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Working with a pion mass mπ ≈ 150 MeV, we study ππ and Kπ scattering using two flavors of
nonperturbatively improved Wilson fermions at a lattice spacing a ≈ 0.071 fm. Employing two lattice
volumes with linear spatial extents of Ns ¼ 48 and Ns ¼ 64 points and moving frames, we extract the
phase shifts for p-wave ππ and Kπ scattering near the ρ and K� resonances. Comparing our results to those
of previous lattice studies, that used pion masses ranging from about 200 MeVup to 470 MeV, we find that
the coupling gρππ appears to be remarkably constant as a function of mπ .
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I. INTRODUCTION

Lattice QCD calculations are particularly suited for
studies of hadrons which are stable under the strong
interaction and their properties can be determined by
studying correlation functions at large Euclidean time
separations. However, almost all known hadrons are
unstable resonances, which complicates the situation.
The ρ meson, one of the simplest resonances in QCD,
couples to a pair of pions with total isospin I ¼ 1. In a finite
lattice volume of linear spatial size L ¼ Nsa, the allowed
momenta of the pion pair are quantized. Neglecting ππ
interactions, the lowest-lying ππ state with the same spin
J ¼ 1 as the ρ has the energy

Efree
ππ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ
�
2π
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�
2

s
: ð1Þ

The ρ can only be treated as a stable particle if its mass is
sufficiently smaller than this ππ center-of-momentum-
frame energy Efree

ππ . This is possible if the pion is heavy
or the lattice size is small. For the values of mπ and L that
are now accessible in lattice simulations this is not the case
anymore.
The formalism for dealing with resonances in lattice

QCD simulations of two-particle scattering systems has
been developed first with equal masses and in systems at
rest [1,2] and later extended to various moving frames and
unequal masses [3–10]. In ππ scattering, the ρ appears as an
increase of the scattering phase shift from zero to π as the
center-of-momentum-frame energy, Ecm, is varied from
below to above the resonant mass value mρ. The depend-
ence of the l ¼ 1 angular momentum partial wave shift δ
on Ecm gives detailed information about the nature of the

resonance. To first approximation, the resonant mass can be
extracted at the value δ ¼ π=2.
Due to the computational cost, previous calculations of

the resonance parameters were restricted to unphysically
large pion masses (most even employed pion masses with
Efree
ππ > mρ), but the expected phase-shift behavior was still

observed [6,11–20]. Algorithmic advances and increases in
computer power now enable us to pursue the first scattering
study at a close to physical pion mass mπ ≈ 150 MeV.
The strange-light analogue of the light-light ρ meson is

the K�. Its phase shift has also been studied previously in
lattice calculations at unphysically large pion masses
[21–24]. There are similarities between ππ and Kπ scatter-
ing not only in terms of the formalism but also in terms of
constructing and computing the necessary correlation
functions, which means we can incorporate the K� reso-
nance into our study, with limited computational overhead.
From experiment, the ρ has a mass of around 775 MeV

and a decay width Γρ ≈ 148 MeV while the K� mass and
width are approximately 896 and 47 MeV [25], respec-
tively. The decays are almost exclusively to ππ and Kπ. In
our study of the ρ resonance we neglect couplings to three-
and four-pion states. Our calculation (and all other ππ
scattering calculations to date) is performed with isospin
symmetry in place, and therefore 3π final states are
excluded. Isospin symmetry tremendously simplifies the
computation for the I ¼ 1 ρ and the I ¼ 1=2 K� channels
we consider here as there are no disconnected quark-line
contractions. As we will see, at our pion mass and for the
kinematics we implement, only one of our data points could
be sensitive to 4π final states. Also, considering the
available phase space and Okubo-Zweig-Iizuka suppres-
sion, neglecting these multiparticle final states should be a
very good approximation. This argument is supported by
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experimental evidence, indeed suggesting a virtually unde-
tectable coupling of the ρ meson to 4π states [26].
Comparing measurements of the branching fractions of
ρ → 4π and the (isospin-breaking) ρ → 3π decay [26,27]
shows that they are of similar (small) sizes. For a neutral ρ
meson, the decay width to πþπ−π0 is 15(7) keV.
Combining the widths to πþπ−π0π0 and πþπ−πþπ− gives
5(2) keV. This is indeed negligible, relative to the total
width of 148 MeV. For decays of a charged ρ into four
pions only an upper limit exists.
In the cases of ππ and Kπ scattering, respectively, in

principle there could also be interference with KK̄ and Kη;
2mK ≈ 985 MeV, mK þmη ≈ 1040 MeV. However, both
values are well above the region we are interested in, in
particular considering p-wave decay in a finite volume. For
heavier-than-physical pions, these thresholds are closer.
This situation was studied at mπ ≈ 236 MeV in Ref. [18]
for the ρ resonance and at mπ ≈ 391 MeV in Ref. [24] for
the K�. Indeed, even at these large pion masses, the impact
was found to be negligible. Finally, we also ignore K� →
Kππ, noting that the upper limit reads ΓðK� → KππÞ ≈
35 keV [28]; the vast majority of experimentally observed
decays to Kππ final states appear to be related to heavier
resonances [29].
Our method to generate the necessary correlation func-

tions has been employed in previous calculations [6,11,14].
Nevertheless, we provide a brief description of the con-
struction of correlators, along with details on the lattices
and kinematics used in Sec. II. The results are presented
and discussed in Sec. III, before we conclude in Sec. IV.

II. LATTICE CALCULATION

We aim to extract the resonance parameters (mass and
width)of theρ andK� from their appearances inππ andKπp-
wave scattering, respectively. Todo so,wewill determine the
spectra of interacting two-particle QCD states in finite
volumes. Using these energy levels, along with known
relations, allows us to extract the scattering phase shift,
from whose dependence on the energy Ecm in the rest frame
of the ρ (or the K�) the resonance parameters can be found.

A. Discussion of the lattice parameters

We employ lattice configurations with a lattice spacing
a ≈ 0.071 fm and time extent Nta ¼ 64a ≈ 4.6 fm, gen-
erated by the Regensburg lattice QCD group (RQCD,

L ¼ 64a) and RQCD/QCDSF (L ¼ 48a) with Nf ¼ 2

flavors of degenerate nonperturbatively improved Wilson
sea quarks with a pion mass of about 150 MeV (ensembles
VIII and VII of Ref. [30]). On the larger volume every
second trajectory and on the smaller volume every fifth
trajectory is analyzed. Discretization errors are of Oða2Þ.
We expect these to be small for the light hadron masses
considered at our lattice scale a−1 ¼ 2.76ð8Þ GeV [31].
The lattice parameters are given in Table I. More detail can
be found in Refs. [30,32]. Following Ref. [33], we check
the strange quark mass tuning by computingffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2

K −m2
π

p
¼ 686.5ð1.1Þ MeV on the Ns ¼ 64 ensem-

ble, assuming a−1 ¼ 2.76 GeV. We find perfect agreement
with the “experimental” value of 686.9 MeV.
The choice of our ensembles is motivated by the

proximity of the pion mass to its experimental value. In
the ρ → ππ channel the pions must have relative angular
momentum. For a system at rest this is only possible if their
individual momenta are nonzero. This gives the threshold
(1), where mρ > Efree

cm > 2mπ , for the ρ to become unstable
in a finite volume. On our lattice configurations, this
threshold lies at 782 MeV (within the experimental ρ
resonance width) for Ns ¼ 48 and at 619 MeV (beneath the
resonance) for Ns ¼ 64. Note that in moving frames the
effective thresholds can be lower.
The combination Lmπ is the relevant quantity controlling

finite-size effects. This combination obviously decreases
withmπ and it is expensive to enlarge the linear box sizeL to
fully compensate for this. Our lattice volumes have
Lmπ < 4, due to limited computer resources. However,
there are clear advantages to employ small volumes for
resolving broad resonances like the ρ: at large L the
spectrum of two-particle states becomes dense, complicat-
ing the extraction of the relevant energy levels and increas-
ing the demand on the precision of their determination.
Terms which are exponentially suppressed in Lmπ are

neglected in the Lüscher phase-shift method [1]. One such
effect is the difference between the pion mass mπ ≈
160 MeV on the small volume and its infinite-volume
value m∞

