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QCD with imaginary chemical potential is free of the sign problem and exhibits a rich phase structure
constraining the phase diagram at real chemical potential. We simulate the critical end point of the Roberge-
Weiss transition at imaginary chemical potential for Nf ¼ 2 QCD on Nτ ¼ 6 lattices with standard Wilson
fermions. As found on coarser lattices, the Roberge-Weiss end point is a triple point connecting the
deconfinement/chiral transitions in the heavy/light quark mass region and changes to a second-order end
point for intermediate masses. These regimes are separated by two tricritical values of the quark mass,
which we determine by extracting the critical exponent ν from a systematic finite size scaling analysis of the
Binder cumulant of the imaginary part of the Polyakov loop. We are able to explain a previously observed
finite size effect afflicting the scaling of the Binder cumulant in the regime of three-phase coexistence.
Compared to Nτ ¼ 4 lattices, the tricritical masses are significantly shifted. Exploratory results on Nτ ¼ 8

as well as comparison with staggered simulations suggest that much finer lattices are needed before a
continuum extrapolation becomes feasible.
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I. INTRODUCTION

One of the most challenging aspects of modern particle
physics is to map out the phase diagram of QCD as a
function of temperature T and baryon chemical potential
μB. Due to the nonperturbative nature of the strong
interactions on hadronic energy scales, a first principles
approach such as Lattice QCD is mandatory.
At zero baryon chemical potential, standard Monte Carlo

simulations can be applied. In order to understand the
interplay between confinement and chiral symmetry break-
ing and their influence on the thermal transition, it is
interesting to study the QCD phase diagram varying the
quark masses between the chiral (m → 0) and quenched
(m → ∞) limits. For Nf ¼ 2, 3 degenerate quark flavors,
regionsoffirst-orderchiral anddeconfinement transitionsare
seen on coarse Nτ ¼ 4, 6 lattices with standard actions for
light and heavy quark masses, respectively, whereas inter-
mediate mass regions including the physical point show
crossover behavior. For improved actions, the chiral first-
order region is significantly smaller, but presently no con-
tinuumextrapolation of any of these features is available (see
Ref. [1] and references therein for a recent overview).
At finite μB, the sign problem prevents importance

sampling techniques, and alternative strategies must be
used. One possibility is to introduce a purely imaginary

quark chemical potential μ≡ μB=3 ¼ ιμi (μi ∈ R), for
which no sign problem is present. The phase structure at
imaginary chemical potential constrains the situation at real
μB by analytic continuation.
In the last decade, a first understanding of the QCD

phase diagram at imaginary chemical potential has been
developed as summarized in Sec. II. It is so far based on
investigations on coarse lattices (Nτ ¼ 4, a ∼ 0.3 fm) with
staggered fermions [2–4] and standard [5] or improved [6]
Wilson fermions only. In the present work, we repeat the
study made in Ref. [5] on a finer lattice (Nτ ¼ 6,
a ∼ 0.2 fm). Unfortunately, we find that several further
and more costly simulations are required before any
continuum extrapolation can be attempted.
After a brief description of the QCD phase diagram in

Sec. II, we illustrate our simulation setup in Sec. III.
Section IV is dedicated to a study of the qualitative
behavior of the Binder cumulant, which explains some
puzzling finite size effects observed in earlier studies. The
results of our investigation are presented and discussed
in Sec. V.

II. QCD PHASE DIAGRAM AT IMAGINARY
CHEMICAL POTENTIAL

TheQCDphasediagramforpurely imaginaryvaluesof the
chemical potential μ ¼ ιμi has a rich structure that depends
on the temperature T, chemical potential μi as well as on the
number of flavors and the values of the quark masses.
The QCD partition function is symmetric by reflection in

μ, and it is periodic in μi=T with period 2π=Nc [7]. These
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two properties imply the phase structure depicted qualita-
tively in Fig. 1 (from now on, we fix Nc ¼ 3). In particular,
varying the imaginary chemical potential, phase transitions
between different Zð3Þ sectors are crossed at fixed values
μi

c=T ¼ ð2kþ 1Þπ=3 with k ∈ Z (the so-called Roberge-
Weiss transitions). Such transitions are smooth crossovers
for low T and true first-order phase transitions for high T
[7]. Any physical observable is invariant under a change of
the Zð3Þ center sector (i.e. shifting μi=T by its period),
which can be distinguished by the phase of the Polyakov
loop L. For any spatial lattice site n,

LðnÞ ¼ 1

3
TrC

�YNτ−1

n0¼0

U0ðn0;nÞ
�
≡ jLðnÞje−ιφ; ð1Þ

where, as different sectors are explored, the phase φ takes
the values hφi ¼ 2nπ=3with n ∈ f0; 1; 2g. The dashed line
in Fig. 1 represents the analytic continuation of the chiral/
deconfinement transition which is crossed varying the
temperature. Its type depends on the values of the quark
masses. Consequently, also the nature of the meeting points
of the dashed line and the first-order Roberge-Weiss lines
is mass dependent. Recent studies [2–4] show that, for
Nf ¼ 2 and Nf ¼ 3 on coarse lattices, these points are first-
order triple points for small and large masses, while they
are second-order end points for intermediate masses.
Therefore, there are two tricritical points separating the
two regimes. This has been schematically drawn in Fig. 2.
Figure 3 combines Figs. 1 and 2 into a 3D picture. On

coarse lattices, the first-order chiral transition region
extends through μ ¼ 0, producing a critical point mc

