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We investigate finite-volume effects in the hadronic vacuum polarization, with an eye toward the
corresponding systematic error in the muon anomalous magnetic moment. We consider both recent lattice
data as well as lowest-order, finite-volume chiral perturbation theory, in order to get a quantitative
understanding. Even though leading-order chiral perturbation theory does not provide a good description of
the hadronic vacuum polarization, it turns out that it gives a good representation of finite-volume effects.
We find that finite-volume effects cannot be ignored when the aim is a few percent level accuracy for the
leading-order hadronic contribution to the muon anomalous magnetic moment, even when using ensembles
with mπL ≳ 4 and mπ ∼ 200 MeV.
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I. INTRODUCTION

A convenient representation for the lowest-order
hadronic contribution to the anomalous magnetic moment
aμ ¼ ðg − 2Þ=2 in terms of an integral over Euclidean
momentum is given by [1,2]

aLO;HVPμ ¼ lim
q2max→∞

aLO;HVPμ ½q2max�;

aLO;HVPμ ½q2max� ¼ 4α2
Z

q2max

0

dq2fðq2ÞΠ̂ðq2Þ; ð1:1Þ

where mμ is the muon mass,

fðq2Þ ¼ m2
μq2Z3ðq2Þ 1 − q2Zðq2Þ

1þm2
μq2Z2ðq2Þ ;

Zðq2Þ ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq2Þ2 þ 4m2

μq2
q

− q2Þ=ð2m2
μq2Þ; ð1:2Þ

and Π̂ðq2Þ≡ Πðq2Þ − Πð0Þ is the subtracted hadronic
vacuum polarization. The vacuum polarization Πðq2Þ is
defined from the hadronic electromagnetic current two-
point function, ΠμνðqÞ, via

ΠμνðqÞ≡
Z

d4xeiqxhJμðxÞJνð0Þi ¼ ðq2δμν − qμqνÞΠðq2Þ;

ð1:3Þ

with JμðxÞ being the hadronic electromagnetic current. The
form on the right-hand side of Eq. (1.3) follows from
current conservation and rotational symmetry.

While, in principle, a lattice computation of the hadronic
vacuum polarization1 is straightforward, it turns out that a
very high accuracy is needed in the region around
q2 ∼m2

μ=4. The reason is that the integrand of Eq. (1.1)
is strongly peaked in that region, as illustrated in Fig. 1. In
effect, the weight function fðq2Þ acts as a “magnifying
glass” of the low-momentum region, where it is hard to
obtain lattice data points with small errors. We note that the
data points shown in Fig. 1 have been obtained with all-
mode averaging (AMA) [3], and thus have errors much
reduced in comparison with the state of the art of only a few
years ago.2

Figure 1 also suggests that finite-volume effects may
cause a significant systematic error, because it is the finite-
volume quantization of momenta that makes the number of
data points in the low-q2 region so sparse. It is our aim in
this article to investigate this quantitatively. A more
phenomenological study of finite-volume effects appeared
in Ref. [5], and a preliminary account of the present work
appeared in Ref. [6].3

We restrict ourselves to a rectangular volume L3 × T
with periodic boundary conditions in all directions, and we
are interested in the case that T > L, as is the case for all
lattice computations of the hadronic vacuum polarization.
While twisted boundary conditions have been considered
[7,8], a generic twist vector reduces the symmetry group of

1Or, at least, its connected part.
2See, for example, Fig. 1 of Ref. [4].
3The results reported in Ref. [6] were based on an incorrect

version of Eq. (2.12), and did not take into account taste
splittings.
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the problem. Thus, the continuum representation of the
rotation group according to whichΠμνðqÞ transforms would
reduce to even more representations of the even smaller
discrete subgroup. Of course, as has been observed before,
twisted boundary conditions do not necessarily reduce the
size of finite-volume effects at given values ofmπL andmπ .
Instead, they make the analysis of finite-volume effects
more complex.
This article is organized as follows. In Sec. II we discuss

general theoretical considerations based on the Ward-
Takahashi identity (WTI) and the irreducible representa-
tions of the cubic group, followed by a calculation of the
vacuum polarization in finite volume in lowest-order
(staggered) chiral perturbation theory (ChPT). In
Sec. III, we then compare lattice data for the vacuum
polarization with ChPT, and quantify the size of the
systematic error due to finite-volume effects on aLO;HVPμ .
We conclude in Sec. IV, and an appendix contains details of
the calculation of the finite-volume vacuum polarization in
ChPT (generalizing it to the case with twisted boundary
conditions).