π ≈ 149.5 MeV [30], which goes beyond this
formalism. Note that Lm∞

π ≈ 2.6 for our smaller volume
and e−2.6 ≈ 0.074 may not necessarily be considered a
small number. Fortunately, it has been demonstrated, at
least in some models, e.g., in the inverse amplitude and the
N=DA models, that for I ¼ 1 p-wave ππ scattering the

TABLE I. Details of the lattice configurations: volume, coupling, lattice spacing (determined in Ref. [31]), light and strange quark
mass parameters κl and κs, (finite-volume) pion mass, kaon mass, the linear spatial size in units of the infinite-volume pion mass Lm∞

π

[32], the unit momentum 2π=L and the number of configurations Ncfg analyzed. The errors given for mπ and mK are statistical only and
do not include the 3% scale-setting uncertainty [31].

N3
s × Nt β a−1 κl κs mπ mK Lm∞

π 2π=L Ncfg

483 × 64 5.29 2.76(8) GeV 0.13640 0.135574 160(2) MeV 500(1) MeV 2.61 361 MeV 888
643 × 64 5.29 2.76(8) GeV 0.13640 0.135574 150(1) MeV 497(1) MeV 3.48 271 MeV 671
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corrections to the Lüscher formula may be negligible as
long as Lmπ > 2 [34]. We note that towards small pion
masses the ρ resonance broadens, allowing us to extract
nontrivial phase shifts for a wider range of energies than
had been possible in previous simulations at unphysically
large pion masses. This allows us to collect several data
points within the region relevant to constrain the resonance
parameters.
An issue that arises for pions which are sufficiently close

to their physical mass is the opening of the four-pion
threshold as, in nature, mρ > 4mπ . In analogy to our
discussion of two-particle thresholds, we can determine
where the four-particle thresholds will lie for the lattice
configurations we use. When the ρ meson is at rest at least
two of the pions need to carry nonzero momenta. In this
case, a decay to four pions requires 918 MeVon our larger
lattice size and 1081MeVon the smaller one, both of which
lie well above the resonance region.
Again, for moving frames, these limits can be lower. We

encounter the worst case for the total momentum P ¼
ð0; 0; 1Þð2π=LÞ on L ¼ 64a, where the four-pion threshold
lies around Ecm ¼ 710 MeV. Fortunately, as we discussed
in the Introduction, the ρ and K� resonances are entirely
dominated by p-wave decays into ππ and Kπ final states;
even in experiment other channels are hardly detectable at
all. Finally, we remark that dealing with decays to more
than two particles in lattice QCD is an open problem. While
there has been recent theoretical progress addressing three-
particle final states [35–39], we do not know how to
analyze four-pion states in a lattice calculation.

B. Generation of the correlators

In order to treat the ρ as a resonance in ππ scattering, we
employ a basis of interpolators which explicitly couple to
one- and two-particle states. The interpolators used for each
kinematic setting all share the same quantum numbers and
symmetries. In the case of ππ scattering, we are interested
in the I ¼ 1, JP ¼ 1− channel in which the ρ appears. The
ππ interpolators read

πðp1Þπðp2Þ ¼
1ffiffiffi
2

p ½πþðp1Þπ−ðp2Þ − π−ðp1Þπþðp2Þ�; ð2Þ

where π ¼ ψ̄γ5ψ and the one-particle vector interpolator
has the momentum P ¼ p1 þ p2. For this we use three
structures in our basis: ψ̄γjψ , ψ̄γjγtψ and ψ̄∇jψ .
We apply Wuppertal quark smearing [40], where the

field, ϕðnÞ
x , at site x after n smearing iterations is

ϕðnÞ
x ¼ 1

1þ 6δ

�
ϕðn−1Þ
x þ δ

X�3

j¼�1

Ux;jϕ
ðn−1Þ
xþaȷ̂

�
: ð3Þ

We set δ ¼ 0.25 and employ three levels of quark smearing,
using 50, 100 or 150 iterations. Ux;μ is a (smeared) gauge

link connecting xwith xþ aμ̂ andUx;−μ ¼ U†
x−aμ̂;μ. For the

pseudoscalar meson operators, we choose the narrowest
smearing width. We use all three smearing levels for ψ̄γjψ
and ψ̄γjγtψ and only the narrowest for ψ̄∇jψ, so we have
one two-particle interpolator and a total of seven one-
particle interpolators. We employ spatial APE smearing for
the gauge links [41] that appear within Eq. (3) above:

UðnÞ
x;i ¼ PSUð3Þ

�
αUðn−1Þ

x;i þ
X
jjj≠i

Uðn−1Þ
x;j Uðn−1Þ

xþaȷ̂;iU
ðn−1Þ†
xþaı̂;j

�
ð4Þ

with i ∈ f1; 2; 3g, j ∈ f�1;�2;�3g. PSUð3Þ denotes a
projection into the SU(3) group. We use α ¼ 2.5 and 25
iterations.
In Kπ scattering, the K� resonance is in the I ¼ 1=2

channel, so we use

πðp1ÞKðp2Þ ¼
ffiffiffi
2

3

r
πþðp1ÞK−ðp2Þ −

ffiffiffi
1

3

r
π0ðp1ÞK0ðp2Þ

ð5Þ

as the two-particle interpolator. The one-particle interpo-
lators are the same as for the ρ resonance, replacing one
light quark by the strange. From these interpolators we
calculate a matrix of correlation functions. The contractions
for its entries are depicted in Fig. 1.
By using the two volumes and a number of moving

frames, we are able to access several points within the
regions of interest around the expected positions of the ρ
and K� resonances. The kinematic points we use are given
in Table II, where

K ¼ L
2π

P ð6Þ

FIG. 1. Diagrams showing the quark contractions for the entries
of our correlation matrices for ππ and Kπ scattering. The red
propagator denotes a strange quark for Kπ and a light one for ππ,
while the black propagators are for light quarks in both cases. The
top row shows contractions for 2 → 2 particle correlators. The
rightmost diagram does not appear for I ¼ 1 ππ scattering, but is
required for our Kπ scattering calculation. The second row
contains 1 → 1, 2 → 1 and 1 → 2 entries, respectively, where
the 1 → 2 element is the complex conjugate of 2 → 1.
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denotes an integer-valued lattice momentum vector. The
choice of momenta and representations is based on the
requirement that the noninteracting two-particle states lie
within or close to the expected resonance widths. To allow
for the reuse of the generated propagators, we restrict
ourselves to k1 ¼ p1L=ð2πÞ ¼ ð1; 0; 0Þ. For each total
momentum P, we have to construct interpolators which
transform according to a definite irreducible representation
(irrep) of the little group of allowed cubic rotations once a
Lorentz boost has been applied. We construct the inter-
polators using the information about the little groups given
in Ref. [10]. The irreps we work with and the (one- and
two-particle) interpolators that transform according to each
representation are also listed in Table II. We use
Schoenflies notation (see, for example, Ref. [42]) for the
names of the groups and irreps.
The necessary quark-line contractions are depicted in