1 in
the T −mu;d plane [8,9]. Slicing Fig. 3 at mu;d ¼ const
allows us to understand how the nature of the dashed line of
Fig. 1 changes. Figure 3 has been drawn for 0 < μi < π=3;
the situation at any other value of μi can be deduced using
the symmetries of the partition function. Note that the
position of the (tri)critical points and thus also the shape
of the Zð2Þ lines changes as the continuum limit is
approached. Reducing the lattice spacing, the low mass
first-order region shrinks [10], while the high mass one
enlarges [11]. Similarly, the tricritical masses measured in
physical units on Nτ ¼ 4 lattices have rather different
values in different fermion discretizations [4,9]. The
present work is a first step toward understanding the cutoff
effects in the Wilson formulation.

III. SIMULATION SETUP

After performing the integration over the fermionic
fields, the QCD grand-canonical partition function with

FIG. 1. QCD phase diagram in the T − μi plane. The dashed
line depicts the chiral/deconfinement transition of which the
nature depends on the quark masses. The orange lines represent
the Roberge-Weiss transitions. The black dots, where the first-
order lines terminate, can be first-order triple points, tricritical
points or second-order end points.

FIG. 2. QCD phase diagram in the T −mu;d plane for a fixed
critical value of the imaginary critical potential μi ¼ μi

c.

FIG. 3. Nf ¼ 2 QCD phase diagram in the T − μ −mu;d space
for − π

3
≤ ðμTÞ2 ≤ 0.
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Nf ¼ 2 mass-degenerate quarks in the presence of an
imaginary chemical potential μi reads

ZðT; μiÞ ¼
Z

DUe−Sg½U�ðdetD½U; μi�Þ2;

where Sg is the gauge part of the action and D is the
fermion matrix. For our study, we used the standard Wilson
gauge action,

Sg½U� ¼ β
X
P

f1 −ℜ½TrCP�g;

and the standard Wilson discretization of dynamical fer-
mions, with the fermion matrix

Di;j ¼ δi;j − κ
X�3

ρ¼�0

eιaμi·δjρj;0·sgnðρÞ½ð1 − γρÞUρðiÞδiþρ̂;j�:

In the last two equations, β is the lattice coupling (related to
the bare coupling g via β ¼ 6=g2), P indicates the pla-
quette, i and j refer to lattice sites, ρ̂ is a unit vector on the
lattice and a is the lattice spacing. Moreover, γ−ρ ≡ −γρ,
and U−ρðiÞ≡U†

ρði − ~ρÞ. The bare quark mass mu;d ≡m is
contained in the hopping parameter κ via

κ ¼ 1

2ðamþ 4Þ :

The shifted phase ϕ ¼ φ − μi=T of the Polyakov loop is
an order parameter to distinguish between the low T
disordered phase and the high T ordered phase with
two-state coexistence [2]. For the particular, critical values
μi=T ¼ π � 2πk, k ∈ Z, also the imaginary part of the
Polyakov loop behaves as an order parameter. This is the
reason why we fixed μi=T ¼ π in all our simulations. Since
the temperature on the lattice is given by

T ¼ 1

aðβÞNτ
;

we have aμi ¼ π=6 for Nτ ¼ 6.
In order to identify the nature of the Roberge-Weiss

end or meeting point, we use the Binder cumulant [12],
defined as

B4ðX; α1;…; αnÞ≡ hðX − hXiÞ4i
hðX − hXiÞ2i2 ;

where X is a general observable and α1;…; αn is a set of
parameters on which B4 depends. Critical parameter values
αci are defined by the vanishing of the third moment of the
fluctuations. In the thermodynamic limit V → ∞, i.e. when
nonanalytic phase transitions can exist, the Binder cumu-
lant evaluated at critical couplings then takes different

values depending on the nature of the phase transition (see
Table I).
In our study, we choose X ¼ LIm [in the following, L

stands for the spatially averaged LðnÞ of Eq. (1)] and
fαig ¼ fβ; κ; μig. Since we work at the critical value
μi ¼ πT, then, at any value of the temperature,
hðX − hXiÞ3i ≈ 0, and we expect the Binder cumulant to
be close to 3 (crossover) for low T and close to 1 (first
order) for high T. Even though B4 is a nonanalytic step
function for V → ∞, at finite volume it gets smoothed out,
and its slope increases with the volume. Around the critical
coupling βc, the Binder cumulant is expected to show a
well-defined finite size scaling behavior. It is then a
function of x≡ ðβ − βcÞN1=ν

σ only and can be Taylor
expanded as

B4ðβ; NσÞ ¼ B4ðβc;∞Þ þ a1xþ a2x2 þOðx3Þ: ð2Þ

Close to the thermodynamic limit, the intersection of
different volumes gives βc, and the critical exponent ν
takes its universal value depending on the type of transition.
In Table I, the values of the critical exponents relevant for
our work have been summarized [13].
Another important quantity is the order parameter

susceptibility, defined as

χðXÞ≡ N3
σhðX − hXiÞ2i:

