼ 1000 GeV (solid
black) for tan β ¼ 30 for the MVQDX11 model, and the corre-
sponding variation in the 2HDM-X (dashed black).

FIG. 28. Contours of κAgg for y1 ¼ 0.5, ~y1 ¼ 1, for Mψ ¼
Mχ ¼ 800 GeV (left), 1700 GeV (right) for the MVQDX11

model. The corresponding contours in the Type-X 2HDM is
shown in Fig. 11.

FIG. 25. Contours of κHgg for y1 ¼ 1, ~y1 ¼ 1, for Mψ ¼ Mχ ¼
800 GeV (left), 1700 GeV (right) for the MVQU12 model.
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doublet VLQ ψ ¼ ðψ1;ψ2Þ with hypercharge Yψ , and a
singlet VLQ (χ) with hypercharge (Yψ − 1=2) which
couples only to Φ1. To the 2HDM-X Lagrangian we add

L ⊃ ψ̄iDψ þ χ̄iDχ − ðy1ψ̄LΦ1χR þ ~y1ψ̄RΦ1χL þ H:c:Þ
−Mψ ψ̄ψ −Mχ χ̄χ: ð27Þ

The effective couplings of A with VLFs are same as in the
MVQD11 model and can be read off from Appendix B. In
Fig. 27 we show BRðA → VVÞ including the VLF con-
tributions for theMVQDX11 model; the tree-level BRðA →
τþτ−; bb̄; tt̄Þ is unchanged from what are shown in Fig. 10.
BRðA → γγ; ZγÞ for tan β ¼ 1, y1 ¼ 0.5, ~y1 ¼ 1 are almost
identical to the 2HDM values shown in Fig. 16 and are
therefore not shown explicitly in Fig. 27. For tan β ¼ 30,
BRðA → γγ; ZγÞ is increased compared to 2HDM-II,
because for large tan β, ΓðA → bb̄Þ becomes much smaller
in 2HDM-X.
In Fig. 28 we plot contours of κAgg. The κϕgg contours in

2HDM-X (without VLFs) are shown in Fig. 11. Using
these plots, one can read off σðgg → AÞ for 8 TeV and
14 TeV LHC from Fig. 1 in Sec. II. As expected, for large
tan β, κAgg is significantly larger in this model compared to
2HDM-X since the VLFs contribute substantially while the
SM quark contributions alone are very small. In order to

show explicitly how large the change is, we plot κAgg as a
function of tan β for mA ¼ 300 GeV and 600 GeV in
Fig. 29. In Fig. 30 we plot contours of κHgg in the mA- tan β
plane in the alignment limit. From this, one can also obtain
σðgg → HÞ from Fig. 1.

6. Type-II 2HDM with VLL-VLL Yukawa couplings

MVLE11 model.—Vectorlike leptons do not contribute
in gg → A, but can contribute in A → γγ, Zγ. We show the
effect of VLLs in a simple model similar to the MVQD11

model, but with VLLs instead of VLQs. We introduce one
doublet VLL (ψ) with hypercharge Yψ and one singlet VLL
(χ) with hypercharge (Yψ − 1=2). The Lagrangian we
consider is exactly the same as in Eq. (20), except here
the VLLs ψ and χ do not couple to gluons. The effective
couplings are the same as for the MVQD11 model except
for color factors. As an example, we choose Yψ ¼ −1=2
and plot BRðA → γγÞ as a function of mA in Fig. 31, with
Mψ ¼ Mχ ¼ 500 GeV, for tan β ¼ 1 and 30. We see that
the effect of VLLs is qualitatively similar to vectorlike
quarks; for low tan β the effect of VLLs is negligible while
for large tan β and large mA VLL contributions are
significant. Near mA ¼ 1000 GeV, the VLL contribution
is quite large due to them going on shell for our choice of
VLL mass of 500 GeV. BRðA → ZγÞ will show the same
behavior.