Fig. 1, where the first row includes two-particle to two-
particle transitions and the second row one- to one- as well
as two- to one-meson transitions. We use stochastic Z2 þ
iZ2 wall sources at one time slice for each spin component
and, for the contractions involving the two-particle inter-
polators, sequential inversions to generate all the contrib-
uting diagrams, following Refs. [11,14]. To compute the
top left contraction of Fig. 1, it is necessary to use two
stochastic sources per configuration. We use this minimum
number of estimates per configuration as the gauge noise
dominates. We further reduce the computational cost by
fixing k1 to (1,0,0). Even with this restriction, we can
obtain several interesting levels around the expected
positions of the ρ and K� resonances. Moreover, we only
compute the full ππ → ππ correlator from t ¼ 6a to
t ¼ 17a, where we anticipate that on the one hand the

signal is only moderately polluted by excited-state con-
tributions and on the other hand statistical errors are still
tolerable. We are also able to “recycle”many propagators in
both ππ and Kπ scattering.
Adding this up, in our implementation the total number

of solves required on each configuration is

Nvec½Nsmear þ Np1
ð1þ 18Np2

þ 3NtimesÞ�; ð7Þ

where Nvec ¼ 8 is the number of noise sources used (four
spin components times two different vectors), Nsmear ¼ 4 is
the number of one-particle smearing levels (three plus one
derivative source; see above), Np1

¼ 1 and Np2
(see

Table II) are the numbers of momenta calculated and
Ntimes ¼ 12 (t ¼ 6a up to t ¼ 17a) is the number of time
slices for which the box diagrams shown in the top middle
and top right of Fig. 1 are calculated. For the Ns ¼ 48 and
Ns ¼ 64 lattices, evaluating the full 8 × 8 matrices of
correlators for each moving frame amounts to inverting
the strange quark Wilson matrix 80 and 120 times,
respectively, and the light quark matrix 824 and 808 times.
Note that the number of solves required to compute a
“traditional” point-to-all propagator is 12, i.e. the present
scattering computation is by a factor of about 40 more
expensive than a conventional determination of the spec-
trum of stable light hadrons for one quark smearing level
(12 strange and 12 light quark inversions on each volume).
The momenta injected are not indicated in Fig. 1 and the

correlator is the sum of all allowed momentum projections;
some irreps require a combination of two related pairs of
momenta and, in ππ scattering, we can interchange the
momenta p1 and p2 carried by each pion at the sink.
Similarly, we ensure that the one-particle to one-particle

TABLE II. The interpolators we use in different moving frames. For each frame, we note the little group and irreducible
representations (irrep) we employ and the one- and two-particle interpolators that belong to them. K denotes the integer-valued total
momentum vector (used for the one-particle interpolator) and the arguments of the pseudoscalar interpolators are kj ¼ pjL=ð2πÞ.
ππ

Ns K (Little) group Irrep Oππ Oρ

48 (0,0,0) Oh T1 πð1; 0; 0Þπð−1; 0; 0Þ ρx
48 (0,0,1) C4v E πð1; 0; 0Þπð−1; 0; 1Þ − πð−1; 0; 0Þπð1; 0; 1Þ ρx
48 (0,1,1) C2v A1 πð1; 0; 0Þπð−1; 1; 1Þ þ πð−1; 0; 0Þπð1; 1; 1Þ ρy þ ρz
48 (0,1,1) C2v B1 πð1; 0; 0Þπð−1; 1; 1Þ − πð−1; 0; 0Þπð1; 1; 1Þ ρx
64 (0,0,1) C4v E πð1; 0; 0Þπð−1; 0; 1Þ − πð−1; 0; 0Þπð1; 0; 1Þ ρx
64 (0,1,1) C2v A1 πð1; 0; 0Þπð−1; 1; 1Þ þ πð−1; 0; 0Þπð1; 1; 1Þ ρy þ ρz
64 (0,1,1) C2v B1 πð1; 0; 0Þπð−1; 1; 1Þ − πð−1; 0; 0Þπð1; 1; 1Þ ρx

Kπ
Ns K (Little) group Irrep OKπ OK�

48 (1,1,0) C2v B2 πð1; 0; 0ÞKð0; 1; 0Þ K�
x − K�

y

64 (0,0,0) Oh T1 πð1; 0; 0ÞKð−1; 0; 0Þ K�
x

64 (0,0,1) C4v E πð1; 0; 0ÞKð−1; 0; 1Þ − πð−1; 0; 0ÞKð1; 0; 1Þ K�
x

64 (0,1,1) C2v A1 πð1; 0; 0ÞKð−1; 1; 1Þ þ πð−1; 0; 0ÞKð1; 1; 1Þ K�
y þ K�

z

64 (0,1,1) C2v B1 πð1; 0; 0ÞKð−1; 1; 1Þ − πð−1; 0; 0ÞKð1; 1; 1Þ K�
x
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correlators—depicted in the lower left of the figure—
transform according to the irreps given in Table II, by
taking the corresponding combinations of vector-meson
polarizations. The contractions for ππ → ρ and ρ → ππ are
complex conjugates and it is computationally cheaper to
only calculate one of them. (We do this for ππ → ρ.) For the
remaining correlation matrix elements with i ≠ j (one- to
one-particle), we average over Cij and C�

ji.

C. Extraction of energy levels and phase shifts

For each kinematic situation, we construct an eight times
eight matrix of correlators for our basis of interpolators in
the way described above. The element of this matrix for a
source interpolatorOj and a sink interpolatorOi is given as

CijðtÞ ¼ h0jÔiðtÞÔ†
jð0Þj0i: ð8Þ

The spectral decomposition can be written as

CijðtÞ ¼
X
α

Zi
αZ

j�
α

2Eα e−Eαt; ð9Þ

where Zi
α ¼ h0jÔijαi is the overlap factor of the state

created by the operator Ô†
i with the physical state jαi of

energy Eα. We extract the energy levels Eα by solving the
generalized eigenvalue problem [43–45]

CðtÞuαðtÞ ¼ λαðt0; tÞCðt0ÞuαðtÞ; ð10Þ

where the energy levels can be obtained from the depend-
ence λαðt0; tÞ ∼ e−Eαðt−t0Þ at large times.
The energies we extract are in the lab frame, so we

denote these as EL. The phase shift, however, is extracted in
the center-of-momentum frame, i.e. in the rest frame of the
ππ or πK system. It is straightforward to convert the lab-
frame energies EL into the corresponding center-of-
momentum frame energies Ecm.
The lab-frame energy of the two-meson state is given as

EL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þm2

1

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
2 þm2

2

q
; ð11Þ

where the mi are the pion (or kaon) masses and the pi are
their momenta. In the absence of interactions the p2

i are
integer multiples of ð2π=LÞ2. The invariant squared energy
in the center-of-momentum frame is

E2
cm ¼ E2

L − P2; ð12Þ

where P is the total momentum of the ππ (or the Kπ)
system. The square of the momentum of each of the
pseudoscalars in the center-of-momentum frame is
given by

p2
cm ¼ ðE2

cm − ðm1 þm2Þ2ÞðE2
cm − ðm1 −m2Þ2Þ

4E2
cm

: ð13Þ

The phase shift is extracted, comparing the center-
of-momentum-frame spectrum to the energy levels
allowed by the residual cubic symmetry (little group)
that corresponds to the boost applied. For each irrep, this
involves an expression in terms of generalized zeta
functions, derived in Refs. [9,10]. For the numerical
calculation of these functions, we use the representation
given in Ref. [10].
The generalized zeta function is a function of the real-

valued variable q ¼ pcmL=ð2πÞ:

Zlmðq2Þ ¼
X
z

YlmðzÞ
z2 − q2

; ð14Þ

where YlmðzÞ ¼ jzjlYlmðezÞ with ez ¼ z=jzj and Ylm are
the usual spherical harmonics. The sum is over z, the
allowed momentum vectors in the boosted frame; see,
e.g., Ref. [10].
For each irrep we have to consider mixing between

different continuum partial waves. The relevant determi-
nants from which the phase shifts can be extracted are listed
in Ref. [10]. Here, we neglect possible mixing with partial
waves l ≠ 1. The s wave can only contribute to Kπ
scattering. Moreover, mixing of l ¼ 0 into l ¼ 1 is only
allowed for theK ¼ ð0; 1; 1Þ A1 irrep. We will address this
case in Sec. III C below. Since the ππ and Kπ interactions
have a finite range, contributions of higher partial waves are
suppressed. The l ¼ 3 ππ phase shift was determined
recently by Wilson and collaborators [18] at mπ ≈
236 MeV who indeed found δ3 ≈ 0 near the resonance,
within small errors. We conclude that limiting ourselves to
l ≤ 1 appears reasonable.
Subsequently, we parametrize the phase shift as a

function of the center-of-momentum-frame energy using
a Breit-Wigner (BW) ansatz:

tan δ ¼ g2

6π

p3
cm

Ecmðm2
R − E2

cmÞ
: ð15Þ

From this parametrization,1 we can extract the mass of the
resonancemR and its width can be found from the coupling
g as

Γ ¼ g2

6π

p3
R

m2
R
; ð16Þ

where pR is the momentum carried by each particle in the
center-of-momentum frame at δ ¼ π=2, i.e. pR is given by
pcm of Eq. (13) for Ecm ¼ mR.

1We consider alternative parametrizations in Sec. III C.
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III. RESULTS

A. Determination of the energy levels

Following the generalized eigenvalue procedure detailed
in Sec. II C above, we separately analyze the 8 × 8matrices
that cross-correlate states created by one- and two-particle
interpolators for the seven ππ and fiveKπ channels listed in
Table II, and obtain the respective ground and first excited-
state energies. We are able to resolve these energies most
easily using submatrices of correlators containing only
three interpolators—one of which is always the two-
particle interpolator Oππ or OKπ of Table II. The single-
particle interpolators used in the final analysis are only of
the type ψ̄γjψ . However, we have checked these results
against employing other submatrices and found consistency
of the effective masses, but no improvement. The results
turned out very similar but often noisier when replacing one
ψ̄γjψ interpolator by ψ̄γjγtψ while the ψ̄∇jψ interpolator
increased the statistical errors very significantly, in par-
ticular for states with total momentum K ¼ ð0; 1; 1Þ.
To save computer time we only evaluated the box

diagrams in the top middle and top right of Fig. 1 for
17a ≥ t ≥ 6a. The top left diagram contains two traces and
naively increases like L6 while the quark-line connected
box diagrams have magnitudes ∝ L3. Due to this relative
suppression, these can only become important at times of at
least a similar magnitude as the inverse energy gap between
I ¼ 2 and I ¼ 1 ππ (or I ¼ 3=2 and I ¼ 1=2Kπ) states and
probably their contribution to the ππ → ππ and Kπ → Kπ
entries can be neglected at t < 6a. Nevertheless, to be on
the safe side, in our generalized eigenvector analysis we
set t0 ¼ 6a ≈ 0.43 fm.
We show effective masses

Eα
L;effðtþ a=2Þ ¼ 1

a
ln

λαðt0 ¼ 6a; tÞ
λαðt0 ¼ 6a; tþ aÞ ð17Þ

for some of our ππ and Kπ eigenvalues [see Eq. (10)], in
Fig. 2, for the region t > t0 þ a. To enable better com-
parison to other studies, we display the data in physical
units. The effective masses are typically consistent with
plateaus between t ¼ 10a ≈ 0.71 fm and 17a ≈ 1.22 fm,
which is our most frequent fit range, although there are
differences between the channels. The KπT1 channel
shown in the figure is an extreme example, where the fit
range starts at t ¼ 14a ≈ 1 fm.
Of particular interest are the K ¼ ð0; 1; 1Þ A1 channels.

The noninteracting ground states in this irrep correspond to
a momentum distribution k1 ¼ 0 and k2 ¼ K ¼ ð0; 1; 1Þ
among the two pseudoscalar mesons that differs from the
one used in constructing our two-particle interpolators
(k1 ¼ ð1; 0; 0Þ and k2 ¼ K − k1 ¼ ð−1; 1; 1Þ). In princi-
ple, these correlation functions could decay towards the
lower-lying states. However, we find no indication for this

in our data (see Fig. 2), and conclude that our interpolators
effectively decouple from these energy levels.
The resulting lab-frame energy levels EL are shown in

Fig. 3 both for the ππ and Kπ channels. The scale is set
using a−1 ¼ 2.76 GeV, ignoring the 3% overall scale
uncertainty for the time being. The statistical errors are
obtained using the jackknife procedure. Only two ππ levels
are above the four-pion threshold [the excited states in the
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FIG. 2. Effective masses for some ππ and Kπ channels. The
error bands correspond to the fit results.
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FIG. 3. Energy levels of the ρjππ (left) and K�jKπ (right)
systems in finite boxes of linear sizes Nsa ¼ 48a ≈ 2.6=m∞

π ≈
3.4 fm and Nsa ¼ 64a ≈ 3.5=m∞

π ≈ 4.6 fm for different lattice
momenta and representations in the laboratory frame. Horizontal
lines correspond to the energy levels of a noninteracting two-
particle system. Squares and upward-pointing triangles indicate
ground states, while circles and downward-pointing triangles
indicate first excited states. Open symbols correspond to the
smaller volume and full symbols to the larger volume. Crosses are
for levels that are not used in our subsequent phase-shift analysis.
Note that for ππ scattering the excited states in bothK ¼ ð0; 0; 1Þ
E channels are above the respective noninteracting 4π thresholds
(not shown).
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K ¼ ð0; 0; 1Þ E irrep], one of which will be disregarded in
any case in the phase-shift analysis below.
In the figure, we also show the energies of the non-

interacting two-particle states. The solid horizontal lines are
the noninteracting levels corresponding to the two-particle
interpolators explicitly included in our basis (given in
Table II), while the dashed lines correspond to other
distributions of the momentum among the noninteracting
pseudoscalar mesons. As we have not included interpola-
tors that explicitly resemble these momentum configura-
tions, we cannot rely on our extracted energy levels to be
sensitive to their presence and ignore these noninteracting
levels in our phase-shift analysis. As already discussed
above, in the A1 case the noninteracting ground states are
lower in energy than the levels that correspond to the
momentum distribution we have implemented (solid lines).
Nevertheless, we see no evidence of any coupling of the
interpolators within our basis to these states; see Fig. 2.
Note that for the Ns ¼ 64 ππ channel this level lies at
561 MeV, below the energy region shown in Fig. 3.
Levels that are irrelevant, due to large statistical errors for

the resulting phase shifts, will be excluded from our
subsequent analysis. These levels are depicted as crosses
in Fig. 3. We remind the reader that the deviations of the
measured energy levels shown in the figure from the
noninteracting two-particle levels (solid lines) are due to
the ρ and K� resonances and encode the resonance
parameters.