Also this quantity is expected to scale around βc according to

χ ¼ Nγ=ν
σ fðtN1=ν

σ Þ; ð3Þ

where t≡ ðT − TcÞ=Tc is the reduced temperature and f a
universal scaling function. This means that, once the critical
exponents γ and ν are fixed to the correct values, χ=Nγ=ν

σ

measured on different lattice sizes should collapse when
plotted against tN1=ν

σ . We also performed occasional cross-
checks of the susceptibility for X ¼ hψψi leading to fully
consistent results.
Our strategy to locate the two tricritical values of κ is

completely analogous to that used in Ref. [5]. For each
simulated value of κ, we measured the Binder cumulant in
the critical region and extracted the values of B4ðβc;∞Þ, a1,
βc and ν fitting our data according to Eq. (2), considering

TABLE I. Critical values of ν, γ and B4 ≡ B4ðX; αcÞ for some
universality classes [13].

Crossover 1st triple Tricritical 3D Ising

B4 3 1.5 2 1.604
ν � � � 1=3 1=2 0.6301(4)
γ � � � 1 1 1.2372(5)
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the linear term only. The changes in ν as κ is varied allow us
to locate the tricritical points.
We studied nine values of the bare quark mass between

κ ¼ 0.1 and κ ¼ 0.165. For each value of κ, we simulated at
the fixed temporal lattice extent Nτ ¼ 6 that implies the
value aμi ¼ π=6 for the imaginary chemical potential. Three
or four different spatial lattice sizes per κ have been used,
always with Nσ ≥ 16 (except for κ ¼ 0.1625 where also
Nσ ¼ 12 was used). This gives a minimal aspect ratio of
almost 3. For every lattice size, 6 up to 30 values of β around
the critical value have been simulated. Between 40k–500k
standard Hybrid Monte Carlo [14] trajectories of unit length
per β have been collected after at least 5k trajectories of
thermalization. The observables of interest (i.e. plaquette,
LRe and LIm) were measured for every trajectory after the
thermalization. In each run, the acceptance rate was tuned to
∼75%. For κ ≥ 0.16, i.e. for the smallest masses, the
Hasenbusch trick [15] in the integration of the molecular
dynamics equations has been used to reduce the integrator
instability, which is triggered by isolated small modes of the
fermion kernel [16]. Because of the particularly delicate
fitting procedure required to extract the critical exponent ν
from Eq. (2), we almost always produced four different
Markov chains for each value of the coupling in order to
better understand if the collected statistics was enough.
Ferrenberg-Swendsen reweighting [17] was used to
smoothly interpolate between β-points (see Appendix B
for more information about the method used to extract ν and
Appendix A for the simulations details).
For scale-setting purposes, T ¼ 0 simulations at or close

to certain critical parameters have been performed. Oð400Þ
independent configurations on 163 × 32 lattices have been
produced. The scale itself is then set by the Wilson flow
parameter w0 using the publicly available code described in
Ref. [18]. This method is very efficient and fast. In
addition, the pion mass mπ was determined using these
configurations. See Table II for more details.

All our numerical simulations have been performed
using the publicly available [19] OpenCL [20] based code
CL2QCD [21,22], which is optimized to run efficiently on
GPUs. In particular, the LOEWE-CSC [23] at Goethe-
University Frankfurt and the L-CSC [24] at Gesellschaft für
Schwerionenforschung (GSI) in Darmstadt have been used.

IV. THE BINDER CUMULANT BUMP

As explained in Sec. III, the Binder cumulant is expected
to change from 3 at low T to 1 at high T. It is also known
that B4ðβÞ ¼ 2Θðβc − βÞ þ 1 in the thermodynamic limit,
where Θ is the Heaviside step function. On finite volumes,
the discontinuity is smoothed out, and the Binder cumulant
could naively be expected to be a monotonic function of β.
However, it turns out that B4 takes values higher than 3 at
β ≲ βc for small and large values of κ, i.e. in the first-order
regions. In Fig. 4(a), the data for κ ¼ 0.165 are shown, with
a “bump” rising to values significantly larger than 3 on the
crossover side of the transition. Note how the bump gets
higher and narrower on larger volumes. Moreover, the β-
region where B4 changes from 3 to 1 shrinks as Nσ is
increased, as expected for a first-order transition. The
occurrence of the bump has been reported also in other
studies [6]. This distorts the finite size analysis compared to
the naive expectations and in particular leads to signifi-
cantly higher values of the Binder cumulant at the inter-
section than expected in the thermodynamic limit [2,5,6].
Thus, the effect needs to be understood if one aims at
results in the thermodynamic limit.
The described behavior can be explained by modelling

the distributions at work in a situation with three phases.
Let us consider the distribution of the imaginary part of the
Polyakov loop on a finite volume for sufficiently high
statistics: it is a normal distribution for β ≪ βc (crossover),
and it is the sum of two normal distributions with mean
values �jLImj for β ≫ βc (first order). This is clearly

TABLE II. Results of the scale setting (T ¼ 0 simulations performed on Nτ ¼ 32, Nσ ¼ 16 lattices). The number of independent
configurations used is reported in the third column (# confs). w0=a has been determined and converted to physical scales using the
publicly available code described in Ref. [18]. For the pion mass determination, eight point sources per configuration have been used.
The table also contains the lattice spacing, the pion mass and the temperature of the corresponding finite temperature ensemble in
physical units.