II. THEORETICAL CONSIDERATIONS

In an infinite volume and in the continuum limit,
symmetry and current conservation implies that the vacuum
polarization takes the form (1.3). Current conservation
carries over to the lattice, but now a more general decom-
position of the vacuum polarization is possible, because the
symmetry is reduced. The WTI restricts ΠμνðqÞ to obey
(a is the lattice spacing)

X
μ

q̂μΠμνðqÞ ¼ 0; ð2:1Þ

q̂μ ≡ 2

a
sin ðaqμ=2Þ: ð2:2Þ

Requiring ΠμνðqÞ to be symmetric in the indices μ and ν,4

and assuming an infinite, isotropic hypercubic lattice, the
WTI implies the most general form5

ΠμνðqÞ ¼ ðδμνq̂2 − q̂μq̂νÞΠðqÞ

þ
�
δμν

�X
ρ

q̂4ρ þ q̂2μq̂2
�
− q̂3μq̂ν − q̂μq̂3ν

�
Π0ðqÞ

þ � � � ; ð2:3Þ

where q̂2 ¼ P
μq̂

2
μ. WhileΠðqÞ is dimensionless,Π0ðqÞ has

mass dimension -2. That means that it has to vanish at least
quadratically with the lattice spacing a; for a → 0, the
expression in Eq. (2.3) has to reduce to Eq. (1.3). Here, we
are only interested in the vacuum polarization for very
small momenta, and we thus assume that we can ignore the
scaling violations on the second line of Eq. (2.3).
When we restrict ourselves also to a finite volume in the

form of a hypercubic box of dimensions L3 × T with
periodic boundary conditions, Eq. (2.3) is not the most
general form of ΠμνðqÞ if the hypercubic symmetry is
further broken by choosing L ≠ T, as we discuss next.

A. Group theory

When we go to a finite periodic volume L3 × T with
L ≠ T,6 two things happen. First, momenta are quantized,

qi ¼
2πni
L

; i ¼ 1; 2; 3; q4 ¼
2πn4
T

; ð2:4Þ

where the nμ are integers. The WTI (2.1) does not restrict
the vacuum polarization at zero momentum, and in general,
in a finite volume, Πμνð0Þ ≠ 0.7 Rather, rotational sym-
metry implies that it takes the form

Πμνð0Þ ¼ δμνðΠsð0Þ þ δμ4ðΠ4ð0Þ − Πsð0ÞÞÞ; ð2:5Þ

with Πsð0Þ and Π4ð0Þ being constants.8 For T ≫ L one
expects that Π4ð0Þ ≪ Πsð0Þ. It thus makes sense to con-
sider a subtracted vacuum polarization

ΠμνðqÞ ¼
X
κλ

PT
μκðΠκλðqÞ − Πκλð0ÞÞPT

λν

¼ ΠμνðqÞ − PT
μνΠsð0Þ − PT

μ4P
T
4νðΠ4ð0Þ − Πsð0ÞÞ;

PT
μνðqÞ ¼ δμν −

qμqν
q2

; ð2:6Þ
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FIG. 1. Integrand of Eq. (1.1), in arbitrary units (q2 in GeV2).
The red points represent lattice data from the MILC asqtad
ensemble considered in this article, while the blue curve is the
product of the weight fðq2Þ and a typical smooth fit to the
subtracted vacuum polarization Π̂ðq2Þ.

4We always use only the Noether current in Eq. (1.3).
5See also Ref. [9].
6We always consider the case that T > L.
7This, and some of the other observations that follow, has also

been noted in Ref. [10].
8For an estimate using ChPT, see the appendix.
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where PT is the transverse projector. We projected the
subtracted vacuum polarization so that it still satisfies the
WTI after the subtraction of its value at zero momentum. Of
course, without the subtraction, this projection has no
effect, since

P
μqμΠμνðqÞ ¼

P
νΠμνðqÞqν ¼ 0.

Second, the rotation group is reduced to the group of
cubic rotations, defined by the irreducible representation
(irrep) of 90-degree rotations on the spatial components of
momentum. While the infinite-volume form (1.3) contains
only one scalar function, this is no longer the case in our
finite volume. The tensor Πμν contains five different
irreducible substructures,

A1∶
X
i

Πii ¼ ð3q2 − ~q2ÞΠA1
;

A44
1 ∶ Π44 ¼ ð~q2ÞΠA44

1
;

T1∶ Π4i ¼ −ðq4qiÞΠT1
;

T2∶ Πij ¼ −ðqiqjÞΠT2
; i ≠ j;

E∶ Πii −
X
i

Πii=3 ¼ ð−q2i þ ~q2=3ÞΠE; ð2:7Þ

where ~q2 ¼ P
iq

2
i . Equation (2.7) defines five different

scalar functions Πr, r ∈ fA1; A44
1 ; T1; T2; Eg, which are

unrelated by symmetry, since the substructures shown here
do not transform into each other under cubic rotations. For
the spatial diagonal elements, Eq. (2.7) implies that

Πii ¼ ð−q2i þ ~q2=3ÞΠE þ ðq2 − ~q2=3ÞΠA1
: ð2:8Þ

The irrep A1 occurs twice in Eq. (2.7), and we distinguish
the two with the notation A1 and A44

1 . Unbarred scalar
functions, Πr, r ∈ fA1; A44

1 ; T1; T2; Eg, are defined analo-
gously by replacing components of Πμν by Πμν on the left-
hand side of Eq. (2.7). The WTI implies some relations
between these functions. In particular,

P
μqμΠμ4 ¼ 0

implies that

q4~q2ðΠT1
− ΠA44

1
Þ ¼ 0; ð2:9Þ

while
P

μqμΠμi ¼ 0 implies (choosing i such that qi ≠ 0)