B. Phase shift and resonance parameters

The center-of-momentum-frame energies Ecm and phase
shifts δðEcmÞ can both be extracted from measured lab-
frame energy levels EL in a given irrep (see Sec. II C),
where we assumemπ ¼ 149.5 MeV, in spite of the fact that
the measured pion mass on the small volume is larger by
10 MeV. This will be addressed in Sec. III C below.
We plot δðEcmÞ in Fig. 4, using the same color and

symbol scheme as in Fig. 3. As explained above, in our
determination of the phase shift we assume that one value
of l (l ¼ 1) dominates, such that there is a one-to-one
correspondence between the extracted energy levels and the
points in the phase-shift curves. For clarity we omit all data
points from the figure with errors on the phase shift in
excess of π=5 (marked as crosses in Fig. 3). These have
little statistical impact and will therefore be excluded from
our analysis.
The ππ and Kπ phase shifts are each fitted to the BW

resonance form given in Eq. (15). Our fit to the ππ phase
shift results in χ2=d:o:f ¼ 8.9=7 and for the Kπ phase shift
we obtain χ2=d:o:f ¼ 19.2=7. These fits are included in
Fig. 4 (the grey hashed band for ππ scattering and the solid
orange one for Kπ scattering). In the ππ case the dashed
data point of the figure is slightly above the respective 4π
threshold. However, as discussed in the Introduction, the
effect of this inelastic threshold is expected to be negligible.

Moreover, excluding this point from the fit only produces a
hardly visible change. Since we have exact isospin sym-
metry in place, decays into three-pion final states are not
possible.
Figures 3 and 4 clearly show an increase in statistical

noise when going to smaller quark masses: the ππ scatter-
ing data have considerably larger error bars than the Kπ
data. From the BW fits shown, we find the values

mρ ¼ 716ð21Þð21Þ MeV; mK� ¼ 868ð8Þð26Þ MeV;

ð18Þ

gρππ ¼ 5.64� 0.87; gK�Kπ ¼ 4.79� 0.49; ð19Þ

Γρ ¼ 113ð35Þð3Þ MeV; ΓK� ¼ 30ð6Þð1Þ MeV; ð20Þ

for ππ and Kπ scattering, where the first errors are
statistical and the second errors reflect our 3% overall
scale uncertainty [31]. In the last row we also quote the
corresponding decay widths, obtained via Eq. (16). From a
given parametrization of the p-wave phase shift, assuming
partial wave unitarity and ignoring further inelastic thresh-
olds, we can analytically continue to the second (unphys-
ical) Riemann sheet (see, e.g., Ref. [46]) and determine
the position of the resonance pole. Using the BW
parametrization, for the ρ and K� resonances we findffiffiffiffiffi
sR

p ¼½707ð17Þ− i55ð18Þ�MeV and
ffiffiffiffiffi
sR

p ¼½868ð10Þ−
i14.4ð3.4Þ�MeV, respectively. These numbers are

π/4
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π
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δ
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FIG. 4. The phase shift as a function of the center-of-momen-
tum-frame energy, Ecm, for p-wave ππ scattering around the ρ
resonance and Kπ scattering around the K� resonance. The data
correspond to the lab-frame energies shown in Fig. 3, with
matched colors and symbols. The curves with error bands are
Breit-Wigner parametrizations. The dashed error bar indicates a
point in ππ scattering which lies above the four-pion threshold.
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consistent with
ffiffiffiffiffi
sR

p ¼ mR − iΓ=2 from the BW fits (18)
and (20). Note, however, that Re ffiffiffiffiffisρp is by about half a
standard deviation smaller than the BW fit parametermρ. In
Sec. III C we will explore in detail the parametrization
dependence of these results.
We emphasize that our study was carried out at a

single lattice spacing only, which is not reflected in the
errors given above. Both resonant masses come out
smaller than the experimental values, 775 and
896 MeV, respectively. The reduced decay phase space,
due to a 10% heavier-than-physical pion, in conjunction
with somewhat smaller-than-physical resonance masses,
is the main reason why our decay widths appear to be
somewhat below the experimental ones, Γρ ≈ 148 MeV
and ΓK� ≈ 47 MeV, although this difference is only
statistically significant for the K�. The coupling gρππ is
consistent with the experimental value gρππ ≈ 5.93 while
our gK�Kπ is slightly lower than gK�Kπ ≈ 5.39. The
ordering gρππ > gK�Kπ is reproduced, albeit within large
errors.
In Fig. 5 the ππ phase-shift curve fitted to our data

is compared to the same curve with the π and ρ masses
set to their physical values [25], but with the coupling
gρππ taken from our fit (19). The latter curve is forced to
run through δ ¼ π=2 at the fixed resonant mass ER ¼
Ecm ¼ 775 MeV as we use the BW parametrization.
Since our value of gρππ agrees with experiment, exper-
imental data will be described by the hashed red band.
Again, there is an overall scale-setting uncertainty of 3%
on Ecm, corresponding to 20 MeV, that we do not

display as well as other systematics, most notably a 10%
heavier-than-physical pion and a fixed lattice spacing.
The figure illustrates that also in terms of the width of
the resonance we are close to the physical case.
Previous studies of ππ scattering have not directly
addressed the physical limit, although unitarized chiral
perturbation theory has been used in Ref. [47] to
extrapolate lattice data obtained at mπ ≈ 236 MeV
[18] to the physical point.

C. Investigation of possible biases

Here we investigate the effects on the extracted reso-
nance parameters, of the finite-volume pion mass shift, of
the BW parametrization we use to fit δðEcmÞ and of the
presence of inelastic thresholds. We also address the
possibility of an l ¼ 0 pollution for the case of Kπ
scattering.
The pion mass enters the generalized zeta function,

Eq. (14), via the calculation of the momentum carried
by the two particles in the center-of-momentum frame,
given by Eq. (13). We prefer to use the infinite-volume
pion and kaon masses throughout because we are
relating the spectra to scattering amplitudes in an
infinite volume. For the larger L ¼ 64a lattice size,
the pion mass determined in the finite volume and that
extrapolated to infinite volume differ by as little as
0.2 MeV [32]. However, the pion mass measured on the
L ¼ 48a configurations differs from the infinite-volume
mass by 10 MeV and the kaon mass by 3 MeV. Since
pion exchanges around the boundaries of the periodic
box go beyond the Lüscher formalism, we have repeated
the analysis using finite-volume pion masses instead, to
explore these systematics. For the L ¼ 64a data the
effect obviously is insignificant. For L ¼ 48a the phase
shifts for the corresponding six points (four for the ρ
resonance and two for K�) depicted in Fig. 4 (open
symbols) increase by values ranging from 0.03 to 0.05.
These differences are considerably smaller than our
errors on δ. Indeed, using these numbers instead, we
find the ρ and K� resonance parameters mρ ¼
713ð18Þ MeV, mK� ¼ 867ð7Þ MeV, gρππ ¼ 5.56ð85Þ
and gK�Kπ ¼ 4.81ð51Þ, in almost perfect agreement with
our main analysis employing the infinite-volume pion
mass (18) and (19). For instance, the central values for
the masses deviate by only −3 and −1 MeV, respec-
tively. Adding these systematics to the statistical errors
in quadrature has no impact.
Next, we replace the BW parametrization of the

scattering phase shift [see Eq. (15)], by other functional
forms suggested in Ref. [16] and references therein.
We write,

tan δ ¼ EcmΓðEcmÞ
m2

R − E2
cm

; Γð0ÞðEcmÞ ¼
g2

6π

p3
cm

E2
cm

; ð21Þ

π/4

π/2

3π/4

π
δ

Lattice mπ
Physical mπ, mρ

 600  650  700  750  800  850  900  950

Ecm /MeV

FIG. 5. We compare phase-shift curves for ππ scattering around
the ρ resonance for our fitted Breit-Wigner resonance (solid blue
band) and one with the fitted coupling but physical pion and ρ
masses (hashed red band).
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where Γ ¼ ΓðmRÞ is the resonance width and the energy-
dependent width function ΓðEcmÞ equals Γð0ÞðEcmÞ in the
BW case. In addition, we use [48–50]2