κ β # confs w0=a amπ a [fm] mπ [MeV] Nτ T [MeV]

0.0910 5.6655 1600 0.9161(6) 3.0107(2) 0.192(2) 3101(32)

4

258(3)
0.1000 5.6539 1600 0.9017(12) 2.7285(2) 0.195(2) 2766(29) 253(3)
0.1100 5.6341 1600 0.8789(10) 2.4250(3) 0.200(2) 2396(25) 247(3)
0.1575 5.3550 400 0.7104(3) 1.1426(17) 0.247(3) 913(9) 200(2)
0.1000 5.8698 1600 1.4650(20) 2.5793(6) 0.120(1) 4248(44)

6

275(3)
0.1100 5.8567 1600 1.4594(18) 2.2302(2) 0.120(1) 3659(38) 273(3)
0.1200 5.8287 1200 1.4333(20) 1.8862(4) 0.122(1) 3040(31) 269(3)
0.1600 5.4367 200 1.1248(14) 0.6045(15) 0.156(2) 764(8) 211(2)
0.1625 5.3862 200 1.0700(17) 0.5559(23) 0.164(2) 669(8) 201(2)
0.1650 5.3347 200 1.0082(13) 0.5184(27) 0.174(2) 588(7) 189(2)
0.1300 5.9590 1600 1.9357(44) 1.3896(2) 0.091(1) 3024(32) 8 272(3)
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visible in Fig. 5(a), where histograms of LIm are depicted.
Around the transition, the LIm distribution can be thought
of as the sum of three Gaussian distributions, the weights of
which depend on the temperature. We thus consider

PðxÞ≡woN ð−d;σÞþwiN ð0;σÞþwoN ðd;σÞ; ð4Þ

where

N ðμ; σÞ≡ 1

σ
ffiffiffiffiffiffi
2π

p e−
ðx−μÞ2
2σ2

is a Gaussian distribution with mean μ and variance σ2, d is
a positive real number, while wo and wi are the weights of
the outer and inner distributions, respectively. Of course,
2wo þ wi ¼ 1. Here, for simplicity, we assumed the three
distributions to have the same variance. The symmetry of
the outer distributions with respect to zero and the fact that
their weight is the same are, instead, implied by the
symmetries of the physical system. It is clear that d has

to be a function of β as well as wo and wi. In particular, we
have wo ≈ 0 and d ≈ 0 for β ≪ βc, while wi ≈ 0 and d ≫ σ,
i.e. the outer Gaussian distributions are well separated, for
β ≫ βc. With an analytic expression for the distribution, the
value of the Binder cumulant for an even function can be
explicitly calculated through

B4½PðxÞ� ¼
Rþ∞
−∞ x4PðxÞdx

½Rþ∞
−∞ x2PðxÞdx�2 ;

and we will have indeed

B4½Pβ≪βcðxÞ� ¼ 3 ð5aÞ

while

B4½Pβ≫βcðxÞ� ¼ 3 −
2d4

ðd2 þ σ2Þ2 ≈ 1: ð5bÞ

FIG. 4. Comparison between the measured Binder cumulant of the imaginary part of the Polyakov loop and its analytic form in our
model. Three different lattice spatial extents and three different values of the parameter α have been used. The gray line in the left plot is
the expected behavior of B4ðβÞ in the thermodynamic limit.

FIG. 5. Comparison between histograms of the imaginary part of the Polyakov loop and the corresponding probability distribution in
the model. Note how d is related to β. For low (high) temperatures, only one (two) Gaussian distribution(s) is (are) present. Moreover, in
(a), at β ¼ 5.3348 (i.e. slightly after the transition), a clear three-peak structure is visible, as expected for a triple point. All these features
are captured in the model.
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Before trying to further connect our parameters d, wo and
wi to β, let us just study how the Binder cumulant of our
distribution changes as they are varied. At the end of the
section, we will comment further on how the quantities in
our simple model are related to the physical ones.
It is possible to think of the two cases in Eqs. (5) as the

two limits d → 0 and d → ∞, on the condition that the
weights of the distributions change accordingly. One way
to realize this is to assume that both wo and wi are functions
of d, satisfying the following conditions:

lim
d→0

wiðdÞ ¼ 1 and lim
d→0

woðdÞ ¼ 0;

lim
d→∞

wiðdÞ ¼ 0 and lim
d→∞

woðdÞ ¼
1

2
:

Now, in order to properly model the weights to reproduce
the bump of Fig. 4(a), we first have to understand how a
Binder cumulant larger than 3 can arise. Leaving the
weights of the three normal distributions completely gen-
eral, it can be shown that

B4½PðxÞ� ¼ 3þ 2wod4ðwi − 4woÞ
ð2wod2 þ σ2Þ2 :