~q2
�
−ΠT2

þ 1

3
ΠE þ 2

3
ΠA1

�
þ q2i ðΠT2

− ΠEÞ

þ q24ðΠA1
− ΠT1

Þ ¼ 0: ð2:10Þ

The unbarred Πr satisfy the same relations.
We note that these scalar functions can still be functions

of all cubic invariants that can be made out of qμ. Invariants
with dimension larger than 2, like

P
iq

4
i , have coefficients

that have positive powers of the lattice spacing, so we
assume that these are negligibly small at the values of qμ we
are interested in. That still leaves us with the invariants ~q2

and q24.
9 Empirically, we find, however, that the functions

Πr are a function of q2 (or q̂2; see below) to a high degree of
accuracy.
The unbarred Πr, r ∈ fA1; A44

1 ; T1; T2; Eg, are more
singular than the barred Πr. Using Eqs. (2.6)–(2.7), we
find that

ΠA1
¼ΠA1

þ 1

q2

�
Πsð0Þþ

q24~q
2

q2ð3q2 − ~q2Þ ðΠ4ð0Þ−Πsð0ÞÞ
�
;

q2 ≠ 0;

ΠA44
1
¼ΠA44

1
þ 1

q2

�
Πsð0Þþ

~q2

q2
ðΠ4ð0Þ−Πsð0ÞÞ

�
;

~q2 ≠ 0;

ΠT1
¼ΠT1

þ 1

q2

�
Πsð0Þþ

~q2

q2
ðΠ4ð0Þ−Πsð0ÞÞ

�
;

q4qi ≠ 0 for some i;

ΠT2
¼ΠT2

þ 1

q2

�
Πsð0Þ−

q24
q2

ðΠ4ð0Þ−Πsð0ÞÞ
�
;

qiqj ≠ 0 for some i; j;

ΠE ¼ΠEþ
1

q2

�
Πsð0Þ−

q24
q2

ðΠ4ð0Þ−Πsð0ÞÞ
�
;

~q2 ≠ 0 and ~q2 ≠ 3q2i : ð2:11Þ

The conditions listed for each case follow from the
definitions in Eq. (2.7). Since both Πr and Πr satisfy the
WTIs (2.9)–(2.10), the terms in parentheses in Eq. (2.11)
should satisfy these equations, and indeed they do.
One may also define scalar functions Π̂r as in Eq. (2.7)

from the subtracted vacuum polarization but without the
projectors present in Eq. (2.6). In that case, the subtracted
vacuum polarization does not satisfy the WTI, but this is
purely a finite-volume effect. We have that Π̂r ¼ Πr for
r ∈ fT1; T2; Eg, and also that Π̂A44

1
¼ ΠA44

1
if Π4ð0Þ ¼ 0.

The latter condition is approximately satisfied for the lattice
ensembles we consider in the sense that Π4ð0Þ ≪ Πsð0Þ, as
a consequence of the fact that T ≫ L. In ChPTwe find that
ΠA1

is a smoother function than Π̂A1
, while for the other

representations we find that Π̂r ¼ Πr is smoother than Πr.
In Sec. III, we thus choose to consider the lattice data for
ΠA1

and Πr for r ∈ fA44
1 ; T1; T2; Eg, even though the

difference between Π̂r and Πr is not visible in the lattice
data because of the statistical errors.
Of course, the data we consider live not only in a finite

volume, but also on a lattice. However, since we are
interested in the low-q behavior of the vacuum polarization,
we assume that higher-order terms in the lattice spacing

9Odd powers of q4 are excluded because of axis inversion
symmetry.
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[cf., the second line of Eq. (2.3)] can be neglected, as
mentioned before. The only scaling violations we take into
account are those represented by replacing qμ by q̂μ,
defined in Eq. (2.2), and the taste splitting of the
Nambu-Goldstone boson (NGB) masses present in the
spectrum of lattice QCD with staggered fermions at non-
zero lattice spacing. We note that the numerical difference
between qμ and q̂μ is tiny, for momenta up to 1 GeV, for the
lattice ensemble we consider in this article.

B. Chiral perturbation theory

The heuristic picture is that finite-volume effects are
caused by hadrons traveling “around the world” (i.e.,
seeing the periodic boundary conditions). The Euclidean
propagator for a particle with massm traveling a distance L
falls like e−mL. Therefore, finite-volume effects are pre-
dominantly felt by the pions, because they are the lightest
hadrons present in the theory, and it is thus useful to
consider finite-volume effects in ChPT, the effective field
theory for pions.10