Γð1ÞðEcmÞ ¼
g2

6π

p3
cm

E2
cm

1þ ðpRRÞ2
1þ ðpcmRÞ2

; ð22Þ

Γð2ÞðEcmÞ ¼
g2

6π

p3
cm

E2
cm

exp

�
p2
R − p2

cm

6β2

�
; ð23Þ

Γð3ÞðEcmÞ ¼ 2
p3
cm

E2
cm

×

�
B0 þ B1

Ecm − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0 − E2

cm

p
Ecm þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0 − E2

cm

p
�−1

;

ð24Þ

where s0 ¼ ð2mπ þmRÞ2. The BW fit function depends on
two fit parameters, the resonant mass mR and the coupling
g, while the other parametrizations depend on three
parameters: Γð1Þ contains the additional parameter R, Γð2Þ

contains β ∼ 1=ð ffiffiffi
6

p
RÞ and g is replaced by B0 and B1

within Γð3Þ.
Our fit results for ππ scattering are shown in Table III. In all

cases the additional parameter (R, β and B1) turned out to be
consistent with zero. All the resonant masses we obtain are in
perfect agreement with the BW result shown in the first row.
Also the widths are compatible with the BW width Γð0Þ ¼
113ð35Þ MeVofEq. (20)and theparameterB0 ¼ 1.31ð45Þ is
consistent with the expectation B0 ≈ 1.07, extracted from
experimental data in Ref. [50]. Interestingly, we observe the
numerically biggest difference (half a standard deviation)
between theenergyat a phase shiftδ ¼ π=2,mρ ¼ Ecmðπ=2Þ,
and the real part of

ffiffiffiffiffi
sR

p
for the BW parametrization. We

conclude from Table III that within our precision, we can
neither differentiate between the different models nor distin-
guish the pole position in the second Riemann sheet from the
naively fitted mass and width.
In our determination of the ππ energy levels, we noted

that there was one data point above the four-pion threshold
(the dashed point of Fig. 4). Excluding this from any of our
four fits, however, had no impact worthy of mentioning.
For Kπ scattering, in the case of the K ¼ ð0; 1; 1Þ A1

irrep, we cannot exclude the possibility of a l ¼ 0 partial

wave admixture. Therefore, we perform all fits [setting
s0 ¼ ðmπ þmK þmRÞ2 in Eq. (24)] including and exclud-
ing the corresponding two data points; see the pink solid
triangles in Figs. 3 and 4. The resulting fit parameters and
the position of the K� pole are displayed in Table IV. When
including the two A1 points, there is no sensitivity to the
additional fit parameters and all the results are remarkably
stable. Including and excluding these points, real and 2i
times the imaginary part of

ffiffiffiffiffi
sR

p
perfectly agree with the

fitted masses and widths obtained through Eqs. (21)–(24),
as one would expect for ΓK�=mK� ≈ 0.035 ≪ 1. Removing
the two points, however, appears to increase the resonant
mass. Also the fit results become less stable since the BW
fit has only five remaining degrees of freedom while the
other three fits have only four.
In conclusion, while we find gK�Kπ to be very stable

against variations of the parametrization and of the number
of points fitted, the K� mass is somewhat affected by the
latter. Therefore, we allow for another systematic error of
10 MeV to be added to the statistical error shown in
Eq. (18) in quadrature:

mK� ¼ 868ð13Þð26Þ MeV: ð25Þ

D. Investigation of an alternative method

It is possible to estimate the value of the coupling gρππ
directly from the correlators, using the McNeile-Michael-
Pennanen (MMP) method introduced in Refs. [51,52] (also
see Refs. [53,54] for earlier, related work), if the momen-
tum and volume are selected such that the ππ energy is
close to the resonant massmρ ¼ mR. This method was also
employed recently for studying the Δ resonance [55].
Using the correlators defined in Eq. (8), with O1 and O2

being two- and one-particle interpolators, we can extract
(approximate) ground-state energies Eππ and Eρ from
C11ðtÞ and C22ðtÞ alone, respectively, at times sufficiently
small to avoid the higher level decaying into the lower level
(if Eρ ≠ Eππ) and large enough for excited-state contribu-
tions to be negligible. In this situation, the ground-state
contribution to C12ðtÞ reads

C12ðtÞ ≈ xa
X
t0

Z1
ππZ2�

ρ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
EππEρ

p e−Eππðt−t0Þe−Eρt0 ; ð26Þ

TABLE III. ρ resonance: Fit results for various phase-shift models. The square root of the resonance pole position
sR may be used to define

ffiffiffiffiffi
sR

p ¼ mR − i
2
ΓR. The errors given are statistical only.

Model mρ=MeV gρππ other fit parameters
ffiffiffiffiffi
sR

p
=MeV

0: Eq. (15) (BW) 716(21) 5.64(87) � � � 707ð17Þ − i
2
110ð36Þ

1: Eq. (22) 717(23) 5.38(84) R ¼ 3ð6Þ GeV−1 714ð26Þ − i
2
104ð35Þ

2: Eq. (23) 718(23) 5.34(84) β ¼ 0.16ð15Þ GeV 716ð29Þ − i
2
103ð35Þ

3: Eq. (24) 717(23) � � � B0 ¼ 1.31ð45Þ, B1 ¼ 1.6ð3.0Þ 714ð26Þ − i
2
103ð37Þ

2Note that B0 is defined differently in Ref. [16] than here [50].
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where Zi
α are the amplitudes to create the states jαi using

Ô†
i . These overlap factors also appear within C11ðtÞ and

C22ðtÞ [see Eq. (9)] and will cancel as we are going to
divide C12 by an appropriate combination of these two
elements in Eqs. (28) and (29) below. The ρ state created at
t ¼ 0 will propagate to a time t0 < t, where it undergoes a
transition into ππ. x is the associated ρ → ππ transition
amplitude and in Eq. (26) we summed over all possible
intermediate times t0. The underlying assumption is that the
overlaps of Ô†

2j0i with jππi and of Ô†
1j0i with jρi are small

and can be treated as perturbations, at least if t is not taken
too large. Obviously, there are corrections of higher order in
x to Eq. (26).
The coupling gρππ can then be estimated from x

through [52]

g2ρππ ≈
L3E3

cm

4p2
cm

jxj2: ð27Þ

This can be seen as follows [52]. Fermi’s golden rule relates
the decay width to the matrix element x in the center-of-
momentum frame: Γ ≈ jxj2L3pcmEcm=ð24πÞ. This can be
reexpressed in terms of g2 through Γ ¼ g2p3

cm=ð6πE2
cmÞ

[see Eq. (16)], where Ecm is taken at the point δ ¼ π=2. The
prefactor L3pcmEcm=ð24πÞ above contains the following
contributions: 2π from the golden rule, L3pcmEcm=ð8π2Þ
from the density of states, 1=2 for a decay into identical
pions and 1=3, averaging over one pion momentum
direction for the fixed ρ polarization and momentum.
In Eq. (27) several assumptions have been made. 1) The

golden rule is applicable, i.e. the ππ contribution to the
initial ρ meson state is insubstantial and the matrix element
is not too large: jxjt ≪ 1. This is synonymous with
neglecting terms of higher order in x. 2) The volumes
are sufficiently large for continuous density of states
methods to be applicable. 3) The ππ and ρ states have a
similar energy and, in the center-of-momentum frame, this
is close to the resonant mass. 4) x does not change
substantially when transforming it from the lab to the
center-of-momentum frame.