IV. CONCLUSIONS

Many theories beyond the standard model contain new
CP-odd and CP-even neutral scalars ϕ ¼ fA;Hg and new
vectorlike fermions (ψVL). We study the LHC phenom-
enology of ϕ taking into account ψVL contributions to ϕgg,
ϕγγ and ϕZγ couplings at the 1-loop level.
In Sec. II we write an effective Lagrangian with ϕ

coupled to SM gauge bosons and fermions. We focus only
on ϕ Yukawa couplings to third-generation SM fermions,
namely t, b, τ, since these are usually the bigger couplings
in most BSM extensions. The couplings of the A to
standard model W, Z gauge bosons (i.e. AVV couplings)
cannot occur from renormalizable operators in a CP-
conserving sector, but can be induced as loop-generated
nonrenormalizable operators. These operators are induced
by SM fermions and also the heavy ψVL. In Sec. II we

FIG. 29. κAgg with tan β for mA ¼ 300 GeV (left) and 600 GeV
(right) with y1 ¼ 0.5, ~y1 ¼ 1 and Mψ ¼ 800 GeV (blue),
1000 GeV (green) for the MVQDX11 model and the 2HDM-
X (dashed black).

FIG. 30. Contours of κHgg for y1 ¼ 0.5, ~y1 ¼ 1, for Mψ ¼
Mχ ¼ 800 GeV (left), 1700 GeV (right) for the MVQDX11

model. The corresponding contours in the Type-X 2HDM is
shown in Fig. 11.

FIG. 31. BRðA → γγÞ with Mψ ¼ Mχ ¼ 500 GeV, y1 ¼ 0.5,
~y1 ¼ 1 for tan β ¼ 1 (left) and tan β ¼ 30 (right) for the
MVLE11 model.
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present model-independent results that are useful whatever
the origin of these effective couplings. In Fig. 1 we present
the 8 TeVand 14 TeV LHC gg → ϕ (gluon-fusion channel)
cross sections as a function of the effective couplings. We
also obtain limits on the effective couplings from the 8 TeV
LHC data on the γγ, τþτ− and tt̄ modes. We do not include
the bb̄ decay mode and the b-quark associated production
channels in this work.
We define some simple models in Sec. III that are

representative of BSM constructions as far as the phenom-
enology of ϕ is concerned. These models include ϕ and
ψVL in the singlet and doublet representations of SUð2Þ. In
the doublet case, we focus on the 2HDM Type-II and Type-
X models. We compute the ϕgg, ϕγγ and ϕZγ effective
couplings induced by the SM fermions and vectorlike
fermions at the 1-loop level and present analytical expres-
sions for them in Appendix A. For the various models we
define, we present the effective couplings κϕgg, κϕγγ , κϕZγ ,
and BRðA → γγ; ZγÞ and BRðA → ff̄Þ for f ¼ fτ; b; tg as
a function of the model parameters. From the κϕgg and the
BR into one of these modes, one can see if a point in
parameter space in a given model is allowed by the 8 TeV
data from our plots in Sec. II. One can also read off the
gluon-fusion cross section at the 8 TeV and 14 TeV LHC
from Fig 1. Interestingly, for some of the 2HDM cases we
studied, we find that the addition of vectorlike fermions
loosens the constraint compared to the 2HDM alone, and
allows more of the parameter space. This can be seen for
instance in Fig. 26. The 14 TeV LHC gluon-fusion CS of
the ϕ and its BRs in the different models we present should
be useful in identifying allowed regions of parameter space
and promising discovery channels of the ϕ. In this context,
it is interesting to explore the possibility of the ϕ being the
state responsible for the recent 750 GeVexcess of diphoton
events at the 13 TeV LHC [57,58]; this is the subject of a
separate work.
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APPENDIX A: COUPLINGS, MASSES AND
MIXING ANGLES IN VARIOUS MODELS

Here we provide the explicit expressions for the mixing
angles and the mass eigenvalues in the different models we
have defined in Sec. III. We also provide expressions for the
κij’s, yij’s defined in Eq. (24). Sec. A 1 contains the mixing
angles and the mass eigenvalues for the MVU, MVD and
MVQ models. Sec. A 2 contains explicit expressions for
yij’s and κij’s for the MVQD11, MVQU22 and MVQDX11

models. Sec. A 3 contains explicit expressions for yij’s and
κij’s for the MVQU12 model. In what follows we will use
the notations cL;R ¼ cos θL;R, sL;R ¼ sin θL;R, cβ ¼ cos β
and sβ ¼ sin β.