It is well known that leading-order ChPT does not
describe the hadronic vacuum polarization very well
already at very low q2 and pion masses [12].11 The intuitive
reason is that resonance contributions, like that from the ρ,

are important, but only higher orders in ChPT “know”
about such resonances (through low-energy constants at
higher order). However, by the same argument, ChPT
should do much better describing differences caused only
by finite-volume effects, because those should be domi-
nated by pions, and quite suppressed for all other hadrons.
Here we assume that it is reasonable to study finite-volume
effects using leading-order ChPT for pions only. We then
compare the predictions from ChPTwith lattice data, to see
how this assumption fares, in Sec. III.
The lattice data we consider have been generated on

ensembles with three flavors of sea quarks, up, down and
strange. Therefore, at lowest order in ChPT, ΠμνðqÞ
receives loop contributions from all NGBs for a three-
flavor theory. However, since the kaon mass is always
much larger than the pion mass, we calculate only the pion
loops in ChPT, and compare the result with the lattice data.
Any discrepancies may be due to kaon loops, higher
orders, etc.
The appendix provides some details about the ChPT

calculation, and generalizes it to the case of twisted
boundary conditions. For periodic boundary conditions
the leading-order contribution from pions to the connected
part of the vacuum polarization is

ΠμνðqÞ ¼
10

9
e2

1

L3T

X
p

�
4 sin ðpþ q=2Þμ sin ðpþ q=2Þν

ð2Pκð1 − cospκÞ þm2
πÞð2

P
κð1 − cosðpþ qÞκÞ þm2

πÞ

− δμν

�
2 cospμ

ð2Pκð1 − cospκÞ þm2
πÞ
��

; ð2:12Þ

where e is the electron charge and mπ is the pion mass. We
have used a lattice regulator in order to define this
expression, and all dimensionful physical quantities in
Eq. (2.12) are expressed in units of the lattice spacing. It
is straightforward to verify that Πμνð0Þ ¼ 0 when the
momentum sum in Eq. (2.12) is replaced by a momentum
integral, by partial integration on the first term in the
integral. In the appendix we show that in finite volume
Πμνð0Þ ≠ 0, as a simple application of the Poisson resum-
mation formula, cf., Eq. (A16).
Since in the next section we compar ChPT with lattice

data obtained with “rooted” staggered fermions, we should
amend Eq. (2.12) to what we would have obtained using
rooted staggered ChPT [14,15]. Staggered fermions lead to
“taste symmetry breaking,” splitting the degenerate pion
spectrum due to lattice artifacts, and this turns out to be a

significant effect even at low energy, and therefore we take
this effect into account when comparing with lattice data.12

We also use the momenta q̂ introduced in Eq. (2.2) instead
of q, but this amounts to a difference of less that 0.1% even
at q2 ¼ 1 GeV2 for the data we consider in Sec. III.
It is very simple to adapt our result (2.12) [or Eq. (A11)

in the appendix] to the staggered case. To lowest order in
rooted staggered ChPT, all we need to do is to replace the
summand in Eq. (2.12) [or Eq. (A11)] by a weighted
average over the taste-split pion spectrum with masses
mπ ¼ mP, mA, mT , mV and mI , with, respectively, weights
1=16, 1=4, 3=8, 1=4, and 1=16. We refer to this version of
our result as (lowest-order) SChPT.

III. LATTICE DATA

In this section, we consider lattice data for the connected
part of the light-quark hadronic vacuum polarization for the
asqtad ensemble generated by the MILC collaboration [17]

11For a discussion of ΠV−A, see Ref. [13].

10See Ref. [11] for an introduction to applications of ChPT to
lattice QCD, including ChPT in a finite volume, partial quench-
ing, and staggered ChPT, as well as references. 12For an introduction to rooted staggered fermions, and further

references, see Ref. [16].
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with 1=a ¼ 3.35 GeV, mπ ¼ 220 MeV, L=a ¼ 64
and T=a ¼ 144.
For illustration, we show the vacuum polarization for

the asqtad ensemble in Fig. 2, with errors obtained
using AMA [3]. The red squares show ΠA1

ðq̂2Þ,
obtained from Πμνðq̂Þ using Eq. (2.7), the blue circles
show ΠA1

ðq̂2Þ, and the magenta stars show ΠA44
1
ðq̂2Þ,

obtained similarly from Πμνðq̂Þ (they are slightly offset
horizontally to make them visible).13 The difference
between these three cases is a finite-volume effect, and
is clearly visible, thanks to the very small statistical
errors obtained with the AMA method. The lattice data
for ΠA44

1
ðq̂2Þ agree, within errors, with those

for ΠA44
1
ðq̂2Þ.

We first compare the lattice data to ChPT in Sec. III A.
Since, as explained in Sec. II B, we expect that only
finite-volume differences can be sensibly compared, we
limit ourselves to such differences. Then, in Sec. III B,
we use the lattice data to determine aμ½q̂2max ¼ 0.1 GeV2�
from different irreps, in order to see how finite-volume
effects in the data propagate to the anomalous magnetic
moment.