In the limit Eππ ¼ Eρ, summing over the intermediate
time t0, the ground-state contribution to Eq. (26) has the
time dependence te−Eππt, while excited states are sup-
pressed by a power of t, relative to this. In this case, x
can be found from a ratio of correlators as

jC12ðtÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11ðtÞC22ðtÞ

p ≈ constþ xt; ð28Þ

up to exponential corrections in t that contribute at small
times and neglecting higher powers of xt. Since only jxj2
is relevant, above we defined x as real and positive. When
the difference ΔE ¼ Eππ − Eρ is nonzero, we can still
perform the sum over t0 in Eq. (26). In this case the
time dependence of the ground-state contribution is
a½sinhðΔEt=2Þ= sinhðΔEa=2Þ�e−Ēt (see, e.g., Ref. [55]),
where the average energy is defined as Ē ¼ 1

2
ðEππ þ EρÞ.

The ground-state contribution of the ratio of correlators can
again be used to extract x:

RðtÞ≡ jC12ðtÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11ðtÞC22ðtÞ

p t sinhðΔEa=2Þ
a sinhðΔEt=2Þ ≈ constþ xt; ð29Þ

TABLE IV. K� resonance: Fit results for various phase-shift models, including and excluding the twoK ¼ ð0; 1; 1Þ A1 irrep points that
may also couple to the l ¼ 0 partial wave. The errors given are statistical only.

Model A1 included mK�=MeV gK�Kπ other fit parameters
ffiffiffiffiffi
sR

p
=MeV

0: Eq. (15) (BW) yes 868(8) 4.79(49) � � � 866ð7Þ − i
2
30ð7Þ

1: Eq. (22) yes 868(9) 4.78(44) R ¼ 6ð29Þ GeV−1 868ð9Þ − i
2
30ð7Þ

2: Eq. (23) yes 868(9) 4.80(47) β ¼ 0.13ð45Þ GeV 867ð10Þ − i
2
30ð8Þ

3: Eq. (24) yes 868(9) � � � B0 ¼ 3.2ð5.3Þ, B1 ¼ 8.2ð28.9Þ 868ð10Þ − i
2
29ð7Þ

0: Eq. (15) (BW) no 873(9) 5.08(43) � � � 871ð8Þ − i
2
35ð7Þ

1: Eq. (22) no 878(10) 5.09(38) R ¼ 1.2ð1.6Þ MeV−1 877ð10Þ − i
2
36ð6Þ

2: Eq. (23) no 887(7) 4.42(69) β ¼ 58ð13Þ MeV 890ð7Þ − i
2
27ð9Þ

3: Eq. (24) no 886(8) � � � B0 ¼ 10ð5Þ, B1 ¼ 44ð25Þ 888ð9Þ − i
2
24ð6Þ

FIG. 6. The ratio of correlators RðtÞ defined in Eq. (29) for
different irreps on the two volumes (see Table V), together with
linear fits to the first seven data points shown.
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where we estimate ΔE from the exponential decay of the
ratio C11ðtÞ=C22ðtÞ at large (but not too large) times.
We now proceed to estimate gρππ to assess the reliability

of the MMP method. In Fig. 6 we show the resulting ratios
RðtÞ, together with linear fits to the first seven data points,
6a ≤ t ≤ 12a. The color coding of the symbols corre-
sponds to that of Fig. 3. The extracted slopes vary between
51 and 124 MeV with the smaller slopes corresponding to
the larger volume (full symbols), as one would expect from
the naive scaling with L−3=2 of the amplitude x defined in
Eq. (26). This scaling is also consistent with Eq. (27),
where the combination x2L3 appears. For the largest slope
x ≈ 124 MeV and t ¼ 12a ≈ 0.86 fm, we obtain xt ≈ 0.54.
Indeed, around this Euclidean time higher-order corrections
in xt become relevant, while for the large volume data sets,
where the slopes are smaller, the linear behavior persists for
much longer. We see no indication of exponential correc-
tions towards small times.
In Table V we show the results for x and the derived

couplings, where the errors are purely statistical. More
details on the momenta and interpolators used can be found
in Table II. The entries of Table V are ordered in terms of
decreasing ΔE, where we find that a smaller ΔE corre-
sponds to a smaller Ecm (and a smaller phase shift δ); see
Fig. 4. Naively, the T1 and E irreps on the Ns ¼ 48 lattice
should give the most reliable results as these are closest to
the resonance and best matched in terms of a small ΔE.
However, only the values from the A1 irreps are in agree-
ment with the result from our Lüscher-type scattering
analysis. We remark that in terms of the kinematics the
B1 irrep is similar to A1, except for the orientation of the ρ
spin relative to the lattice momentum K ¼ ð0; 1; 1Þ. These
pairs of irreps are also close to each other in terms of their
ΔE values. Nevertheless, the results from the B1 irrep differ
substantially from the expectation.
Using the Lüscher method [1] has the advantage that we

can directly determine the phase shift, without relying on a
BW parametrization or introducing an effective coupling
gρππ . Moreover, the systematics can be controlled, while the
MMP method [51,52] relies on several approximations that
cannot be tested easily. However, the statistical errors are

smaller using the MMP method than in our full-fledged
scattering analysis. In principle we did not even have to
evaluate the box diagram in the upper row of Fig. 1 as
formally this is of order x2, beyond the first-order pertur-
bative ansatz. While it is encouraging that the couplings
obtained are of sizes similar to the correct result, they
scatter substantially between volumes and representations.
Therefore, we have to assume a systematic uncertainty of
the MMP method for ρ decay on our volumes of about
50%, in terms of the coupling gρππ .

E. Comparison to previous results

In Fig. 7, we compare our results on the ρ meson mass,
extracted from the phase-shift position δ ¼ π=2 of the BW
fit to various results from the literature [6,11,13–16,18–20].
These results were obtained using different methods, lattice

TABLE V. Estimates of x and gρππ using the MMP method [51,52]. The entries are sorted in terms of a descending gap
ΔE ¼ Eππ − Eρ. In the last row we show our result Eq. (19) from the Lüscher-type scattering analysis for comparison.

Ns K Irrep ΔE=MeV x=MeV gρππ

48 (0,1,1) A1 135 81(5) 5.54(30)
48 (0,1,1) B1 95 106(7) 7.07(44)
48 (0,0,1) E 16 124(6) 8.37(39)
48 (0,0,0) T1 −35 113(4) 7.54(28)
64 (0,1,1) A1 −122 51(2) 5.19(17)
64 (0,1,1) B1 −140 73(3) 8.18(22)
64 (0,0,1) E −173 81(2) 7.46(25)
Full scattering analysis � � � � � � 5.64(87)
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FIG. 7. ρ resonance masses from this (leftmost open square)
and previous lattice calculations by the Hadron Spectrum
Collaboration (HSC) [16,18], Lang et al. [13], ETMC [6],
PACS-CS [11,14], Pelissier and Alexandru (PA) [15], Bulava
et al. [19] and Guo and Alexandru (GA) [20]. The physical value
is also plotted [25]. Open symbols correspond to simulations with
Nf ¼ 2 sea quark flavors, and full symbols correspond to
Nf ¼ 2þ 1. In none of the cases was the continuum limit taken
and no study includes systematic errors.
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actions, lattice spacings andNf ¼ 2 (open symbols) as well
as Nf ¼ 2þ 1 (full symbols) sea quark flavors. In none of
the cases was a continuum limit extrapolation attempted
and we only show our statistical error as the errors of the
other data do not contain systematics. In most of these cases
BW masses are quoted, which is why we compare these to
our BW mass. In Refs. [56,57] next-to-leading-order
(NLO) and next-to-next-to-leading-order (NNLO) chiral
perturbation theory, combined with the inverse amplitude
method, are used to predict the pion mass dependence of
mρ. The quality of the available lattice data does not yet
allow for a detailed comparison. The general trend seen in
the majority of lattice calculations qualitatively agrees with
a linear dependence of mρ on m2