1. MVU, MVD, MVQ models

In this section we give the mixing angles and the mass
eigenvalues for the MVU, MVD and MVQ models. The
mixing angles θUL;R, for MVU model are given by

tan 2θUL ¼ 2
ffiffiffi
2

p
y1v1Mψ

y2uv22 − 2M2
ψ þ y21v

2
1

;

tan 2θUR ¼ 2
ffiffiffi
2

p
y1yuv1v2

y2uv22 − 2M2
ψ − y21v

2
1

: ðA1Þ

The mass eigenvalues for the EM charge-2=3 fermions in
MVU model are given by

mt;t2 ¼
1

2

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
yuffiffiffi
2

p v2 þMψ

�
2

þ y21
2
v21

s
∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
yuffiffiffi
2

p v2 −Mψ

�
2

þ y21
2
v21

s 1
CA: ðA2Þ

The mixing angle and mass eigenvalues for theMVD model are obtained from Eq. (A1) and Eq. (A2) by the replacements
y1 → y2, yuv2 → ydv1 and Mψ → Mχ . The mixing angles θUL;R, for the MVQ model are given by

tan 2θUR ¼ 2
ffiffiffi
2

p
~yeff1 v2Meff

Q

2ðMeff
Q Þ2 − ðyeffu Þ2v22 þ ð~yeff1 Þ2v22

; tan 2θUL ¼ 2
ffiffiffi
2

p
~yeff1 yeffu v22

2ðMeff
Q Þ2 − ðyeffu Þ2v22 − ð~yeff1 Þ2v22

:

The mass eigenvalues for the EM charge-2=3 fermions in the MVQ model are given by

mt;t2 ¼
1

2

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
yeffuffiffiffi
2

p v2 þMeff
Q

�
2

þ ð~yeff1 Þ2
2

v22

s
∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
yeffuffiffiffi
2

p v2 −Meff
Q

�
2

þ ð~yeff1 Þ2
2

v22

s 1
A:
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2. MVQD11, MVQU22 models

In this section we give the expressions for the yij’s and
κij’s for theMVQD11,MVQU22 models. The couplings κij
defined in Eq. (24) for theMVQD11,MVQU22 models and
also for the MVQDX11 model are given by κ11¼ðg=cWÞ×
½ðT3=2Þðc2Lþc2RÞ−Qs2W �, κ22¼ðg=cWÞ½ðT3=2Þðs2Lþs2RÞ−
Qs2W �, κ12 ¼ −ðg=cWÞðT3=2ÞðsLcL þ sRcRÞ. The mass
eigenvalues M1;2 [in Eq. (24)] for the MVQD11 model
are given by

M1;2 ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMψ þMχÞ2 þ

1

2
c2βv

2ðy1 − ~y1Þ2
r

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMψ −MχÞ2 þ

1

2
v2c2βðy1 þ ~y1Þ2

r
ðA3Þ

and the mixing angles θL;R for MVQD11 model are
given by

tan 2θL ¼ 2
ffiffiffi
2

p
vcβðy1Mχ þ ~y1MψÞ

2ðM2
ψ −M2

χÞ − v2c2βð~y21 − y21Þ
;

tan 2θR ¼ 2
ffiffiffi
2

p
vcβðy1Mχ þ ~y1Mψ Þ

2ðM2
ψ −M2

χÞ þ v2c2βð~y21 − y21Þ
: ðA4Þ

The mass eigenvalues and the mixing angles for MVQU22

model can be obtained from Eqs. (A3) and (A4) by the

replacements y1 → y2 and cβ → sβ. The couplings yAij’s [in
Eq. (24)] for the MVQD11 model are given by yA11 ¼
ð1= ffiffiffi