A. Comparison with ChPT

Figure 3 shows a plot similar to Fig. 2, but with the data
points computed in lowest-order SChPT. In addition, in
ChPT we have access to the values of the vacuum

polarization in infinite volume, and infinite-volume
points for the same q̂2 values are shown in black in
Fig. 3.14

Consistent with what we observe in the lattice data, there
is no significant difference between Πrðq̂2Þ and Πrðq̂2Þ for
all representations except r ¼ A1. This is why we omitted
ΠA44

1
ðq̂2Þ and the representations T1 and E in Fig. 3. We do

show ΠT2
ðq̂2Þ as the two cyan squares all the way to the

right.15 To extract ΠT2
ðq̂2Þ from Πijðq̂Þ we need two

different spatial components of the momentum to not
vanish, implying that q̂2 ≥ 8π2=L2 ¼ 0.216 GeV2 for
these points. The A1 representation is the most interesting
case, because it reaches lower momenta than any of the
others. It is the only one that does not vanish when only
q̂4 ≠ 0, and the two smallest values of q̂2 have only q̂4 ≠ 0;
it is thus the most useful representation to explore the low-
momentum behavior of Πðq2Þ.
There are clear differences between Figs. 2 and 3.

First, the vertical offset is very different. This is not a
physical effect, because the quantities plotted are log-
arithmically divergent in the continuum limit. However,
the slopes are also vastly different, and this is a physical
effect, already observed in Ref. [12]. The slope of the
vacuum polarization at low q2 is dominated by the ρ

FIG. 2. Low-q̂2 lattice data for the connected part of ΠA1
ðq̂2Þ

(red squares), ΠA1
ðq̂2Þ (blue circles), and ΠA44

1
ðq̂2Þ (purple stars).

MILC asqtad ensemble: the purple stars have been horizontally
offset by þ0.004 GeV2 for visibility.

FIG. 3. Low-q̂2 SChPT points for the connected part ofΠA1
ðq̂2Þ

(red open circles), ΠA1
ðq̂2Þ (blue filled circles), ΠA44

1
ðq̂2Þ (purple

stars), ΠT2
ðq̂2Þ (cyan squares), and ΠA1

ðq̂2Þ in infinite volume
(black hexagons).

13The magenta points start at a higher value of q̂2, because
ΠA44

1
ðq̂2Þ vanishes when all spatial components of the momentum

vanish, cf., Eq. (2.7). In contrast, ΠA1
ðq̂2Þ and ΠA1

ðq̂2Þ do not
vanish for any nonzero value of the momentum.

14In reality, the black points are ΠA1
ðq̂2Þ for L=a ¼ 128,

T=a ¼ 288. On the scale of the plot, the differences between
infinite-volume points and the black points, or the differences
between Πrðq̂2Þ and Πrðq̂2Þ, r ∈ fA1; A44

1 ; T1; T2; Eg, are not
visible. We always omit a factor 5e2=9, equal to the sum of the
squares of the charges of the up and down quarks, from
Eq. (2.12), and we do the same for the lattice data.

15We recall also that only three out of the five Πr and Πr are
independent, because of the relations (2.9)–(2.10).
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resonance, but this resonance (and others) is absent in
Eq. (2.12).16

Despite these differences, there are useful lessons to be
learned from Fig. 3. The subtracted value ΠA1

ðq̂2Þ is an
order of magnitude closer to the infinite-volume points than
the unsubtracted value, ΠA1

ðq̂2Þ. Furthermore, we see that
ΠA1

ðq̂2Þ and ΠA44
1
ðq̂2Þ straddle the infinite-volume result,

suggesting that also in lattice QCD the true value of Πðq2Þ
lies in between these two.17 Clearly, the lesson is that one
should carry out the subtraction (2.6) (at least for the A1

representation). This was already observed empirically in
Ref. [21], and we see here that this observation is
theoretically supported by ChPT. The results of
Ref. [21] show that finite-volume effects for their
derivative method are larger than for the subtraction method
we consider here. It would be interesting to see if this
difference can also be explained by ChPT.
Of course, one would like to test whether these lessons

from lowest-order SChPT also apply to the actual lattice
data. While no lattice data are available in infinite volume,
it is possible to compare finite-volume differences pre-
dicted by SChPT to such differences computed from the
lattice data. In Fig. 4 we show the difference ΠA1

ðq̂2Þ −
ΠA1

ðq̂2Þ in the low-q̂2 region, both on the lattice and
computed in lowest-order SChPT. This difference is a pure
finite-volume effect. Clearly, SChPT does a very good job
of describing the lattice data, with all red points within less

than 1σ of the blue points. This is remarkable, especially in
view of the fact that lowest-order SChPT does such a poor
job of describing the full lattice data for ΠA1

ðq̂2Þ, as we
noted above.
We may also consider differences between different

representations, which also probe the size of finite-volume
effects. In Fig. 5we show the differenceΠA1

ðq̂2Þ − ΠA44
1
ðq̂2Þ,

for the lattice data, computed in SChPT. To extractΠA44
1
ðq̂2Þ

from Πμνðq̂Þ we need at least one spatial component of the
momentum to not vanish, implying that q̂2 ≥ 4π2=L2 ¼
0.108 GeV2 for these points. All observations made above
about the difference ΠA1

ðq̂2Þ − ΠA1
ðq̂2Þ apply here as well,

with the difference between lattice data and ChPT now
averaging about 1σ. We note the difference of scale on the
vertical axis between Figs. 4 and 5, consistent with the fact
that both ΠA1

ðq̂2Þ and ΠA44
1
ðq̂2Þ are much closer to the

infinite-volume limit thanΠA1
ðq̂2Þ.We find that thepattern is

very similar for other representations.