Hence, when the weight of the central distribution is more
than four times larger than the weight of the outer
distributions, the Binder cumulant takes values larger than
3. It is then sufficient to choose the functions woðdÞ and
wiðdÞ to respect the limits above and in a way such that

wiðdÞ > 4woðdÞ ð6Þ
for some values of d. A simple choice to respect the
required asymptotic behavior is

wiðdÞ ¼
1

αdþ1
1

αdþ1
þ 2ð1 − 1

d
αþ1

Þ ¼
αþ d

αþ 3dþ 2αd2
; ð7aÞ

woðdÞ ¼
1 − 1

d
αþ1

1
αdþ1

þ 2ð1 − 1
d
αþ1

Þ ¼
dð1þ αdÞ

αþ 3dþ 2αd2
; ð7bÞ

where α > 0 is a parameter to calibrate how fast the weights
wiðdÞ and woðdÞ change from 1 to 0 and from 0 to 1=2,
respectively. More precisely, the larger the α, the quicker
the inner (outer) Gaussian distribution(s) disappears
(appear). In Fig. 5(b), it is shown how the distribution
PðxÞ changes increasing the parameter d for σ ¼ 0.1 and
α ¼ 1. One clearly sees that for small d there is almost
only the inner Gaussian. For higher d, the middle normal
distribution gradually disappears. Thus d plays the role of
temperature or β, and α that of the volume.
The region where the Binder cumulant is larger than 3

can be found by inserting Eqs. (7) in Eq. (6). Then, it
follows that

B4 > 3 ⇔ 0 < d <
−3þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 16α2

p

8α
; ð8Þ

actually, using the chosen weights in Eq. (4), we get

B4½PðxÞ� ¼ 3 −
2d5ð1þ αdÞð4αd2 þ 3d − αÞ

½2d3ð1þ αdÞ þ σ2ðαþ 3dþ 2αd2Þ�2 ;

which confirms what is expected in Eq. (8). In Fig. 6, the
Binder cumulant of the distribution PðxÞ is plotted as
function of α and d, keeping the standard deviation σ fixed.
This picture qualitatively describes our data, as can be seen
comparing it to Fig. 4(a). In particular, the height/width of
the bump increases/shrinks as the parameter α is increased.
Lastly, we give some remarks about the connection

between d and the temperature. As already observed, it
must be that d ¼ dðβÞ. This function should reproduce the
fact that the Binder cumulant stays on the value 3 for
β ≪ βc, it should let the bump occur for β ≲ βc and it
should make the Binder take the correct value for β ¼ βc.
Since we know that B4 is 3 for d → 0, then the first aspect
can be reproduced choosing a function of β that is almost
zero for β ≪ βc. The other two properties, instead, could be
obtained observing that the bump in Fig. 6 occurs before
d ¼ 1 and that for d ¼ 1 the dependence of B4½PðxÞ� on α
drops out,

B4½PðxÞ�d¼1 ¼ 3 −
6

ð2þ 3σ2Þ2 : ð9Þ

Then, one could choose the function dðβÞ such that
dðβcÞ ¼ 1 and choose σ in order to have the desired value
of the Binder cumulant at the critical temperature. For the
case of interest, i.e. when the Roberge-Weiss endpoint is a
triple point and B4 ¼ 1.5, one should choose in our simple
model σ ¼ 0, which is clearly not allowed on finite
volumes. Nevertheless, the standard deviation is known
to go to zero in the thermodynamic limit, when the Binder
cumulant takes the universal value. We will come back to

FIG. 6. Binder cumulant of the distribution in Eq. (4) for
σ ¼ 0.1 with the weights of Eqs. (7).
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this aspect later in the section. For the moment, if we just
decide to reproduce our data, we have to set B4 to the
measured value, that is usually higher than the theoretical
one (as observed in Refs. [2,5]). For example, in Figs. 4(b),
5(b) and 6, we fixed σ ¼ 0.1, which would mean B4ðβcÞ≃
1.544 only slightly higher than 1.5. Instead, the value
B4ðβcÞ ¼ 1.68 extracted from our data at κ ¼ 0.165 would
lead to a not so large σ ≃ 0.21, yet larger than suggested by
the actual data. Another property that the function dðβÞ
should reproduce is the fact that for larger Nσ the transition
happens faster. We already noticed that α reproduces this
feature in our model. Hence, it makes sense to assume α ∝
Nσ and to let d depend also on α. As a function of β, dðα; βÞ
has to change more drastically around βc for increasing
values of α. One possibility which also fulfills the require-
ments for β → 0 and for β ¼ βc is

dðα; βÞ ¼ eαβ − 1

eαβc − 1
:

Inserting this choice in the expression of B4½PðxÞ�, it is
possible to plot the Binder cumulant as a function of β for
fixed σ ¼ 0.1 and for some values of α (that plays the role
of Nσ). This has been done in Fig. 4(b). The similarity to
Fig. 4(a) is evident. In particular, in both figures, the bump
shrinks, and its height grows as the volume is increased.
Naturally, it is also possible to take the thermodynamic
limit, which means letting α → ∞. To do that, it is
sufficient to notice that

lim
α→∞

αm½dðα; βÞ�n ¼ lim
α→∞

αmenαðβ−βcÞ ¼
�
0; β < βc

∞; β > βc

for integers n > 0 and m ≥ 0. Using this relation in the
expression of the Binder cumulant, we get

lim
α→∞

B4½PðxÞ� ¼
�
3 for β < βc

1 for β > βc;
ð10Þ

which is exactly the expected behavior in the thermody-
namic limit. At β ¼ βc, we already showed in Eq. (9) that
the Binder cumulant does not depend on α and that fixing σ
to some finite, small value brings it to B4 > 1.5, i.e. not
exactly the universal value. Nevertheless, it is sufficient to
assume σ ∝ α−1 to completely reproduce the physical
situation. In particular, this means that the standard
deviation goes to zero for α → ∞, which implies

lim
α→∞

B4½PðxÞ�β¼βc
¼ 1.5

[observe how the limits in Eq. (10) are still valid assuming
σ proportional to α−1]. The Binder cumulant bump is then
nothing but a finite size effect! This suggests that also
the larger than expected value B4ðβc;∞Þ is due to these
corrections.

V. NUMERICAL RESULTS AND DISCUSSION

To get a first impression about the nature of the phase
transition, we produced collapse plots of the susceptibilities
at each value of κ according to Eq. (3), where the norm ‖L‖
of the Polyakov loop was used as an observable. Because of
the different numerical values of the ratios γ=ν for a first-
and a second-order phase transition, the collapse plots
usually help to exclude one scenario. However, especially
for low Nσ, the collapse plots of the susceptibilities are
often inconclusive, and we complement them with collapse
plots of the Binder cumulant of the imaginary part of the
Polyakov loop according to Eq. (2). In Fig. 7, we show
examples at κ ¼ 0.1, κ ¼ 0.13 and κ ¼ 0.165 with first-
order exponents in the left column and second-order
exponents in the right column. In each case, the quality
of the collapse clearly prefers one set of critical exponents.
This indicates that κ ¼ 0.1 and κ ¼ 0.165 are in the first-
order region, while κ ¼ 0.13 is in the second-order region.
Note how the Binder cumulant takes values larger than 3
for the first-order κ, as discussed in the previous section,
while it does not for the intermediate ones.
The collapse plot technique is useful as an orientation,

but it is only self-consistent, and we also wish to actually
calculate the critical exponents. Thus, we fit the Binder
cumulant data to Eq. (2), obtaining the critical exponent ν
as a fit parameter. In order to have objective fitting criteria
and avoid “fits by eye,” we developed an intricate pro-
cedure which is detailed in Appendix B. Figure 8 shows the
values of ν extracted from the fits, plotted as a function of κ.
As expected, ν changes from first- to second-order values
and back again. This behavior approaches a step function in
the thermodynamic limit but remains smoothed out when
the lattice volume is finite. In particular, this means that ν
can in principle take any value between the universal ones
in the crossing region, while far away from the tricritical
masses, it is compatible with 1=3 (first order) for small and
large κ and with 0.6301(4) (second order) for intermediate
κ. From the fit, the value of the Binder cumulant at the
critical coupling in the infinite volume limit, B4ðβc;∞Þ, can
be extracted as well. In agreement with previous studies
both with staggered fermions [2] and with Wilson fermions
[5], this value is slightly higher than the universal one,
due to finite volume corrections as discussed in Sec. IV.
However, the critical exponent ν suffers much less from this
problem and is well suited to understand the nature of the
phase transition. In accordance with these expectations, we
estimate the two tricritical values of κ as

κtricrheavy ¼ 0.11ð1Þ; κtricrlight ¼ 0.1625ð25Þ: ð11Þ

For comparison, the results from Nτ ¼ 4 [5] are also
shown in Fig. 9(a). In accord with expectations, both
tricritical (bare) masses move to smaller values on the
finer lattice. To convert these findings into universal and
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physical units, we set the scale at or close to the respective
βc for the relevant κ. The results for the lattice spacing a,
the critical temperature Tc and mπ are summarized in
Table II. Since the scale setting method using w0 is much
more precise than using the ρ mass as in Ref. [5], we
evaluated again the T ¼ 0 simulations from the latter study
and include them here for completeness. In addition, we

performed T ¼ 0 simulations for the Nτ ¼ 4 κtricrheavy values.
The lattices coarsen going to lower masses, since β
decreases. All lattices considered are coarse, 0.12 fm≲
a≲ 0.18 fm. However, compared to the Nτ ¼ 4 simula-
tions, where a≳ 0.19 fm, a clear decrease in a is achieved,
as expected. Note that mπL > 6 for all our parameter sets,
so that finite size effects are negligible.