π, as suggested by leading-
order chiral perturbation theory; however, there are notable
outliers.
In Fig. 8 we show the coupling gρππ , obtained in

Refs. [6,11–16,18–20]. Up to mπ ≈ 400 MeV, Ref. [57]
expected the coupling gρππ to decrease (increase) by about
5% at NLO (NNLO), as a function of the pion mass, i.e.,
within the accuracy of their approach, gρππ is constant and
the reduction of the decay width is purely due to phase
space. An almost constant behavior is also suggested
by the Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin
relation [58,59], gρππ≈mρ=fπ≈5.96, where fπ ¼

ffiffiffi
2

p
Fπ ≈

130 MeV at the physical point. In Fig. 8, indeed, the lattice
values for pion masses up to mπ ≈ 470 MeV are all around
this coupling (which is indistinguishable from the physical
coupling gρππ ≈ 5.93, also shown in the figure). However,
the noise increases significantly, closer to the physical pion
mass, so gρππ can be extracted much more accurately at
large quark masses. Again note that the lattice results were

obtained at different lattice spacings with different actions
and have quite different systematics.
For Kπ scattering only a few previous lattice studies

exist. At mπ ≈ 150 MeV and at our lattice spacing, we find
[Eqs. (25) and (19)]mK� ¼ 868ð13Þð26Þ MeV and gK�ππ ¼
4.79ð49Þ. Note that in experiment mK� ≈ 896 MeV and
gK�Kπ ≈ 5.39. The Hadron Spectrum Collaboration [24]
reports mK� ¼ 933ð1Þ MeV and gK�Kπ ¼ 5.72ð52Þ at a
pion mass of 391 MeV. Prelovsek et al. [22] used mπ ¼
266 MeV and obtained mK� ¼ 891ð14Þ MeV and gK�Kπ ¼
5.7ð1.6Þ while Fu and Fu [21] found mK� ¼1014ð27ÞMeV
and gK�ππ ¼ 6.38ð78Þ, using a lattice spacing of 0.15 fm
and a pion mass of 240 MeV.

IV. CONCLUSIONS

In summary, we have demonstrated the feasibility of
computing resonance scattering parameters at a nearly
physical pion mass. In particular, we computed the
p-wave scattering phase shifts for ππ scattering in the
I ¼ 1 channel and Kπ in the I ¼ 1=2 channel. From
these, we extracted the masses and couplings mρ ¼
716ð21Þð21Þ MeV, Γρ ¼ 113ð35Þð3Þ MeV, mK� ¼
868ð13Þð26Þ MeV and ΓK� ¼ 30ð6Þð1Þ MeV. The masses
are lower than the experimental ones, mρ ≈ 775 MeV,
mK� ≈ 896 MeV, and at least the width of the K� meson
is underestimated too, in part due to a 10% heavier-than-
physical pion. The values from experiment are Γρ ≈
148 MeV, ΓK� ≈ 47 MeV [25]. The second errors reflect
an overall scale uncertainty of 3% [31]. While for the ρ
meson mass and width this error can be added in quadrature
to the statistical one, for the K� parameters it is not
straightforward to account for this uncertainty as our
strange quark mass was tuned, assuming a−1 ¼
2.76 GeV. It is clear that we undershot the experimental
ρ resonance mass by about two standard deviations, which
indicates that not all systematics have been accounted for;
in particular only one (albeit small) lattice spacing was
realized. The corresponding positions of the resonance
poles in the second Riemann sheet from analytical con-
tinuation are shown in Tables III and IV and, at our present
level of error, these cannot be distinguished from the above
Breit-Wigner fit results.
The stochastic one-end source method we have used

is cheaper compared to other methods [17,60,61], as
long as the set of kinematic points (and interpolators) is
suitably restricted. In our calculation, we were able to
recycle many propagators, by keeping one of the
momenta, p1, fixed. The number of inversions required
is given in Eq. (7) and the cost of including additional
momenta is large. This is a limitation in particular for
larger volumes, when the density of states increases and
the use of multiple two-particle interpolators cannot be
avoided. We remark, however, that our larger volume
with a linear lattice extent 64a ≈ 4.6 fm is not at all
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FIG. 8. Breit-Wigner couplings from various lattice calcula-
tions (Hadron Spectrum Collaboration (HSC) [16,18], Lang et al.
[13], ETMC [6], PACS-CS [11,14], Pelissier and Alexandru (PA)
[15], Bulava et al. [19], BMW-c [12] and Guo and Alexandru
(GA) [20]) and that extracted from the experimentally measured ρ
meson width [25]. Open symbols correspond to Nf ¼ 2 results,
and full symbols correspond to Nf ¼ 2þ 1.
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small considering present-day standards in lattice scat-
tering computations.
An alternative approach is the distillation method [60],

which has been used in several other scattering calculations
[13,16,18]. This method does not suffer from a large
computational overhead when including additional
momenta as time-slice-to-all propagators (perambulators)
are used in constructing the correlators. However, this
method is not very well suited to large volumes as the
number of vectors required increases in proportion to L3Nt
and the cost of contractions also scales with a power of the
number of vectors. Combining this method with stochastic
estimates [61] may ultimately not change this scaling
behavior but may make realistic lattice sizes accessible.
Indeed, this stochastic distillation method has been suc-
cessfully employed for ππ scattering [17,19], where the
number of solves used in Ref. [19] is not much higher than
ours. It will be very interesting to see if such calculations
can be pushed towards small quark masses, large volumes
and time distances of about 1 fm that allow for a reliable
extraction of energy levels. Stochastic distillation was also
successfully used to study DK scattering [62–64].
Our calculation is performed at a single lattice spacing

and it is not possible to quantify the size of discretization
effects. For the action we use, these are of Oða2Þ and it is
unlikely at our lattice spacing a ≈ 0.071 fm that they are
much larger than our 3% scale uncertainty. Limited
information for the Oða2Þ accurate twisted mass action
can be extracted from the results for the ρ meson mass
given in Ref. [65]. In this study of the hadronic vacuum
polarization contribution to ðg − 2Þμ, the correlators for
vector mesons are calculated only using a one-particle
interpolator for several ensembles with different lattice
spacings and (larger-than-physical) pion masses. The mass
of the ρ is then found by treating it as a stable particle and
the results obtained show no significant dependence on the
lattice spacing. We therefore assume that the 3% scale

uncertainty and the 10% larger-than-physical pion mass are
dominant systematics but we cannot exclude other sources
of error, in particular lattice spacing effects or the omission
of the strange quark from the sea.
In Figs. 7 and 8 we compare our results on the ρ meson

mass and coupling to those of other lattice studies that were
carried out at larger pion masses. The coupling gρππ appears
to be remarkably independent of the quark mass and also
robust against other systematics.
Future work will extend the present study to Nf ¼ 2þ 1

flavor configurations, including several lattice spacings, to
enable a continuum-limit extrapolation. Working close to
the physical pion mass is particularly valuable for simu-
lations of scattering processes involving states that are near
to thresholds, e.g., Xð3872Þ and DD̄� or Ds0ð2317Þ and
DK, where the gap relative to the threshold strongly
depends on the light quark mass.
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