B. Effects on aHVP
μ

Finally, while it is already clear that there are significant
finite-volume effects in the vacuum polarization, we con-
sider the question of how they propagate to the anomalous
magnetic moment itself. We, in fact, compare the quantity
aLO;HVPμ ½q̂2max� with the choice q̂2max ¼ 0.1 GeV2, in order to
be certain that differences are due to finite volume, and not
to lattice spacing effects.18

We fit the data for ΠA1
and ΠA44

1
with a [0, 1] Padé [18],

or a quadratic conformally mapped polynomial [19] (both

FIG. 4. Comparison of ΠA1
ðq̂2Þ − ΠA1

ðq̂2Þ between MILC
asqtad lattice data (blue points) and lowest-order SChPT (red
points).

FIG. 5. Comparison of ΠA1
ðq̂2Þ − ΠA44

1
ðq̂2Þ between MILC

asqtad lattice data (blue points) and lowest-order SChPT (red
points).

16This observation of Ref. [12] has led to the ubiquitous use
of vector-meson dominance to parametrize the vacuum polari-
zation, before model-independent methods started to be explored
[4,18–20].

17Πrðq̂2Þ for r ∈ fT1; T2; Eg also lies below the infinite-
volume result close to ΠA44

1
ðq̂2Þ, according to ChPT.

18More than 80% of aLO;HVPμ comes from the momentum
region below 0.1 GeV2 [19].
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are three-parameter fits), on a low-q2 interval, looking for
the number of data points in the fit that gives the highest
p-value. We then compare the results. In all the fits
presented below, the number of data points in the fit turns
out to be six, so all fits have three degrees of freedom, and
they never explore data beyond q̂2 ¼ 0.3 GeV2. As we
have shown before [4,19], neither of these two fits can be
trusted to give results with a better accuracy than a few
percent even in infinite volume for aLO;HVPμ , but we
assume that other systematics are the same for both
representations, so that the differences considered here
measure primarily finite-volume effects. From the [0, 1]
Padé fits, we find

aLO;HVPμ;A1
½0.1 GeV2� ¼ 6.8ð4Þ × 10−8;

aLO;HVP
μ;A44

1

½0.1 GeV2� ¼ 7.5ð3Þ × 10−8: ð3:1Þ

From the quadratic conformally mapped polynomial fits,
we find

aLO;HVPμ;A1
½0.1 GeV2� ¼ 6.8ð4Þ × 10−8;

aLO;HVP
μ;A44

1

½0.1 GeV2� ¼ 7.9ð4Þ × 10−8: ð3:2Þ

Both types of fit give consistent results for each represen-
tation, but the two different representations differ from
each other by about 10%–15%. This strongly suggests that
with a pion mass of 220 MeV a spatial volume with
L ¼ 64a ¼ 3.8 fm, or mπL ¼ 4.2, is not large enough if
the aim is to compute aLO;HVPμ with subpercent accuracy.

IV. CONCLUSION

In this article, we explored finite-volume effects in the
connected part of the hadronic vacuum polarization, and
gave some examples of how these effects propagate to
the corresponding contribution to the muon anomalous
magnetic moment aLO;HVPμ . We found that even in
computations with small pion masses and mπL > 4,
the systematic effects due to finite volume can be of
order 10%. This is consistent with the phenomenological
estimate of Ref. [5].
We also found that ChPT does a good job of describing

finite-volume effects already at lowest order, even though it
is well known that lowest order does not provide a good
description of the vacuum polarization itself already at the
low values of q2 relevant for aLO;HVPμ . ChPT also shows that
the subtracted vacuum polarization ΠμνðqÞ ¼ ΠμνðqÞ −
Πμνð0Þ is significantly closer to the infinite-volume result
than ΠμνðqÞ itself. Projecting on irreducible representations
of the cubic group, we found that in ChPT the A1 projection
[after subtraction of Πμνð0Þ] and other representations (for
which the subtraction makes very little difference, and is
not visible in the lattice data) straddle the infinite-volume

result. This leads to the question of how to quantify the
systematic error due to finite volume in practice. A
conservative error estimate would take half the difference
between the value of aLO;HVPμ computed from ΠA1

and the
values computed from other representations, e.g., ΠA44

1
.