2
p Þsβð−y1cLsR þ ~y1sLcRÞ, yA22 ¼ ð1= ffiffiffi

2
p Þsβðy1sLcR −

~y1cLsRÞ, yA12 ¼ −ð1= ffiffiffi
2

p Þsβðy1cLcR þ ~y1sLsRÞ, yA21¼
ð1= ffiffiffi

2
p Þsβðy1sLsRþ ~y1cLcRÞ. The yAij’s in the MVQU22

model can be obtained from the yAij’s in the MVQD11

model by the replacements y1 → y2 and sβ → cβ. The

couplings yhij [in Eq. (24)] are given by y
h
11 ¼ −ð1= ffiffiffi

2
p Þsα×

ðy1cLsR þ ~y1sLcRÞ, yh22 ¼ ð1= ffiffiffi
2

p Þsαðy1sLcR þ ~y1cLsRÞ,
yh12¼−ð1= ffiffiffi

2
p Þsαðy1cLcR− ~y1sLcRÞ, yh21 ¼ −ð1= ffiffiffi

2
p Þsα×

ð−y1sLsR þ ~y1cLcRÞ. The yhij’s in the MVQU22 model
can be obtained from yhij’s in the MVQD11 model by the
replacements y1 → y2 and sα → −cα. The couplings yHij [in
Eq. (24)] can be obtained from the yhij’s in the MVQD11

model by the replacements sα → −cα in case of MVQD11

and sα → −sα for the MVQU22 model.

3. MVQU12 model

In this section we give the expressions for the yij’s and
κij’s for the MVQU12 model. The couplings κij for the
MVQU12 model are same as in the MVQD11 model. The
mass eigenvalues are given by

M1;2 ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMψ þMξÞ2 þ

1

2
v2ðy1cβ − ~y1sβÞ2

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMψ −MξÞ2 þ

1

2
v2ðy1cβ þ ~y1sβÞ2

r
: ðA5Þ

and the mixing angles θL;R are given by

tan 2θL ¼ 2
ffiffiffi
2

p
vðy1cβMξ þ ~y1sβMψÞ

2ðM2
ψ −M2

ξÞ − v2ð~y21s2β − y21c
2
βÞ
; tan 2θR ¼ 2

ffiffiffi
2

p
vðy1cβMξ þ ~y1sβMψ Þ

2ðM2
ψ −M2

ξÞ þ v2ð~y21s2β − y21c
2
βÞ
: ðA6Þ

The couplings yAij are given by yA11 ¼ ð1= ffiffiffi
2

p Þðy1sβcLsR þ ~y1cβsLcRÞ, yA22 ¼ −ð1= ffiffiffi
2

p Þðy1sβsLcR þ ~y1cβcLsRÞ,
yA12 ¼ ð1= ffiffiffi

2
p Þðy1sβcLcR − ~y1cβsLsRÞ, yA21 ¼ −ð1= ffiffiffi

2
p Þðy1sβsLsR − ~y1cβcLcRÞ. The couplings yhij are given by

yh11 ¼ ð1= ffiffiffi
2

p Þð−y1sαcLsR þ ~y1cαsLcRÞ, yh22 ¼ ð1= ffiffiffi
2

p Þðy1sαsLcR − ~y1cαcLsRÞ, yh12 ¼ −ð1= ffiffiffi
2

p Þðy1sαcLcR þ ~y1cαsLsRÞ,
yh21 ¼ ð1= ffiffiffi

2
p Þðy1sαsLsR þ ~y1cαcLcRÞ. The yHij’s can be obtained from yhij’s by the replacements sα → −cα

and cα → sα.

APPENDIX B: THE κϕgg;ϕγγ;ϕZγ;AWW;AZZ EFFECTIVE
COUPLINGS IN VARIOUS MODELS

In this section we give the expressions for the
κfϕgg;ϕγγ;ϕZγ;AZZ;AWWg in the various models we considered
in Sec. III.