FIG. 7. Example of collapse plots of the Binder cumulant of the imaginary part of the Polyakov loop.
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Our estimates of the tricritical points in physical units for
the given lattice spacing then read

mtricr heavy
π ¼ 3659þ589

−619 MeV;

mtricr light
π ¼ 669þ95

−81 MeV:

Note that the heavy masses in lattice units are much larger
than 1. Hence, the continuum mass estimates still suffer
from large cutoff effects. Thus, the quoted number for
mtricr heavy

π still contains a large systematic error, and a
quantitative evaluation of its shift from coarser lattices is
impossible. On the other hand, the shift in the lower
tricritical mass is from mπ ≈ 910 MeV to mπ ≈
670 MeV, or around 35%. By contrast, the critical

temperature Tc does not seem to depend much on Nτ

and stays roughly constant at around 200 MeV.
Our shifts in the tricritical pion masses are of similar

magnitude as those in the Nf ¼ 3 critical pion masses at
μ ¼ 0 with Wilson Clover fermions [25]. Comparing our
results to Ref. [4], one sees that our lighter tricritical
mass on Nτ ¼ 6 is still higher than the staggered
estimate from Nτ ¼ 4, which is roughly 400 MeV.
Altogether, this shows that Nτ ≤ 6 is still far from the
region where linear cutoff effects dominate in the
standard Wilson action and suggests that drastically
larger Nτ are required for both discretizations. This is
expected from studies of the equation of state, where
different discretizations start to agree at Nτ ≳ 12 only
(see Ref. [26] for a recent overview).

FIG. 8. Critical exponent ν as function of κ. The horizontal colored lines are the critical values of ν for some universality classes. Note
the different scale on the κ-axis. Due to the much higher numerical cost, not all the κ values simulated for Nτ ¼ 4 have been considered
for Nτ ¼ 6. Refer to Fig. 9(a) for a more direct comparison.

FIG. 9. Direct comparison between Nτ ¼ 4 and Nτ ¼ 6 results and comparison of Nτ ¼ 4, 6, 8 results in terms ofmπ . In the latter case,
the value of κtricrlight from Ref. [4] has been included as well. For the sake of clarity, not all the Nτ ¼ 4 points have been included. The
vertical colored bands highlight the position of the tricritical masses. A shift toward small masses (i.e. bigger κ) is evident as Nτ is
increased.
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As a first step toward larger Nτ, we also performed
simulations at Nτ ¼ 8 and κ ¼ 0.13, with Nσ ¼ 16, 24,
32, 40, corresponding to aspect ratios of 2–5, (for details, see
AppendixA). The computational costs increase dramatically
with Nτ, and the statistics gathered for the Nσ ¼ 40 simu-
lations is not as high as for the previous simulations.
However, ν can be determined in a solid fashion using the
data for the other three spatial volumes, giving a value of
ν ¼ 0.47ð1Þ. The lattice spacing a is now reduced from
≈0.12 fm to ≈0.09 fm. In physical units, this new point is
located atmπ ¼ 3024ð32Þ. Given the same caveats discussed
for Nτ ¼ 6, this again suggests a large shift for the heavy
tricriticalmass. Note thatTc stays again constant when going
from Nτ ¼ 6 to 8. Our findings are summarized in Fig. 9(b),
which compares the tricritical regions for the different Nτ.
Also included is the Nτ ¼ 4 value from staggered studies [4].
The figuremakes apparent thatmuch largerNτ are required in
order to go to the continuum.

VI. CONCLUSIONS

We have extended previous studies of the nature of the
Roberge-Weiss end point of Nf ¼ 2 QCD at imaginary
chemical potential to Nτ ¼ 6 and for one mass value to
Nτ ¼ 8, using standard Wilson fermions. To this end, we
gathered large amounts of data for several volumes and
carried out a thorough finite size analysis. In particular, we
have understood the occurrence of a “bump” in the Binder
cumulant in the region where the Roberge-Weiss end point
is a triple point. The behavior can be explained as a finite
size effect specifically due to the merging of a three-peak
distribution to a two peak distribution as a function of the
lattice coupling.
The qualitative phase structure fully replicates that on the

coarser Nτ ¼ 4 lattices. However, the tricritical pion mass
values separating the regime of a second-order end point

from triple points in the small and large mass regions shift
considerably when the cutoff is reduced and suggest that
significantly finer lattices are necessary before the observed
phase structure settles quantitatively in the continuum.
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APPENDIX A: SIMULATION DETAILS

A detailed overview of all our simulation runs is
provided in Table III. Measurements of the Binder cumu-
lant are difficult because of the large autocorrelations
involved and the large statistics required. For a generic
observable x, the sets of measurements fxig; fx2i g;…; fxni g
show different integrated autocorrelation times τint, which
we estimated using the Wolff algorithm [27]. Dividing the
total number of Hybrid Monte Carlo trajectories by τint
gives the number of independent measurements for a given
observable. We collected at least 30 independent events per
run of a given parameter set for B4ðLImÞ. In addition, we ran
the same parameter set generating typically four indepen-
dent Markov chains until B4ðLImÞ was compatible within
three standard deviations between all of them. Figure 10
shows an example at κ ¼ 0.1625 on Nσ ¼ 18. The
improvement of the signal with statistics is clearly visible.

TABLE III. Overview of the statistics accumulated in all the simulations (Nτ ¼ 6 and μi ¼ π=6). Since the resolution in β is not the
same at different κ, the number of simulated β has been reported per each range. The accumulated statistics per β has not always been the
same. Therefore, the number of trajectories here is about all the trajectories produced per given Nσ . Using the number of chains provided
above, it can be easily estimated how long each chain was on average, even though we always accumulated higher statistics close to the
critical temperature.