Because the infinite-volume result for Π, according to
ChPT, lies between ΠA1

and ΠA44
1
, a more aggressive error

estimate would be obtained by taking the difference
between the average of the ChPT results for ΠA1

and
ΠA44

1
and the infinite-volume ChPT result. However, this

might be too aggressive, because the comparison of
finite-volume differences between the lattice and ChPT
shows that the (lowest-order) ChPT estimates the finite-
volume effects we see on the lattice to about 1σ (cf.,
Figs. 4–5). For lattice data with increased statistical
precision, it is not clear whether lowest-order ChPT would
be precise enough, in particular, for the representation A44

1 .
It will be interesting to compare the finite-volume effects
for physical pion mass and larger volume (L > 5 fm). Until
then it is not advisable to use ChPT to correct the lattice
results. An analysis based on several volumes is one of our
next steps.
Finally, we comment on the moment method proposed in

Ref. [20]. In infinite volume,Πð0Þ can be obtained from the
second moment of the current two-point function (no sum
over i),

Πð0Þ ¼ −
1

2

Z
dt

Z
d3~xt2hJið~x; tÞJið~0; 0Þi: ð4:1Þ

In a finite volume L3 × T, using

t2 ¼
X
n

an cos ð2πnt=TÞ;

a0 ¼
T2

12
; an ¼

ð−1Þn
sin2ðπn=TÞ ; n ≠ 0; ð4:2Þ

the right-hand side of Eq. (4.1) gets replaced by the
expression [22]

Πð0Þ → 4
X
n≠0

ð−1ÞnΠðð2πn=TÞ2Þ: ð4:3Þ

We see that in finite volume, Πð0Þ gets replaced by a linear
combination of values ofΠðq2Þ at nonzero values of q2, not
including q2 ¼ 0. This appears to imply that the moment
method is equally susceptible to finite-volume effects. The
present analysis can also be used to analyze the moment
method, and we plan to devote some future efforts to this. It
would be interesting to see how the results of the moment
method would be modified if one were to project onto
irreducible representations of the cubic group before
extracting Πð0Þ, in particular, for the contribution from
the light-quark masses.
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APPENDIX: VACUUM POLARIZATION
AT ONE LOOP IN CHPT

In this appendix, we derive a generalization of Eq. (2.12)
for the case of twisted boundary conditions. This is a
partially quenched calculation, because we only give the
valence quarks, i.e., the quarks to which the external
photons couple, a twist, while all sea quarks obey periodic
boundary conditions. We follow the definitions and con-
ventions of Ref. [8].19 Throughout this appendix, we use
the lattice as a UV regulator, and we express all quantities
in terms of lattice units.
We introduce six quarks,

q ¼

0
BBBBBBBB@

uv
ut
dv
dt
us
ds

1
CCCCCCCCA
; ðA1Þ

where index v labels the untwisted valence quarks, index t
labels the twisted valence quarks and index s labels the
(untwisted) sea quarks. The twisted quarks have boundary
conditions

qtðxÞ ¼ e−iθμqtðxþ LμÞ;
q̄tðxÞ ¼ q̄tðxþ LμÞeiθμ ; ðA2Þ

with Li ¼ L, i ¼ 1, 2, 3 and L4 ¼ T. Strictly speaking, one
should also introduce four ghost quarks to cancel loops
of the four valence quarks, but we leave this implicit in the
rest of our calculation.20 Only valence quarks couple to
photons, and this coupling takes the form

eq̄γμðAþ
μ Qþ þ A−

μQ−Þq; ðA3Þ

with

Qþ ¼

0
BBBBBBBBB@

0 2=3 0 0 0 0

0 0 0 0 0 0

0 0 0 −1=3 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1
CCCCCCCCCA
;

Q− ¼

0
BBBBBBBBB@

0 0 0 0 0 0

2=3 0 0 0 0 0

0 0 0 0 0 0

0 0 −1=3 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1
CCCCCCCCCA
: ðA4Þ

In order to accommodate the twist, there are two photons,
one coupling to the current 2

3
ūtγμuv − 1

3
d̄tγμdv, and one

coupling to the current 2
3
ūvγμut − 1

3
d̄vγμdt, corresponding

to the photons going into, and out of, the vacuum
polarization, which, at the valence-quark level, consists
of a loop made out of a twisted up or down quark and an
untwisted up or down antiquark, thus inserting a momen-
tum qμ þ θμ=Lμ with q being a periodic momentum as in
Eq. (2.4), and θμ ∈ ½0; 2πÞ.
In this theory with six quarks,21 the pions form a 6 × 6

matrix, with flavor structure22

ϕ ∼

0
BBBBBBBBB@

uvūv uvūt uvd̄v uvd̄t uvūs uvd̄s
utūv utūt utd̄v utd̄t utūs utd̄s
dvūv dvūt dvd̄v dvd̄t dvūs dvd̄s
dtūv dtūt dtd̄v dtd̄t dtūs dtd̄s
usūv usūt usd̄v usd̄t usūs usd̄s
dsūv dsūt dsd̄v dsd̄t dsūs dsd̄s

1
CCCCCCCCCA

∼

0
BBBBBBBBB@

πuuvs πudvs

πuuts πudts

πduvs πddvs

πduts πddts

πuusv πuust πudsv πudst

πdusv πdust πddsv πddst

1
CCCCCCCCCA
; ðA5Þ

19See Ref. [7,23–25] for earlier work on twisted boundary
conditions for valence quarks.

20In this calculation it is not difficult to match pion loops with
quark loops, so it is easy to identify contributions that should be
omitted so as to suppress valence-quark loops.

21And four ghost quarks.
22This equation was incorrect in the first version of this paper.