1. κϕgg, κϕγγ
The 1-loop expressions for the ϕgg and ϕγγ

amplitudes κϕgg and κϕγγ respectively, with

ϕ ¼ fh;H; Ag, are given here. These amplitudes
are induced by quarks whose effective Lagrangian can

be written as Lf
ϕ ⊃ mff̄f þ yϕffϕf̄f. Defining rf ¼

m2
f=m

2
ϕ and with f running over all colored fermion

species with mass mf and Yukawa couplings yϕff,
and with the electric charge of the fermion (f)
denoted by Qf, the general expressions for κϕgg and
κϕγγ are given as
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κϕγγ ¼ 2e2
X
f

Nf
cQ2

fyϕff
M
mf

Fð1Þ
1=2ðrfÞ;

κϕgg ¼ g2s
X
f

yϕff
M
mf

Fð1Þ
1=2ðrfÞ; with

Fð1Þ
1=2ðrfÞ ¼ 4rf

�Z
1

0

dy
Z

1−y

0

dx
gðx; yÞ

ðrf − xyÞ
�
; ðB1Þ

and gðx; yÞ ¼ ð1 − 4xyÞ for the CP-even scalars (h, H)
and 1 for the CP-odd scalar (A). Here M is a mass scale
defined in Eq. (1), which we set to 1 TeV for numerical
results. Compared to κϕγγ , κϕgg has an extra factor of 1=2
which compensates for our definition of Γðϕ → ggÞ in
Eq. (2) with a relative factor of 8 compared to Γðϕ → γγÞ
while the actual color factor is really 2. The expressions for

Fð1Þ
1=2 in Eq. (B1) match with the closed form expressions

given in Ref. [59].

2. κAZγ
Here we give the general expressions for κAZγ [defined in

Eq. (1)] for the different models we have considered. For
the SVU and SVQ models,

κAZγ¼2e
g
cW

X
i

Ni
cQiðTi

3−Qis2WÞyA
M
mi

Fð2Þ
1=2ðri;rZÞ;

with

Fð2Þ
1=2ðri;rZÞ¼4ri

Z
1

0

dy
Z

1−y

0

dx
1

riþðrZ−1ÞxyþrZðx2−xÞ:

For the SVU model, only one VLF contributes to κAZγ . For
the MVQD11, MVQU22, MVQU12 and MVQDX11 mod-
els, κAZγ ¼ κ1AZγ þ κ2AZγ þ κ12AZγ þ κ21AZγ, where

κiAZγ ¼ 2eNi
cQiκiiyii

M
mi

Fð2Þ
1=2ðri; rZÞ;

κijAZγ ¼ 2eNi
cQiκijyij

�Z
1

0

dy
Z

1−y

0

dx

×
4Mð rimi

− ð rimi
− rj

mj
ÞxÞ

rið1 − xÞ þ rjxþ ðrZ − 1Þxyþ rZðx2 − xÞ
�
:

The couplings κij, yij for each of the four cases are given in

Appendix A. The expression for Fð2Þ
1=2 is a generalization to

vectorlike fermions of the expression given in Ref. [59].

3. κAZZ, κAWW

Here we provide the expressions for κAZZ and κAWW for
the SVU and SVQ models. For the SVU and SVQ models,

κAZZ¼2

�
g
cW

�
2X

i

Ni
cðTi

3−Qis2WÞ2yA
M
mi

Fð3Þ
1=2ðri;rZÞ;

where

Fð3Þ
1=2ðri;rZÞ¼4

Z
1

0

dy
Z

1−y

0

dx
ri

ri−xyþrZ½ðxþyÞ2−ðxþyÞ�:

For the SVQ model, κAWW¼2ð gffiffi
2

p Þ2PiN
i
cyAM

mi
Fð3Þ
1=2ðri;rWÞ.

For the SVU model, κAWW is zero.
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