Total statistics per spatial lattice size Nσ (# of simulated β values | # of chains)

Nτ κ β range 16 18 20 24 30 32 12 36 40

6

0.1000 5.8460–5.9020 6.11M ð24 j 2Þ 4.36M (16 | 2) 4.30M (16 | 2) � � � � � �
0.1100 5.8400–5.8660 � � � 3.81M (26 | 4) 1.49M (14 | 4) 4.05M ð18 j 4Þ 1.92M ð13 j 4Þ
0.1200 5.8180–5.8450 5.28M ð10 j 4Þ 3.89M (9 | 4) 3.23M (9 | 4) 2.19M ð8 j 4Þ � � �
0.1300 5.7760–5.7980 � � � 3.94M (25 | 4) 3.76M (23 | 4) 3.56M ð16 j 4Þ � � �
0.1550 5.5210–5.5420 1.40M ð30 j 1Þ 1.04M (23 | 1) 1.12M (24 | 1) 0.76M ð9 j 4Þ � � �
0.1575 5.4750–5.4930 0.59M ð7 j 4Þ � � � 0.92M (7 | 4) 1.40M ð7 j 4Þ � � �
0.1600 5.4330–5.4430 0.52M ð6 j 4Þ � � � 0.86M (6 | 4) 1.12M ð6 j 4Þ � � �
0.1625 5.3800–5.3930 0.92M ð12 j 4Þ � � � 1.12M (8 | 4) � � � 1.38M ð7 j 4Þ
0.1650 5.3260–5.3370 1.99M ð16 j 4Þ 1.09M (11 | 4) 1.71M (12 | 4) � � � � � �

8 0.1300 5.9400–5.9800 3.69M ð9 j 4Þ � � � 5.40M (9 | 4) 2.00M ð5 j 4Þ 1.00M ð5 j 4Þ
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Once each chain was long enough, we merged them for the
finite size scaling analysis.

APPENDIX B: EXTRACTING THE
CRITICAL EXPONENT ν

As described in Sec. III, we extracted the critical
exponent ν fitting the B4ðLImÞ data for different spatial
lattice sizes according to Eq. (2). Because of the numerical
cost, the number of simulated β’s is limited. If the
distributions of Sgðβ1Þ=β1 and Sgðβ2Þ=β2 have a good
overlap, one can use Ferrenberg-Swendsen reweighting
[17] to obtain our observable at β1 < βnew < β2. However,
increasing the number of reweighted points can arbitrarily
reduce the value of the χ2NDF of the fits. For this reason, we
almost always reweighted our data using all simulated β’s,
but without adding new points, i.e. where βnew is one of the
simulated β. Exceptions to this are the first-order regions
where the Binder cumulant was very steep and a higher
resolution in β was needed.

Varying the fit interval by range and location, there is a
multitude of possible fits with differing results from which
the “good” ones have to be chosen. Here, we outline the
criteria of the filter algorithm used to select our results:

(i) We never extrapolated, i.e. all fitting intervals were
placed such that

βc ∈ I ¼ ½βmin; βmax�: ðB1Þ

(ii) Since the scaling variable was x≡ ðβ − βcÞN1=ν
σ , the

scaling region in β shrank with growing Nσ. Thus,
for the fitting intervals I1;…; In of the data with
Nσ1 < … < Nσn , we demanded

I1 ⊇…⊇ In: ðB2Þ

(iii) On the reduced chi-square, we imposed

1 − δ ≤ χ2 ≤ 1þ δ; with δ ≈ 0.2:

FIG. 10. Successive analysis of the Binder cumulant measurements at κ ¼ 0.1625 on Nσ ¼ 18. The histogram below each plot is a
guideline to judge on the statistics. nσ at each β is the number of standard deviations at which the two most different chains are
compatible. The number above each bar is the average number of independent events collected at that β. The colors have been chosen in
order to reflect the goodness of the statistics: from green (statistics high enough) to red (statistics to be increased). Both nσ and the
number of independent events have to be monitored to decide when to stop increasing statistics.
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(iv) The fitting range in x should ideally be the same for
all volumes included. We mapped the intervals In to
intervals

~In ≡ ½xmin
n ; xmax

n �:

For two intervals A ¼ ½a1; a2� and B ¼ ½b1; b2�, we
defined an overlap percentage as

Ω≡

8>><
>>:
0 if a2<b1∨b2<a1

100 ·

�
1− jb1−a1jþjb2−a2j

a2−a1þb2−b1

�
otherwise

:

ðB3Þ

We then required Ω ≥ 80%.
(v) Since the scaling region was based on Taylor

expansion, it should be symmetric around xc,

Iscaling ¼ ½−x; x�;

with x and the size of the region only known after
the fit. Given an interval J ¼ ½−a; b� with a and b
non-negative and aþ b fixed, we defined a sym-
metry percentage as

Ξ≡ 100 ·

�
1−

���� 2a
aþ b

− 1

����
�

¼ 100 ·

�
1−

���� 2b
aþ b

− 1

����
�
: ðB4Þ

Clearly, Ξ ¼ 0% (maximally asymmetric interval)
for a ¼ 0 or b ¼ 0, and Ξ ¼ 100% (maximally
symmetric interval) for a ¼ b. Among possible fits,
we chose the one with maximal Ξ.

The final list of selected fits is given in Table IV.
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