This led Eq. (A11) to be a factor 2 too small in the first version.
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where in the second expression we omitted all pions that do
not contribute, and we used a superscript to indicate the up/
down flavor structure. Note that for instance πuuvs is a
charged pion, because it consists of a valence up quark with
charge 2=3, and a neutral up sea antiquark. Pure sea pions
do not contribute because they are neutral.
Pions with no t subscript or with a tt subscript have

periodic boundary conditions, but pions with one t sub-
script inherit twisted boundary conditions from Eq. (A2),
for example (i; j ¼ u, d),

πijtsðxþ LμÞ ¼ eiθμπijtsðxÞ; πijstðxþ LμÞ ¼ e−iθμπijstðxÞ:
ðA6Þ

To leading order in ChPT, our calculation is equivalent to a
scalar QED calculation, with Lagrangian

L ¼ 1

2
trðDμϕDμϕÞ; ðA7Þ

with a covariant derivative accommodating the gauge
invariance implied by Eq. (A3),

Dμϕ ¼ ∂μϕþ ie½Aþ
μ Qþ þ A−

μQ−;ϕ�: ðA8Þ

It is now straightforward to carry out the desired one-loop
calculation, in which the twisted vacuum polarization is
defined as

Πþ−
μν ðx − yÞ ¼ ∂2

∂Aþ
μ ðxÞ∂A−

ν ðyÞ
logZ

≡ eiθ̂ðxþμ=2−y−ν=2ÞFþ−
μν ðx − yÞ ðA9Þ

with Z being the path integral with Lagrangian (A7), and
θ̂μ ¼ θμ=Lμ. Using the lattice as a regulator by replacing
the covariant derivative (A8) by the nearest-neighbor
covariant derivative

DμϕðxÞ ¼ UμðxÞϕðxþ μÞU†
μðxÞ − ϕðxÞ; ðA10Þ

with UμðxÞ ¼ exp½ieðAþ
μ ðxÞQþ þ A−

μ ðxÞQ−Þ�, we find the
result generalizing Eq. (2.12) for nonzero twist,

Fþ−
μν ðkÞ ¼

10

9
e2

1

L3T

X
p

�
4 sin ðpþ ðkþ θ̂Þ=2Þμ sin ðpþ ðkþ θ̂Þ=2Þν

ð2Pκð1 − cospκÞ þm2
πÞð2

P
κð1 − cos ðpþ kþ θ̂ÞκÞ þm2

πÞ

− δμν

�
cospμ

ð2Pκð1 − cospκÞ þm2
πÞ

þ cos ðpþ θ̂Þμ
ð2Pκð1 − cos ðpþ θ̂ÞκÞ þm2

πÞ

��
: ðA11Þ

In the infinite-volume limit, this result agrees with that of
Ref. [26].
It is easy to verify that for L; T → ∞, Fþ−

μν ð0Þ ¼ 0. The
sum in Eq. (A11) becomes an integral, θ̂ → 0, and we can
partially integrate the first term to cancel against the
second. But, in a finite volume, these simplifications do
not apply. For zero twist, θμ ¼ 0, it is straightforward to
estimate Fþ−

μν ð0Þ ¼ Πμνð0Þ analytically. Only the diagonal
terms do not vanish, and Πiið0Þ ≫ Π44ð0Þ if T ≫ L. We
therefore choose μ ¼ ν ¼ 1. Using

X∞
n¼−∞

δðx − nÞ ¼
X∞
n¼−∞

e2πinx; ðA12Þ

and denoting the expression inside square brackets in
Eq. (A11) for θμ ¼ 0 and q ¼ 0 as fμνðpÞ, Eq. (A11)
can be rewritten as (dropping the factor 10e2=9)

1

L3T

X
p

f11ðpÞ ¼
1

ð2πÞ4
X
n

Z
d4pf11ðpÞeinLp; ðA13Þ

where nLp ¼ P
μnμLμpμ. The term with n ¼ 0 is the

infinite-volume result, and the terms with n ∈
fð�1; 0; 0; 0Þ; ð0;�1; 0; 0Þ; ð0; 0;�1; 0Þg constitute the

dominant finite-volume correction. Focusing on these
terms, we can take the continuum limit, yielding the
intermediate result

1

ð2πÞ4
Z

d4p

�
4p2

1

ðp2 þm2
πÞ2

−
2

p2 þm2
π

�
ð2eiLp1 þ 4eiLp2Þ:

ðA14Þ
Carrying out the integral over p1 we find that the integral
with the factor eiLp2 vanishes (by partial integration on p1

of the first term), and this expression reduces to

−2L
1

ð2πÞ3
Z

d3pe−L
ffiffiffiffiffiffiffiffiffiffiffi
m2

πþ~p2
p

¼ −
m2

π

π2
K2ðmπLÞ; ðA15Þ

where K2ðzÞ is a modified Bessel function of the second
kind. Using its asymptotic expansion for large argument,
we find that [cf., Eq. (2.5)]

Πsð0Þ ¼ Π11ð0Þ

∼ −
10e2

9

m2
π

π2

ffiffiffiffiffiffiffiffiffiffiffiffi
π

2mπL

r
e−mπL

�
1þO

�
1

mπL

��
:

ðA16Þ
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